SlideShare uma empresa Scribd logo
1 de 25
Baixar para ler offline
Data sparse approximation of the
Karhunen-Lo`eve expansion
Alexander Litvinenko,
joint with B. Khoromskij (Leipzig) and H. Matthies(Braunschweig)
Institut f¨ur Wissenschaftliches Rechnen, Technische Universit¨at Braunschweig,
0531-391-3008, litvinen@tu-bs.de
March 5, 2008
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Stochastic PDE
We consider
− div(κ(x, ω)∇u) = f(x, ω) in D,
u = 0 on ∂D,
with stochastic coefficients κ(x, ω), x ∈ D ⊆ Rd
and ω belongs to the
space of random events Ω.
[Babuˇska, Ghanem, Matthies, Schwab, Vandewalle, ...].
Methods and techniques:
1. Response surface
2. Monte-Carlo
3. Perturbation
4. Stochastic Galerkin
Examples of covariance functions [Novak,(IWS),04]
The random field requires to specify its spatial correl. structure
covf (x, y) = E[(f(x, ·) − µf (x))(f(y, ·) − µf (y))],
where E is the expectation and µf (x) := E[f(x, ·)].
Let h =
3
i=1 h2
i /ℓ2
i + d2 − d
2
, where hi := xi − yi , i = 1, 2, 3,
ℓi are cov. lengths and d a parameter.
Gaussian cov(h) = σ2
· exp(−h2
),
exponential cov(h) = σ2
· exp(−h),
spherical
cov(h) =
σ2
· 1 − 3
2
h
hr
− 1
2
h3
h3
r
for 0 ≤ h ≤ hr ,
0 for h > hr .
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
KLE
The spectral representation of the cov. function is
Cκ(x, y) = ∞
i=0 λi ki(x)ki (y), where λi and ki(x) are the eigenvalues
and eigenfunctions.
The Karhunen-Lo`eve expansion [Loeve, 1977] is the series
κ(x, ω) = µk (x) +
∞
i=1
λi ki (x)ξi (ω), where
ξi (ω) are uncorrelated random variables and ki are basis functions in
L2
(D).
Eigenpairs λi , ki are the solution of
Tki = λi ki, ki ∈ L2
(D), i ∈ N, where.
T : L2
(D) → L2
(D),
(Tu)(x) := D
covk (x, y)u(y)dy.
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Computation of eigenpairs by FFT
If the cov. function depends on (x − y) then on a uniform tensor grid
the cov. matrix C is (block) Toeplitz.
Then C can be extended to the circulant one and the decomposition
C =
1
n
F H
ΛF (1)
may be computed like follows. Multiply (1) by F becomes
F C = ΛF ,
F C1 = ΛF1.
Since all entries of F1 are unity, obtain
λ = F C1.
F C1 may be computed very efficiently by FFT [Cooley, 1965] in
O(n log n) FLOPS.
C1 may be represented in a matrix or in a tensor format.
Multidimensional FFT
Lemma: The d-dim. FT F (d)
can be represented as following
F (d)
= (F
(1)
1 ⊗ I ⊗ I . . .)(I ⊗ F
(1)
2 ⊗ I . . .) . . . (I ⊗ I . . . ⊗ F
(1)
d ), (2)
and the complexity of F (d)
is O(nd
log n), where n is the number of
dofs in one direction.
Discrete eigenvalue problem
Let
Wij :=
k,m D
bi (x)bk (x)dxCkm
D
bj (y)bm(y)dy,
Mij =
D
bi (x)bj (x)dx.
Then we solve
W fh
ℓ = λℓMfh
ℓ , where W := MCM
Approximate C in
◮ low rank format
◮ the H-matrix format
◮ sparse tensor format
and use the Lanczos method to compute m largest eigenvalues.
Examples of H-matrix approximates of
cov(x, y) = e−2|x−y|
[Hackbusch et al. 99]
25 20
20 20
20 16
20 16
20 20
16 16
20 16
16 16
4 4
20 4 32
4 4
16 4 32
4 20
4 4
4 16
4 4
32 32
20 20
20 20 32
32 32
4 3
4 4 32
20 4
16 4 32
32 4
32 32
4 32
32 32
32 4
32 32
4 4
4 4
20 16
4 4
32 32
4 32
32 32
32 32
4 32
32 32
4 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
4 4
20 4 32
32 32 4
4 4
32 4
32 32 4
4 4
32 32
4 32 4
4 4
32 32
32 32 4
4
4 20
4 4 32
32 32
4 4
4
32 4
32 32
4 4
4
32 32
4 32
4 4
4
32 32
32 32
4 4
20 20
20 20 32
32 32
4 4
20 4 32
32 32
4 20
4 4 32
32 32
20 20
20 20 32
32 32
32 4
32 32
32 4
32 32
32 4
32 32
32 4
32 32
32 32
4 32
32 32
4 32
32 32
4 32
32 32
4 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
4 4 44 4
20 4 32
32 32
32 4
32 32
4 32
32 32
32 4
32 32
4 4
4 4
4 4
4 4 4
4 4
32 4
32 32 4
4 4
4 4
4 4
4 4 4
4
32 4
32 32
4 4
4 4
4 4
4 4
4 4 4
32 4
32 32
32 4
32 32
32 4
32 32
32 4
32 32
4 4
4 4
4 4
4 4
4 20
4 4 32
32 32
4 32
32 32
32 32
4 32
32 32
4 32
4
4 4
4 4
4 4
4 4
4 4
32 32
4 32 4
4
4 3
4 4
4 4
4 4
4
32 32
4 32
4 4
4
4 4
4 4
4 4
4 4
32 32
4 32
32 32
4 32
32 32
4 32
32 32
4 32
4
4 4
4 4
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
20 4 32
32 32
32 4
32 32
4 32
32 32
32 4
32 32
4 20
4 4 32
32 32
4 32
32 32
32 32
4 32
32 32
4 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
32 32
32 32 4
4 4
32 4
32 32 4
4 4
32 32
4 32 4
4 4
32 32
32 32 4
4
32 32
32 32
4 4
4
32 4
32 32
4 4
4
32 32
4 32
4 4
4
32 32
32 32
4 4
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 4
32 32
32 4
32 4
32 4
32 32
32 4
32 4
32 32
4 32
32 32
4 32
32 32
4 4
32 32
4 4
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
25 11
11 20 12
13
20 11
9 16
13
13
20 11
11 20 13
13 32
13
13
20 8
10 20 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
20 10
10 20 12
12 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
32 13
13 32
13
13
20 9
9 20 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
Figure: H-matrix approximations ∈ Rn×n
, n = 322
, with standard (left) and
weak (right) admissibility block partitionings. The biggest dense (dark) blocks
∈ Rn×n
, max. rank k = 4 left and k = 13 right.
H - Matrices
Comp. complexity is O(kn log n) and storage O(kn log n).
To assemble low-rank blocks use ACA [Bebendorf, Tyrtyshnikov].
Dependence of the computational time and storage requirements of
CH on the rank k, n = 322
.
k time (sec.) memory (MB) C−CH 2
C 2
2 0.04 2e + 6 3.5e − 5
6 0.1 4e + 6 1.4e − 5
9 0.14 5.4e + 6 1.4e − 5
12 0.17 6.8e + 6 3.1e − 7
17 0.23 9.3e + 6 6.3e − 8
The time for dense matrix C is 3.3 sec. and the storage 1.4e + 8 MB.
H - Matrices
Let h =
2
i=1 h2
i /ℓ2
i + d2 − d
2
, where hi := xi − yi , i = 1, 2, 3,
ℓi are cov. lengths and d = 1.
exponential cov(h) = σ2
· exp(−h),
The cov. matrix C ∈ Rn×n
, n = 652
.
ℓ1 ℓ2
C−CH 2
C 2
0.01 0.02 3e − 2
0.1 0.2 8e − 3
1 2 2.8e − 6
10 20 3.7e − 9
Exponential Singularvalue decay [see also Schwab et
al.]
0 100 200 300 400 500 600 700 800 900 1000
0
100
200
300
400
500
600
700
0 100 200 300 400 500 600 700 800 900 1000
0
1
2
3
4
5
6
7
8
9
10
x 10
4
0 100 200 300 400 500 600 700 800 900 1000
0
200
400
600
800
1000
1200
1400
1600
1800
0 100 200 300 400 500 600 700 800 900 1000
0
0.5
1
1.5
2
2.5
x 10
5
0 100 200 300 400 500 600 700 800 900 1000
0
50
100
150
0 100 200 300 400 500 600 700 800 900 1000
0
0.5
1
1.5
2
2.5
3
3.5
4
x 10
4
Sparse tensor decompositions of kernels
cov(x, y) = cov(x − y)
We want to approximate C ∈ RN×N
, N = nd
by
Cr =
r
k=1 V 1
k ⊗ ... ⊗ V d
k such that C − Cr ≤ ε.
The storage of C is O(N2
) = O(n2d
) and the storage of Cr is O(rdn2
).
To define V i
k use e.g. SVD.
Approximate all V i
k in the H-matrix format and become HKT format.
See basic arithmetics in [Hackbusch, Khoromskij, Tyrtyshnikov].
Assume f(x, y), x = (x1, x2), y = (y1, y2), then the equivalent approx.
problem is f(x1, x2; y1, y2) ≈
r
k=1 Φk (x1, y1)Ψk (x2, y2).
Numerical examples of tensor approximations
Gaussian kernel exp{−|x − y|2
} has the Kroneker rank 1.
The exponen. kernel e{
− |x − y|} can be approximated by a tensor
with low Kroneker rank
r 1 2 3 4 5 6 10
C−Cr ∞
C ∞
11.5 1.7 0.4 0.14 0.035 0.007 2.8e − 8
C−Cr 2
C 2
6.7 0.52 0.1 0.03 0.008 0.001 5.3e − 9
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Application: covariance of the solution
For SPDE with stochastic RHS the eigenvalue problem and spectral
decom. look like
Cf fℓ = λℓfℓ, Cf = Φf Λf ΦT
f .
If we only want the covariance
Cu = (K ⊗ K)−1
Cf = (K−1
⊗ K−1
)Cf = K−1
Cf K−T
,
one may with the KLE of Cf = Φf Λf ΦT
f reduce this to
Cu = K−1
Cf K−T
= K−1
Φf ΛΦT
f K−T
.
Application: higher order moments
Let operator K be deterministic and
Ku(θ) =
α∈J
Ku(α)
Hα(θ) = ˜f(θ) =
α∈J
f(α)
Hα(θ), with
u(α)
= [u
(α)
1 , ..., u
(α)
N ]T
. Projecting onto each Hα obtain
Ku(α)
= f(α)
.
The KLE of f(θ) is
f(θ) = f +
ℓ
λℓφℓ(θ)fl =
ℓ α
λℓφ
(α)
ℓ Hα(θ)fl
=
α
Hα(θ)f(α)
,
where f(α)
= ℓ
√
λℓφ
(α)
ℓ fl .
Application: higher order moments
The 3-rd moment of u is
M
(3)
u = E


α,β,γ
u(α)
⊗ u(β)
⊗ u(γ)
HαHβHγ

 =
α,β,γ
u(α)
⊗u(β)
⊗u(γ)
cα,β,γ,
cα,β,γ := E (Hα(θ)Hβ(θ)Hγ(θ)) = cα,β · γ!, and cα,β are constants
from the Hermitian algebra.
Using u(α)
= K−1
f(α)
= ℓ
√
λℓφ
(α)
ℓ K−1
fl and uℓ := K−1
fℓ, obtain
M
(3)
u =
p,q,r
tp,q,r up ⊗ uq ⊗ ur , where
tp,q,r := λpλqλr
α,β,γ
φ
(α)
p φ
(β)
q φ
(γ)
r cα,βγ.
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Conclusion
◮ Covariance matrices allow data sparse low-rank approximations.
◮ With application of H-matrices
◮ we extend the class of covariance functions to work with,
◮ allows non-regular discretisations of the cov. function on large
spatial grids.
◮ Application of sparse tensor product allows computation of k-th
moments.
Plans for Feature
1. Convergence of the Lanczos method with H-matrices
2. Implement sparse tensor vector product for the Lanczos method
3. HKT idea for d ≥ 3 dimensions
Thank you for your attention!
Questions?

Mais conteúdo relacionado

Mais procurados

Lecture note4coordinatedescent
Lecture note4coordinatedescentLecture note4coordinatedescent
Lecture note4coordinatedescentXudong Sun
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final reportJamesMa54
 
SPSF02 - Graphical Data Representation
SPSF02 - Graphical Data RepresentationSPSF02 - Graphical Data Representation
SPSF02 - Graphical Data RepresentationSyeilendra Pramuditya
 
Sec 3 E Maths Notes Coordinate Geometry
Sec 3 E Maths Notes Coordinate GeometrySec 3 E Maths Notes Coordinate Geometry
Sec 3 E Maths Notes Coordinate GeometryMath Academy Singapore
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...JamesMa54
 
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Optimal Budget Allocation: Theoretical Guarantee and Efficient AlgorithmOptimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Optimal Budget Allocation: Theoretical Guarantee and Efficient AlgorithmTasuku Soma
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidezJhayson Carvalho
 
Maximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeMaximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeTasuku Soma
 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...Bagalkot
 
Regret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationRegret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationTasuku Soma
 
Hierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesHierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesAlexander Litvinenko
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...Alexander Decker
 
Low-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsLow-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsAlexander Litvinenko
 
The low-rank basis problem for a matrix subspace
The low-rank basis problem for a matrix subspaceThe low-rank basis problem for a matrix subspace
The low-rank basis problem for a matrix subspaceTasuku Soma
 
Linear cong slide 2
Linear cong slide 2Linear cong slide 2
Linear cong slide 2Vi Aspe
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...inventionjournals
 
Core–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectorsCore–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectorsFrancesco Tudisco
 

Mais procurados (19)

Lecture note4coordinatedescent
Lecture note4coordinatedescentLecture note4coordinatedescent
Lecture note4coordinatedescent
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
 
SPSF02 - Graphical Data Representation
SPSF02 - Graphical Data RepresentationSPSF02 - Graphical Data Representation
SPSF02 - Graphical Data Representation
 
Sec 3 E Maths Notes Coordinate Geometry
Sec 3 E Maths Notes Coordinate GeometrySec 3 E Maths Notes Coordinate Geometry
Sec 3 E Maths Notes Coordinate Geometry
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
 
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Optimal Budget Allocation: Theoretical Guarantee and Efficient AlgorithmOptimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 
Maximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeMaximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer Lattice
 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
 
Regret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationRegret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function Maximization
 
Muchtadi
MuchtadiMuchtadi
Muchtadi
 
Hierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesHierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matrices
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
Low-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsLow-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problems
 
The low-rank basis problem for a matrix subspace
The low-rank basis problem for a matrix subspaceThe low-rank basis problem for a matrix subspace
The low-rank basis problem for a matrix subspace
 
Linear cong slide 2
Linear cong slide 2Linear cong slide 2
Linear cong slide 2
 
Tutorial no. 1.doc
Tutorial no. 1.docTutorial no. 1.doc
Tutorial no. 1.doc
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
 
Core–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectorsCore–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectors
 

Destaque

A small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleaguesA small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleaguesAlexander Litvinenko
 
Likelihood approximation with parallel hierarchical matrices for large spatia...
Likelihood approximation with parallel hierarchical matrices for large spatia...Likelihood approximation with parallel hierarchical matrices for large spatia...
Likelihood approximation with parallel hierarchical matrices for large spatia...Alexander Litvinenko
 
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005Alexander Litvinenko
 
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...Alexander Litvinenko
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationAlexander Litvinenko
 
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017) Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017) Alexander Litvinenko
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Alexander Litvinenko
 
Minimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian updateMinimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian updateAlexander Litvinenko
 
Connection between inverse problems and uncertainty quantification problems
Connection between inverse problems and uncertainty quantification problemsConnection between inverse problems and uncertainty quantification problems
Connection between inverse problems and uncertainty quantification problemsAlexander Litvinenko
 
Multi-linear algebra and different tensor formats with applications
Multi-linear algebra and different tensor formats with applications Multi-linear algebra and different tensor formats with applications
Multi-linear algebra and different tensor formats with applications Alexander Litvinenko
 
Application of hierarchical matrices for partial inverse
Application of hierarchical matrices for partial inverseApplication of hierarchical matrices for partial inverse
Application of hierarchical matrices for partial inverseAlexander Litvinenko
 
Tensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEsTensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEsAlexander Litvinenko
 
Disc seeding in conservation agriculture
Disc seeding in conservation agricultureDisc seeding in conservation agriculture
Disc seeding in conservation agricultureJack McHugh
 
My PhD talk "Application of H-matrices for computing partial inverse"
My PhD talk "Application of H-matrices for computing partial inverse"My PhD talk "Application of H-matrices for computing partial inverse"
My PhD talk "Application of H-matrices for computing partial inverse"Alexander Litvinenko
 
Litvinenko low-rank kriging +FFT poster
Litvinenko low-rank kriging +FFT  posterLitvinenko low-rank kriging +FFT  poster
Litvinenko low-rank kriging +FFT posterAlexander Litvinenko
 
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...Alexander Litvinenko
 

Destaque (20)

A small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleaguesA small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleagues
 
Likelihood approximation with parallel hierarchical matrices for large spatia...
Likelihood approximation with parallel hierarchical matrices for large spatia...Likelihood approximation with parallel hierarchical matrices for large spatia...
Likelihood approximation with parallel hierarchical matrices for large spatia...
 
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
 
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017) Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
 
Minimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian updateMinimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian update
 
Connection between inverse problems and uncertainty quantification problems
Connection between inverse problems and uncertainty quantification problemsConnection between inverse problems and uncertainty quantification problems
Connection between inverse problems and uncertainty quantification problems
 
Multi-linear algebra and different tensor formats with applications
Multi-linear algebra and different tensor formats with applications Multi-linear algebra and different tensor formats with applications
Multi-linear algebra and different tensor formats with applications
 
Application of hierarchical matrices for partial inverse
Application of hierarchical matrices for partial inverseApplication of hierarchical matrices for partial inverse
Application of hierarchical matrices for partial inverse
 
Tensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEsTensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEs
 
Disc seeding in conservation agriculture
Disc seeding in conservation agricultureDisc seeding in conservation agriculture
Disc seeding in conservation agriculture
 
Sparse matrices
Sparse matricesSparse matrices
Sparse matrices
 
My PhD talk "Application of H-matrices for computing partial inverse"
My PhD talk "Application of H-matrices for computing partial inverse"My PhD talk "Application of H-matrices for computing partial inverse"
My PhD talk "Application of H-matrices for computing partial inverse"
 
Litvinenko nlbu2016
Litvinenko nlbu2016Litvinenko nlbu2016
Litvinenko nlbu2016
 
My PhD on 4 pages
My PhD on 4 pagesMy PhD on 4 pages
My PhD on 4 pages
 
Litvinenko low-rank kriging +FFT poster
Litvinenko low-rank kriging +FFT  posterLitvinenko low-rank kriging +FFT  poster
Litvinenko low-rank kriging +FFT poster
 
add_2_diplom_main
add_2_diplom_mainadd_2_diplom_main
add_2_diplom_main
 
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
 

Semelhante a Data sparse approximation of the Karhunen-Loeve expansion

Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Alexander Litvinenko
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Alexander Litvinenko
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
Litvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewLitvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewAlexander Litvinenko
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceAlexander Decker
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...Alexander Litvinenko
 
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...Crimsonpublishers-Mechanicalengineering
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixturesChristian Robert
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structuresDavid Gleich
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...Alexander Litvinenko
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT Claudio Attaccalite
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDChristos Kallidonis
 

Semelhante a Data sparse approximation of the Karhunen-Loeve expansion (20)

Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Litvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewLitvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an Overview
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...
 
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structures
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCD
 

Mais de Alexander Litvinenko

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdfAlexander Litvinenko
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityAlexander Litvinenko
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfAlexander Litvinenko
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfAlexander Litvinenko
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Alexander Litvinenko
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowAlexander Litvinenko
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowAlexander Litvinenko
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsAlexander Litvinenko
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleAlexander Litvinenko
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonAlexander Litvinenko
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Alexander Litvinenko
 

Mais de Alexander Litvinenko (20)

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdf
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
 
litvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdflitvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdf
 
Litvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdfLitvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdf
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdf
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster Ensemble
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in Houston
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
 

Último

ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxdhanalakshmis0310
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 

Último (20)

ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 

Data sparse approximation of the Karhunen-Loeve expansion

  • 1. Data sparse approximation of the Karhunen-Lo`eve expansion Alexander Litvinenko, joint with B. Khoromskij (Leipzig) and H. Matthies(Braunschweig) Institut f¨ur Wissenschaftliches Rechnen, Technische Universit¨at Braunschweig, 0531-391-3008, litvinen@tu-bs.de March 5, 2008
  • 4. Stochastic PDE We consider − div(κ(x, ω)∇u) = f(x, ω) in D, u = 0 on ∂D, with stochastic coefficients κ(x, ω), x ∈ D ⊆ Rd and ω belongs to the space of random events Ω. [Babuˇska, Ghanem, Matthies, Schwab, Vandewalle, ...]. Methods and techniques: 1. Response surface 2. Monte-Carlo 3. Perturbation 4. Stochastic Galerkin
  • 5. Examples of covariance functions [Novak,(IWS),04] The random field requires to specify its spatial correl. structure covf (x, y) = E[(f(x, ·) − µf (x))(f(y, ·) − µf (y))], where E is the expectation and µf (x) := E[f(x, ·)]. Let h = 3 i=1 h2 i /ℓ2 i + d2 − d 2 , where hi := xi − yi , i = 1, 2, 3, ℓi are cov. lengths and d a parameter. Gaussian cov(h) = σ2 · exp(−h2 ), exponential cov(h) = σ2 · exp(−h), spherical cov(h) = σ2 · 1 − 3 2 h hr − 1 2 h3 h3 r for 0 ≤ h ≤ hr , 0 for h > hr .
  • 7. KLE The spectral representation of the cov. function is Cκ(x, y) = ∞ i=0 λi ki(x)ki (y), where λi and ki(x) are the eigenvalues and eigenfunctions. The Karhunen-Lo`eve expansion [Loeve, 1977] is the series κ(x, ω) = µk (x) + ∞ i=1 λi ki (x)ξi (ω), where ξi (ω) are uncorrelated random variables and ki are basis functions in L2 (D). Eigenpairs λi , ki are the solution of Tki = λi ki, ki ∈ L2 (D), i ∈ N, where. T : L2 (D) → L2 (D), (Tu)(x) := D covk (x, y)u(y)dy.
  • 9. Computation of eigenpairs by FFT If the cov. function depends on (x − y) then on a uniform tensor grid the cov. matrix C is (block) Toeplitz. Then C can be extended to the circulant one and the decomposition C = 1 n F H ΛF (1) may be computed like follows. Multiply (1) by F becomes F C = ΛF , F C1 = ΛF1. Since all entries of F1 are unity, obtain λ = F C1. F C1 may be computed very efficiently by FFT [Cooley, 1965] in O(n log n) FLOPS. C1 may be represented in a matrix or in a tensor format.
  • 10. Multidimensional FFT Lemma: The d-dim. FT F (d) can be represented as following F (d) = (F (1) 1 ⊗ I ⊗ I . . .)(I ⊗ F (1) 2 ⊗ I . . .) . . . (I ⊗ I . . . ⊗ F (1) d ), (2) and the complexity of F (d) is O(nd log n), where n is the number of dofs in one direction.
  • 11. Discrete eigenvalue problem Let Wij := k,m D bi (x)bk (x)dxCkm D bj (y)bm(y)dy, Mij = D bi (x)bj (x)dx. Then we solve W fh ℓ = λℓMfh ℓ , where W := MCM Approximate C in ◮ low rank format ◮ the H-matrix format ◮ sparse tensor format and use the Lanczos method to compute m largest eigenvalues.
  • 12. Examples of H-matrix approximates of cov(x, y) = e−2|x−y| [Hackbusch et al. 99] 25 20 20 20 20 16 20 16 20 20 16 16 20 16 16 16 4 4 20 4 32 4 4 16 4 32 4 20 4 4 4 16 4 4 32 32 20 20 20 20 32 32 32 4 3 4 4 32 20 4 16 4 32 32 4 32 32 4 32 32 32 32 4 32 32 4 4 4 4 20 16 4 4 32 32 4 32 32 32 32 32 4 32 32 32 4 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 20 4 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 4 20 4 4 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 20 20 20 20 32 32 32 4 4 20 4 32 32 32 4 20 4 4 32 32 32 20 20 20 20 32 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 44 4 20 4 32 32 32 32 4 32 32 4 32 32 32 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 4 4 4 4 4 4 4 4 4 20 4 4 32 32 32 4 32 32 32 32 32 4 32 32 32 4 32 4 4 4 4 4 4 4 4 4 4 4 32 32 4 32 4 4 4 3 4 4 4 4 4 4 4 32 32 4 32 4 4 4 4 4 4 4 4 4 4 4 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 4 4 4 4 4 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 20 4 32 32 32 32 4 32 32 4 32 32 32 32 4 32 32 4 20 4 4 32 32 32 4 32 32 32 32 32 4 32 32 32 4 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 32 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 32 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 32 32 32 4 32 4 32 4 32 32 32 4 32 4 32 32 4 32 32 32 4 32 32 32 4 4 32 32 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 11 11 20 12 13 20 11 9 16 13 13 20 11 11 20 13 13 32 13 13 20 8 10 20 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 20 10 10 20 12 12 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 32 13 13 32 13 13 20 9 9 20 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 Figure: H-matrix approximations ∈ Rn×n , n = 322 , with standard (left) and weak (right) admissibility block partitionings. The biggest dense (dark) blocks ∈ Rn×n , max. rank k = 4 left and k = 13 right.
  • 13. H - Matrices Comp. complexity is O(kn log n) and storage O(kn log n). To assemble low-rank blocks use ACA [Bebendorf, Tyrtyshnikov]. Dependence of the computational time and storage requirements of CH on the rank k, n = 322 . k time (sec.) memory (MB) C−CH 2 C 2 2 0.04 2e + 6 3.5e − 5 6 0.1 4e + 6 1.4e − 5 9 0.14 5.4e + 6 1.4e − 5 12 0.17 6.8e + 6 3.1e − 7 17 0.23 9.3e + 6 6.3e − 8 The time for dense matrix C is 3.3 sec. and the storage 1.4e + 8 MB.
  • 14. H - Matrices Let h = 2 i=1 h2 i /ℓ2 i + d2 − d 2 , where hi := xi − yi , i = 1, 2, 3, ℓi are cov. lengths and d = 1. exponential cov(h) = σ2 · exp(−h), The cov. matrix C ∈ Rn×n , n = 652 . ℓ1 ℓ2 C−CH 2 C 2 0.01 0.02 3e − 2 0.1 0.2 8e − 3 1 2 2.8e − 6 10 20 3.7e − 9
  • 15. Exponential Singularvalue decay [see also Schwab et al.] 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 800 900 1000 0 1 2 3 4 5 6 7 8 9 10 x 10 4 0 100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 1200 1400 1600 1800 0 100 200 300 400 500 600 700 800 900 1000 0 0.5 1 1.5 2 2.5 x 10 5 0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 0 100 200 300 400 500 600 700 800 900 1000 0 0.5 1 1.5 2 2.5 3 3.5 4 x 10 4
  • 16. Sparse tensor decompositions of kernels cov(x, y) = cov(x − y) We want to approximate C ∈ RN×N , N = nd by Cr = r k=1 V 1 k ⊗ ... ⊗ V d k such that C − Cr ≤ ε. The storage of C is O(N2 ) = O(n2d ) and the storage of Cr is O(rdn2 ). To define V i k use e.g. SVD. Approximate all V i k in the H-matrix format and become HKT format. See basic arithmetics in [Hackbusch, Khoromskij, Tyrtyshnikov]. Assume f(x, y), x = (x1, x2), y = (y1, y2), then the equivalent approx. problem is f(x1, x2; y1, y2) ≈ r k=1 Φk (x1, y1)Ψk (x2, y2).
  • 17. Numerical examples of tensor approximations Gaussian kernel exp{−|x − y|2 } has the Kroneker rank 1. The exponen. kernel e{ − |x − y|} can be approximated by a tensor with low Kroneker rank r 1 2 3 4 5 6 10 C−Cr ∞ C ∞ 11.5 1.7 0.4 0.14 0.035 0.007 2.8e − 8 C−Cr 2 C 2 6.7 0.52 0.1 0.03 0.008 0.001 5.3e − 9
  • 19. Application: covariance of the solution For SPDE with stochastic RHS the eigenvalue problem and spectral decom. look like Cf fℓ = λℓfℓ, Cf = Φf Λf ΦT f . If we only want the covariance Cu = (K ⊗ K)−1 Cf = (K−1 ⊗ K−1 )Cf = K−1 Cf K−T , one may with the KLE of Cf = Φf Λf ΦT f reduce this to Cu = K−1 Cf K−T = K−1 Φf ΛΦT f K−T .
  • 20. Application: higher order moments Let operator K be deterministic and Ku(θ) = α∈J Ku(α) Hα(θ) = ˜f(θ) = α∈J f(α) Hα(θ), with u(α) = [u (α) 1 , ..., u (α) N ]T . Projecting onto each Hα obtain Ku(α) = f(α) . The KLE of f(θ) is f(θ) = f + ℓ λℓφℓ(θ)fl = ℓ α λℓφ (α) ℓ Hα(θ)fl = α Hα(θ)f(α) , where f(α) = ℓ √ λℓφ (α) ℓ fl .
  • 21. Application: higher order moments The 3-rd moment of u is M (3) u = E   α,β,γ u(α) ⊗ u(β) ⊗ u(γ) HαHβHγ   = α,β,γ u(α) ⊗u(β) ⊗u(γ) cα,β,γ, cα,β,γ := E (Hα(θ)Hβ(θ)Hγ(θ)) = cα,β · γ!, and cα,β are constants from the Hermitian algebra. Using u(α) = K−1 f(α) = ℓ √ λℓφ (α) ℓ K−1 fl and uℓ := K−1 fℓ, obtain M (3) u = p,q,r tp,q,r up ⊗ uq ⊗ ur , where tp,q,r := λpλqλr α,β,γ φ (α) p φ (β) q φ (γ) r cα,βγ.
  • 23. Conclusion ◮ Covariance matrices allow data sparse low-rank approximations. ◮ With application of H-matrices ◮ we extend the class of covariance functions to work with, ◮ allows non-regular discretisations of the cov. function on large spatial grids. ◮ Application of sparse tensor product allows computation of k-th moments.
  • 24. Plans for Feature 1. Convergence of the Lanczos method with H-matrices 2. Implement sparse tensor vector product for the Lanczos method 3. HKT idea for d ≥ 3 dimensions
  • 25. Thank you for your attention! Questions?