SlideShare uma empresa Scribd logo
1 de 31
Introducción al análisis
geoestadístico con Geostatistical
Analyst
• Estas variables cumplen con el principio siguiente: “aquellas cosas
que están más cerca se pueden parecer más que aquellas más
separadas”. Esto quiere decir que la correlación entre valores de una
propiedad medida en puntos cercanos tiende a ser mayor que la
correlación de valores medidos en punto distantes.
• La estadística tradicional no es capaz de incorporar este principio de
ahí el origen del estudio de la geoestadística.
Procesos naturales interpretados mediante teoría funciones
aleatorias (variables regionalizadas)
Que estudia la geoestadística
Variable aleatoria: es una variable que puede tomar valores de
acuerdo a cierta distribución de probabilidades.
Variable regionalizada: es una variable aleatoria caracterizada,
además de por el conjunto de valores que puede tomar, por su posición
en el espacio.
Concepto matemático: una variable regionalizada, es, simplemente una
función f(x) que toma valores en todos los puntos x de coordenadas (xi,
yi, zi) en el espacio tridimensional.
La teoría de la variable regionalizada considera la variable (atributo)
como una variable aleatoria Z(x), donde x representa las
coordenadas espaciales. Los valores de Z, de los que hay uno para
cada posición, constituyen una particular realización de un proceso
aleatorio.
µ(x) componente estructural
(media local desconocida)
componente aleatorio, espacialmente
correlacionado, cuya varianza viene
dada por la siguiente expresión:
Se asume:
•Variable y sus derivadas son
continuas
•Media y varianza constantes
Varianza depende
solo de distancia.
NO de la posición de
los puntos.
Geoestadística: planteamiento (1)
Geoestadística: planteamiento (2)
Consideremos   NixZ i ,2,1,  puntos en los cuales se tiene
información de determinada propiedad y la estimación de
a partir de los puntos  ixZ
 ixZ
Se quiere conocer el valor en un punto sin información
Variables ambientales continuas,
observables solo en puntos
concretos.
Estimar, o predecir espacialmente, sin sesgo y con un error mínimo.
Planteamiento básico de la estimación (por Kriging):
Considerar la estimación de como una combinación lineal de las
observaciones disponibles
…y escoger los pesos bajo un criterio en
el cual se considera que dicha
estimación es óptima. Este es que el
estimador sea insesgado y que
   





 xZxZ
*
var
sea mínima


n
i
ii xZxZ
1
)()(* 
Valor a
estimar en
algún punto
específico
valor en
puntos
muestreados
cercanos al
lugar a
interpolar
Peso o ponderación que
se le da a cada uno de
los valores observados
de la variable en el
lugar Xi
consecuentemente los valores ’s
adecuados son los que minimizan la
varianza.
Geoestadística: planteamiento (3)
¿Que es un estudio Geoestadístico?
Pasos para un correcto estudio geoestadístico:
2. Análisis estructural o variográfico
4. Validación del modelo geoestadístico
Estadística descriptiva
Análisis gráfico
Análisis de tendencias
Cálculo (semi)variograma
experimental
Ajuste del (semi)variograma a
un modelo válido
1. Análisis exploratorio de los datos
3. Interpolación o estimación espacial
Análisis Exploratorio de Datos
• Primer paso de cualquier análisis -(geo)estadístico o no- de datos.
• Sirve a familiarizarse con el conjunto de datos.
• Representar los datos en figuras y diagramas en vez de analizar directamente listados en
formato tabular
¿Cuál es la distribución de los datos?, ¿Existen valores anómalos?, ¿El histograma es
simétrico o sesgado?, ¿Los datos presentan alguna tendencia? ¿Son isótropos o anisótropos?
Para esto es necesario conocer:
•La distribución espacial (estadísticos de base, histogramas)
•Presencia de tendencias (análisis de tendencias)
•Búsqueda de valores anómalos (box-plot)
El AED permite entender en profundidad las observaciones del fenómeno para poder tomar
decisiones sobre como tratarlos.
Las herramientas que se pueden usar en ArcGIS son: Histogram, Normal QQPlot, Trend
Analysis, General QQPlot.
K= 10*logN
A= (val.máx)/K A=rango/K
Análisis Exploratorio de Datos
K= Número de intervalos
h = Tamaño intervalo
σ = Desviación estándar
n = número de muestras
Análisis Exploratorio de Datos
El valor de
cada polígono
puede ser
calculado
usando
cualquiera de
métodos:
simple, mean,
mode, cluster,
entropy,
median
standard
deviation, IQR
Voronoi map: construcción de
polígonos formados entorno a
un punto (dato).
Trend Analysis: proyección 3D de
los datos para identificar
tendencias y anisotropías en los
datos.
Normal QQplot: gráfico que
compara la distribución de la
variable con la de una distribución
normal.
• Describe como varía la variable en función de la distancia y
dirección
• Se calcula:
• Se ajusta a un modelo por que el variograma experimental no
permite evaluar en distancias o direcciones intermedias
      
 


hN
i
ii zz
N 1
2
)(2
1
ˆ hxx
h
h
Análisis estructural o variográfico
El variograma…
Los modelos utilizados habitualmente en el ajuste del variograma
son:Gaussiano, Exponencial, Esférico, Polinomial, etc…
Kriging
En ArcGIS el ajuste del semivariograma se realiza una vez
elegido el método de interpolación.
El kriging es un método geoestadístico muy difundido y del cual existen
un gran número de modificaciones.
Estos algoritmos están basados en la descripción de la variación espacial
de los datos que se modela mediante el variograma.
Kriging
Existen varios tipos de kriging:
• Kriging simple: media m conocida
• Kriging ordinario: media m desconocida
• Kriging con deriva: media desconocida que depende de cada posición m(u)
• Kriging universal - intrínseco: la deriva es un polinomio de las coordenadas
• Kriging trigonométrico: la deriva es una función periódica
• Kriging con deriva externa: la deriva es proporcional a una variable secundaria
• Kriging no lineal: aplica kriging a una transformada de la variable
• Kriging lognormal: cuando el logaritmo de los datos tiene una distribución normal
• Kriging de indicadores: aplica kriging a datos binarios (indicadores) que codifican
probabilidades de pertenecer a un tipo de roca o de sobrepasar una ley de corte
• Kriging disyuntivo: aplica kriging a factores que descomponen la variable a estimar
• Kriging multi-Gaussiano: aplica kriging a la transformada Gaussiana de los datos
• Kriging multivariable = cokriging
• Etc.
• Prediction maps (interpolación): estiman valores donde las medidas no han sido
tomadas.
• Standard error maps: (mapa de la raíz cuadrada de la varianza de las estimaciones)
muestra la distribución del error de la interpolación. Este tiende a ser mayor en
sitios donde hay poca o ninguna información de la variable estudiada.
• Quantile maps : mapa de los valores donde las predicciones exceden (o no exceden)
los valores del percentil especificado.
• Probability maps : mapas de probabilidades que los valores exceden (o no exceden)
un umbral especificado. Esta probabilidad es determinada a partir de las
estimaciones, del error de distribución y del umbral elegido.
Mapas en ArcGIS
Algunas referencias
Samper, F.J. & J. Carrera 1990. Geoestadística. Aplicaciones a la
Hidrogeología Subterránea. Centro Internacional de Métodos Numéricos en
Ingeniería. Universitat Politécnica de Catalunya. Barcelona.
Myers, D. E. 1987. Optimization of Sampling Locations for Variogram
Calculations. Water Resources Research. 23(3): 283(93).
Isaaks, E. & R. M. Srivastava. 1989. Applied Geostatistics. Oxford
University Press, New York.
Cressie, N. 1993. Statistical for Spatial Data. John Wiley & Sons, New York.
Díaz-Francés, E. (1993). Introducción a Conceptos Básicos de
Geoestadística. Memorias Seminario Estadística y Medio Ambiente. Centro
de Investigación en Matemáticas, CIMAT. Guanajuato, México.
Christakos, G. (2000), Modern Spatio Temporal Geostatistics, Oxford
University Press, New York.
Burrough, P.A. (2001). “GIS and geostatistics: essential partners for
spatial analysis”. Environmentaland Ecological Statistics, 8, pp. 361-
377.
Chica Olmo, M. y Luque Espinar, J.A. (2002). Interpolación espacial en
la creación de cubiertas temáticas en SIG. En: HUERTA, L. (Ed.). Los
SIG en la gestión de los riesgos geológicos y el medio ambiente.
IGME, pp. 181-198.
Webster, R. y Oliver, M.A. (2001). Geostatistics for Environmental
Scientists. John Wiley and Sons Ltd, Chichester, 271 pp.
Pilz J.(2009). Interfacing Geostatistic and GIS. Springer-Verlag, Berlin
Algunas referencias
Análisis y preparación de los datos
• Cargar la extensión Geostátical Analyst
• Añadir el mapa base y crear la capa de puntos de estaciones
meteorológicas.
• Observar la distribución de los datos.
• Calcular estadísticos básicos (open attributa table ->atributo-> (botón
secundario -> Statistics)
Comprobar la distribución de los datos
• En la barra de herramientas Geostatical Analyst-> Explore data->
Histogram
• Seleccionar la media para los valores repetidos.
• Seleccionar la capa de puntos y en Attribute el campo que
corresponda.
• En la pestaña Transformation probar a cambiar entre las opciones
• Calcular tamaño y número de intervalos con las fórmulas propuestas
• ¿Cómo cambia el histograma?
• ¿Cómo podemos definir la distribución de estos datos?
• ¿Es necesaria una transformación que nos acerque a una distribución normal?
Comprobar la distribución de los datos
• Selecciona los intervalos para saber cuáles son los puntos que lo
forman. Comprobar con las áreas de máximos y mínimos
selecccionanado el primer y el último intervalo.
• Comprobamos el diagrama normalQQ, para ello: Geostátical Analyst
-> Eplore Data-> NormalQQPlot
• Seleccionar el archivo y la variable correctos
• En la transformación cambiar a Log ¿Cambia algo?¿Es mejor?
Análisis de tendencias
• Permite representar los datos en 3D, dibujando regresión de la variable en
los planos E-O y N-S.
• Objetivo: visualizar los datos en conjunto, observar tendencias globales y
decidir eliminar durante la interpolación (sólo eliminar si se minimizan
notablemente los errores de las estimaciones)
• Geostatistical Analyst -> Explore Data -> Trend Análisis.
• En la pantalla que se abre asegurarse de seleccionar el archivo y la variable
Correctos.
• Definir las tendencias presentes. ¿Cómo varían los datos en el área de estudio? ¿Cuál
es la tendencia global de los datos?
• Observar si todas las variables presentan la misma tendencia cambiando la variable
en la pestaña Attribute
Análisis del semivariograma
• Geostatistical Analyst -> Explore Data -> Semivariogram/Covariance
Cloud.
• En la pantalla que se abre asegurarse de seleccionar el archivo y la
variable correctos.
• Seleccionar el tamaño y el número de intervalos que definirán el
variograma
• ¿Son adecuados los valores que vienen por defecto?
Análisis del semivariograma
• Geostatistical Analyst -> Explore Data -> Semivariogram/Covariance Cloud.
• En la pantalla que se abre asegurarse de seleccionar el archivo y la variable
correctos.
• Para reducir el número de puntos en el semivariograma empírico se lleva a cabo
un proceso de agrupación de aquellos pares de localizaciones presentes en el
semivariograma en base a la distancia entre ellos. Este proceso genera una serie
de grupos de pares de puntos denominados “Bins” a lo largo de todo el área de
estudio.
• El control de las condiciones en que se va a realizar este proceso de agrupación se
realiza mediante la modificación del tamaño y número de intervalos (Lag size,
Number of Lags).
• Seleccionar el tamaño y el número de intervalos que definirán el variograma
• ¿Son adecuados los valores que vienen por defecto?
Análisis del semivariograma
• ¿Cómo podemos determinar qué valores de intervalo pueden proporcionar
un buen ajuste del semivariograma? Para concretar el tamaño (TI) y
número (NI) numerosos estudios geoestadísticos coinciden en que se
deben cumplir dos condiciones:
• La mitad de la distancia máxima entre puntos (DMAX/2) debe ser aproximadamente
igual al producto del número de intervalos (NI) por el tamaño de los mismos.
• La distancia media entre vecinos próximos (DMED) multiplicada por dos debe ser
menor o igual al tamaño del intervalo. De esta manera se garantiza que tenemos una
probabilidad de al menos el 95% de encontrarnos con tres puntos por cada intervalo.
• Por tanto, para establecer unos valores adecuados de tamaño y distancia
de intervalo tenemos en primer lugar que conocer la distancia máxima
entre puntos, así como la distancia media entre puntos cercanos.
Análisis del semivariograma
• Activar Show search direction y mover con el puntero la dirección
Observar las diferencias que existen entre los semivariogramas
realizados para la dirección NE-S-у О.
• Crear el semivariograma siguiendo la dirección de la tendencia global
que hemos observado anteriormente. ¿Qué cambia?
Mover con el
puntero para
cambiar la dirección
de observación de
la correlación
espacial
Análisis del semivariograma
• El tamaño del intervalo (Lag) controla la distancia para agrupar
muestras.
• Si el tamaño del lag es muy grande, se omitirá parte de la correlación espacial
en los datos.
• Si el tamaño del lag es muy pequeño, no se conseguirán muchos pares de
puntos para el análisis.
• Una forma aceptada de elegir estos parámetros es que el tamaño de
lag multiplicado por el número de lags, sea más o menos, la mitad de
la distancia máxima entre los puntos que se están estudiando.
Análisis del semivariograma
• Seleccionar un punto con un alto valor en el eje Y.
• ¿Qué se observa? ¿y que cambia si se seleccionan unos puntos en la parte
derecha del diagrama?
• En las figuras a continuación se representan estas dos situaciones. En
el gráfico los puntos seleccionados son destacados en azul y en el
mapa se representan las dos posiciones que representan el punto
elegido del variograma. Esto es como el programa calcula la distancia
(el eje de abscisas) de cada par de puntos y su valor de
semivariograma (el eje de ordenadas).
Análisis del semivariograma
los puntos están a una distancia
pequeña (el punto destacado está
cerca del cero sobre el eje de
abscisas). Los valores, sin embargo,
son diferentes.
• las distancias son mayores y se
mantiene la diferencia entre los
valores medidos.
Análisis Geoestadístico: ajuste del
semivariograma y creación de mapas.
• Geostatistical Analyst ->
Explore Data->
Geostatistical Wizard.
• En esta primera pantalla se
decide el archivo que se
usa, el atributo que se
quiere interpolar y el
método que se quiere usar.
• Kriging -> Next-> Ordinary
Kriging-> Prediction Map
->next.
Análisis Geoestadístico: ajuste del
semivariograma y creación de mapas.
• Seleccionar el modelo
esférico y activar la casilla
Anisotropy, fijándola en
True.
• Por ahora dejarlos valores
que vienen por defecto y
pulsar Next.
Análisis Geoestadístico: ajuste del
semivariograma y creación de mapas.
• El paso 4 permite decidir el
número de puntos
cercanos a incluir en el
cálculo y el tipo de sector
de búsqueda.
• Pulsar Next
Análisis Geoestadístico: ajuste del
semivariograma y creación de mapas.
• En última pantalla que se abre es posible ver los valores de los errores
asociados a esta interpolación.
• Valorar si las estimaciones efectuadas son adecuadas.
• Estos estadísticos indican si el modelo y los parámetros usados son
adecuados para la variable estudiada y en qué medida es buena la
interpolación. Unas estimaciones correctas deberían cumplir con lo
siguiente:
Mean y Mean Standardized: próximos a cero.
Root-Mean-Square Standardized: próximo a 1.
Si el valor es mayor estamos infravalorando la variabilidad,
Si el valores menor estamos sobreestimando la variabilidad de nuestras
estimaciones.
Average Standard Error: debería ser parecido al Root-Mean Square.
Si el Average Standard Errores mayor que el Root-Mean Square estamos
sobrevalorando la variabilidad de las estimaciones,
en caso contrario estamos subestimando la variabilidad.
Análisis Geoestadístico: ajuste del
semivariograma y creación de mapas.
• Ya tenemos un primer mapa de la distribución de nuestra variable
• volvemos atrás y calculamos otros ajustes para nuestro semivariograma.
• Crear un mapa con el mismo método y usar otro número y tamaño de lag.
Aumentar el número de puntos incluidos en la estimación.

Mais conteúdo relacionado

Mais procurados

APLICACIONES GEOESTADISTICA II - VICTORIA HERRERA
APLICACIONES GEOESTADISTICA II -  VICTORIA HERRERAAPLICACIONES GEOESTADISTICA II -  VICTORIA HERRERA
APLICACIONES GEOESTADISTICA II - VICTORIA HERRERAEduardo Mera
 
El Catastro Minero y SNCP
El Catastro Minero y SNCPEl Catastro Minero y SNCP
El Catastro Minero y SNCPIndyceCampus
 
Calculos para voladura
Calculos para voladuraCalculos para voladura
Calculos para voladuraoscarflores287
 
Perforación Diamantina (DDH) guía Christensen
Perforación Diamantina (DDH) guía ChristensenPerforación Diamantina (DDH) guía Christensen
Perforación Diamantina (DDH) guía ChristensenTomás Monsalve Lemuñir
 
Ppt yacimientos face ortomagmatico
Ppt yacimientos face ortomagmaticoPpt yacimientos face ortomagmatico
Ppt yacimientos face ortomagmaticosilveriopari
 
Variogramas teoría general
Variogramas teoría generalVariogramas teoría general
Variogramas teoría generalMauricioTics2016
 
resistencia-al-movimiento-del-aire-curva-caracteristica-potencia
resistencia-al-movimiento-del-aire-curva-caracteristica-potenciaresistencia-al-movimiento-del-aire-curva-caracteristica-potencia
resistencia-al-movimiento-del-aire-curva-caracteristica-potencia15yona
 
Aplicacion de los sensores remotos en la exploracion - SEG
Aplicacion de los sensores remotos en la exploracion - SEGAplicacion de los sensores remotos en la exploracion - SEG
Aplicacion de los sensores remotos en la exploracion - SEGRemote Sensing GEOIMAGE
 
Geoestadistica lineal
Geoestadistica linealGeoestadistica lineal
Geoestadistica linealIngemmet Peru
 
El teodolito y sus partes
El teodolito y sus partesEl teodolito y sus partes
El teodolito y sus partessamuel234470
 
Geomodelamiento 3D y Simulación Condicional Aplicados a la Caracterización de...
Geomodelamiento 3D y Simulación Condicional Aplicados a la Caracterización de...Geomodelamiento 3D y Simulación Condicional Aplicados a la Caracterización de...
Geomodelamiento 3D y Simulación Condicional Aplicados a la Caracterización de...José Enrique Gutiérrez Ramírez
 

Mais procurados (20)

Clase 16 mapas estratigraficos
Clase 16 mapas estratigraficosClase 16 mapas estratigraficos
Clase 16 mapas estratigraficos
 
Muestreo de minerales2016
Muestreo de minerales2016Muestreo de minerales2016
Muestreo de minerales2016
 
APLICACIONES GEOESTADISTICA II - VICTORIA HERRERA
APLICACIONES GEOESTADISTICA II -  VICTORIA HERRERAAPLICACIONES GEOESTADISTICA II -  VICTORIA HERRERA
APLICACIONES GEOESTADISTICA II - VICTORIA HERRERA
 
El Catastro Minero y SNCP
El Catastro Minero y SNCPEl Catastro Minero y SNCP
El Catastro Minero y SNCP
 
106288867 geologia-de-minas-perfiles
106288867 geologia-de-minas-perfiles106288867 geologia-de-minas-perfiles
106288867 geologia-de-minas-perfiles
 
Aplicación de la proyección estereográfica en minería
Aplicación de la proyección estereográfica en mineríaAplicación de la proyección estereográfica en minería
Aplicación de la proyección estereográfica en minería
 
Calculos para voladura
Calculos para voladuraCalculos para voladura
Calculos para voladura
 
Perforación Diamantina (DDH) guía Christensen
Perforación Diamantina (DDH) guía ChristensenPerforación Diamantina (DDH) guía Christensen
Perforación Diamantina (DDH) guía Christensen
 
Ppt yacimientos face ortomagmatico
Ppt yacimientos face ortomagmaticoPpt yacimientos face ortomagmatico
Ppt yacimientos face ortomagmatico
 
Variogramas teoría general
Variogramas teoría generalVariogramas teoría general
Variogramas teoría general
 
Geo estadistica2
Geo estadistica2Geo estadistica2
Geo estadistica2
 
Inventario de Recursos Minerales Metálicos
Inventario de Recursos Minerales MetálicosInventario de Recursos Minerales Metálicos
Inventario de Recursos Minerales Metálicos
 
resistencia-al-movimiento-del-aire-curva-caracteristica-potencia
resistencia-al-movimiento-del-aire-curva-caracteristica-potenciaresistencia-al-movimiento-del-aire-curva-caracteristica-potencia
resistencia-al-movimiento-del-aire-curva-caracteristica-potencia
 
Yacimientos volcanogeno sedimentarios
Yacimientos volcanogeno sedimentariosYacimientos volcanogeno sedimentarios
Yacimientos volcanogeno sedimentarios
 
Aplicacion de los sensores remotos en la exploracion - SEG
Aplicacion de los sensores remotos en la exploracion - SEGAplicacion de los sensores remotos en la exploracion - SEG
Aplicacion de los sensores remotos en la exploracion - SEG
 
04 acuiferos
04 acuiferos04 acuiferos
04 acuiferos
 
Geoestadistica lineal
Geoestadistica linealGeoestadistica lineal
Geoestadistica lineal
 
resumen variogramas.pdf
resumen variogramas.pdfresumen variogramas.pdf
resumen variogramas.pdf
 
El teodolito y sus partes
El teodolito y sus partesEl teodolito y sus partes
El teodolito y sus partes
 
Geomodelamiento 3D y Simulación Condicional Aplicados a la Caracterización de...
Geomodelamiento 3D y Simulación Condicional Aplicados a la Caracterización de...Geomodelamiento 3D y Simulación Condicional Aplicados a la Caracterización de...
Geomodelamiento 3D y Simulación Condicional Aplicados a la Caracterización de...
 

Semelhante a Introducción al análisis geoestadístico con geostatistical analyst

08estimacion_e_interpolacion.pdf
08estimacion_e_interpolacion.pdf08estimacion_e_interpolacion.pdf
08estimacion_e_interpolacion.pdfJuan Estevez
 
2 estimacion geoestadistica e jara codelco
2 estimacion geoestadistica    e jara   codelco2 estimacion geoestadistica    e jara   codelco
2 estimacion geoestadistica e jara codelcoKEVIN URIEPERO
 
Movimiento de proyectil
Movimiento de proyectilMovimiento de proyectil
Movimiento de proyectilDenisse Yagual
 
Tipos de modelos.pdf
Tipos de modelos.pdfTipos de modelos.pdf
Tipos de modelos.pdfJulietaTP
 
Distribucion de la precipitacion
Distribucion de la precipitacionDistribucion de la precipitacion
Distribucion de la precipitacionHansell Soto Castro
 
Movimiento de proyectil
Movimiento de proyectilMovimiento de proyectil
Movimiento de proyectilMeli Aguilera
 
Cómo funciona kriging—ayuda arc gis desktop
Cómo funciona kriging—ayuda   arc gis desktopCómo funciona kriging—ayuda   arc gis desktop
Cómo funciona kriging—ayuda arc gis desktopLibélula
 
Medidas de dispersión
Medidas de dispersiónMedidas de dispersión
Medidas de dispersiónargianis
 
Estadística Descriptiva. Medidas de dispersion
Estadística Descriptiva. Medidas de dispersionEstadística Descriptiva. Medidas de dispersion
Estadística Descriptiva. Medidas de dispersionJuan González Díaz
 
Metodos probabilisticos de Hidrologia
Metodos probabilisticos de HidrologiaMetodos probabilisticos de Hidrologia
Metodos probabilisticos de HidrologiaFreddy Svv
 
AnalisisBivariado6finalVariablescuanti.pptx
AnalisisBivariado6finalVariablescuanti.pptxAnalisisBivariado6finalVariablescuanti.pptx
AnalisisBivariado6finalVariablescuanti.pptxjosemgaetef
 
EL ANÁLISIS PREVIO Y EXPLORATORIO DE DATOS.pdf
EL ANÁLISIS PREVIO Y EXPLORATORIO DE DATOS.pdfEL ANÁLISIS PREVIO Y EXPLORATORIO DE DATOS.pdf
EL ANÁLISIS PREVIO Y EXPLORATORIO DE DATOS.pdfSaulRamonestorres
 

Semelhante a Introducción al análisis geoestadístico con geostatistical analyst (20)

08estimacion_e_interpolacion.pdf
08estimacion_e_interpolacion.pdf08estimacion_e_interpolacion.pdf
08estimacion_e_interpolacion.pdf
 
2 estimacion geoestadistica e jara codelco
2 estimacion geoestadistica    e jara   codelco2 estimacion geoestadistica    e jara   codelco
2 estimacion geoestadistica e jara codelco
 
Movimiento de proyectil
Movimiento de proyectilMovimiento de proyectil
Movimiento de proyectil
 
PF4 SIG AnáIisis Espacial
PF4 SIG AnáIisis EspacialPF4 SIG AnáIisis Espacial
PF4 SIG AnáIisis Espacial
 
Tipos de modelos.pdf
Tipos de modelos.pdfTipos de modelos.pdf
Tipos de modelos.pdf
 
Distribucion de la precipitacion
Distribucion de la precipitacionDistribucion de la precipitacion
Distribucion de la precipitacion
 
Movimiento de proyectil
Movimiento de proyectilMovimiento de proyectil
Movimiento de proyectil
 
distribuciones
distribuciones distribuciones
distribuciones
 
Taller yacimientos ii
Taller yacimientos iiTaller yacimientos ii
Taller yacimientos ii
 
Cómo funciona kriging—ayuda arc gis desktop
Cómo funciona kriging—ayuda   arc gis desktopCómo funciona kriging—ayuda   arc gis desktop
Cómo funciona kriging—ayuda arc gis desktop
 
211 209-1-pb
211 209-1-pb211 209-1-pb
211 209-1-pb
 
Medidas de dispersión
Medidas de dispersiónMedidas de dispersión
Medidas de dispersión
 
Muestreo canchaya
Muestreo canchayaMuestreo canchaya
Muestreo canchaya
 
Hidroesta
HidroestaHidroesta
Hidroesta
 
CLASE 4_CPIC.pdf
CLASE 4_CPIC.pdfCLASE 4_CPIC.pdf
CLASE 4_CPIC.pdf
 
Estadística Descriptiva. Medidas de dispersion
Estadística Descriptiva. Medidas de dispersionEstadística Descriptiva. Medidas de dispersion
Estadística Descriptiva. Medidas de dispersion
 
Metodos probabilisticos de Hidrologia
Metodos probabilisticos de HidrologiaMetodos probabilisticos de Hidrologia
Metodos probabilisticos de Hidrologia
 
curso sig_geoestadisticaII
curso sig_geoestadisticaIIcurso sig_geoestadisticaII
curso sig_geoestadisticaII
 
AnalisisBivariado6finalVariablescuanti.pptx
AnalisisBivariado6finalVariablescuanti.pptxAnalisisBivariado6finalVariablescuanti.pptx
AnalisisBivariado6finalVariablescuanti.pptx
 
EL ANÁLISIS PREVIO Y EXPLORATORIO DE DATOS.pdf
EL ANÁLISIS PREVIO Y EXPLORATORIO DE DATOS.pdfEL ANÁLISIS PREVIO Y EXPLORATORIO DE DATOS.pdf
EL ANÁLISIS PREVIO Y EXPLORATORIO DE DATOS.pdf
 

Último

Tema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieriaTema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieriaLissetteMorejonLeon
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfIsbelRodrguez
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosfranchescamassielmor
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidasNelsonQuispeQuispitu
 
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptxJOSLUISCALLATAENRIQU
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
La mineralogia y minerales, clasificacion
La mineralogia y minerales, clasificacionLa mineralogia y minerales, clasificacion
La mineralogia y minerales, clasificacionnewspotify528
 
Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasAhmedMontaoSnchez1
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialyajhairatapia
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana5extraviado
 
Libro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdfLibro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdferick82709
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaSebastianQP1
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosJeanCarlosLorenzo1
 
Estudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras vialesEstudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras vialesRamonCortez4
 
Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1victorrodrigues972054
 
PRIMER Y SEGUNDO TEOREMA DE CASTIGLIANO.pdf
PRIMER Y SEGUNDO TEOREMA DE CASTIGLIANO.pdfPRIMER Y SEGUNDO TEOREMA DE CASTIGLIANO.pdf
PRIMER Y SEGUNDO TEOREMA DE CASTIGLIANO.pdfAuraGabriela2
 
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptx
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptxMUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptx
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptxIcelaMartnezVictorin
 

Último (20)

Tema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieriaTema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieria
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdf
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negocios
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidas
 
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptx
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
La mineralogia y minerales, clasificacion
La mineralogia y minerales, clasificacionLa mineralogia y minerales, clasificacion
La mineralogia y minerales, clasificacion
 
Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnas
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundial
 
Linea del tiempo de la inteligencia artificial.pptx
Linea del tiempo de la inteligencia artificial.pptxLinea del tiempo de la inteligencia artificial.pptx
Linea del tiempo de la inteligencia artificial.pptx
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana
 
Libro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdfLibro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdf
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieria
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
 
Estudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras vialesEstudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras viales
 
Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1
 
PRIMER Y SEGUNDO TEOREMA DE CASTIGLIANO.pdf
PRIMER Y SEGUNDO TEOREMA DE CASTIGLIANO.pdfPRIMER Y SEGUNDO TEOREMA DE CASTIGLIANO.pdf
PRIMER Y SEGUNDO TEOREMA DE CASTIGLIANO.pdf
 
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptx
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptxMUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptx
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptx
 

Introducción al análisis geoestadístico con geostatistical analyst

  • 1. Introducción al análisis geoestadístico con Geostatistical Analyst
  • 2. • Estas variables cumplen con el principio siguiente: “aquellas cosas que están más cerca se pueden parecer más que aquellas más separadas”. Esto quiere decir que la correlación entre valores de una propiedad medida en puntos cercanos tiende a ser mayor que la correlación de valores medidos en punto distantes. • La estadística tradicional no es capaz de incorporar este principio de ahí el origen del estudio de la geoestadística. Procesos naturales interpretados mediante teoría funciones aleatorias (variables regionalizadas) Que estudia la geoestadística Variable aleatoria: es una variable que puede tomar valores de acuerdo a cierta distribución de probabilidades. Variable regionalizada: es una variable aleatoria caracterizada, además de por el conjunto de valores que puede tomar, por su posición en el espacio. Concepto matemático: una variable regionalizada, es, simplemente una función f(x) que toma valores en todos los puntos x de coordenadas (xi, yi, zi) en el espacio tridimensional.
  • 3. La teoría de la variable regionalizada considera la variable (atributo) como una variable aleatoria Z(x), donde x representa las coordenadas espaciales. Los valores de Z, de los que hay uno para cada posición, constituyen una particular realización de un proceso aleatorio. µ(x) componente estructural (media local desconocida) componente aleatorio, espacialmente correlacionado, cuya varianza viene dada por la siguiente expresión: Se asume: •Variable y sus derivadas son continuas •Media y varianza constantes Varianza depende solo de distancia. NO de la posición de los puntos. Geoestadística: planteamiento (1)
  • 4. Geoestadística: planteamiento (2) Consideremos   NixZ i ,2,1,  puntos en los cuales se tiene información de determinada propiedad y la estimación de a partir de los puntos  ixZ  ixZ Se quiere conocer el valor en un punto sin información Variables ambientales continuas, observables solo en puntos concretos. Estimar, o predecir espacialmente, sin sesgo y con un error mínimo.
  • 5. Planteamiento básico de la estimación (por Kriging): Considerar la estimación de como una combinación lineal de las observaciones disponibles …y escoger los pesos bajo un criterio en el cual se considera que dicha estimación es óptima. Este es que el estimador sea insesgado y que           xZxZ * var sea mínima   n i ii xZxZ 1 )()(*  Valor a estimar en algún punto específico valor en puntos muestreados cercanos al lugar a interpolar Peso o ponderación que se le da a cada uno de los valores observados de la variable en el lugar Xi consecuentemente los valores ’s adecuados son los que minimizan la varianza. Geoestadística: planteamiento (3)
  • 6. ¿Que es un estudio Geoestadístico? Pasos para un correcto estudio geoestadístico: 2. Análisis estructural o variográfico 4. Validación del modelo geoestadístico Estadística descriptiva Análisis gráfico Análisis de tendencias Cálculo (semi)variograma experimental Ajuste del (semi)variograma a un modelo válido 1. Análisis exploratorio de los datos 3. Interpolación o estimación espacial
  • 7. Análisis Exploratorio de Datos • Primer paso de cualquier análisis -(geo)estadístico o no- de datos. • Sirve a familiarizarse con el conjunto de datos. • Representar los datos en figuras y diagramas en vez de analizar directamente listados en formato tabular ¿Cuál es la distribución de los datos?, ¿Existen valores anómalos?, ¿El histograma es simétrico o sesgado?, ¿Los datos presentan alguna tendencia? ¿Son isótropos o anisótropos? Para esto es necesario conocer: •La distribución espacial (estadísticos de base, histogramas) •Presencia de tendencias (análisis de tendencias) •Búsqueda de valores anómalos (box-plot) El AED permite entender en profundidad las observaciones del fenómeno para poder tomar decisiones sobre como tratarlos. Las herramientas que se pueden usar en ArcGIS son: Histogram, Normal QQPlot, Trend Analysis, General QQPlot.
  • 8. K= 10*logN A= (val.máx)/K A=rango/K Análisis Exploratorio de Datos K= Número de intervalos h = Tamaño intervalo σ = Desviación estándar n = número de muestras
  • 9. Análisis Exploratorio de Datos El valor de cada polígono puede ser calculado usando cualquiera de métodos: simple, mean, mode, cluster, entropy, median standard deviation, IQR Voronoi map: construcción de polígonos formados entorno a un punto (dato). Trend Analysis: proyección 3D de los datos para identificar tendencias y anisotropías en los datos. Normal QQplot: gráfico que compara la distribución de la variable con la de una distribución normal.
  • 10. • Describe como varía la variable en función de la distancia y dirección • Se calcula: • Se ajusta a un modelo por que el variograma experimental no permite evaluar en distancias o direcciones intermedias            hN i ii zz N 1 2 )(2 1 ˆ hxx h h Análisis estructural o variográfico El variograma… Los modelos utilizados habitualmente en el ajuste del variograma son:Gaussiano, Exponencial, Esférico, Polinomial, etc…
  • 11. Kriging En ArcGIS el ajuste del semivariograma se realiza una vez elegido el método de interpolación. El kriging es un método geoestadístico muy difundido y del cual existen un gran número de modificaciones. Estos algoritmos están basados en la descripción de la variación espacial de los datos que se modela mediante el variograma.
  • 12. Kriging Existen varios tipos de kriging: • Kriging simple: media m conocida • Kriging ordinario: media m desconocida • Kriging con deriva: media desconocida que depende de cada posición m(u) • Kriging universal - intrínseco: la deriva es un polinomio de las coordenadas • Kriging trigonométrico: la deriva es una función periódica • Kriging con deriva externa: la deriva es proporcional a una variable secundaria • Kriging no lineal: aplica kriging a una transformada de la variable • Kriging lognormal: cuando el logaritmo de los datos tiene una distribución normal • Kriging de indicadores: aplica kriging a datos binarios (indicadores) que codifican probabilidades de pertenecer a un tipo de roca o de sobrepasar una ley de corte • Kriging disyuntivo: aplica kriging a factores que descomponen la variable a estimar • Kriging multi-Gaussiano: aplica kriging a la transformada Gaussiana de los datos • Kriging multivariable = cokriging • Etc.
  • 13. • Prediction maps (interpolación): estiman valores donde las medidas no han sido tomadas. • Standard error maps: (mapa de la raíz cuadrada de la varianza de las estimaciones) muestra la distribución del error de la interpolación. Este tiende a ser mayor en sitios donde hay poca o ninguna información de la variable estudiada. • Quantile maps : mapa de los valores donde las predicciones exceden (o no exceden) los valores del percentil especificado. • Probability maps : mapas de probabilidades que los valores exceden (o no exceden) un umbral especificado. Esta probabilidad es determinada a partir de las estimaciones, del error de distribución y del umbral elegido. Mapas en ArcGIS
  • 14. Algunas referencias Samper, F.J. & J. Carrera 1990. Geoestadística. Aplicaciones a la Hidrogeología Subterránea. Centro Internacional de Métodos Numéricos en Ingeniería. Universitat Politécnica de Catalunya. Barcelona. Myers, D. E. 1987. Optimization of Sampling Locations for Variogram Calculations. Water Resources Research. 23(3): 283(93). Isaaks, E. & R. M. Srivastava. 1989. Applied Geostatistics. Oxford University Press, New York. Cressie, N. 1993. Statistical for Spatial Data. John Wiley & Sons, New York. Díaz-Francés, E. (1993). Introducción a Conceptos Básicos de Geoestadística. Memorias Seminario Estadística y Medio Ambiente. Centro de Investigación en Matemáticas, CIMAT. Guanajuato, México. Christakos, G. (2000), Modern Spatio Temporal Geostatistics, Oxford University Press, New York.
  • 15. Burrough, P.A. (2001). “GIS and geostatistics: essential partners for spatial analysis”. Environmentaland Ecological Statistics, 8, pp. 361- 377. Chica Olmo, M. y Luque Espinar, J.A. (2002). Interpolación espacial en la creación de cubiertas temáticas en SIG. En: HUERTA, L. (Ed.). Los SIG en la gestión de los riesgos geológicos y el medio ambiente. IGME, pp. 181-198. Webster, R. y Oliver, M.A. (2001). Geostatistics for Environmental Scientists. John Wiley and Sons Ltd, Chichester, 271 pp. Pilz J.(2009). Interfacing Geostatistic and GIS. Springer-Verlag, Berlin Algunas referencias
  • 16. Análisis y preparación de los datos • Cargar la extensión Geostátical Analyst • Añadir el mapa base y crear la capa de puntos de estaciones meteorológicas. • Observar la distribución de los datos. • Calcular estadísticos básicos (open attributa table ->atributo-> (botón secundario -> Statistics)
  • 17. Comprobar la distribución de los datos • En la barra de herramientas Geostatical Analyst-> Explore data-> Histogram • Seleccionar la media para los valores repetidos. • Seleccionar la capa de puntos y en Attribute el campo que corresponda. • En la pestaña Transformation probar a cambiar entre las opciones • Calcular tamaño y número de intervalos con las fórmulas propuestas • ¿Cómo cambia el histograma? • ¿Cómo podemos definir la distribución de estos datos? • ¿Es necesaria una transformación que nos acerque a una distribución normal?
  • 18. Comprobar la distribución de los datos • Selecciona los intervalos para saber cuáles son los puntos que lo forman. Comprobar con las áreas de máximos y mínimos selecccionanado el primer y el último intervalo. • Comprobamos el diagrama normalQQ, para ello: Geostátical Analyst -> Eplore Data-> NormalQQPlot • Seleccionar el archivo y la variable correctos • En la transformación cambiar a Log ¿Cambia algo?¿Es mejor?
  • 19. Análisis de tendencias • Permite representar los datos en 3D, dibujando regresión de la variable en los planos E-O y N-S. • Objetivo: visualizar los datos en conjunto, observar tendencias globales y decidir eliminar durante la interpolación (sólo eliminar si se minimizan notablemente los errores de las estimaciones) • Geostatistical Analyst -> Explore Data -> Trend Análisis. • En la pantalla que se abre asegurarse de seleccionar el archivo y la variable Correctos. • Definir las tendencias presentes. ¿Cómo varían los datos en el área de estudio? ¿Cuál es la tendencia global de los datos? • Observar si todas las variables presentan la misma tendencia cambiando la variable en la pestaña Attribute
  • 20. Análisis del semivariograma • Geostatistical Analyst -> Explore Data -> Semivariogram/Covariance Cloud. • En la pantalla que se abre asegurarse de seleccionar el archivo y la variable correctos. • Seleccionar el tamaño y el número de intervalos que definirán el variograma • ¿Son adecuados los valores que vienen por defecto?
  • 21. Análisis del semivariograma • Geostatistical Analyst -> Explore Data -> Semivariogram/Covariance Cloud. • En la pantalla que se abre asegurarse de seleccionar el archivo y la variable correctos. • Para reducir el número de puntos en el semivariograma empírico se lleva a cabo un proceso de agrupación de aquellos pares de localizaciones presentes en el semivariograma en base a la distancia entre ellos. Este proceso genera una serie de grupos de pares de puntos denominados “Bins” a lo largo de todo el área de estudio. • El control de las condiciones en que se va a realizar este proceso de agrupación se realiza mediante la modificación del tamaño y número de intervalos (Lag size, Number of Lags). • Seleccionar el tamaño y el número de intervalos que definirán el variograma • ¿Son adecuados los valores que vienen por defecto?
  • 22. Análisis del semivariograma • ¿Cómo podemos determinar qué valores de intervalo pueden proporcionar un buen ajuste del semivariograma? Para concretar el tamaño (TI) y número (NI) numerosos estudios geoestadísticos coinciden en que se deben cumplir dos condiciones: • La mitad de la distancia máxima entre puntos (DMAX/2) debe ser aproximadamente igual al producto del número de intervalos (NI) por el tamaño de los mismos. • La distancia media entre vecinos próximos (DMED) multiplicada por dos debe ser menor o igual al tamaño del intervalo. De esta manera se garantiza que tenemos una probabilidad de al menos el 95% de encontrarnos con tres puntos por cada intervalo. • Por tanto, para establecer unos valores adecuados de tamaño y distancia de intervalo tenemos en primer lugar que conocer la distancia máxima entre puntos, así como la distancia media entre puntos cercanos.
  • 23. Análisis del semivariograma • Activar Show search direction y mover con el puntero la dirección Observar las diferencias que existen entre los semivariogramas realizados para la dirección NE-S-у О. • Crear el semivariograma siguiendo la dirección de la tendencia global que hemos observado anteriormente. ¿Qué cambia? Mover con el puntero para cambiar la dirección de observación de la correlación espacial
  • 24. Análisis del semivariograma • El tamaño del intervalo (Lag) controla la distancia para agrupar muestras. • Si el tamaño del lag es muy grande, se omitirá parte de la correlación espacial en los datos. • Si el tamaño del lag es muy pequeño, no se conseguirán muchos pares de puntos para el análisis. • Una forma aceptada de elegir estos parámetros es que el tamaño de lag multiplicado por el número de lags, sea más o menos, la mitad de la distancia máxima entre los puntos que se están estudiando.
  • 25. Análisis del semivariograma • Seleccionar un punto con un alto valor en el eje Y. • ¿Qué se observa? ¿y que cambia si se seleccionan unos puntos en la parte derecha del diagrama? • En las figuras a continuación se representan estas dos situaciones. En el gráfico los puntos seleccionados son destacados en azul y en el mapa se representan las dos posiciones que representan el punto elegido del variograma. Esto es como el programa calcula la distancia (el eje de abscisas) de cada par de puntos y su valor de semivariograma (el eje de ordenadas).
  • 26. Análisis del semivariograma los puntos están a una distancia pequeña (el punto destacado está cerca del cero sobre el eje de abscisas). Los valores, sin embargo, son diferentes. • las distancias son mayores y se mantiene la diferencia entre los valores medidos.
  • 27. Análisis Geoestadístico: ajuste del semivariograma y creación de mapas. • Geostatistical Analyst -> Explore Data-> Geostatistical Wizard. • En esta primera pantalla se decide el archivo que se usa, el atributo que se quiere interpolar y el método que se quiere usar. • Kriging -> Next-> Ordinary Kriging-> Prediction Map ->next.
  • 28. Análisis Geoestadístico: ajuste del semivariograma y creación de mapas. • Seleccionar el modelo esférico y activar la casilla Anisotropy, fijándola en True. • Por ahora dejarlos valores que vienen por defecto y pulsar Next.
  • 29. Análisis Geoestadístico: ajuste del semivariograma y creación de mapas. • El paso 4 permite decidir el número de puntos cercanos a incluir en el cálculo y el tipo de sector de búsqueda. • Pulsar Next
  • 30. Análisis Geoestadístico: ajuste del semivariograma y creación de mapas. • En última pantalla que se abre es posible ver los valores de los errores asociados a esta interpolación. • Valorar si las estimaciones efectuadas son adecuadas. • Estos estadísticos indican si el modelo y los parámetros usados son adecuados para la variable estudiada y en qué medida es buena la interpolación. Unas estimaciones correctas deberían cumplir con lo siguiente: Mean y Mean Standardized: próximos a cero. Root-Mean-Square Standardized: próximo a 1. Si el valor es mayor estamos infravalorando la variabilidad, Si el valores menor estamos sobreestimando la variabilidad de nuestras estimaciones. Average Standard Error: debería ser parecido al Root-Mean Square. Si el Average Standard Errores mayor que el Root-Mean Square estamos sobrevalorando la variabilidad de las estimaciones, en caso contrario estamos subestimando la variabilidad.
  • 31. Análisis Geoestadístico: ajuste del semivariograma y creación de mapas. • Ya tenemos un primer mapa de la distribución de nuestra variable • volvemos atrás y calculamos otros ajustes para nuestro semivariograma. • Crear un mapa con el mismo método y usar otro número y tamaño de lag. Aumentar el número de puntos incluidos en la estimación.