O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.
PERANCANGAN STRUKTUR BETON
GEDUNG PERPUSTAKAAN 4 LANTAI
Afret Nobel, ST
PERANCANGAN STRUKTUR BETON
GEDUNG PERPUSTAKAAN 4 L...
Perancangan Struktur Beton
Page 2 of 68
Contents
1 DATA UMUM STRUKTUR .......................................................
Perancangan Struktur Beton
Page 3 of 68
4.5.2 Dimensi & volume tangga .......................................................
Perancangan Struktur Beton
Page 4 of 68
Daftar Tabel
Tabel 1 Daftar beda elevasi lantai .....................................
Perancangan Struktur Beton
Page 5 of 68
Daftar Gambar
Gambar 1 Respons spektrum gempa rencana untuk Wilayah Gempa 3 (tanah...
Perancangan Struktur Beton
Page 6 of 68
1 DATA UMUM STRUKTUR
1.1 Data Struktur
1. Fungsi bangunan : Gedung Perpustakaan
2....
Perancangan Struktur Beton
Page 7 of 68
4. American Concrete Institute Building Code (ACI 318-99)
1.4 Spesifikasi Material...
Perancangan Struktur Beton
Page 8 of 68
1.5.2 Beban Gempa
Adapun parameter-parameter pembebanan gempa yang akan digunakan ...
Perancangan Struktur Beton
Page 9 of 68
3. U = 0,9 qDL + 0,3 . 1,0 EQx + 1,0 EQy (Dinamik 90o
)
4. U = 0,9 qDL - 0,3 . 1,0...
Perancangan Struktur Beton
Page 10 of 68
Jadi, dimensi B2 (balok induk) = 300 x 500 mm
• B3 (Balok anak); L= 6000 mm
h = L...
Perancangan Struktur Beton
Page 11 of 68
cb
sb
b
s
E Modulus of elasticity of beam concrete
E Modulus of elasticity of sla...
Perancangan Struktur Beton
Page 12 of 68
Gambar 2 Luasan dalam menghitung inersia
1.5.4.2.4 Perhitungan preliminary
• fc= ...
Perancangan Struktur Beton
Page 13 of 68
b h Ai (mm
2
) yi (mm) yiAi (mm
3
) I (mm
4
) d (mm) d
2
A (mm
4
)
Flange 700 100...
Perancangan Struktur Beton
Page 14 of 68
b h Ai (mm
2
) yi (mm) yiAi (mm
3
) I (mm
4
) d (mm) d
2
A (mm
4
)
Flange 1400 10...
Perancangan Struktur Beton
Page 15 of 68
1.5.4.3 Dimensi Kolom
Menurut SNI 03-2847-2002 pasal 25.3.1.3 hal 243, persyarata...
Perancangan Struktur Beton
Page 16 of 68
Menurut Peraturan Pembebanan Indonesia untuk Gedung 1983 (PPIUG 1983),
beban hidu...
Perancangan Struktur Beton
Page 17 of 68
2 PENULANGAN PELAT
2.1 Penulangan Pelat Lantai & Atap
Pelat lantai menggunakan ba...
Perancangan Struktur Beton
Page 18 of 68
= 0,0271
bρρ 0,75.=maks
= 0,0203
. .min minA b ds ρ=
maks maksA .b . ds ρ=
Tabel ...
Perancangan Struktur Beton
Page 19 of 68
Tabel 5 Momen per meter lebar dalam jalur tengah akibat beban terbagi merata
www....
Perancangan Struktur Beton
Page 20 of 68
2.1.2 Pelat satu arah
Bila perbandingan panjang dan lebar pelat lebih dari 2,5 ma...
Perancangan Struktur Beton
Page 21 of 68
dy = h – sel. beton - Ø tulangan - Ø tulangan/2 = 120 – 20 – 10/2 = 95 mm
β = 1.3...
Perancangan Struktur Beton
Page 22 of 68
3 ANALISIS GEMPA
3.1 Pemodelan Struktur
Struktur gedung Perpustakaan ini terdiri ...
Perancangan Struktur Beton
Page 23 of 68
Jumlah ragam yang ditinjau tidak boleh kurang dari 5 dan tidak perlu lebih dari
j...
Perancangan Struktur Beton
Page 24 of 68
Dari Tabel 3.2 di atas terlihat bahwa 90% massa sudah tercakup dalam 5 modes
untu...
Perancangan Struktur Beton
Page 25 of 68
Gambar 7Bentuk deformasi struktur akibat ragam pola getar 3
Untuk mensimulasikan ...
Perancangan Struktur Beton
Page 26 of 68
Gaya geser dasar hasil analisis dinamik perlu dikoreksi dengan suatu faktor
skala...
Perancangan Struktur Beton
Page 27 of 68
Gambar 8 Selimut gaya geser tingkat untuk gempa arah-x
Gambar 9 Selimut gaya gese...
Perancangan Struktur Beton
Page 28 of 68
pada setiap pusat massa lantainya dan nilai simpangan antar lantai untuk beban ge...
Perancangan Struktur Beton
Page 29 of 68
ii hx
R
03,0<∆ dan mmi 30<∆
Dengan R = faktor reduksi gempa dan hi = tinggi tingk...
Perancangan Struktur Beton
Page 30 of 68
4 PENULANGAN STRUKTUR
4.1 Model struktur
Struktur dimodelkan seperti pada gambar ...
Perancangan Struktur Beton
Page 31 of 68
4.2 Perencanaan Balok
4.2.1 Perencanaan balok anak arah x
Gambar 13 Rencana balok...
Perancangan Struktur Beton
Page 32 of 68
4.2.3 Analisis struktur
Gambar 14 Gambar diagram momen dan geser balok anak (AS 2...
Perancangan Struktur Beton
Page 33 of 68
Terkecil dari
25 1,4
250 310; 250 310
4 400 400
× × ×
×
= 242.19 mm2
As > As min ...
Perancangan Struktur Beton
Page 34 of 68
d. 300 mm
4.3 Perencanaan Portal
4.3.1 Rencana portal
Gambar 15 Rencana portal ar...
4.3.2.2 Beban hidup
Lanti tipikal 2 s/d 4
Lantai atap
4.3.2.3 Beban gempa
Wilayah gempa
Jenis tanah
Faktor keutamaan gedun...
Gambar
Gambar
Gambar 21
Perancangan Struktur Beton
Gambar 19 Input beban hidup pada lantai (kg/m2
)
Gambar 20 Input beban ...
Gambar
Gambar 23 Respon
Perancangan Struktur Beton
Gambar 22 Input respon spektrum gempa
Respon spektrum case gempa arah x...
4.3.3 Hasil analisis struktur
Dari output program ETABS didapat gaya rencana untuk masing
balok dari kombinasi beban yang ...
Gambar 26 Diagram momen portal melintang akibat beban gempa ex (kN.m)
Gambar 27 Diagram gaya lintang portal melintang akib...
Gambar 29 Diagram gaya lintang p
4.3.4 Analisis beban gravitasi
4.3.4.1 Beban di lantai dan balok
Momen-momen di balok aki...
Perancangan Struktur Beton
Page 41 of 68
4.3.5 Perhitungan balok
Perhitungan penulangan dijelaskan satu contoh perhitungan...
Perancangan Struktur Beton
Page 42 of 68
0.75 bρ = 0.02030
'ρ = 0.00430
max 0.75 '( '/ )b fs fyρ ρ ρ= +
ρ max = 0,02462
As...
Perancangan Struktur Beton
Page 43 of 68
c. Kuat geser rencana balok
nVφ = 0.75 (147,25+ 740.16)
= 665.56 kN > Vu (OK)
Dig...
Perancangan Struktur Beton
Page 44 of 68
4.4 Perencanaan Kolom
Untuk perencanaan kolom diambil yang terbesar karena dimens...
Perancangan Struktur Beton
Page 45 of 68
Tabel 16 Gaya yang bekerja pada kolom
Momen DL LL E 1,2D+1,6L 1,2D+L+E 1,2D+L-E
A...
Perancangan Struktur Beton
Page 46 of 68
1276552 3472222
2.77
858203,1 2
c
c
B
b
b
EI
l
EI
l
+
Ψ = = =
×
∑
∑
Gambar 33 Nom...
Perancangan Struktur Beton
Page 47 of 68
Gambar 34 Nomogram kolom untuk arah y
k = 0.84
klu/r = 0.84 (4080-650) / (0.3*500...
Perancangan Struktur Beton
Page 48 of 68
Gambar 35 Rencana penampang kolom
1. Mencari nilai Pn0
Luas bruto penampang, Ag =...
Perancangan Struktur Beton
Page 49 of 68
Gambar 36 Tegangan regangan pada kolom dalam keadaan berimbang
3. Mencari Pn dan ...
Perancangan Struktur Beton
Page 50 of 68
Tabel 22 Tabel analisis untuk c = 150 mmTabel analisis untuk Cb= 150.00 mm
Lapis ...
Perancangan Struktur Beton
Page 51 of 68
Tabel 26 Tabel analisis untuk c = 350 mmTabel analisis untuk Cb= 350.00 mm
Lapis ...
Perancangan Struktur Beton
Page 52 of 68
4. Mencarai nilai Mn0 (kapasitas lentur murni)
Dengan bantuan software excel, mak...
Perancangan Struktur Beton
Page 53 of 68
4.4.4 Perencanaan geser
Kuat geser maksimum = 79.85 kN
a. Kuat geser yang disumba...
Perancangan Struktur Beton
Page 54 of 68
4.5 Perencanaan Tangga
4.5.1 Pemodelan tangga
Tangga dimodelkan secara 3 dimensi,...
Perancangan Struktur Beton
Page 55 of 68
- Beton bertulang = 6.5572 m3
x 24 kN/m3
= 157.373 kN
- Beton polos = 1.1352 m3
x...
Perancangan Struktur Beton
Page 56 of 68
o selimut beton = 20 mm
o d = 150 – 20 – 10/2 = 125 mm
Mu maksimum = 38.11 KN.m
M...
Perancangan Struktur Beton
Page 57 of 68
4.5.6 Perhitungan Tulangan Geser
Vu = 34.94 KN
2 2 21 12 2 10 157.08
4 4
Av v mmπ...
Perancangan Struktur Beton
Page 58 of 68
4.6 Perencanaan Pondasi
4.6.1 Data perencanaan
Kuat tekan beton (f’c) = 25 mPa
Ku...
Perancangan Struktur Beton
Page 59 of 68
Tabel 32 Analisis geometri bidang
# Analisis geometri bidang
# LX LY A X Y SMY SM...
Perancangan Struktur Beton
Page 60 of 68
# Output dari software Etabs
V MX MY
X (m) Y(m) (kN) (kN) (kN)
1.00 1.00 1.00 1.0...
Perancangan Struktur Beton
Page 61 of 68
4.6.2.3 Menggunakan persamaan untuk q, menyiapkan tabel nilai pada titik-titik 1 ...
Perancangan Struktur Beton
Page 62 of 68
Gambar 40 Area geser pada pelat pondasi
- Cek geser satu arah (one way shear)
Vu ...
Perancangan Struktur Beton
Page 63 of 68
dipakai Vc min = 1787,50 kN
ϕVc = 0,75 x 1787,50 = 1340,63 kN > Vu (OK)
4.6.2.5 M...
Perancangan Struktur Beton
Page 64 of 68
- Penulangan momen positif
Mu = 44.23 kNm, Mn = Mu/0.8 = 55.28 kNm
.
. . 1
1,7 '
...
Perancangan Struktur Beton
Page 65 of 68
6 2
(36,85 10 ) 130,000 3.7647x As As= −
Sehingga diperoleh As = 285,83 mm2
(Guna...
Perancangan Struktur Beton
Page 66 of 68
- Penulangan momen eksterior negatif
Mu = 54,76 kNm, Mn = Mu/0.8 = 68,45 kNm
.
. ...
Perancangan Struktur Beton
Page 67 of 68
6 .400
(55,29 10 ) .400.325 1
1,7 1000 325 25
As
x As
x x x
 
= − 
 
6 2
(5...
Perancangan Struktur Beton
Page 68 of 68
4.7 Tentang Penulis
Afret Nobel adalah alumni Diploma Teknik Sipil Universitas
Ga...
Próximos SlideShares
Carregando em…5
×

de

Perancangan struktur beton perpustakaan 4 lantai Slide 1 Perancangan struktur beton perpustakaan 4 lantai Slide 2 Perancangan struktur beton perpustakaan 4 lantai Slide 3 Perancangan struktur beton perpustakaan 4 lantai Slide 4 Perancangan struktur beton perpustakaan 4 lantai Slide 5 Perancangan struktur beton perpustakaan 4 lantai Slide 6 Perancangan struktur beton perpustakaan 4 lantai Slide 7 Perancangan struktur beton perpustakaan 4 lantai Slide 8 Perancangan struktur beton perpustakaan 4 lantai Slide 9 Perancangan struktur beton perpustakaan 4 lantai Slide 10 Perancangan struktur beton perpustakaan 4 lantai Slide 11 Perancangan struktur beton perpustakaan 4 lantai Slide 12 Perancangan struktur beton perpustakaan 4 lantai Slide 13 Perancangan struktur beton perpustakaan 4 lantai Slide 14 Perancangan struktur beton perpustakaan 4 lantai Slide 15 Perancangan struktur beton perpustakaan 4 lantai Slide 16 Perancangan struktur beton perpustakaan 4 lantai Slide 17 Perancangan struktur beton perpustakaan 4 lantai Slide 18 Perancangan struktur beton perpustakaan 4 lantai Slide 19 Perancangan struktur beton perpustakaan 4 lantai Slide 20 Perancangan struktur beton perpustakaan 4 lantai Slide 21 Perancangan struktur beton perpustakaan 4 lantai Slide 22 Perancangan struktur beton perpustakaan 4 lantai Slide 23 Perancangan struktur beton perpustakaan 4 lantai Slide 24 Perancangan struktur beton perpustakaan 4 lantai Slide 25 Perancangan struktur beton perpustakaan 4 lantai Slide 26 Perancangan struktur beton perpustakaan 4 lantai Slide 27 Perancangan struktur beton perpustakaan 4 lantai Slide 28 Perancangan struktur beton perpustakaan 4 lantai Slide 29 Perancangan struktur beton perpustakaan 4 lantai Slide 30 Perancangan struktur beton perpustakaan 4 lantai Slide 31 Perancangan struktur beton perpustakaan 4 lantai Slide 32 Perancangan struktur beton perpustakaan 4 lantai Slide 33 Perancangan struktur beton perpustakaan 4 lantai Slide 34 Perancangan struktur beton perpustakaan 4 lantai Slide 35 Perancangan struktur beton perpustakaan 4 lantai Slide 36 Perancangan struktur beton perpustakaan 4 lantai Slide 37 Perancangan struktur beton perpustakaan 4 lantai Slide 38 Perancangan struktur beton perpustakaan 4 lantai Slide 39 Perancangan struktur beton perpustakaan 4 lantai Slide 40 Perancangan struktur beton perpustakaan 4 lantai Slide 41 Perancangan struktur beton perpustakaan 4 lantai Slide 42 Perancangan struktur beton perpustakaan 4 lantai Slide 43 Perancangan struktur beton perpustakaan 4 lantai Slide 44 Perancangan struktur beton perpustakaan 4 lantai Slide 45 Perancangan struktur beton perpustakaan 4 lantai Slide 46 Perancangan struktur beton perpustakaan 4 lantai Slide 47 Perancangan struktur beton perpustakaan 4 lantai Slide 48 Perancangan struktur beton perpustakaan 4 lantai Slide 49 Perancangan struktur beton perpustakaan 4 lantai Slide 50 Perancangan struktur beton perpustakaan 4 lantai Slide 51 Perancangan struktur beton perpustakaan 4 lantai Slide 52 Perancangan struktur beton perpustakaan 4 lantai Slide 53 Perancangan struktur beton perpustakaan 4 lantai Slide 54 Perancangan struktur beton perpustakaan 4 lantai Slide 55 Perancangan struktur beton perpustakaan 4 lantai Slide 56 Perancangan struktur beton perpustakaan 4 lantai Slide 57 Perancangan struktur beton perpustakaan 4 lantai Slide 58 Perancangan struktur beton perpustakaan 4 lantai Slide 59 Perancangan struktur beton perpustakaan 4 lantai Slide 60 Perancangan struktur beton perpustakaan 4 lantai Slide 61 Perancangan struktur beton perpustakaan 4 lantai Slide 62 Perancangan struktur beton perpustakaan 4 lantai Slide 63 Perancangan struktur beton perpustakaan 4 lantai Slide 64 Perancangan struktur beton perpustakaan 4 lantai Slide 65 Perancangan struktur beton perpustakaan 4 lantai Slide 66 Perancangan struktur beton perpustakaan 4 lantai Slide 67 Perancangan struktur beton perpustakaan 4 lantai Slide 68
Próximos SlideShares
Tutorial perhitungan struktur dengan sap 2000 v
Avançar
Transfira para ler offline e ver em ecrã inteiro.

40 gostaram

Compartilhar

Baixar para ler offline

Perancangan struktur beton perpustakaan 4 lantai

Baixar para ler offline

Perancangan struktur beton perpustakaan 4 lantai adalah laporan mengenai perencanaan struktur bangunan bertingkat dengan struktur beton bertulang sebagai struktur utama.

Audiolivros relacionados

Gratuito durante 30 dias do Scribd

Ver tudo

Perancangan struktur beton perpustakaan 4 lantai

  1. 1. PERANCANGAN STRUKTUR BETON GEDUNG PERPUSTAKAAN 4 LANTAI Afret Nobel, ST PERANCANGAN STRUKTUR BETON GEDUNG PERPUSTAKAAN 4 LANTAI Oleh: Afret Nobel, ST feat. Ade Irma Sumantri, ST PERANCANGAN STRUKTUR BETON GEDUNG PERPUSTAKAAN 4 LANTAI www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  2. 2. Perancangan Struktur Beton Page 2 of 68 Contents 1 DATA UMUM STRUKTUR ...............................................................................................................6 1.1 Data Struktur ...............................................................................................................................6 1.2 Metode Analisis ..........................................................................................................................6 1.3 Acuan ..........................................................................................................................................6 1.4 Spesifikasi Material.....................................................................................................................7 1.5 Pembebanan ................................................................................................................................7 1.5.1 Beban Gravitasi.......................................................................................................................7 1.5.2 Beban Gempa..........................................................................................................................8 1.5.3 Kombinasi Pembebanan..........................................................................................................8 1.5.4 Dimensioning Stuktur .............................................................................................................9 2 PENULANGAN PELAT....................................................................................................................17 2.1 Penulangan Pelat Lantai & Atap ...............................................................................................17 2.1.1 Pelat dua arah........................................................................................................................18 2.1.2 Pelat satu arah .......................................................................................................................20 3 ANALISIS GEMPA ...........................................................................................................................22 3.1 Pemodelan Struktur...................................................................................................................22 3.2 Pembebanan Gravitasi Pada Struktur ........................................................................................22 3.3 Analisis Gempa .........................................................................................................................22 3.4 Displacement Pusat Massa Dan Simpangan Antar Tingkat ......................................................27 3.5 Kesimpulan ...............................................................................................................................29 4 PENULANGAN STRUKTUR...........................................................................................................30 4.1 Model struktur...........................................................................................................................30 4.2 Perencanaan Balok ....................................................................................................................31 4.2.1 Perencanaan balok anak arah x .............................................................................................31 4.2.2 Beban rencana.......................................................................................................................31 4.2.3 Analisis struktur....................................................................................................................32 4.2.4 Penulangan lentur..................................................................................................................32 4.2.5 Penulangan geser ..................................................................................................................33 4.3 Perencanaan Portal ....................................................................................................................34 4.3.1 Rencana portal ......................................................................................................................34 4.3.2 Beban rencana.......................................................................................................................34 4.3.3 Hasil analisis struktur............................................................................................................38 4.3.4 Analisis beban gravitasi ........................................................................................................40 4.3.5 Perhitungan balok .................................................................................................................41 4.3.6 Hasil perhitungan penulangan balok portal...........................................................................43 4.4 Perencanaan Kolom...................................................................................................................44 4.4.1 Beban rencana kolom............................................................................................................44 4.4.2 Kelangsingan kolom .............................................................................................................45 4.4.3 Perencanaan lentur kolom untuk kolom pendek ...................................................................47 4.4.4 Perencanaan geser.................................................................................................................53 4.5 Perencanaan Tangga..................................................................................................................54 4.5.1 Pemodelan tangga .................................................................................................................54 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  3. 3. Perancangan Struktur Beton Page 3 of 68 4.5.2 Dimensi & volume tangga ....................................................................................................54 4.5.3 Pembebanan..........................................................................................................................54 4.5.4 Output gaya-gaya dalam .......................................................................................................55 4.5.5 Penulangan momen tangga ...................................................................................................55 4.5.6 Perhitungan Tulangan Geser.................................................................................................57 4.6 Perencanaan Pondasi.................................................................................................................58 4.6.1 Data perencanaan..................................................................................................................58 4.6.2 Dimensi pondasi ...................................................................................................................58 4.7 Tentang Penulis.........................................................................................................................68 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  4. 4. Perancangan Struktur Beton Page 4 of 68 Daftar Tabel Tabel 1 Daftar beda elevasi lantai ................................................................................... 6 Tabel 2Koefisien gempa dasar ......................................................................................... 8 Tabel 3Tipe Pelat............................................................................................................ 17 Tabel 4 Batasan penulangan pelat/m2 (dengan asumsi tulangan Ø 10 mm) ................. 18 Tabel 5 Momen per meter lebar dalam jalur tengah akibat beban terbagi merata....... 19 Tabel 6 Massa, pusat massa dan pusat kekakuan lantai................................................ 23 Tabel 7 Mass Participation Factor................................................................................. 23 Tabel 8 Gaya dinamik pada tiap lantai akibat spektrum gempa-x................................. 25 Tabel 9 Gaya dinamik pada tiap lantai akibat spektrum gempa-y................................. 25 Tabel 10 Distribusi gaya geser lantai statik ekivalen..................................................... 26 Tabel 11 Displacement titik terluar bangunan akibat gempa arah-x (cm) .................... 28 Tabel 12 Displacement titik terluar bangunan akibat gempa arah-y (cm) .................... 28 Tabel 13 Rasio inter story drift-x.................................................................................... 28 Tabel 14 Momen disain balok rangka di muka kolom ................................................... 40 Tabel 15 Resume penulangan balok............................................................................... 43 Tabel 16 Gaya yang bekerja pada kolom....................................................................... 45 Tabel 17 I/Lc untuk balok............................................................................................... 45 Tabel 18 I/Lc untuk kolom sumbu x & y ......................................................................... 45 Tabel 19 Tabel analisis dalam keadaan berimbang ........................................................ 48 Tabel 20 Tabel analisis untuk c = 50 mm....................................................................... 49 Tabel 21 Tabel analisis untuk c = 100 mm..................................................................... 49 Tabel 22 Tabel analisis untuk c = 150 mm..................................................................... 50 Tabel 23 Tabel analisis untuk c = 200 mm..................................................................... 50 Tabel 24 Tabel analisis untuk c = 250 mm..................................................................... 50 Tabel 25 Tabel analisis untuk c = 300 mm..................................................................... 50 Tabel 26 Tabel analisis untuk c = 350 mm..................................................................... 51 Tabel 27 Tabel analisis untuk c = 400 mm..................................................................... 51 Tabel 28 Tabel analisis untuk c = 450 mm..................................................................... 51 Tabel 29 Tabel analisis untuk c = 500 mm..................................................................... 51 Tabel 30 Tabel analisis untuk kapasitas lentur murni..................................................... 52 Tabel 31 Output ETABS untuk tangga............................................................................ 55 Tabel 32 Analisis geometri bidang................................................................................. 59 Tabel 33 Nilai beban merata pada pelat pondasi........................................................... 59 Tabel 34 Tekanan pada pelat pondasi............................................................................ 61 Tabel 35 Design koefisien momen .................................................................................. 63 Tabel 36 Resume penulangan pelat pondasi .................................................................. 67 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  5. 5. Perancangan Struktur Beton Page 5 of 68 Daftar Gambar Gambar 1 Respons spektrum gempa rencana untuk Wilayah Gempa 3 (tanah lunak) .... 8 Gambar 2 Luasan dalam menghitung inersia ................................................................. 12 Gambar 3 Bagian pelat yang ditinjau ............................................................................. 12 Gambar 4 Model struktur 3 dimensi ............................................................................... 22 Gambar 5 Bentuk deformasi struktur akibat ragam pola getar 1................................... 24 Gambar 6 Bentuk deformasi struktur akibat ragam pola getar 2................................... 24 Gambar 7Bentuk deformasi struktur akibat ragam pola getar 3.................................... 25 Gambar 8 Selimut gaya geser tingkat untuk gempa arah-x............................................ 27 Gambar 9 Selimut gaya geser tingkat untuk gempa arah-x............................................ 27 Gambar 10 Denah balok lantai atap................................................................................ 30 Gambar 11 Denah balok lantai 2 s/d 4............................................................................ 30 Gambar 12 Denah lantai 1 .............................................................................................. 30 Gambar 13 Rencana balok anak arah x .......................................................................... 31 Gambar 14 Gambar diagram momen dan geser balok anak (AS 2-3)............................ 32 Gambar 15 Rencana portal arah melintang..................................................................... 34 Gambar 16 Rencana portal arah memanjang.................................................................. 34 Gambar 17 Respon spectrum gempa (wilayah gempa 3) ............................................... 35 Gambar 18 Input beban mati pada lantai (kg/m2 )........................................................... 35 Gambar 19 Input beban hidup pada lantai (kg/m2 )......................................................... 36 Gambar 20 Input beban mati pada balok (kg/m)............................................................ 36 Gambar 21 Distribusi beban dari pelat ke balok (kg/m)................................................. 36 Gambar 22 Input respon spektrum gempa...................................................................... 37 Gambar 23 Respon spektrum case gempa arah x dan arah y......................................... 37 Gambar 24 Diagram momen portal melintang akibat beban mati (kN.m)..................... 38 Gambar 25 Diagram momen portal melintang akibat beban hidup (kN.m)................... 38 Gambar 26 Diagram momen portal melintang akibat beban gempa ex (kN.m)............. 39 Gambar 27 Diagram gaya lintang portal melintang akibat beban mati (kN).................. 39 Gambar 28 Diagram gaya lintang portal melintang akibat beban hidup (kN)................ 39 Gambar 29 Diagram gaya lintang portal melintang akibat beban gempa ex (kN) ......... 40 Gambar 30 Momen Rencana kolom................................................................................ 44 Gambar 31 Gaya Aksial kolom....................................................................................... 44 Gambar 32 Kondisi pengekangan kolom (a) arah sumbu x; (b) arah sumbu y .............. 45 Gambar 33 Nomogram untuk kolom arah x................................................................... 46 Gambar 34 Nomogram kolom untuk arah y................................................................... 47 Gambar 35 Rencana penampang kolom......................................................................... 48 Gambar 36 Tegangan regangan pada kolom dalam keadaan berimbang ....................... 49 Gambar 37 Diagram interaksi kolom.............................................................................. 52 Gambar 38 Pemodelan tangga 3 dimensi....................................................................... 54 Gambar 39 Layout pondasi rakit (mat foundation) ........................................................ 58 Gambar 40 Area geser pada pelat pondasi .................................................................... 62 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  6. 6. Perancangan Struktur Beton Page 6 of 68 1 DATA UMUM STRUKTUR 1.1 Data Struktur 1. Fungsi bangunan : Gedung Perpustakaan 2. Struktur : Struktur beton bertulang dengan balok kolom 3 dimensi 3. Jumlah lantai : 4 lantai + 1 lantai atap 4. Elevasi lantai : Tabel 1 Daftar beda elevasi lantai Lantai Beda Elevasi (m) Lantai Dasar + 0.51 Lantai 2 + 4.59 Lantai 3 + 8.67 Lantai 4 + 12.75 Lantai atap + 16.83 5. Luas bangunan (per lantai) • Lantai dasar : ± 754 m2 • Lantai 2 ~ 4 : ± 672 m2 • Lantai atap : ± 720 m2 6. Tebal pelat beton :12 cm & 10 cm 7. Tipe kolom : 50x50 cm2 8. Tipe balok : TB1 30x60 cm2 , TB2 30x50 cm2 , B1 30x65 cm2 , B2 30x50 cm2 , B3 25x50 cm2 , 25x35 cm2 9. Lokasi : Universitas Indonesia - Depok 10. Pemilik proyek : Universitas Indonesia 11. Pemberi Tugas : Elly Tjahjono 12. Konsultan struktur : PT. A2 Consultant 1.2 Metode Analisis Analisis struktur portal utama : metode kekakuan tiga dimensi dengan bantuan program ETABS 1.3 Acuan 1. Tata cara perencanaan struktur beton untuk bangunan gedung (SNI 03-2847- 2002) 2. Pedoman perencanaan pembebanan untuk rumah dan gedung (PPIUG-1983) 3. Tata cara perencanaan ketahanan gempa untuk bangunan gedung (SNI 03-1726- 2002) www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  7. 7. Perancangan Struktur Beton Page 7 of 68 4. American Concrete Institute Building Code (ACI 318-99) 1.4 Spesifikasi Material 1. Mutu Baja : Tulangan : fy = 400 MPa (BJTD 40), untuk > 10 mm; : fy = 240 MPa (BJTP 24), untuk < 10 mm. 2. Mutu Beton : Pondasi telapak : K-200 (fc’=25 MPa) Pelat, Balok, Kolom : K-200 (fc’=25 MPa) 1.5 Pembebanan 1.5.1 Beban Gravitasi 1.5.1.1 Beban mati • Roof (atap) 1. Screed + water proofing (5 cm) = 0,05 x 2100 kg/m3 = 105 kg/m2 2. Mechanical / Electrical = 15 kg/m2 3. Ducting + Lighting + Ceiling = 30 kg/m2 + Beban mati total (qSDL) = 150 kg/m2 • Lantai tipikal perpustakaan 1. Screed (2 cm) = 0,02m x 2100 kg/m3 = 42 kg/m2 2. Mechanical / Electrical = 15 kg/m2 3. Finishing (keramik 1 cm) = 24 kg/m2 4. Ducting + Lighting + Ceiling = 30 kg/m2 + Beban mati total (qSDL) = 111 kg/m2 • Lantai dasar 1. Screed (2 cm) = 0,02m x 2100 kg/m3 = 42 kg/m2 2. Finishing (keramik1 cm) = 24 kg/m2 3. Mechanical / Electrical = 15 kg/m2 + Beban mati total (qSDL) = 81 kg/m2 1.5.1.2 Beban hidup 1. Lantai atap = 100 kg/m2 2. Lantai perpustakaan = 400 kg/m2 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  8. 8. Perancangan Struktur Beton Page 8 of 68 1.5.2 Beban Gempa Adapun parameter-parameter pembebanan gempa yang akan digunakan dalam analisis struktur adalah sebagai berikut: • Lokasi struktur berada di wilayah gempa : 3 • Analisis yang digunakan : analisis respon dinamik • Koefisien gempa dasar (terlampir dalam tabel & grafik); struktur berada di atas tanah lunak. Tabel 2Koefisien gempa dasar Waktu Getar Alami Koefisien Gempa T (Detik) Dasar 0 0.3 0.2 0.75 1 0.75 > 1.0 0.75/T Gambar 1 Respons spektrum gempa rencana untuk Wilayah Gempa 3 (tanah lunak) • Faktor keutamaan struktur (I) (Pasal 4.1.2, hal 7, Acuan 3) Fungsi gedung umum = 1,00 • Daktilitas struktur (R) (Pasal 4.3, hal 9-13, Acuan 3) Jenis struktur : rangka gedung beton bertulang R=8,5 • Tinjauan arah gempa = 0o dan 90o (bolak-balik) 1.5.3 Kombinasi Pembebanan Kombinasi yang dilakukan untuk gaya-gaya dalam pada struktur adalah: 1. U = 1,4 qDL (Statik) 2. U = 1,2 qDL + 1,6 qLL (Statik) Respon S pektrum 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 P eriode (T) KoefisienGempaDasar(C) www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  9. 9. Perancangan Struktur Beton Page 9 of 68 3. U = 0,9 qDL + 0,3 . 1,0 EQx + 1,0 EQy (Dinamik 90o ) 4. U = 0,9 qDL - 0,3 . 1,0 EQx + 1,0 EQy (Dinamik 90o ) 5. U = 0,9 qDL + 0,3 . 1,0 EQx - 1,0 EQy (Dinamik 90o ) 6. U = 0,9 qDL - 0,3 . 1,0 EQx - 1,0 EQy (Dinamik 90o ) 7. U = 0,9 qDL + 1,0 EQx + 0,3 . 1,0 EQy (Dinamik 0o ) 8. U = 0,9 qDL - 1,0 EQx + 0,3 . 1,0 EQy (Dinamik 0o ) 9. U = 0,9 qDL + 1,0 EQx - 0,3 . 1,0 EQy (Dinamik 0o ) 10. U = 0,9 qDL - 1,0 EQx - 0,3 . 1,0 EQy (Dinamik 0o ) 11. U = 1,2 qDL + 1,0 qLLr + 0,3 . 1,0 EQx + 1,0 EQy (Dinamik 90o ) 12. U = 1,2 qDL + 1,0 qLLr - 0,3 . 1,0 EQx + 1,0 EQy (Dinamik 90o ) 13. U = 1,2 qDL + 1,0 qLLr + 0,3 . 1,0 EQx - 1,0 EQy (Dinamik 90o ) 14. U = 1,2 qDL + 1,0 qLLr - 0,3 . 1,0 EQx - 1,0 EQy (Dinamik 90o ) 15. U = 1,2 qDL + 1,0 qLLr + 1,0 EQx + 0,3 . 1,0 EQy (Dinamik 0o ) 16. U = 1,2 qDL + 1,0 qLLr - 1,0 EQx + 0,3 . 1,0 EQy (Dinamik 0o ) 17. U = 1,2 qDL + 1,0 qLLr + 1,0 EQx - 0,3 . 1,0 EQy (Dinamik 0o ) 18. U = 1,2 qDL + 1,0 qLLr - 1,0 EQx - 0,3 . 1,0 EQy (Dinamik 0o ) 1.5.4 Dimensioning Stuktur 1.5.4.1 Balok • TB1 (sloof); L = 8000 mm h = L/12 = 8000/12 = 666,67 ~ 600 mm b = 2/3 x 666,67 = 444,45 ~ 300 mm Jadi, dimensi TB1 (sloof) = 300 x 600 mm • TB2 (sloof); L = 6000 mm h = L/12 = 6000/12 = 500 mm b = 2/3 x 500 = 333,33 ~ 300 mm Jadi, dimensi TB2 (sloof) = 300 x 500 mm • B1 (Balok induk); L= 8000 mm h = L/12 = 8000/12 = 666,67 ~ 650 mm b = 2/3 x 666,67 = 444,45 ~ 300 mm Jadi, dimensi B1 (balok induk) = 300 x 650 mm • B2 (Balok induk); L= 6000 mm h = L/12 = 6000/12 = 500 mm b = 2/3 x 500 = 333,33 ~ 300 mm www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  10. 10. Perancangan Struktur Beton Page 10 of 68 Jadi, dimensi B2 (balok induk) = 300 x 500 mm • B3 (Balok anak); L= 6000 mm h = L/12 = 6000/12 = 500 mm b = 2/3 x 500 = 333,33 ~ 250 mm Jadi, dimensi B3 (balok anak) = 250 x 500 mm • B4 (Balok anak); L= 4000 mm h = L/12 = 4000/12 = 333,33 ~ 350 mm b = 2/3 x 333,33 = 222,22 ~ 250 mm Jadi, dimensi B4 (balok anak) = 250 x 350 mm 1.5.4.2 Pelat 1.5.4.2.1 Tebal pelat minimum dengan balok yang menghubungkan tumpuan pada semua sisinya: a) Untuk m 0,2α < • Pelat tanpa penebalan = 120 mm • Pelat dengan penebalan = 100 mm b) Untuk m0.2 2α≤ ≤ ( ) y n m 0.8 1500 120 36 5 0.2 f l h mm β α   +   = ≥ + − c) Untuk m 2α > y n 0.8 1500 90 36 9 f l h mm β   +   = ≥ + 1.5.4.2.2 Definition of Beam-to-Slab Stiffness Ratio, α flexural stiffnessof beam flexural stiffnessof slab α = cb b cb b cs s cs s 4E / E 4E / E I l I I l I α = = www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  11. 11. Perancangan Struktur Beton Page 11 of 68 cb sb b s E Modulus of elasticity of beam concrete E Modulus of elasticity of slab concrete I Moment of inertia of uncracked beam I Moment of inertia of uncracked slab = = = = 1.5.4.2.3 Luasan yang diperhitungkan dalam menghitung inersia balok dan pelat www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  12. 12. Perancangan Struktur Beton Page 12 of 68 Gambar 2 Luasan dalam menghitung inersia 1.5.4.2.4 Perhitungan preliminary • fc= 25 Mpa, fy = 400 Mpa Gambar 3 Bagian pelat yang ditinjau • Untuk mencari h, dibutuhkan nilai Ib, Islab dan α untuk balok dan pelat pada pinggir-pinggir pelat yang ditinjau. Asumsikan tebal pelat h = 100 mm. Balok Potongan b-b www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  13. 13. Perancangan Struktur Beton Page 13 of 68 b h Ai (mm 2 ) yi (mm) yiAi (mm 3 ) I (mm 4 ) d (mm) d 2 A (mm 4 ) Flange 700 100 70000 50 3500000 58333333 -126.32 1116897507 Beam 300 400 120000 250 30000000 1600000000 73.68 651523546 190000 33500000 1658333333 1768421053 ybar = 176 mm I = 3426754386.0 mm 4 3 3 41 1 2000 100 166666666 12 12 slabI bh x x mm= = = beam slab 3426754386 20,56 166666666 EI EI α = = = Balok Potongan a-a b h Ai (mm 2 ) yi (mm) yiAi (mm 3 ) I (mm 4 ) d (mm) d 2 A (mm 4 ) Flange 1050 100 105000 50 5250000 87500000 -97.56 999405116 Beam 250 400 100000 250 25000000 1333333333 102.44 1049375372 205000 30250000 1420833333 2048780488 ybar = 148 mm I = 3469613821.1 mm 4 3 3 41 1 4000 100 333333333 12 12 slabI bh x x mm= = = beam slab 3469613821 10,41 333333333 EI EI α = = = Balok Potongan d-d www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  14. 14. Perancangan Struktur Beton Page 14 of 68 b h Ai (mm 2 ) yi (mm) yiAi (mm 3 ) I (mm 4 ) d (mm) d 2 A (mm 4 ) Flange 1400 100 140000 50 7000000 116666667 -148.77 3098572292 Beam 300 550 165000 325 53625000 4159375000 126.23 2629091642 305000 60625000 4276041667 5727663934 ybar = 199 mm I = 10003705601.1 mm 4 3 3 41 1 3000 100 250000000 12 12 slabI bh x x mm= = = beam slab 10003705601 40.01 250000000 EI EI α = = = Balok Potongan c-c b h Ai (mm 2 ) yi (mm) yiAi (mm 3 ) I (mm 4 ) d (mm) d 2 A (mm 4 ) Flange 750 100 75000 50 3750000 62500000 -56.82 242122934 Beam 250 250 62500 175 10937500 325520833 68.18 290547521 137500 14687500 388020833 532670455 ybar = 107 mm I = 920691287.9 mm 4 3 3 41 1 3000 100 250000000 12 12 slabI bh x x mm= = = beam slab 920691287.9 3.68 250000000 EI EI α = = = Menghitung nilai α dan β long short 4000 1,33 3000 l l β = = = Nilai rata-rata α = (20.56+10.41+40.01+3.68)/4 = 18.67, oleh karena itu α > 2,0, sehingga tebal pelat minimum adalah: y n 4000.8 4000 0.8 1500 1500 88,94 90 36 9 36 (9 1,33) f l h mm mm xβ    + +       = = = ≥ + + Maka, ketebalan minimum pelat adalah 90 mm www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  15. 15. Perancangan Struktur Beton Page 15 of 68 1.5.4.3 Dimensi Kolom Menurut SNI 03-2847-2002 pasal 25.3.1.3 hal 243, persyaratan dimensi kolom dapat dihitung menggunakan rumus sebagai berikut : 0,30. ' P fc A = (2.5) dimana P = Berat total yang dipikul oleh kolom A = Luas Penampang kolom fc’ = kuat tekan beton karakteristik Berat total yang dipikul oleh kolom (P) dapat dihitung dengan menggunakan cara tributary area sehingga didapat dimensi kolom. Kolom yang ditinjau adalah kolom pada lantai 1 yang menerima beban terbesar karena menahan beban yang berada lantai diatasnya. Beban Mati : a. Lantai atap Slab = 8 x 6 x 0,10 x 2400 = 11520 kg Balok 30 x 65 cm2 = 8 x 0,30 x 0,65 x 2400 = 3744 kg Balok 30 x 50 cm2 = 6 x 0,30 x 0,50 x 2400 = 2160 kg Waterproofing = 8 x 6 x 15 = 720 kg Ducting + Lighting + Ceiling = 8 x 6 x 50 = 2400 kg + = 20544 kg b. Lantai 1-3 (lantai tipikal) Slab = 8 x 6 x 0,12 x 2400 x 3 = 41472 kg Balok 30 x 65 cm2 = 8 x 0,30 x 0,65 x 2400 x 3 = 11232 kg Balok 30 x 50 cm2 = 4 x 0,30 x 0,50) x 2400 x 3 = 4320 kg Screed (2 cm) = 8 x 6 x 42 x 3 = 6048 kg Ducting + Lighting + Ceiling = 8 x 6 x 50 x 3 = 7200 kg Finishing (keramik 1 cm) = 8 x 6 x 24 x 3 = 3456 kg+ = 73728 kg ⇒ Beban mati seluruh bangunan = 20544 + 73728 = 94272 kg Beban Hidup Beban hidup lantai atap = 8 x 6 x 100 = 4800 kg Beban hidup lantai 1 ~ lantai 3 (tipikal) = 8 x 6 x 400 x 3 = 57600 kg ⇒ Beban hidup seluruh bangunan = 4800 + 57600 = 62400 kg www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  16. 16. Perancangan Struktur Beton Page 16 of 68 Menurut Peraturan Pembebanan Indonesia untuk Gedung 1983 (PPIUG 1983), beban hidup harus direduksi untuk perencanaan portal. Beban hidup tersebut direduksi sebesar 10 % untuk penggunaan gedung sebagai gedung perpustakaan sehingga koefisien reduksi beban hidup = 0,8. Beban hidup lantai 1 ~ atap setelah direduksi menjadi = 62400 x 0,8 = 49920 kg. Dari kedua perhitungan beban tersebut, maka harus dilakukan kombinasi pembebanan tetap yaitu 1,2 DL + 1,6 LL untuk mendapatkan beban ultimate yang akan dipikul kolom. P = 1,2 DL + 1,6 LL = 1,2 . 94272 + 1,6 . 49920 = 192998,40 kg fc’ = 25 Mpa = 250 kg/cm² A = 250.30,0 40,192998 '.30,0 = fc P = 2573,31 cm² jika A = b x h, dimana b = h, maka b = h = 31,2573 = 50,73 cm maka dimensi kolom yang digunakan adalah kolom 50/50 cm. Alasannya adalah dalam tahap preliminary design ini, beban lateral akibat gempa belum diperhitungkan dan prinsip dasar dalam perencanaan bangunan tahan gempa adalah strong column weak beam (kolom kuat balok lemah). www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  17. 17. Perancangan Struktur Beton Page 17 of 68 2 PENULANGAN PELAT 2.1 Penulangan Pelat Lantai & Atap Pelat lantai menggunakan baja tulangan deform dengan mutu fy = 400 MPa untuk D10. Selimut beton diambil 20 mm untuk pelat lantai dan 40 mm untuk pelat atap (berhubungan dengan cuaca). Dari hasil perancangan didapatkan beberapa tipe pelat sesuai dengan kondisi jepitan pada ke empat sisinya dan beban-beban kerja yang harus diakomodir di atasnya. Jenis pelat tersebut disajikan pada tabel berikut: Tabel 3Tipe Pelat Nama pelat Tebal pelat (mm) Lokasi S1 120 Lt. 2, Lt. 3 & Lt.4 S2 120 Lt. 2, Lt. 3 & Lt.5 S3 120 Lt. 2, Lt. 3 & Lt.6 S4 120 Lt. 2 S5 120 Lt. Atap S6 120 Lt. Atap S7 120 Lt. Atap Syarat batas 0,85=1β 23500*4700 ' == cc fE MPa 3E905,1 210000 400 −=== s y y E f ε Berdasarkan SNI 03-2847-2002 pasal 9.12 butir (2) mengenai tulangan susut dan suhu, rasio tulangan susut dan suhu terhadap luas bruto penampang beton untuk pelat yang menggunakan batang tulangan deform mutu 400 adalah 0,0018. 0018,0min =ρ             0030 0030 850 1 ,+ E f , f 'f .. β,= s yy c bρ         600 600 1850 +yfyf 'cf . β,=     600400 600 400 25 850850 + .,.,= www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  18. 18. Perancangan Struktur Beton Page 18 of 68 = 0,0271 bρρ 0,75.=maks = 0,0203 . .min minA b ds ρ= maks maksA .b . ds ρ= Tabel 4 Batasan penulangan pelat/m2 (dengan asumsi tulangan Ø 10 mm) Nama pelat h (mm) Arah d (mm) As min (mm2) As max (mm2) Arah x 100 180 2030 Arah y 90 162 1827 Arah x 100 180 2030 Arah y 90 162 1827 Arah x 100 180 2030 Arah y 90 162 1827 Arah x 100 180 2030 Arah y 90 162 1827 Arah x 100 180 2030 Arah y 90 162 1827 Arah x 100 180 2030 Arah y 90 162 1827 Arah x 100 180 2030 Arah y 90 162 1827 S7 120 120 120 120 120 120 120 S1 S2 S3 S4 S5 S6 Syarat 1 : ys εε ≥ Syarat 2 : maksmin sss AAA ≤≤ 2.1.1 Pelat dua arah Lantai dengan perbandingan panjang dan lebar kurang dari 2,5 perencanaannya menggunakan sistem pelat dua arah. www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  19. 19. Perancangan Struktur Beton Page 19 of 68 Tabel 5 Momen per meter lebar dalam jalur tengah akibat beban terbagi merata www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  20. 20. Perancangan Struktur Beton Page 20 of 68 2.1.2 Pelat satu arah Bila perbandingan panjang dan lebar pelat lebih dari 2,5 maka analisa pelat tersebut dilakukan sebagai pelat satu arah. Penulangan pada arah memanjang pelat dipakai tulangan bagi. Sesuai dengan SNI 03-2847-2002 pasal 9.12 butir (2) dalam arah tegak lurus terhadap tulangan lentur harus disediakan tulangan penahan susut dan suhu (tulangan pembagi). Contoh perhitungan: Pelat Tipe S3 lx ly slab Lx = 3000 mm Ly = 4000 mm β = Ly/Lx = 1,33 ≤ 2.5, maka termasuk kedalam pelat dua arah • Pembebanan - Beban Mati Berat sendiri pelat = 0.12 x 24 = 2.88 kN/m2 Waterproofing = 1.00 x 0.15 = 0.15 kN/m2 Ducting + Ceiling = 1.00 x 0.30 = 0.30 kN/m2 = 3.33 kN/m2 - Beban hidup = 4 kN/m2 • Beban terfaktor qu = 1.2D + 1.6L = 1.2 (3.33) + 1.6 (4) = 10.40 kN/m2 • Perhitungan momen Tebal pelat = 120 mm Selimut beton = 20 mm Ø tulangan = 10 mm dx = h – selimut beton - Ø tulangan/2 = 120 – 20 – 10/2 = 95 mm www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  21. 21. Perancangan Struktur Beton Page 21 of 68 dy = h – sel. beton - Ø tulangan - Ø tulangan/2 = 120 – 20 – 10/2 = 95 mm β = 1.33, sehingga diperoleh nilai sebagai berikut: Mlx = 0.001 qu Lx2 x = 3.84 kNm Mly = 0.001 qu Ly2 x = 1.87 kNm Mtx = - 0.001 qu Lx2 x = -6.83 kNm Mty = - 0.001 qu Ly2 x = -5.15 kNm • Batas rasio tulangan β1 = 0.85 ρ minimum untuk pelat = 0.0018 10.85 ' 600 600 bal f c fy fy β ρ    =    +    ρ balance = 0.0271 ρ maksimum = 0.75 ρ balance = 0.0203 • Penulangan pelat Tulangan tumpuan, Mtx = 6.83 kNm Mntx = Mtx/ϕ = Mtx/0.8 = 8.54 kNm As perlu = Mntx/(fy 0.8 dx) = 280.85 mm2 As min = ρ min b dx = 171 mm2 As max = ρ max b dx = 1930.43 mm2 Ø10 mm, As = 78.53 mm2 S = 1000/(280.85/78.53) = 279.62 mm Gunakan Ø10-250 mm Untuk selanjutnya, perhitungan menggunakan tabel dan disajikan pada lampiran. www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  22. 22. Perancangan Struktur Beton Page 22 of 68 3 ANALISIS GEMPA 3.1 Pemodelan Struktur Struktur gedung Perpustakaan ini terdiri dai 4 lantai. Struktur dimodelisasi sebagai portal ruang 3-D dengan 6 derajat kebebasan (degree of freedom / DOF) pada tiap nodal. Pelat lantai dimodelisasi sebagai elemen membran. Gambar 4 Model struktur 3 dimensi 3.2 Pembebanan Gravitasi Pada Struktur Beban gravitasi didefinisikan sesuai dengan besarnya beban pada Bab Data Umum Struktur (Bab 1.5.1.1). Besarnya berat sendiri struktur dapat dihitung langsung oleh program ETABS dengan memasukkan massa jenis material elemen struktur. Beban gravitasi yang bekerja pada pelat lantai didistribusikan ke balok-balok keliling pelat sesuai dengan tributari areanya. Beban dinding dan partisi bekerja langsung pada balok sebagai beban garis. 3.3 Analisis Gempa Analisis dinamik yang digunakan adalah analisis ragam spektrum respons, yakni dengan memberlakukan suatu spektrum respons gempa rencana pada suatu model Finite Element dari struktur dan dari situ ditentukan respons struktur terhadap gempa rencana tersebut melalui superposisi dari respons masing-masing ragamnya. www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  23. 23. Perancangan Struktur Beton Page 23 of 68 Jumlah ragam yang ditinjau tidak boleh kurang dari 5 dan tidak perlu lebih dari jumlah tingkat bangunannya. Pada dasarnya jumlah ragam yang ditinjau adalah sedemikian rupa sehingga sudah mengandung paling sedikit 90% dari energi gempa. Jumlah ragam struktur yang ditinjau adalah 5 ragam. Kombinasi respons dari semua ragam yang berperan dilakukan dengan metode complete quadratic combination (CQC) yaitu mengevaluasi respons total maksimal dari tiap ragam respons yang terbesar. Analisis Respons Spektrum ini dilakukan dengan menggunakan bantuan program komputer ETABS. Data koefisien gempa dasar dimasukkan pada file input yang dibaca langsung oleh program ETABS, dengan demikian dapat diperoleh waktu getar alami struktur. Besarnya massa tiap-tiap lantai yang diperhitungkan dalam analisis dinamik serta pusat massa dan kekakuan dapat dilihat pada Tabel 3.1 berikut ini: Tabel 6 Massa, pusat massa dan pusat kekakuan lantai Story Diaphragm MassX MassY XCCM YCCM XCR YCR ROOF D1 37,252.08 37,252.08 20.08 12.94 20.00 12.82 STORY3 D1 42,489.69 42,489.69 20.04 12.97 20.00 12.72 STORY2 D1 42,913.87 42,913.87 20.02 12.98 20.00 12.53 STORY1 D1 44,684.63 44,684.63 20.02 12.86 20.00 12.15 Berdasarkan SNI 03-1726-2002, Eksentrisitas rencana untuk gedung dengan nilai e < 0,3 b perlu ditinjau sebesar nilai yang paling menentukan berikut ini : ed = 1,5 e + 0,05 b atau ed = e – 0,05 b dengan e = eksentrisitas teori, b = lebar denah gedung dalam arah tinjauan. Sesuai SNI 03-1726-2002 Pasal 7.2.1, jumlah pola getar yang ditinjau dalam penjumlahan respon ragam harus mencakup partisipasi massa sekurang-kurangnya 90%. Dalam analisis dinamik yang dilakukan, digunakan 5 pola ragam getar dan partisipasi massa yang disumbangkan oleh masing-masing pola getar dapat dilihat pada Tabel 3.2 berikut : Tabel 7 Mass Participation Factor Mode Period UX UY SumUX SumUY RZ SumRZ 1 0.91 0.00 82.08 0.00 82.08 0.00 0.00 2 0.85 83.21 0.00 83.21 82.08 0.97 0.98 3 0.77 0.79 0.00 84.00 82.09 81.94 82.92 4 0.30 0.00 12.19 84.00 94.28 0.00 82.92 5 0.28 10.85 0.00 94.85 94.28 0.05 82.97 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  24. 24. Perancangan Struktur Beton Page 24 of 68 Dari Tabel 3.2 di atas terlihat bahwa 90% massa sudah tercakup dalam 5 modes untuk arah-X dan 4 modes pertama untuk arah-Y. Gambar 5 Bentuk deformasi struktur akibat ragam pola getar 1 Gambar 6 Bentuk deformasi struktur akibat ragam pola getar 2 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  25. 25. Perancangan Struktur Beton Page 25 of 68 Gambar 7Bentuk deformasi struktur akibat ragam pola getar 3 Untuk mensimulasikan arah pengaruh gempa rencana yang sembarang terhadap struktur gedung, dalam analisis dinamik yang dilakukan ini, pengaruh pembebanan gempa dalam arah utama dianggap efektif 100% dan dianggap terjadi bersamaan dengan pengaruh pembebanan gempa dalam arah tegak lurusnya, tetapi dengan efektifitas hanya 30%. Dari analisis dinamik yang dilakukan didapat gaya geser pada tiap-tiap lantai seperti yang ditampilkan pada Tabel 3.3 di bawah ini (satuan kg-m): Tabel 8 Gaya dinamik pada tiap lantai akibat spektrum gempa-x Story Load P VX VY T MX MY ROOF EX - 62,773.98 53.24 912,469.72 217.20 256,117.84 STORY3 EX - 115,558.89 118.10 1,678,666.65 691.74 723,570.64 STORY2 EX - 152,420.73 162.40 2,226,156.53 1,337.02 1,327,861.26 STORY1 EX - 172,268.16 184.81 2,529,849.57 2,070.67 2,008,500.12 Tabel 9 Gaya dinamik pada tiap lantai akibat spektrum gempa-y Story Load P VX VY T MX MY ROOF EY - 72.31 66,115.85 1,463,562.27 269,752.67 295.01 STORY3 EY - 134.82 117,271.33 2,601,444.97 742,362.90 841.42 STORY2 EY - 177.96 152,572.17 3,412,541.34 1,341,091.62 1,552.20 STORY1 EY - 200.19 172,123.15 3,866,302.02 2,015,162.41 2,349.66 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  26. 26. Perancangan Struktur Beton Page 26 of 68 Gaya geser dasar hasil analisis dinamik perlu dikoreksi dengan suatu faktor skala terhadap gaya geser dasar statik yang diperoleh dari ragam getar pertama struktur apabila nilainya kurang dari 0,8 kali gaya geser dasar statik tersebut. Pada hasil analisis dinamik struktur ini, diperoleh besar gaya geser dasarnya lebih kecil daripada 0,8 kali gaya geser dasar analisis statik. Dengan demikian, diperlukan koreksi gaya geser dasar hasil analisis dinamik. Adapun besarnya gaya geser dasar, V menurut analisis statik ekivalen adalah : tW R IC V ⋅ = 1 dimana C1 adalah nilai Faktor Respons Gempa yang didapat dari Spektrum Respons Gempa Rencana menurut Gambar 1.1 untuk waktu getar alami fundamental T1. Dalam kasus ini, T1 adalah 0,9145 detik. Dari hasil perhitungan ETABS didapat Wt = 3,140,524.45 kgf, dan untuk R = 8,0 maka akan didapat nilai gaya geser dasar gempa statik ekivalen sebesar Vst = 215,911.06 kgf. Selanjutnya distribusi gaya geser ini pada masing-masing lantai ditampilkan pada Tabel 3.5. berikut ini : Tabel 10 Distribusi gaya geser lantai statik ekivalen Lantai - ke hi(m) wi (kg) Wixhi Fi x-y Vi Roof 16.32 613,328.66 10,009,523.73 70,713.18 70,713.18 Lt 3 12.24 840,543.23 10,288,249.14 72,682.26 143,395.43 Lt 2 8.16 829,195.86 6,766,238.22 47,800.70 191,196.13 Lt 1 4.08 857,456.70 3,498,423.34 24,714.93 215,911.06 ∑ = 3,140,524.45 30,562,434.42 - 215,911.06 Selanjutnya untuk mendapatkan distribusi gaya geser tingkat nominal akibat pengaruh gempa rencana sepanjang tinggi struktur gedung yang lebih konservatif, karena dalam kasus ini gaya geser dasar untuk arah x dan y dari analisis dinamik lebih kecil dari 80% hasil analisis statik, maka analisis perlu dihitung ulang dengan memperhitungkan faktor skala 0,8Vst/Vx (untuk gempa arah-x) dan 0,8Vst/Vy (untuk gempa arah-y). Distribusi gaya geser tingkat dari hasil analisis dinamik dan statik ekivalen digambarkan dalam satu grafik. www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  27. 27. Perancangan Struktur Beton Page 27 of 68 Gambar 8 Selimut gaya geser tingkat untuk gempa arah-x Gambar 9 Selimut gaya geser tingkat untuk gempa arah-x 3.4 Displacement Pusat Massa Dan Simpangan Antar Tingkat Simpangan antar tingkat dari suatu titik pada suatu lantai ditentukan sebagai simpangan horisontal titik tersebut relatif terhadap titik yang sesuai pada lantai di bawahnya. Hasil displacement pada pusat massa struktur dan nilai simpangan antar lantai diperoleh setelah dilakukan analisis struktur untuk beban gempa terkoreksi (beban gempa rencana). Tabel 3.6 ~ 3.7 di bawah ini menunjukkan nilai displacement struktur 0.00 1.00 2.00 3.00 4.00 5.00 50,000.00 100,000.00 150,000.00 200,000.00 Floor Story shear, V (kg) Vx dinamik_x 100% 80% 0.00 1.00 2.00 3.00 4.00 5.00 50,000.00 100,000.00 150,000.00 200,000.00 Floor Story shear, V (kg) Vy Series2 100% 80% www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  28. 28. Perancangan Struktur Beton Page 28 of 68 pada setiap pusat massa lantainya dan nilai simpangan antar lantai untuk beban gempa arah-X dan arah-Y dengan satuan centimeter. Kinerja batas layan struktur gedung ditentukan oleh simpangan antar tingkat akibat pengaruh gempa rencana, yaitu untuk membatasi terjadinya peretakan beton yang berlebihan, disamping untuk mencegah kerusakan non-struktural dan ketidaknyamanan penghuni. Simpangan antar tingkat ini harus dihitung dari simpangan struktur gedung tersebut akibat pengaruh gempa nominal yang telah dibagi faktor skala. Tabel 11 Displacement titik terluar bangunan akibat gempa arah-x (cm) Story Point Load UX UY ROOF 19.00 EX 2.83 0.63 STORY3 19.00 EX 2.41 0.53 STORY2 19.00 EX 1.66 0.37 STORY1 19.00 EX 0.69 0.18 Tabel 12 Displacement titik terluar bangunan akibat gempa arah-y (cm) Story Point Load UX UY ROOF 19.00 EY 0.27 3.92 STORY3 19.00 EY 0.22 3.24 STORY2 19.00 EY 0.15 2.16 STORY1 19.00 EY 0.06 0.89 Tabel 3.8 ~ 3.9 menunjukkan rasio inter story-drift (simpangan antar tingkat) yang didapat dari beban gempa arah-X dan arah-Y. Tabel 13 Rasio inter story drift-x Story Point Load UX DriftX ROOF 19.00 EX 0.0283 0.0011 STORY3 19.00 EX 0.0241 0.0019 STORY2 19.00 EX 0.0166 0.0024 STORY1 19.00 EX 0.0069 0.0017 Tabel 3.9. Rasio inter story drift –y Story Point Load UY DriftY ROOF 19.00 EY 0.0392 0.0018 STORY3 19.00 EY 0.0324 0.0027 STORY2 19.00 EY 0.0216 0.0031 STORY1 19.00 EY 0.0089 0.0022 Dari hasil analisis simpangan akibat pembebanan gempa, diperoleh hasil simpangan maksimum terjadi di lantai 2 Untuk memenuhi kinerja batas layan struktur gedung, dimana peretakan beton dan deformasi lateral yang berlebihan dapat dibatasi, simpangan antartingkat (∆i) menurut SNI 03-1726-2002 Pasal 8.1.2 harus memenuhi syarat: www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  29. 29. Perancangan Struktur Beton Page 29 of 68 ii hx R 03,0<∆ dan mmi 30<∆ Dengan R = faktor reduksi gempa dan hi = tinggi tingkat yang bersangkutan. Untuk ketinggian tingkat yang minimum (4080 mm, lantai tipikal), maka batas simpangan antartingkat : 0,03 4080 15,30 mm 8,0i i∆ < × →∆ < → ∆2 = 0,00312 x 4080 = 12,73 mm ≤ 15,30 mm → (OK !) Disamping kinerja batas layan diatas, untuk memenuhi kinerja batas ultimit struktur gedung, simpangan antartingkat (∆i) menurut SNI 03-1726-2002 Pasal 8.1.2 harus pula memenuhi syarat : ii hx02,0<∆ , untuk hi = 4080 mm, maka ∆i ≤ 81,60 mm → ∆i = (drift max) x ζ x hi , dengan ζ = 0,7 x R = 0,7 x 8,0 = 5,60 → ∆2 = 0,00312 x 5,60 x 4080 = 71,29 mm ≤ 81,60 mm → (OK !) 3.5 Kesimpulan Dari hasil analisis di atas, struktur gedung telah memenuhi persyaratan, baik terhadap batasan periode yang dijinkan maupun terhadap perilaku struktur pada ragam pola getar 1 (mode pertama). Disamping itu dari segi kinerja batas layan struktur gedung, batasan simpangan antar lantai juga telah memenuhi persyaratan, sehingga diharapkan peretakan dan deformasi lateral yang berlebihan dapat dihindari. www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  30. 30. Perancangan Struktur Beton Page 30 of 68 4 PENULANGAN STRUKTUR 4.1 Model struktur Struktur dimodelkan seperti pada gambar berikut: Gambar 10 Denah balok lantai atap Gambar 11 Denah balok lantai 2 s/d 4 Gambar 12 Denah lantai 1 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  31. 31. Perancangan Struktur Beton Page 31 of 68 4.2 Perencanaan Balok 4.2.1 Perencanaan balok anak arah x Gambar 13 Rencana balok anak arah x 4.2.2 Beban rencana 4.2.2.1 Beban mati Beban trapesium: Berat sendiri pelat tebal 12 cm = 0.12 m x 2400 kg/m3 = 288 kg/m2 Langit-langit dan penggantung = 17 kg/m2 Adukan dari semen tebal 2 cm = 0.02 m x 2100 kg/m3 = 42 kg/m2 Penutup lantai dari keramik = 24 kg/m2 Partisi = 100 kg/m2 + Jumlah = 471 kg/m2 Beban merata (lebar 3,725 m) = 1754.48 kg/m Berat sendiri balok = 0.25 m x 0.23 m x 2400 kg/m3 = 138 kg/m 4.2.2.2 Beban hidup Lanti tipikal 2 s/d 4 = 400 kg/m2 Beban merata (lebar 3,725 m) = 1490 kg/m 4.2.2.3 Kombinasi beban 1.2 D + 1.6L = 1.2 (1892.48) + 1.6 (1490) = 4654.98 kg/m www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  32. 32. Perancangan Struktur Beton Page 32 of 68 4.2.3 Analisis struktur Gambar 14 Gambar diagram momen dan geser balok anak (AS 2-3) 4.2.4 Penulangan lentur Perencanaan tulangan tumpuan balok anak B4-250 x 350 mm Jarak dari beton tertekan ke tulangan tarik (d) = 310 mm Momen rencana balok(Mu) = 82.33 kNm Faktor reduksi momen (φ ) = 0,80 '. '/ ) ( '. '/ ) ' '( ') 1,7 ' . As As fs fy fy Mn As As fs fy fy d As fs d d f c b φ   − = − − + −      Tulangan tarik, As = 4 D 16, AS = 804.25 mm2 Tulangan tekan, As’ = 2 D 16, AS = 402.12 mm2 84.61 kNm > 82.33 kNm ϕMn > Mu OK Tulangan minimum : Terkecil dari ' 1,4 ; 4 c w w y y f b d b d f f www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  33. 33. Perancangan Struktur Beton Page 33 of 68 Terkecil dari 25 1,4 250 310; 250 310 4 400 400 × × × × = 242.19 mm2 As > As min OK Tulangan maksimum: ( ) ( ) ' max 1 0,85 600 0,75 600 c s w y y f A b d f f β= × + ( ) ( )max 1 0,85 25 600 0,75 250 310 400 600 400 sA β × = × × + = 1574.83 mm2 As < As max OK Maka dipakai tulangan tumpuan 4D16, dengan prosedur yang sama dapat dihitung tulangan balok untuk tipe balok yang lainya. 4.2.5 Penulangan geser Geser rencana balok sejarak d dari muka kolom (Vu) = 60.05 kN Faktor reduksi geser (φ ) = 0,75 Kuat geser yang disumbangkan oleh beton ' 25 250 310 6 6 c c f V bd= = × = 64.58 kN Kuat geser yang disumbangkan oleh tulangan geser 212 10 4vA π= × × = 157.08 mm2 dipakai jarak 100 157.08 400 310 100 v ys s A f d V s × × = = = 194.77 kN ' min 75 75 25 250 100 1200 1200 400 c v y f bs A f × × = = × = 19.53 mm2 Av min< Av OK ( )c sV Vφ + = 194.51 Kg ( )c s uV V Vφ + > OK Maka dipakai tulangan geser 10 150φ − Jarak maksimum sengkang : a. d/2 = 310/2 = 155 mm b. 8 x diameter tulangan pokok = 8 x 16 = 128 mm c. 24 x diameter sengkang = 24 x 10 = 240 mm www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  34. 34. Perancangan Struktur Beton Page 34 of 68 d. 300 mm 4.3 Perencanaan Portal 4.3.1 Rencana portal Gambar 15 Rencana portal arah melintang Gambar 16 Rencana portal arah memanjang 4.3.2 Beban rencana 4.3.2.1 Beban mati Berat sendiri pelat tebal 12 cm = 0.12 m x 2400 kg/m3 = 288 kg/m2 Langit-langit dan penggantung = 17 kg/m2 Adukan dari semen tebal 2 cm = 0.02 m x 2100 kg/m3 = 42 kg/m2 Penutup lantai dari keramik = 24 kg/m2 Partisi = 100 kg/m2 Dinding setengah bata = 250 kg/m2 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  35. 35. 4.3.2.2 Beban hidup Lanti tipikal 2 s/d 4 Lantai atap 4.3.2.3 Beban gempa Wilayah gempa Jenis tanah Faktor keutamaan gedung Faktor reduksi gempa (R) Waktu getar alami struktur ( Dari grafik wilayah gempa diperoleh Gambar 17 Gambar Perancangan Struktur Beton = 400 kg/m = 100 kg/m = 3 = Lunak tor keutamaan gedung (I) = 1.0 Faktor reduksi gempa (R) = 8.5 Waktu getar alami struktur (0.18 n = 0.18 x 4) = 0.72 Dari grafik wilayah gempa diperoleh = 0.55 Respon spectrum gempa (wilayah gempa 3) Gambar 18 Input beban mati pada lantai (kg/m2 ) Perancangan Struktur Beton Page 35 of 68 kg/m2 100 kg/m2 Lunak www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  36. 36. Gambar Gambar Gambar 21 Perancangan Struktur Beton Gambar 19 Input beban hidup pada lantai (kg/m2 ) Gambar 20 Input beban mati pada balok (kg/m) 21 Distribusi beban dari pelat ke balok (kg/m) Perancangan Struktur Beton Page 36 of 68 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  37. 37. Gambar Gambar 23 Respon Perancangan Struktur Beton Gambar 22 Input respon spektrum gempa Respon spektrum case gempa arah x dan arah y Perancangan Struktur Beton Page 37 of 68 spektrum case gempa arah x dan arah y www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  38. 38. 4.3.3 Hasil analisis struktur Dari output program ETABS didapat gaya rencana untuk masing balok dari kombinasi beban yang menentukan dalam perencanaan: Gambar 24 Diagram momen portal melintang akibat beban mati (kN.m) Gambar 25 Diagram momen portal melintang akibat beban hidup (kN.m) Perancangan Struktur Beton Hasil analisis struktur Dari output program ETABS didapat gaya rencana untuk masing-masing tipe balok dari kombinasi beban yang menentukan dalam perencanaan: Diagram momen portal melintang akibat beban mati (kN.m) Diagram momen portal melintang akibat beban hidup (kN.m) Perancangan Struktur Beton Page 38 of 68 masing tipe Diagram momen portal melintang akibat beban mati (kN.m) Diagram momen portal melintang akibat beban hidup (kN.m) www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  39. 39. Gambar 26 Diagram momen portal melintang akibat beban gempa ex (kN.m) Gambar 27 Diagram gaya lintang portal melintang akibat beban mati (kN) Gambar 28 Diagram gaya lintang portal melintang akibat beban hidup (kN) Perancangan Struktur Beton Diagram momen portal melintang akibat beban gempa ex (kN.m) Diagram gaya lintang portal melintang akibat beban mati (kN) Diagram gaya lintang portal melintang akibat beban hidup (kN) Perancangan Struktur Beton Page 39 of 68 Diagram momen portal melintang akibat beban gempa ex (kN.m) Diagram gaya lintang portal melintang akibat beban mati (kN) Diagram gaya lintang portal melintang akibat beban hidup (kN) www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  40. 40. Gambar 29 Diagram gaya lintang p 4.3.4 Analisis beban gravitasi 4.3.4.1 Beban di lantai dan balok Momen-momen di balok akibat beban gravitasi ditaksir dengan menggunakan nilai momen pendekatan. Untuk balok geometris dan batasan beban tersebut di pasal 10.3 (3), akan dipakai momen pendekatan di pasal 10.3 sebagaimana tercantum pada tabel berikut: Tabel 14 Momen disain balok rangka di muka kolom Momen positif pada bentang Tumpuan ujung menyatu dengan struktur pendukung Momen positif pada bentang Momen negatif pada sisi luar tumpuan dalam pertama: Lebih dari dua bentang Momen negatif pada sisi Gaya geser pada sisi dari tumpuan dalam pertama Gaya geser pada sisi dari semua tumpuan Perancangan Struktur Beton Diagram gaya lintang portal melintang akibat beban gempa ex (kN) Analisis beban gravitasi Beban di lantai dan balok momen di balok akibat beban gravitasi ditaksir dengan menggunakan nilai momen pendekatan. Untuk balok-balok rangka ini, yang memenuhi semua syarat geometris dan batasan beban tersebut di pasal 10.3 (3), akan dipakai momen pendekatan di pasal 10.3 sebagaimana tercantum pada tabel berikut: Momen disain balok rangka di muka kolom Momen positif pada bentang-bentang ujung: Tumpuan ujung menyatu dengan struktur pendukung .lnWu Momen positif pada bentang-bentang dalam .lnWu Momen negatif pada sisi luar tumpuan dalam pertama: .lnWu Momen negatif pada sisi-sisi lain dari tumpuan-tumpuan dalam .lnWu Gaya geser pada sisi dari tumpuan dalam pertama 1,15 .ln Gaya geser pada sisi dari semua tumpuan-tumpuan lainnya .lnWu Perancangan Struktur Beton Page 40 of 68 ortal melintang akibat beban gempa ex (kN) momen di balok akibat beban gravitasi ditaksir dengan menggunakan balok rangka ini, yang memenuhi semua syarat geometris dan batasan beban tersebut di pasal 10.3 (3), akan dipakai momen pendekatan 2 .ln 14 Wu 2 .ln 16 Wu 2 .ln 10 Wu 2 .ln 11 Wu 1,15 .ln 2 ×Wu .ln 2 Wu www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  41. 41. Perancangan Struktur Beton Page 41 of 68 4.3.5 Perhitungan balok Perhitungan penulangan dijelaskan satu contoh perhitungan, diambil balok B1- 300 x 650 mm untuk tumpuan negatif terbesar. 1. Data kekuatan bahan Kuat beton (f’c) = 25 Mpa Kuat tarik baja untuk tulangan lentur (fy) = 400 Mpa Kuat tarik baja untuk tulangan geser (fys) = 400 Mpa 2. Penampang Lebar balok = 300 mm Tinggi balok = 650 mm Selimut beton = 40 mm Diameter tulangan sengkang = 13 mm Jarak tepi tertekan ke tulangan tarik (d) = 589 mm Jarak tepi tertekan ke tulangan tekan (d’) = 61 mm 3. Beban rencana Gaya lentur rencana (Mu) = -438.73 kNm Gaya geser rencana (Vu) , dua kali gaya gempa = 500.10 kN 4. Perencanaan lentur Balok menggunakan tulangan rangkap Digunakan tulangan tekan 2D22, As’ = 760,28 mm2 Digunakan tulangan tarik 6D22, As = 2280.80 mm2 a. Kuat lentur penampang '. '/ ) ( '. '/ ) ' '( ') 1,7 ' . φ   − = − − + −      As As fs fy fy Mn As As fs fy fy d As fs d d f c b ' 600 '/ *(600 )= − + ≤fs d d fy fy nMφ = 518,81 kNm > gaya lentur rencana OK b. Tulangan lentur maksimum bρ = , 1 0.85 600 600 c y f fy f β + bρ = 0.85 25 600 0.85 400 600 400 × + bρ = 0.0271 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  42. 42. Perancangan Struktur Beton Page 42 of 68 0.75 bρ = 0.02030 'ρ = 0.00430 max 0.75 '( '/ )b fs fyρ ρ ρ= + ρ max = 0,02462 Asmaks = ρmax.b.d = 4350,86 mm2 > As terpakai OK c. Tulangan lentur minimum Amin = ' 4 c y f bd f Amin = 25 300 589 4 400 × × = 552,19 mm2 < As rencana OK 5. Tulangan geser Kuat geser rencana berdasarkan kapasitas 2 . 2 518.81 8.57 8 164.00 2 8 2 nb u b M Wu l V kN l × × = + = + = Dipakai kuat geser rencana berdasarkan gaya geser rencana dua kali beban gempa karena lebih besar dari gaya geser berdasarkan kapasitas. Digunakan Tulangan geser dia 10 dengan 2 kaki, Av = 157.08 mm2 Jarak maksimum tulangan geser d/4, smaks = 147.25 mm2 Dipakai jarak, S = 50 mm a. Kuat geser yang disumbangkan oleh beton Vc = ' 6 cf bd = 25 300 589 6 × = 147,25 kN b. Kuat geser yang disumbangkan oleh tulangan geser Vs = v ysA f d s = 157,08 400 589 50 × × = 740.16 kN www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  43. 43. Perancangan Struktur Beton Page 43 of 68 c. Kuat geser rencana balok nVφ = 0.75 (147,25+ 740.16) = 665.56 kN > Vu (OK) Digunakan tulangan geser φ 10-50 4.3.6 Hasil perhitungan penulangan balok portal Dari contoh perhitungan di atas balok – balok selanjutnya dihitungan dengan mengunakan program, dan didapat tulangan lentur dan geser yang dapat dilihat pada tabel berikut : Tabel 15 Resume penulangan balok Balok Tumpuan Lapangan B1-350/650 Mu (kNm) 359.34 222.83 Tulangan Lentur 5D22 4D22 Vu (kN) 418.28 Tulangan geser Ø10-50 Ø10-100 B1-300/650 Mu (kNm) 438.73 291.89 Tulangan Lentur 6D22 4D22 Vu (kN) 500.10 Tulangan geser Ø10-50 Ø10-100 B2-350/500 Mu (kNm) 192.33 100.76 Tulangan Lentur 6D16 4D16 Vu (kN) 273.10 Tulangan geser Ø10-50 Ø10-100 B2-300/500 Mu (kNm) 253.16 144.92 Tulangan Lentur 6D19 4D19 Vu (kN) 380.36 Tulangan geser Ø10-50 Ø10-100 B3-250/500 Mu (kNm) 131.66 116.64 Tulangan Lentur 4D16 4D16 Vu (kN) 190.18 Tulangan geser Ø10-90 Ø10-150 B4-250/350 Mu (kNm) 82.33 40.65 Tulangan Lentur 4D16 2D16 Vu (kN) 66.61 Tulangan geser Ø10-90 Ø10-150 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  44. 44. Perancangan Struktur Beton Page 44 of 68 4.4 Perencanaan Kolom Untuk perencanaan kolom diambil yang terbesar karena dimensi kolom yang sama untuk semua lantai. 4.4.1 Beban rencana kolom Gambar 30 Momen Rencana kolom Gambar 31 Gaya Aksial kolom www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  45. 45. Perancangan Struktur Beton Page 45 of 68 Tabel 16 Gaya yang bekerja pada kolom Momen DL LL E 1,2D+1,6L 1,2D+L+E 1,2D+L-E Atas 84.83 54.04 191.29 188.26 347.126 -35.454 Bawah -100.49 -36.19 0.053 -178.492 -156.725 -156.831 Aksial -1516.74 -584.86 200.9 -2755.864 -2204.048 -2605.848 4.4.2 Kelangsingan kolom Gambar 32 Kondisi pengekangan kolom (a) arah sumbu x; (b) arah sumbu y Tabel 17 I/Lc untuk balok nama b h lc I I/lc b1 300 650 8000 6.87E+09 858203.1 b2 300 500 6000 3.13E+09 520833.3 Tabel 18 I/Lc untuk kolom sumbu x & y Kolom b h lc I I/lc atas 500 500 4080 5.21E+09 1276552 rencana 500 500 4080 5.21E+09 1276552 bawah 500 500 1500 5.21E+09 3472222 1. Arah sumbu x 1276552 2 1.49 858203,1 2 c c A b b EI l EI l × Ψ = = = × ∑ ∑ www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  46. 46. Perancangan Struktur Beton Page 46 of 68 1276552 3472222 2.77 858203,1 2 c c B b b EI l EI l + Ψ = = = × ∑ ∑ Gambar 33 Nomogram untuk kolom arah x k = 0.845 klu/r = 0.845 (4080-650) / (0.3*500) = 19,32 < 40 Kolom pendek 2. Arah sumbu y 1276552 2 2,45 520833,33 2 c c A b b EI l EI x l × Ψ = = = ∑ ∑ 1276552 3472222 1.56 520833,33 2 c c B b b EI l EI x l + Ψ = = = ∑ ∑ www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  47. 47. Perancangan Struktur Beton Page 47 of 68 Gambar 34 Nomogram kolom untuk arah y k = 0.84 klu/r = 0.84 (4080-650) / (0.3*500) = 19,21 < 40 Kolom pendek 4.4.3 Perencanaan lentur kolom untuk kolom pendek 1. Data kekuatan bahan Kuat beton (f’c) = 25 Mpa Kuat tarik baja untuk tulangan lentur (fy) = 400 Mpa Kuat tarik baja untuk tulangan geser (fys) = 400 Mpa 2. Penampang Lebar kolom, B = 500 mm Tinggi kolom, H = 500 mm Selimut beton = 40 mm Diameter tulangan sengkang = 10 mm Jarak tepi tertekan ke tulangan tarik (dx) = 439 mm Jarak tepi tertekan ke tulangan tarik (dy) = 439 mm Jari tepi tertekan ke tulangan tekan (d’) = 62 mm www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  48. 48. Perancangan Struktur Beton Page 48 of 68 Gambar 35 Rencana penampang kolom 1. Mencari nilai Pn0 Luas bruto penampang, Ag = b x h = 500 x 500 = 250,000.00 mm2 Dicoba tulangan 20 D 22, As = 7,602.65 mm2 Rasio tulangan terhadap penampang = (7,602.65/250,000.00) x 100% = 3 % (sesuai dengan persyaratan yaitu 1% - 4% Kuat aksial nominal penampang: 0 ' ( ')Pn fc Ag Ast fy fcφ φ= × + − 0 0.85 25 250,000 7,602.65(400 0.85 25) 8,192,005.29Pn N= × × + − × = 2. Mencari Pnb dan Mnb 600 600 439 263.40 600 600 400 Cb d mm fy = × = × = + + 0.85 0.85 263.40 223.89ab Cb mm= = × = Tabel 19 Tabel analisis dalam keadaan berimbang Tabel analisis untuk Cb= 263.40 mm (Pnb & Mnb) n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) -21.25 -2378831.25 138 -328409548.22 6 62 22 2281 -0.00229 -378.75 -863851.59 188 -162404098.16 2 137 22 760 -0.00144 -287.47 -218554.66 113 -24652965.79 2 212 22 760 -0.00058 -116.17 -88322.41 38 -3320922.49 2 288 22 760 0.00028 55.13 41909.85 38 1575810.28 2 363 22 760 0.00113 226.42 172142.10 113 19417629.15 6 438 22 2281 0.00199 397.72 907123.07 188 170539137.33 total 2,428,385 327,254,958 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  49. 49. Perancangan Struktur Beton Page 49 of 68 Gambar 36 Tegangan regangan pada kolom dalam keadaan berimbang 3. Mencari Pn dan Mn untuk nilai C<Cb dan C>Cb Perhitungan disajikan dalam bentuk tabel-tabel berikut: Tabel 20 Tabel analisis untuk c = 50 mm Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -451562.50 229 -103294921.88 6 6 62 22 2281 0.00072 144.00 328434.66 188 61745716.53 5 2 137 22 760 0.00523 400.00 304106.17 113 34303175.85 4 2 212 22 760 0.00974 400.00 304106.17 38 11434391.95 3 2 288 22 760 0.01426 400.00 304106.17 38 11434391.95 2 2 363 22 760 0.01877 400.00 304106.17 113 34303175.85 1 6 438 22 2281 0.02328 400.00 912318.51 188 171515879.24 total 2,005,615 221,441,809 Tabel 21 Tabel analisis untuk c = 100 mm Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -903125.00 208 -187398437.50 6 6 62 22 2281 -0.00114 -228.00 -520021.55 188 -97764051.17 5 2 137 22 760 0.00112 223.20 169691.24 113 19141172.12 4 2 212 22 760 0.00337 400.00 304106.17 38 11434391.95 3 2 288 22 760 0.00563 400.00 304106.17 38 11434391.95 2 2 363 22 760 0.00788 400.00 304106.17 113 34303175.85 1 6 438 22 2281 0.01014 400.00 912318.51 188 171515879.24 total 571,182 37,333,478 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  50. 50. Perancangan Struktur Beton Page 50 of 68 Tabel 22 Tabel analisis untuk c = 150 mmTabel analisis untuk Cb= 150.00 mm Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -1354687.50 186 -252310546.88 6 6 62 22 2281 -0.00176 -352.00 -802840.29 188 -150933973.73 5 2 137 22 760 -0.00026 -51.20 -38925.59 113 -4390806.51 4 2 212 22 760 0.00125 249.60 189762.25 38 7135060.58 3 2 288 22 760 0.00275 400.00 304106.17 38 11434391.95 2 2 363 22 760 0.00426 400.00 304106.17 113 34303175.85 1 6 438 22 2281 0.00576 400.00 912318.51 188 171515879.24 total 486,160 183,246,820 Tabel 23 Tabel analisis untuk c = 200 mmTabel analisis untuk Cb= 200.00 mm Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -1806250.00 165 -298031250.00 6 6 62 22 2281 -0.00207 -378.75 -863851.59 188 -162404098.16 5 2 137 22 760 -0.00094 -188.40 -143234.01 113 -16156795.82 4 2 212 22 760 0.00019 37.20 28281.87 38 1063398.45 3 2 288 22 760 0.00131 262.80 199797.75 38 7512395.51 2 2 363 22 760 0.00244 400.00 304106.17 113 34303175.85 1 6 438 22 2281 0.00357 400.00 912318.51 188 171515879.24 total 1,368,831 262,197,295 Tabel 24 Tabel analisis untuk c = 250 mmTabel analisis untuk Cb= 250.00 mm Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -2257812.50 144 -324560546.88 6 6 62 22 2281 -0.00226 -378.75 -863851.59 188 -162404098.16 5 2 137 22 760 -0.00094 -188.40 -143234.01 113 -16156795.82 4 2 212 22 760 0.00019 37.20 28281.87 38 1063398.45 3 2 288 22 760 0.00131 262.80 199797.75 38 7512395.51 2 2 363 22 760 0.00244 400.00 304106.17 113 34303175.85 1 6 438 22 2281 0.00357 400.00 912318.51 188 171515879.24 total 1,820,394 288,726,592 Tabel 25 Tabel analisis untuk c = 300 mm Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -2709375.00 123 -331898437.50 6 6 62 22 2281 -0.00238 -378.75 -863851.59 188 -162404098.16 5 2 137 22 760 -0.00163 -325.60 -247542.42 113 -27922785.14 4 2 212 22 760 -0.00088 -175.20 -133198.50 38 -5008263.67 3 2 288 22 760 -0.00012 -24.80 -18854.58 38 -708932.30 2 2 363 22 760 0.00063 125.60 95489.34 113 10771197.22 1 6 438 22 2281 0.00138 276.00 629499.77 188 118345956.68 total 3,247,833 398,825,363 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  51. 51. Perancangan Struktur Beton Page 51 of 68 Tabel 26 Tabel analisis untuk c = 350 mmTabel analisis untuk Cb= 350.00 mm Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -3160937.50 101 -320044921.88 6 6 62 22 2281 -0.00247 -378.75 -863851.59 188 -162404098.16 5 2 137 22 760 -0.00182 -364.80 -277344.83 113 -31284496.37 4 2 212 22 760 -0.00118 -235.89 -179335.75 38 -6743024.28 3 2 288 22 760 -0.00053 -106.97 -81326.68 38 -3057883.10 2 2 363 22 760 0.00011 21.94 16682.40 113 1881774.22 1 6 438 22 2281 0.00075 150.86 344074.41 188 64685988.74 total 4,202,040 456,966,661 Tabel 27 Tabel analisis untuk c = 400 mmTabel analisis untuk Cb= 400.00 mm Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -3612500.00 80 -289000000.00 6 6 62 22 2281 -0.00254 -378.75 -863851.59 188 -162404098.16 5 2 137 22 760 -0.00197 -394.20 -299696.63 113 -33805779.80 4 2 212 22 760 -0.00141 -281.40 -213938.69 38 -8044094.74 3 2 288 22 760 -0.00084 -168.60 -128180.75 38 -4819596.21 2 2 363 22 760 -0.00028 -55.80 -42422.81 113 -4785293.03 1 6 438 22 2281 0.00029 57.00 130005.39 188 24441012.79 total 5,030,585 478,417,849 Tabel 28 Tabel analisis untuk c = 450 mmTabel analisis untuk Cb= 450.00 mm Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -4064062.50 59 -238763671.88 6 6 62 22 2281 -0.00259 -378.75 -863851.59 188 -162404098.16 5 2 137 22 760 -0.00209 -378.75 -287950.53 113 -32480819.63 4 2 212 22 760 -0.00158 -316.80 -240852.09 38 -9056038.42 3 2 288 22 760 -0.00108 -216.53 -164622.81 38 -6189817.51 2 2 363 22 760 -0.00058 -116.27 -88393.53 113 -9970789.78 1 6 438 22 2281 -0.00008 -16.00 -36492.74 188 -6860635.17 total 5,746,226 465,725,871 Tabel 29 Tabel analisis untuk c = 500 mm Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -4515625.00 38 -169335937.50 6 6 62 22 2281 -0.00263 -378.75 -863851.59 188 -162404098.16 5 2 137 22 760 -0.00218 -378.75 -287950.53 113 -32480819.63 4 2 212 22 760 -0.00173 -345.12 -262382.80 38 -9865593.37 3 2 288 22 760 -0.00127 -254.88 -193776.45 38 -7285994.55 2 2 363 22 760 -0.00082 -164.64 -125170.10 113 -14119187.18 1 6 438 22 2281 -0.00037 -74.40 -169691.24 188 -31901953.54 total 6,418,448 427,393,584 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  52. 52. Perancangan Struktur Beton Page 52 of 68 4. Mencarai nilai Mn0 (kapasitas lentur murni) Dengan bantuan software excel, maka diperoleh C = 127.04 mm. Kemudian ditabelkan sebagai berikut : Tabel 30 Tabel analisis untuk kapasitas lentur murni Lapis n x D As ε Tegangan gaya Internal Lengan ke o Momen internal, Mn (mm) (mm) (mm2) (f),Mpa (N) (mm) (N.mm) beton -21.25 -1147356.87 196 -224889675.27 6 6 62 22 2281 -0.00154 -307.19 -700628.00 188 -131718063.63 5 2 137 22 760 0.00024 47.97 36469.71 113 4113783.38 4 2 212 22 760 0.00202 400.00 304106.17 38 11434391.95 3 2 288 22 760 0.00379 400.00 304106.17 38 11434391.95 2 2 363 22 760 0.00557 400.00 304106.17 113 34303175.85 1 6 438 22 2281 0.00734 400.00 912318.51 188 171515879.24 total 13,122 123,806,117 5. Membuat diagram interaksi 0.00 1,000.00 2,000.00 3,000.00 4,000.00 5,000.00 6,000.00 7,000.00 8,000.00 9,000.00 0.00 100.00 200.00 300.00 400.00 500.00 600.00 Pn(kN) Mn (kNm) Diagram Interaksi Gambar 37 Diagram interaksi kolom Kesimpulan: Berdasarkan gambar diagram interaksi, makadapat diketahui kekuatan kolom ukuran 500x500 mm dengan tulangan 20D22 tersebut. Dan hasilnya lebih besar dari gaya-gaya yang bekerja yaitu Pu max = 2,755.87 kN dan Mu max = 347,13 kNm, sehingga kolom aman. www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  53. 53. Perancangan Struktur Beton Page 53 of 68 4.4.4 Perencanaan geser Kuat geser maksimum = 79.85 kN a. Kuat geser yang disumbang kan oleh beton ' 1 14 6 cu c w g fN V b d A     = +      2755,87 25 1 500 438 14 500 500 6 cV    = + ×   × ×   182,64 kNcV = b. Kuat geser yang disumbangkan oleh tulangan geser Av = 157.08 (diameter 10 dengan 2 kaki) s = 100 157.08 400 438 275,20 100 v y s A f d V s × × = = = c. Kuat geser kolom ( ) ( )0.75 0.75 182,64 275,20 343,38 kNn c sV V Vφ = + = + = > Vu OK Kesimpulan : Kolom yang digunakan adalah dimensi 500 x 500 mm dengan tulangan pokok 20D22 dan tulangan sengkang Ø10-100 mm. www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  54. 54. Perancangan Struktur Beton Page 54 of 68 4.5 Perencanaan Tangga 4.5.1 Pemodelan tangga Tangga dimodelkan secara 3 dimensi, tumpuan-tumpuan tangga dianggap sendi, sehingga tidak menimbulkan momen punter pada balok pendukungnya. seperti gambar berikut: Gambar 38 Pemodelan tangga 3 dimensi 4.5.2 Dimensi & volume tangga o Dimensi anak tangga Uptrede (langkah naik) = 17 cm Antrede (langkah datar) = 30 cm o Volume anak tangga = jumlah anak tangga x dimensi = 36 x (0.17 x 0.30) = 1.8360 m3 o Volume pelat tangga Pelat 1 = p x l x t = 2 2 3 4,00 +2,04 ×2,00×0,15=1,3471m Pelat 2 & 3 = p x l x t = 2 2 3 2 4,00 +2,04 ×2,00×0,15=2,6941m× Pelat 4 = p x l x t = 2 x 2 x 0.17 = 0,68 m3 o Total volume beton tangga = 6.5572 m3 o Volume spesi dan keramik = luas tangga x (tebal spesi + keramik) = (36 (0.17 x 2 + 0.30 x 2) + (2 x 2)) x 0.03 = 1,1352 m3 4.5.3 Pembebanan o Beban mati 1 2 4 3 www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  55. 55. Perancangan Struktur Beton Page 55 of 68 - Beton bertulang = 6.5572 m3 x 24 kN/m3 = 157.373 kN - Beton polos = 1.1352 m3 x 2.1 kN/m3 = 23.839 kN + = 181.212 kN o Beban tangga/m2 - Luas total tangga = 30.94 m2 - Beban/m2 akibat beban mati = 181.21 / 30.94 = 5.8569 kN/m2 o Beban/meter akibat beban hidup = 3.00 kN/m2 o Beban terfaktor = 1.2 DL + 1.6 LL = 1.2 (5.8569) + 1.6 (3.00) = 11.8283 kN/m2 4.5.4 Output gaya-gaya dalam Berdasarkan pemodelan dan analisis yang dilakukan dengan program software ETABS maka diperoleh output sebagai berikut : Tabel 31 Output ETABS untuk tangga Load Loc P V2 V3 T M2 M3 COMB1 0.00 -11.79 -24.22 0.00 0.00 0.00 -26.43 COMB1 2.25 -3.42 -7.82 0.00 0.00 0.00 9.54 COMB1 4.49 4.94 8.58 0.00 0.00 0.00 8.70 COMB2 0.00 -17.00 -34.94 0.00 0.00 0.00 -38.12 COMB2 2.25 -4.94 -11.28 0.00 0.00 0.00 13.77 COMB2 4.49 7.13 12.37 0.00 0.00 0.00 12.54 COMB1 0.00 48.09 -11.85 -0.25 -2.17 -1.51 -6.75 COMB1 1.81 56.45 0.45 -0.25 -2.17 -1.06 3.58 COMB1 3.63 64.81 12.75 -0.25 -2.17 -0.60 -8.40 COMB2 0.00 69.37 -17.09 -0.36 -3.13 -2.18 -9.74 COMB2 1.81 81.43 0.65 -0.36 -3.13 -1.52 5.17 COMB2 3.63 93.49 18.40 -0.36 -3.13 -0.86 -12.11 COMB1 0.00 48.09 -11.85 0.25 2.17 1.51 -6.75 COMB1 1.81 56.45 0.45 0.25 2.17 1.06 3.58 COMB1 3.63 64.81 12.75 0.25 2.17 0.60 -8.40 COMB2 0.00 69.37 -17.09 0.36 3.13 2.18 -9.74 COMB2 1.81 81.43 0.65 0.36 3.13 1.52 5.17 COMB2 3.63 93.49 18.40 0.36 3.13 0.86 -12.11 4.5.5 Penulangan momen tangga o fc’ = 25 MPa o fy = 300 MPa o ø tulangan = ø 10 mm o ø tulangan geser = ø 10 mm www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  56. 56. Perancangan Struktur Beton Page 56 of 68 o selimut beton = 20 mm o d = 150 – 20 – 10/2 = 125 mm Mu maksimum = 38.11 KN.m Mu = 38.11 kNm, Mn = Mu/0.8 = 47.63 kNm . . . 1 1,7 ' As fy Mn As fy d bdfc   = −    6 .400 (47.63 10 ) .400.125 1 1,7 1000 125 25 As x As x x x   = −    6 2 (47.63 10 ) 50,000 3.7647x As As= − Sehingga diperoleh As = 1032.94 mm2 Cek Daktilitas Ρ min = 0.0018 31032.94 8.30 10 1000 125 As x b d ρ − = = = × × 1 max 0.85 ' 600 0.75 600 fc fy fy β ρ  × × = ×  +  max 0.85 25 0.75 600 0.75 400 600 400 ρ × ×  = ×  +  karena memenuhi syarat daktilitas, ρmin < ρ < ρmax, maka As dapat digunakan. Banyak Tulangan: max 2 2 1032.94 7.78 8 13( . ) 1 1 10 4 4tulangan As tul tarikρ φ π φ π = = = ≈ × × × × As’ = As = 8Ø13 tulangan tekan Maka digunakan jarak = lebar balok / jumlah tulangan = 1000 / 8 = 125 mm Tulangan tangga menggunakan Ø13-125 mm www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  57. 57. Perancangan Struktur Beton Page 57 of 68 4.5.6 Perhitungan Tulangan Geser Vu = 34.94 KN 2 2 21 12 2 10 157.08 4 4 Av v mmπ φ π= × × × = × × × = 1 1' 25 1000 125 104.16 6 6 Vc fc bw d kN= × × × = × × × = 0.75 104.16 78.12Vc kN kNφ = × = 78.121 39.06 2 2 Vc kNφ = = Karena 1, , 2 karena Vc Vu makatidak diperlukantulangangeserφ > Tulangan susut tangga = 20% tulangan pokok = 0.20 x 8 = 1.6 ≈ 2 buah Digunakan tulangan susut Ø13 – 250 mm www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  58. 58. Perancangan Struktur Beton Page 58 of 68 4.6 Perencanaan Pondasi 4.6.1 Data perencanaan Kuat tekan beton (f’c) = 25 mPa Kuat tarik baja tulangan (fy) = 400 mPa Daya dukung tanah (σ) = 60 kN/m2 Berat jenis tanah(γ) = 18 kN/m2 4.6.2 Dimensi pondasi Pondasi yang digunakan adalah pondasi rakit (mat foundation). Kedalaman pondasi (z) = 1,50 m Tegangan efektif tanah (σ’) = σ – z γ = 40,20 kN/m2 Gambar 39 Layout pondasi rakit (mat foundation) 4.6.2.1 Mencari tekanan tanah, lokasi resultan reaksi tanah dan eksentrisitas dalam arah x dan y. PDL = 25133.71 kN, PLL = 7080.41 kN Service Load = PDL + PLL = 32,214.12 kN Momen inersia pondasi rakit terhadap arah x dan y adalah: www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  59. 59. Perancangan Struktur Beton Page 59 of 68 Tabel 32 Analisis geometri bidang # Analisis geometri bidang # LX LY A X Y SMY SMX Ixo Iyo IX IY 1.00 42.00 20.00 840.00 21.00 10.00 17,640.00 8,400.00 28,000.00 123,480.00 28,249.92 123,480.00 2.00 10.00 4.00 40.00 21.00 22.00 840.00 880.00 53.33 333.33 5,301.60 333.33 Σ 880.00 18,480.00 9,280.00 33,551.52 123,813.33 Eksentrisitas terhadap sumbu x: 0 0 32,214.12 x 526,322 x = 21,29m X = SMY/A =18,480/880 = 21m ex = 21,29 - 21,00 = 0,29 m My∑ = = → ∴ Eksentrisitas terhadap sumbu y: 0 0 32,214.12 x 203,105 x =9,98m X = SMX/A =9,280/880 = 10,55m ey = 10,55 - 9,98 = 0,57 m Mx∑ = = → ∴ 4.6.2.2 Langkah 2: Mencari tekanan reaksi tanah Mx = Re y = 32,214.12 (0,57) = 18,362.05 kNm My = Re x = 32,214.12 (0.29) = 9,342.09 kNm Tabel 33 Nilai beban merata pada pelat pondasi www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  60. 60. Perancangan Struktur Beton Page 60 of 68 # Output dari software Etabs V MX MY X (m) Y(m) (kN) (kN) (kN) 1.00 1.00 1.00 1.00 708.55 15.56 28.17 2.00 9.00 1.00 2.00 1,237.62 26.39 0.51 3.00 17.00 1.00 3.00 1,267.96 29.04 0.50 4.00 25.00 1.00 4.00 1,258.81 29.06 -0.16 5.00 33.00 1.00 5.00 1,279.10 28.19 2.83 6.00 41.00 1.00 6.00 756.19 17.34 -30.93 7.00 1.00 7.00 7.00 1,201.15 -1.37 46.32 8.00 9.00 7.00 8.00 1,987.47 -2.32 -0.46 9.00 17.00 7.00 9.00 1,759.90 -13.59 -13.91 10.00 25.00 7.00 10.00 1,754.78 -13.48 14.55 11.00 33.00 7.00 11.00 2,047.01 0.16 0.26 12.00 41.00 7.00 12.00 1,195.01 -2.34 -45.36 13.00 1.00 13.00 13.00 1,116.63 -0.35 40.95 14.00 9.00 13.00 14.00 1,748.25 -1.69 -3.53 15.00 17.00 13.00 15.00 1,527.46 9.99 -8.19 16.00 25.00 13.00 16.00 1,551.65 9.93 8.88 17.00 33.00 13.00 17.00 2,005.71 0.86 8.34 18.00 41.00 13.00 18.00 1,198.47 1.19 -46.18 19.00 1.00 19.00 19.00 708.78 -16.17 28.16 20.00 9.00 19.00 20.00 1,167.58 -23.87 -3.24 21.00 17.00 19.00 21.00 1,257.81 -18.36 11.09 22.00 25.00 19.00 22.00 1,248.82 -18.37 -10.68 23.00 33.00 19.00 23.00 1,297.55 -30.81 6.72 24.00 41.00 19.00 24.00 760.74 -18.38 -31.68 25.00 17.00 23.00 25.00 85.63 -7.74 25.74 26.00 25.00 23.00 26.00 85.49 -7.69 -25.22 jarak titik terhadap titik acuanPoint Point . . 32,214.12 9,342( ) 18,362( ) 880.00 123,813 33,551 y x M x M yR x y q A Iy Ix = ± ± = ± ± 36,61 0.08 0.55q x y= ± ± www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  61. 61. Perancangan Struktur Beton Page 61 of 68 4.6.2.3 Menggunakan persamaan untuk q, menyiapkan tabel nilai pada titik-titik 1 s/d 26 Tabel 34 Tekanan pada pelat pondasi # Tekanan pada titik NOMOR NOMOR Q TITIK 0.08x -0.55x TITIK MY MX (KN/M2) 1.00 0.08 -0.55 1.00 708.55 708.55 -36.60 2.00 0.68 -0.55 2.00 11,138.58 1,237.62 -36.65 3.00 1.29 -0.55 3.00 21,555.32 1,267.96 -36.81 4.00 1.89 -0.55 4.00 31,470.25 1,258.81 -37.07 5.00 2.50 -0.55 5.00 42,210.30 1,279.10 -37.44 6.00 3.10 -0.55 6.00 31,003.79 756.19 -37.37 7.00 0.08 -3.83 7.00 1,201.15 8,408.05 -35.65 8.00 0.68 -3.83 8.00 17,887.23 13,912.29 -35.12 9.00 1.29 -3.83 9.00 29,918.30 12,319.30 -35.51 10.00 1.89 -3.83 10.00 43,869.50 12,283.46 -35.88 11.00 2.50 -3.83 11.00 67,551.33 14,329.07 -36.34 12.00 3.10 -3.83 12.00 48,995.41 8,365.07 -36.88 13.00 0.08 -7.11 13.00 1,116.63 14,516.19 -33.53 14.00 0.68 -7.11 14.00 15,734.25 22,727.25 -31.88 15.00 1.29 -7.11 15.00 25,966.82 19,856.98 -32.67 16.00 1.89 -7.11 16.00 38,791.25 20,171.45 -32.93 17.00 2.50 -7.11 17.00 66,188.43 26,074.23 -32.42 18.00 3.10 -7.11 18.00 49,137.27 15,580.11 -34.54 19.00 0.08 -10.39 19.00 708.78 13,466.82 -32.44 20.00 0.68 -10.39 20.00 10,508.22 22,184.02 -29.80 21.00 1.29 -10.39 21.00 21,382.77 23,898.39 -29.43 22.00 1.89 -10.39 22.00 31,220.50 23,727.58 -29.74 23.00 2.50 -10.39 23.00 42,819.15 24,653.45 -29.84 24.00 3.10 -10.39 24.00 31,190.34 14,454.06 -32.91 25.00 1.29 -12.57 25.00 1,455.71 1,969.49 -35.88 26.00 1.89 -12.57 26.00 2,137.25 1,966.27 -35.90 Σ 685,867.08 321,371.76 jarak terhadap resultan beban MOMEN TERPAKAI Dari perhitungan di atas, diperoleh Q maksimum = 37,44 kN/m2 yaitu lebih besar dari tegangan efektif tanah = 40,20 kN/m2 , oleh karena itu pondasi aman. 4.6.2.4 Menentukan tinggi efektif (d) dan tebal (H) pondasi • Ln = 8000 – 500 = 7500 mm 7500ln 250 30 30 h mm= = = Tebal minimum pondasi telapak adalah 300 mm, oelh karena itu, coba h = 400 mm Selimut beton = 75 mm d =400 – 75 = 325 mm • Qu maks = 37,44 kN/m2 • Kekuatan geser penampang pondasi www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  62. 62. Perancangan Struktur Beton Page 62 of 68 Gambar 40 Area geser pada pelat pondasi - Cek geser satu arah (one way shear) Vu = 37,44 x (8/2 - c1/2 - d) x 6 = 37,44 x (4 - 0,5/2 - 0,325) x 6 = 769,40 kN 0,75 1/6 ' . 0,75 1/6 25 6000 325 1218,75Vc x fc bwd x x x kNφ = = = ϕVc > Vu (OK) - Cek geser dua arah (two way shear) Keliling kritis keruntuhan geser b0 = 2 x (c1 + d + c2 + d) = 2 x (0.5 + 0.325 + 0.5 +0.325) b0 = 3,30 m Rasio sisi panjang/sisi pendek kolom (βc=c1/c2) = 0.5/0.5 = 1 s α untuk kolom tengah = 40 Kuat geser dua arah diambil tidak boleh lebih besar dari : '2 01 1 6 f b d cV c c β    = +     2 25 3300 325 1 1 1 6 V c × ×  = +    = 2681,25 kN ' 02 2 12 0 d f b d s cV c b α   = +     40 325 25 3300 325 2 2 3300 12 V c × × ×  = +    = 2654,17 kN 1/ 3 ' 3 0 V f cb d c = 1/ 3 25 3300 325 3 V c = × × = 1787,50 kN www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  63. 63. Perancangan Struktur Beton Page 63 of 68 dipakai Vc min = 1787,50 kN ϕVc = 0,75 x 1787,50 = 1340,63 kN > Vu (OK) 4.6.2.5 Menentukan tekanan tanah rata-rata pada pondasi • Total momen terfaktor per span 1/8 . 2.ln 1/8(37,44) 6 7,5 210,60Mo xqul x x kNm= = = Tabel 35 Design koefisien momen Mo = 210.60 kNm End span ; Eksterior negatif 0.26 54.76 0.26 54.76 0.00 0.00 Eksterior positif 0.52 109.51 0.31 65.29 0.21 44.23 Interior negatif 0.70 147.42 0.53 111.62 0.17 35.80 Interior span ; Positif 0.35 73.71 0.21 44.23 0.14 29.48 Negatif 0.65 136.89 0.49 103.19 0.16 33.70 Total moment Column strip Middle Strip 4.6.2.6 Penulangan pelat pondasi bρ = , 1 0.85 600 600 c y f fy f β + bρ = 0.85 25 600 0.85 400 600 400 × + bρ = 0.02710 0.75 bρ = 0.02030 'ρ = 0.00430 max 0.75 '( '/ )b fs fyρ ρ ρ= + ρ max = 0,02462 ρ min = 0,0018 As min = ρ min b d = 0,0018 x 1000 x 325 = 585 mm2 S max (jarak antar tulangan maksimum) = 2 h = 2 x 400 = 800 mm • Interior span in column strip www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  64. 64. Perancangan Struktur Beton Page 64 of 68 - Penulangan momen positif Mu = 44.23 kNm, Mn = Mu/0.8 = 55.28 kNm . . . 1 1,7 ' As fy Mn As fy d bdfc   = −    6 .400 (55,28 10 ) .400.325 1 1,7 1000 325 25 As x As x x x   = −    6 2 (55,28 10 ) 130,000 3.7647x As As= − Sehingga diperoleh As = 430,60 mm2 (Gunakan As minimum = 585 mm2 ) Gunakan tulangan Ø13 mm, As = 132.73 mm2 132.73 1000 226,88 200 585 x S mm= = ≈ Ø13 – 200 mm - Penulangan momen negatif Mu = 103.19 kNm, Mn = Mu/0.8 = 128.98 kNm . . . 1 1,7 ' As fy Mn As fy d bdfc   = −    6 .400 (128.98 10 ) .400.325 1 1,7 1000 325 25 As x As x x x   = −    6 2 (128.98 10 ) 130,000 3.7647x As As= − Sehingga diperoleh As = 1022.43 mm2 Gunakan tulangan Ø13 mm, As = 132.73 mm2 132.73 1000 129,81 125 1022,43 x S mm= = ≈ Ø13 – 125 mm • Interior span in middle strip - Penulangan momen positif Mu = 29.48 kNm, Mn = Mu/0.8 = 36.85 kNm . . . 1 1,7 ' As fy Mn As fy d bdfc   = −    6 .400 (36,85 10 ) .400.325 1 1,7 1000 325 25 As x As x x x   = −    www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  65. 65. Perancangan Struktur Beton Page 65 of 68 6 2 (36,85 10 ) 130,000 3.7647x As As= − Sehingga diperoleh As = 285,83 mm2 (Gunakan As minimum = 585 mm2 ) Gunakan tulangan Ø13 mm, As = 132.73 mm2 132.73 1000 226,88 200 585 x S mm= = ≈ Ø13 – 200 mm - Penulangan momen negatif Mu = 33.70 kNm, Mn = Mu/0.8 = 42,13 kNm . . . 1 1,7 ' As fy Mn As fy d bdfc   = −    6 .400 (42.13 10 ) .400.325 1 1,7 1000 325 25 As x As x x x   = −    6 2 (42.13 10 ) 130,000 3.7647x As As= − Sehingga diperoleh As = 327,17 mm2 (Gunakan As minimum = 585 mm2 ) Gunakan tulangan Ø13 mm, As = 132.73 mm2 132.73 1000 226,88 200 585 x S mm= = ≈ Ø13 – 200 mm • End span in column strip - Penulangan momen eksterior positif Mu = 65.29 kNm, Mn = Mu/0.8 = 81,62 kNm . . . 1 1,7 ' As fy Mn As fy d bdfc   = −    6 .400 (81.62 10 ) .400.325 1 1,7 1000 325 25 As x As x x x   = −    6 2 (81,62 10 ) 130,000 3.7647x As As= − Sehingga diperoleh As = 639,70 mm2 Gunakan tulangan Ø13 mm, As = 132.73 mm2 132.73 1000 207,48 200 639,70 x S mm= = ≈ Ø13 – 200 mm www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  66. 66. Perancangan Struktur Beton Page 66 of 68 - Penulangan momen eksterior negatif Mu = 54,76 kNm, Mn = Mu/0.8 = 68,45 kNm . . . 1 1,7 ' As fy Mn As fy d bdfc   = −    6 .400 (68,45 10 ) .400.325 1 1,7 1000 325 25 As x As x x x   = −    6 2 (68,45 10 ) 130,000 3.7647x As As= − Sehingga diperoleh As = 534,82 mm2 (Gunakan As minimum = 585 mm2 ) Gunakan tulangan Ø13 mm, As = 132.73 mm2 132.73 1000 226,88 200 585 x S mm= = ≈ Ø13 – 200 mm - Penulangan momen interior negatif Mu = 111,62 kNm, Mn = Mu/0.8 = 139,52 kNm . . . 1 1,7 ' As fy Mn As fy d bdfc   = −    6 .400 (139,52 10 ) .400.325 1 1,7 1000 325 25 As x As x x x   = −    6 2 (139,52 10 ) 130,000 3.7647x As As= − Sehingga diperoleh As = 1108,84 mm2 Gunakan tulangan Ø13 mm, As = 132.73 mm2 132.73 1000 119.70 100 1108,84 x S mm= = ≈ Ø13 – 100 mm • End span in middle strip - Penulangan momen eksterior positif Mu = 44,23 kNm, Mn = Mu/0.8 = 55,29 kNm . . . 1 1,7 ' As fy Mn As fy d bdfc   = −    www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  67. 67. Perancangan Struktur Beton Page 67 of 68 6 .400 (55,29 10 ) .400.325 1 1,7 1000 325 25 As x As x x x   = −    6 2 (55,29 10 ) 130,000 3.7647x As As= − Sehingga diperoleh As = 430,70 mm2 (Gunakan As minimum = 585 mm2 ) Gunakan tulangan Ø13 mm, As = 132.73 mm2 132.73 1000 226,88 200 585 x S mm= = ≈ Ø13 – 200 mm - Penulangan momen interior negatif Mu = 35,80 kNm, Mn = Mu/0.8 = 44,75 kNm . . . 1 1,7 ' As fy Mn As fy d bdfc   = −    6 .400 (44,75 10 ) .400.325 1 1,7 1000 325 25 As x As x x x   = −    6 2 (44,75 10 ) 130,000 3.7647x As As= − Sehingga diperoleh As = 347,73 mm2 (Gunakan As minimum = 585 mm2 ) Gunakan tulangan Ø13 mm, As = 132.73 mm2 132.73 1000 226,88 200 585 x S mm= = ≈ Ø13 – 200 mm Tabel 36 Resume penulangan pelat pondasi Column strip Middle Strip End span ; Eksterior negatif Ø13-200 mm - Eksterior positif Ø13-200 mm Ø13-200 mm Interior negatif Ø13-100 mm Ø13-200 mm Interior span ; Positif Ø13-200 mm Ø13-200 mm Negatif Ø13-125 mm Ø13-200 mm www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  68. 68. Perancangan Struktur Beton Page 68 of 68 4.7 Tentang Penulis Afret Nobel adalah alumni Diploma Teknik Sipil Universitas Gadjah Mada Angkatan 2005 dan Alumni Ekstensi Teknik Sipil Universitas Indonesia Angkatan 2009. Papanya seorang petani dan Mamanya pedagang. www.LaporanTeknikSipil.wordpress.com Anda diperbolehkan untuk mengirimkan lewat pos dan email dan memberikan buku elektronik ini kepada siapa saja yang Anda inginkan, selama Anda tidak mengubah, atau mengedit isinya dan format digitalnya. Sebenarnya, kami akan sangat senang bila Anda membuat duplikat buku elektronik ini sebanyak- banyaknya. Tetapi bagaimanapun, hak untuk membuat buku dalam bentuk cetak atas naskah ini untuk dijual adalah tindakan yang tidak dibenarkan. Kiranya buku ini masih jauh dari kesempurnaan, oleh karena itu, saran dan kritik yang membangun sangat kami harapkan. www.LaporanTeknikSipil.wordpress.com Twitter: @AfretNobel | facebook: http://www.facebook.com/afretnobel
  • BayuNugroho57

    Apr. 8, 2021
  • akhmadilham1

    Nov. 3, 2020
  • AhsanHidayat2

    Oct. 19, 2020
  • HeriDamanik1

    Oct. 16, 2020
  • FatahAryatama

    Oct. 4, 2020
  • gunowarsito

    Jul. 11, 2020
  • HerlinaArifin

    Apr. 26, 2020
  • ShofiaHamnie

    Apr. 17, 2020
  • Kodokbasah

    Jan. 28, 2020
  • ArKurniawan2

    Jan. 13, 2020
  • suparmanruslan

    Jan. 7, 2020
  • GhinaCs

    Nov. 26, 2019
  • irjenChaniago

    Jul. 5, 2019
  • SyinthiaJayanthi

    Mar. 14, 2019
  • sujadmitaamrita

    Mar. 11, 2019
  • jesblesshosea

    Dec. 21, 2018
  • SilaDiya

    Nov. 10, 2018
  • sudirmanpastibisa

    Oct. 1, 2018
  • Yaturo

    Sep. 16, 2018
  • AdamSigitPramono

    Sep. 9, 2018

Perancangan struktur beton perpustakaan 4 lantai adalah laporan mengenai perencanaan struktur bangunan bertingkat dengan struktur beton bertulang sebagai struktur utama.

Vistos

Vistos totais

28.730

No Slideshare

0

De incorporações

0

Número de incorporações

7

Ações

Baixados

1.346

Compartilhados

0

Comentários

0

Curtir

40

×