SlideShare uma empresa Scribd logo
1 de 45
1V3e-sp
¿Es posible aumentar el compromiso de Chile
con políticas integradas para el clima y un aire
limpio?
Luis Abdón Cifuentes
Encuentro ¿Es posible aumentar el compromiso de Chile con políticas integradas para el clima y un aire limpio?
Organizado por …
Martes 28 de Mayo 2019
Campus Lo Contador
3V3e-sp
¿Es posible aumentar el compromiso de Chile con políticas
integradas para el clima y un aire limpio?
La respuesta es SI! Claro que si!
 Es más: es necesario aumentar el compromiso de Chile. Con o sin integración de políticas.
 Pero integrando las políticas podemos contribuir al bien global, y además al bienestar local.
 Veamos cómo y por qué!
4V3e-sp
¿Por qué?
 Porque las emisiones de gases efecto invernadero y contaminantes locales son “dos caras de una misma
moneda”
 Entonces, ¿Por qué tratarlos de forma separada?
5V3e-sp
La meta de de Chile es calificada de “altamente insuficiente” por el Climate Action Tracker
 https://climateactiontracker.org/countries/chile/ (recuperado el 27 Mayo 2019)
Commitments with this rating fall outside the fair share range and are not at all consistent with holding warming to below 2°C let alone with the Paris
Agreementʼs stronger 1.5°C limit. If all government targets were in this range, warming would reach between 3°C and 4°C.
COUNTRY SUMMARY PLEDGES AND TARGETS FAIR SHARE CURRENT POLICY PROJECTIONS ASSUMPTIONS SOURCES
Country summary
1990 2000 2010 2020 2030 2040 2050
−50
0
50
100
150
Historical emissions, excl forestry
Historical emissions/removals from forestry
Current policy projections
Planned policy: 2050 Energy Strategy
2020 pledge
Reference for 2020 pledge
NDC (unconditional)
NDC (conditional)
Years
EMISSIONS[MtCO₂e/a]
Stacked Bars(2025, 159)
Rating systemAll countries
6V3e-sp• https://unfccc.int/news/the-paris-agreement-is-a-health-agreement-who
7V3e-sp
Public Health Ancillary Benefits Framework
7
Local/Regional
Pollutant
Emissions
Ambient
Concentrations
reductions
Short/medium
term
benefits
Activities / Energy Use
GHG
Emissions
GHG
Reduction
Targets
Global warming
potential
reduction
Long-term
benefits
Policy
options
Technology
options
AQ
Standards
8V3e-sp
Cifuentes, LA, Air Pollution in Santiago, Chile: Health Effects and Policy
COP5 Side Event: The Public Health Opportunities and Hazards of Global Warming Workshop, Bonn,
Germany. October 30, 1999 B
9V3e-sp
25
Local/Regional
Pollutant
Emissions
Ambient
Concentrations
Short-term
benefits
Activities / Energy Use
GHG
Emissions
GHG
Reduction
Targets
Global warming
potential
reduction
Long-term
benefits
Policy
options
Technology
options
AQ
Standards
Relative Size of Ancillary Benefits
$/tonC
$/(ug/m3)
10V3e-sp
Cobenefits Conceptual framework
 Figure 8.8: Conceptual framework for analyzing ancillary and co-benefits and costs.
 IPCC Third Assessment Report. WGIII, Chapter 8: Global, Regional, and National Costs and Ancillary Benefits of Mitigation
11V3e-sp
Una gran cantidad de reportes lo confirman
12V3e-sp
¿Por qué es deseable integrar las políticas climáticas con
las políticas del aire limpio?
Esto es una larga historia:
 1998: Integrated Co-Control Air Pollution Program (ICAP) COP5
 2001: IPCC Third Assessment Report (TAR) : Cobenefits Framework
 2011: UNEP Integrated Assessment
 2019: Carbon Pricing Leadership Coalition
13V3e-sp
Cobeneficios: Contaminación del aire y cambio climático
CAMBIO CLIMÁTICO
Contaminación del aire
Gases de efecto
invernadero
CH4
N2O
PFC
SF6
HFC
Fuente: Adaptado de Sophie Punte, Clean
Air Initiative for Asian Cities y Leonora
Rojas-Bracho, INE, Mexico.
PM
O3
COSO2
NOx
Pb
VOC
EMISIONES
CO2
Contaminantes
locales y
regionales
BC
Cambio Climático
14V3e-sp
SLCP - CCVC
 https://www.wri.org/blog/2018/10/3-charts-explain-one-most-overlooked-opportunities-address-climate-change-and-poverty
Forzamiento Radiativo en 2011 relativo a 1750
Fuente: AR5, (IPCC, 2014)
15
16V3e-sp
¿Por qué es importante controlar los contaminantes climáticos de vida corta?
 Shindell, D., Kuylenstierna, J., Vignati, E., Dingenen, R. Van, Amann, M., Klimont, Z., … Williams, M. (2012). Simultaneously Mitigating Near-Term Climate Change
and Improving Human Health. Science, 183. https://doi.org/10.1126/science.1210026 (Figura 1)
17V3e-sp
WHO Special Report: Reducing short-lived climate
pollutants a must for health and climate
The World Health Organization’s Special Report on Health and Climate Change released at COP 24
makes seven recommendations to advance climate, health and development.
• “targeted action on short-lived
climate pollutants would help to
save over two million lives each year
and reduce the extent of global
warming by 0.5 °C, by the middle
of the century”
18V3e-sp
En Chile
19V3e-sp
Emisiones BC 2013
Total : 22.604 ton
Fuente: Estudio “Apoyo a la Iniciativa para el Plan de mitigación de los contaminantes climáticos de vida corta
en Chile”, solicitado por la Subsecretaría de Medio Ambiente. GreenlabUC y USM
8% Incendios
Resultado en base a la mediana
59% CPR Leña + Papel y celulosa
23% Móvil Combustión de
leña en sector
comercial,
público y
residencial
44%
Industrial del
papel y celulosa
15%
Otras industrias
8%
Maquinaria
fuera de ruta
11%
Transporte
terrestre en
ruta
7%
Otros transporte
5%
Otras fuentes
antropógenicas
2%
Quemas e
incedios
forestales
8%
20V3e-sp
 Figure 41. GTP and GWP values for several time horizons for BC climate forcing. Values are shown for the BC direct effect and the total climate forcing. The
calculations use the industrial-era climate forcing values displayed in Figure 35 and an annual BC emission of 8700 Gg yr1. The whiskers represent the
uncertainty range as described in the text.
 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate
system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
21V3e-sp
 El PCG es un indicador basado en propiedades radiativas que se utiliza para estimar el
potencial futuro impacto en el clima de la emisión de diferentes contaminantes atmosféricos
 Se calcula en base al forzamiento radiativo [W/m2] causado por el contaminante en un
determinado horizonte temporal, relativo al forzamiento radiativo causado por el CO2
 Para un contaminante x, su PCG en un horizonte temporal T se calcula como:
 Donde ax es el forzamiento radiativo producto de la emisión del contaminante [W/(m2-kg)] y
[x(t)] corresponde al decaimiento del GEI en el tiempo
 Los horizontes temporales (T) típicamente utilizados son: 20, 100 y 500 años; siendo 100 años
el más común
Métrica para medir Impacto en CC: PCG
𝑃𝐶𝐺 𝑥 = 0
𝑇
𝑎 𝑥 ∗ 𝑥 𝑡 𝑑𝑡
0
𝑇
𝑎 𝐶𝑂2 ∗ 𝐶𝑂2 𝑡 𝑑𝑡
22V3e-sp
[CELLRANGE] [CELLRANGE]
[CELLRANGE] [CELLRANGE]
[CELLRANGE]
[CELLRANGE][CELLRANGE]
[CELLRANGE][CELLRANGE]
[CELLRANGE]
0
50
100
150
200
250
300
PCG100 PCG20
GgCO2e
BC
HFCs
CF4 y SF6
CH4
N2O
CO2
Importancia de los CCVC
Al considerar el BC, el impacto climático aumenta en un 18% [7%; 33%] (PCG100) y en un
50%[18%; 90%] (PCG20) , respecto al inventario GEI
El impacto a 20 años es 1.6x
90% CI are shown
(considering only BC uncertainty)
GEI
CCVC
(*): MMA. (2016). Segundo Informe Bienal de Actualización de Chile sobre Cambio Climático. Se utilizaron las emisiones brutas de CO2,
CH4, HFC N2O, CF4 y SF6 reportadas por el Informe Bienal, con PCG del AR5 para estimar las emisiones en CO2e.
Emisiones GEI resultan en 112.3 Gg CO2e, utilizando PCG del AR5 y emisiones de CH4 y HFCs del inventario de CCVC
112
Gas/SLCP PCG100 PCG20
CO2 86 86
N2O 9 9
CH4 16 47
SF 0 0
HFCs 1 2
BC 20 72
Total 133 216
24V3e-sp
NE: Termoeléctricas
 Reducciones estimadas en el AGIES:
 MP: 14.000 ton/año
 NOx: 53.000 ton/año
 La distribución por tipo de combustible se
estimó a partir de las emisiones de BC del
sector industria (Inventario CCVC 2013)
 Se utiliza la fracción BC de MP, por
disponibilidad de reducción de emisiones
de este contaminante
Referencias:
Geoaire and KAS Ingeniería, ‘Análisis General Del Impacto Económico Y Social de Una Norma de Emisión Para Termoeléctricas’, 2009., pg 192
Fracción BC: En base a EMEP/EEA(2013). Cap. 1.A.1 Energy industries, Tablas: 3-2, 3-4, 3.5, 3-6, 3-7, 3-12
Combustible Fracción BC/MP
Biogás 2,50%
Biomasa 2,55%
Carbón 0,66%
Fuel Oil Nro. 6 3,05%
Gas Natural 2,50%
Petcoke 0,66%
Petróleo Diésel 4,12%
Petróleo IFO-180 3,05%
Propano 2,50%
Fracción BC
Tabla 3-5 Factores de emisión por combustible para generación de energía [ton/ton comb.
Combustible CH4 BC CO NOx COV
Biogás 5,06E-05 4,90E-07 8,60E-04 1,96E-03 5,73E-05
Biomasa 4,39E-04 6,43E-05 1,32E-03 1,19E-03 1,07E-04
Carbón 5,06E-05 2,49E-06 2,55E-04 6,12E-03 2,93E-05
Petróleo 1,32E-04 4,75E-05 6,63E-04 6,24E-03 1,01E-04
Gas Natural 5,06E-05 1,15E-06 2,01E-03 4,58E-03 1,34E-04
Diésel 1,37E-04 1,22E-05 7,39E-04 2,96E-03 3,65E-05
GLP 5,06E-05 1,13E-06 1,97E-03 4,51E-03 1,32E-04
Fuente: (EMEP/EEA, 2016) Tablas: 3-2, 3-4, 3,5, 3-6, 3-7, 3-12 e (IPCC, 2006)
Para estimar las emisiones se debe considerar también las tecnologías de abatimiento para
central. En el análisis general de impacto económico y social para la norma de termoeléctri
presenta un cuadro70 con la tecnología de abatimiento de cada central71, esta informació
actualizada para el año 2013 utilizando las declaraciones al RETC. Luego, a cada tecnología
asignó un porcentaje de abatimiento de acuerdo a distinta bibliografía:
Tabla 3-6 Eficiencia de abatimiento por tecnología para termoeléctricas
Tecnología Contaminante Remoción típica Fuente de información
Precipitador electrostático MP(1)
98% CONAMA, 200972
Filtro de mangas MP(1)
95% CONAMA, 2009
Low Nox NOx 57% EPA ,201373
Inyección agua NOx 45% EPA, 200674
(1): Se utiliza el supuesto de que una tecnología de control de material particulado remueve en la misma prop
el BC presente en él.
Fuente: Elaboración propia en base a las fuentes referenciadas
25V3e-sp
Caso Sector Generación Eléctrica
Análisis Unitario por MWh generado:
 Factor Emisión CO2 : 1 (0.86-1.60) tonCO2/MWh
 Factor emisión MP : 0.2 (0.04-0,9) kgMP/MWh. (BC= 0.66% MP)
Daño por MWh:
 Daño Emisiones MP: 5500 (70-10.000) USD/ton  0.017 (0.000-0.043) USD/MWh
 Daño Emisiones CO2: 5 USD/ton):  4.9 (4.3-8.0) USD/ton
 Razón entre daño por MWH
 GEI/Salud 5,537 (120- 42000)
 GEI: CO2/BC: > 10.000x
 En este caso la principal razón para mitigar las emisiones es la reducción de emisiones de GEI.
 Las emisiones de MP y BC de las centrales a carbón es ínfima.
26V3e-sp
Fracción BC/MP2,5 Leña CPR
Equipo Media
Percentil
10
Percen
til 90
Chimenea/Salamandra 7% 5% 7.%
Doble Cámara 10% 5% 28%
Estufa/Cocina simple 10% 5% 28%
Caldera 16% 5% 41%
27V3e-sp
Caso Sector Leña Residencial
Asumamos que la leña es carbono neutral
 Factor Emisión CO2 = 0
 Factor emisión BC= 7% – 16% MP
Daño por tonelada emitida
 Daño Emisiones MP: depende de la localidad, pero > 10.000
USD/ton
 Daño Emisiones GEI: 5 USD/ton):  350 a 800 USD/tonMP
(GWP BC = 1000)
 En este caso la principal razón para mitigar las emisiones de MP es
la reducción del impacto de MP en la salud, por lo que las
reducciones de BC son un beneficio ancilar.
¿Cuanto se puede ofertar a partir de estas reducciones?
 Emisión total de BC en sector CPR: 10.1 Gg CO2e
 Esto es casi un 8% del inventario actual (PCG 100 años ) y un 16%
con PCG20 años.
Gas/SLCP PCG100 PCG20
CO2 86 86
N2O 9 9
CH4 16 47
SF 0 0
HFCs 1 2
BC 20 72
Total 133 216
28V3e-sp
Conclusiones
 Los CCVC son muy importantes para reducir el aumento de temperatura global en el corto plazo
(pueden reducir hasta 0.6C en el corto plazo)
 Su consideración en el inventario aumenta las emisiones en casi un 20% (PCG100 años) y 33% (PCG20
años). Pero estas emisiones son es más fáciles de reducir que las emisiones de CO2.
 Considerar los CCVC en las medidas de reducción aumenta los beneficios de reducción de GEI, y crea
beneficios cuando no existían (ejemplo, leña carbono neutral)
 Pero la pregunta clave todavía permanece: ¿cuál es la motivación para implementar las medidas?
¿Salud o CC?
 De esto depende cuales beneficios son ancilares y cuales son directos.
 En cualquier caso, considerar ambos efectos es lo correcto.
29V3e-sp
Cobenefits
2
30V3e-sp
Muchas gracias
3
31V3e-sp
Cobenefits
3
32V3e-sp 3
33V3e-sp 3
34V3e-sp 3
35V3e-sp
 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate
system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
Figure 42. Conceptual framework for evaluating the feasibility of mitigating environmental impacts.
The principal aspects are scientific understanding and technical and programmatic feasibility. Each
aspect has evolutionary phases that reach maturity in several steps. Different emission sources are
generally at different phases in the evolution of knowledge associated with each mitigation aspect.
This assessment has primarily focused on the aspect of scientific understanding.
36V3e-sp
 Source: Climate and Clean Air Coalition
 https://www.c2es.org/content/short-lived-climate-pollutants/
37V3e-sp
 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate
system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
38V3e-sp
 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate
system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
38
39V3e-sp
 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate
system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
40V3e-sp
 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate
system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
41V3e-sp
 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate
system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
42V3e-sp
Emisión de GEI y HDP para vehículos convencionales e
híbridos comparables
Vehículo
Convencional
Vehículo
Híbrido
Efecto neto
recambio
0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0 50 100 150 200
EmisionesHDP(g/km)
Emisiones GEI (g/km)
Fuente: Elaboración propia en base a VCA (2000-2010). "VCA Carfueldata." from
http://www.vcacarfueldata.org.uk/.
43V3e-sp
Emisiones unitarias transporte privado versus público
Bus Euro III
con SCR
VL
promedio
Bus Euro III
0
2
4
6
8
10
12
14
16
0 50 100 150 200 250 300
EmisionesHDP(mgPM2.5e/pax-km)
Emisiones GEI (gCO2/pax-km)
Fuente: Tasas de ocupación en base a DICTUC (2009). Análisis Técnico-Económico de la Aplicación de la Revisión de
Norma de Emisión para Motores de Buses de Locomoción Colectiva de la Ciudad de Santiago.
Factores de emisión VL promedio en base INE (2008) Parque Vehicular 2008.
44V3e-sp
• Source: Climate and Clean Air Coalition
• https://www.c2es.org/content/short-lived-climate-pollutants/
45V3e-sp
 https://www.wri.org/blog/2018/10/3-charts-explain-one-most-overlooked-opportunities-address-climate-change-and-poverty
46V3e-sp
 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate
system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
47V3e-sp
 Mitigation (Art. 4) – The Paris Agreement establishes binding commitments by all Parties to prepare,
communicate and maintain a nationally determined contribution (NDC) and to pursue domestic
measures to achieve them. It also prescribes that Parties shall communicate their NDCs every 5 years
and provide information necessary for clarity and transparency. To set a firm foundation for higher
ambition, each successive NDC will represent a progression beyond the previous one and reflect the
highest possible ambition. Developed countries should continue to take the lead by undertaking
absolute economy-wide reduction targets, while developing countries should continue enhancing their
mitigation efforts, and are encouraged to move toward economy-wide targets over time in the light of
different national circumstances.
 Paris Agreement - Status of Ratification
 To this date, 27 may 19, 185 Parties have ratified of 197 Parties to the Convention.

Mais conteúdo relacionado

Mais procurados

Emisiones de Gases de Efecto Invernadero de la Minería del Cobre de Chile
Emisiones de Gases de Efecto Invernadero de la Minería del Cobre de Chile Emisiones de Gases de Efecto Invernadero de la Minería del Cobre de Chile
Emisiones de Gases de Efecto Invernadero de la Minería del Cobre de Chile
Progeauchile
 

Mais procurados (20)

Presentación WEO 2020- Seminario Funseam. Prof. Mariano Marzo (UB)
Presentación WEO 2020- Seminario Funseam. Prof. Mariano Marzo (UB)Presentación WEO 2020- Seminario Funseam. Prof. Mariano Marzo (UB)
Presentación WEO 2020- Seminario Funseam. Prof. Mariano Marzo (UB)
 
Regulación e implementación: el caso de Santiago de Chile
Regulación e implementación: el caso de Santiago de ChileRegulación e implementación: el caso de Santiago de Chile
Regulación e implementación: el caso de Santiago de Chile
 
Visión del consumidor: contrapeso político para mejorar la calidad del aire
Visión del consumidor: contrapeso político para mejorar la calidad del aireVisión del consumidor: contrapeso político para mejorar la calidad del aire
Visión del consumidor: contrapeso político para mejorar la calidad del aire
 
Controlando los Contaminantes Climáticos de Vida Corta en América Latina
Controlando los Contaminantes Climáticos de Vida Corta en América LatinaControlando los Contaminantes Climáticos de Vida Corta en América Latina
Controlando los Contaminantes Climáticos de Vida Corta en América Latina
 
La calidad del aire en las ciudades de América Latina y el problema de las te...
La calidad del aire en las ciudades de América Latina y el problema de las te...La calidad del aire en las ciudades de América Latina y el problema de las te...
La calidad del aire en las ciudades de América Latina y el problema de las te...
 
Rodrigo Suárez - El cambio climático y la competitividad de su empresa
Rodrigo Suárez - El cambio climático y la competitividad de su empresaRodrigo Suárez - El cambio climático y la competitividad de su empresa
Rodrigo Suárez - El cambio climático y la competitividad de su empresa
 
Inclusión del carbono azul en NDCs Costa Rica
Inclusión del carbono azul en NDCs Costa Rica Inclusión del carbono azul en NDCs Costa Rica
Inclusión del carbono azul en NDCs Costa Rica
 
Alonso Cárdenas Spittia - Reglamentación de Construcción Sostenible
Alonso Cárdenas Spittia - Reglamentación de Construcción SostenibleAlonso Cárdenas Spittia - Reglamentación de Construcción Sostenible
Alonso Cárdenas Spittia - Reglamentación de Construcción Sostenible
 
Beneficios económicos y sociales de la implementación de lineamientos de con...
Beneficios económicos y sociales de la implementación de lineamientos de  con...Beneficios económicos y sociales de la implementación de lineamientos de  con...
Beneficios económicos y sociales de la implementación de lineamientos de con...
 
Implicaciones del energiewende en el ámbito eléctrico
Implicaciones del energiewende en el ámbito eléctricoImplicaciones del energiewende en el ámbito eléctrico
Implicaciones del energiewende en el ámbito eléctrico
 
Gobernanza Plan Huila 2050
Gobernanza Plan Huila 2050 Gobernanza Plan Huila 2050
Gobernanza Plan Huila 2050
 
Presentación taller Neiva
Presentación taller NeivaPresentación taller Neiva
Presentación taller Neiva
 
Avances en la formulación de las INDC de Colombia- MADS
Avances en la formulación de las INDC de Colombia- MADSAvances en la formulación de las INDC de Colombia- MADS
Avances en la formulación de las INDC de Colombia- MADS
 
Notas por que si a las energias renovables
Notas por que si a las energias renovablesNotas por que si a las energias renovables
Notas por que si a las energias renovables
 
Emisiones de Gases de Efecto Invernadero de la Minería del Cobre de Chile
Emisiones de Gases de Efecto Invernadero de la Minería del Cobre de Chile Emisiones de Gases de Efecto Invernadero de la Minería del Cobre de Chile
Emisiones de Gases de Efecto Invernadero de la Minería del Cobre de Chile
 
Cadiec Presentación de su presidente
Cadiec Presentación de su presidenteCadiec Presentación de su presidente
Cadiec Presentación de su presidente
 
Aportando soluciones sostenibles en el desarrollo urbano. Francisco Torres (N...
Aportando soluciones sostenibles en el desarrollo urbano. Francisco Torres (N...Aportando soluciones sostenibles en el desarrollo urbano. Francisco Torres (N...
Aportando soluciones sostenibles en el desarrollo urbano. Francisco Torres (N...
 
Presentación analisis crítico energias renovables 29 junio utn
Presentación analisis crítico energias renovables 29 junio utnPresentación analisis crítico energias renovables 29 junio utn
Presentación analisis crítico energias renovables 29 junio utn
 
Seminario Funseam WEO2021_Mariano Marzo
Seminario Funseam WEO2021_Mariano MarzoSeminario Funseam WEO2021_Mariano Marzo
Seminario Funseam WEO2021_Mariano Marzo
 
Aspectos tributarios de la implementación del tratado cop26 7
Aspectos tributarios de la implementación del tratado cop26 7Aspectos tributarios de la implementación del tratado cop26 7
Aspectos tributarios de la implementación del tratado cop26 7
 

Semelhante a Presentación de Luis Cifuentes

GRUPO INTERGUBERNAMENTAL DE EXPERTOS SOBRE CAMBIO CLIMÁTICO – IPCC GT III
GRUPO INTERGUBERNAMENTAL DE EXPERTOS SOBRE CAMBIO CLIMÁTICO – IPCC GT IIIGRUPO INTERGUBERNAMENTAL DE EXPERTOS SOBRE CAMBIO CLIMÁTICO – IPCC GT III
GRUPO INTERGUBERNAMENTAL DE EXPERTOS SOBRE CAMBIO CLIMÁTICO – IPCC GT III
ipcc-media
 
Quinto informe IPCC y Negociacion en la CMNUCC
 Quinto informe IPCC y Negociacion en la CMNUCC Quinto informe IPCC y Negociacion en la CMNUCC
Quinto informe IPCC y Negociacion en la CMNUCC
ipcc-media
 
ARTICULO CHILE - copia (2).pptx
ARTICULO CHILE - copia (2).pptxARTICULO CHILE - copia (2).pptx
ARTICULO CHILE - copia (2).pptx
EMONDRAGN
 
IPCC 2015: ACTIVIDADES DE DIFUSIÓN
IPCC 2015: ACTIVIDADES DE DIFUSIÓNIPCC 2015: ACTIVIDADES DE DIFUSIÓN
IPCC 2015: ACTIVIDADES DE DIFUSIÓN
ipcc-media
 
Overview with additional focus on the topic of forests, agriculture and food
Overview with additional focus on the topic of forests, agriculture and foodOverview with additional focus on the topic of forests, agriculture and food
Overview with additional focus on the topic of forests, agriculture and food
ipcc-media
 
Mitigación del Cambio Climático Contribución del Grupo de Trabajo III, IPCC
Mitigación del Cambio Climático Contribución del Grupo de Trabajo III, IPCCMitigación del Cambio Climático Contribución del Grupo de Trabajo III, IPCC
Mitigación del Cambio Climático Contribución del Grupo de Trabajo III, IPCC
ipcc-media
 

Semelhante a Presentación de Luis Cifuentes (20)

GRUPO INTERGUBERNAMENTAL DE EXPERTOS SOBRE CAMBIO CLIMÁTICO – IPCC GT III
GRUPO INTERGUBERNAMENTAL DE EXPERTOS SOBRE CAMBIO CLIMÁTICO – IPCC GT IIIGRUPO INTERGUBERNAMENTAL DE EXPERTOS SOBRE CAMBIO CLIMÁTICO – IPCC GT III
GRUPO INTERGUBERNAMENTAL DE EXPERTOS SOBRE CAMBIO CLIMÁTICO – IPCC GT III
 
Reducción de emisiones de Gases de Efecto Invernadero.- Sesión 3: Seminario ...
Reducción de emisiones de Gases de Efecto Invernadero.-  Sesión 3: Seminario ...Reducción de emisiones de Gases de Efecto Invernadero.-  Sesión 3: Seminario ...
Reducción de emisiones de Gases de Efecto Invernadero.- Sesión 3: Seminario ...
 
Cristinagfernandez
CristinagfernandezCristinagfernandez
Cristinagfernandez
 
Quinto informe IPCC y Negociacion en la CMNUCC
 Quinto informe IPCC y Negociacion en la CMNUCC Quinto informe IPCC y Negociacion en la CMNUCC
Quinto informe IPCC y Negociacion en la CMNUCC
 
Conferencia: Energía para la lucha contra el Cambio Climático / Versión actua...
Conferencia: Energía para la lucha contra el Cambio Climático / Versión actua...Conferencia: Energía para la lucha contra el Cambio Climático / Versión actua...
Conferencia: Energía para la lucha contra el Cambio Climático / Versión actua...
 
Huella de carbono
Huella de carbono Huella de carbono
Huella de carbono
 
Explotación de YNC en el contexto de la crisis ecológica
Explotación de YNC en el contexto de la crisis ecológicaExplotación de YNC en el contexto de la crisis ecológica
Explotación de YNC en el contexto de la crisis ecológica
 
Venezuela. prospectiva emision de co2
Venezuela. prospectiva emision de co2Venezuela. prospectiva emision de co2
Venezuela. prospectiva emision de co2
 
Venezuela. prospectiva emision de CO2 (2015 - 2040)
Venezuela. prospectiva emision de CO2 (2015 - 2040)Venezuela. prospectiva emision de CO2 (2015 - 2040)
Venezuela. prospectiva emision de CO2 (2015 - 2040)
 
BC3 Policy Briefings: [2015-03] ¿Bajo qué condiciones es sostenible el bioeta...
BC3 Policy Briefings: [2015-03] ¿Bajo qué condiciones es sostenible el bioeta...BC3 Policy Briefings: [2015-03] ¿Bajo qué condiciones es sostenible el bioeta...
BC3 Policy Briefings: [2015-03] ¿Bajo qué condiciones es sostenible el bioeta...
 
Informes del IPCC
Informes del IPCCInformes del IPCC
Informes del IPCC
 
ARTICULO CHILE - copia (2).pptx
ARTICULO CHILE - copia (2).pptxARTICULO CHILE - copia (2).pptx
ARTICULO CHILE - copia (2).pptx
 
Eficiencia Energética y Mercados de Carbono
Eficiencia Energética y Mercados de CarbonoEficiencia Energética y Mercados de Carbono
Eficiencia Energética y Mercados de Carbono
 
IPCC 2015: ACTIVIDADES DE DIFUSIÓN
IPCC 2015: ACTIVIDADES DE DIFUSIÓNIPCC 2015: ACTIVIDADES DE DIFUSIÓN
IPCC 2015: ACTIVIDADES DE DIFUSIÓN
 
Overview with additional focus on the topic of forests, agriculture and food
Overview with additional focus on the topic of forests, agriculture and foodOverview with additional focus on the topic of forests, agriculture and food
Overview with additional focus on the topic of forests, agriculture and food
 
Mitigación del Cambio Climático Contribución del Grupo de Trabajo III, IPCC
Mitigación del Cambio Climático Contribución del Grupo de Trabajo III, IPCCMitigación del Cambio Climático Contribución del Grupo de Trabajo III, IPCC
Mitigación del Cambio Climático Contribución del Grupo de Trabajo III, IPCC
 
ACTIVIDADES DE DIFUSIÓN
ACTIVIDADES DE DIFUSIÓNACTIVIDADES DE DIFUSIÓN
ACTIVIDADES DE DIFUSIÓN
 
Presentación Óscar Fernández - EPM
Presentación Óscar Fernández - EPMPresentación Óscar Fernández - EPM
Presentación Óscar Fernández - EPM
 
Climate change_Humanities Day MBAs_IE
Climate change_Humanities Day MBAs_IEClimate change_Humanities Day MBAs_IE
Climate change_Humanities Day MBAs_IE
 
Seminario "El Cambio Climático 2018" - Reducción de emisiones de gases de efe...
Seminario "El Cambio Climático 2018" - Reducción de emisiones de gases de efe...Seminario "El Cambio Climático 2018" - Reducción de emisiones de gases de efe...
Seminario "El Cambio Climático 2018" - Reducción de emisiones de gases de efe...
 

Mais de AIDA_Americas

Mais de AIDA_Americas (20)

Los compromisos climáticos del Grupo BID
Los compromisos climáticos del Grupo BIDLos compromisos climáticos del Grupo BID
Los compromisos climáticos del Grupo BID
 
El caso "Mecheros"
El caso "Mecheros"El caso "Mecheros"
El caso "Mecheros"
 
Litigio Climático en Ecuador: Análisis de Casos
Litigio Climático en Ecuador: Análisis de CasosLitigio Climático en Ecuador: Análisis de Casos
Litigio Climático en Ecuador: Análisis de Casos
 
El caso del proyecto BioCLIMA ante el IRM
El caso del proyecto BioCLIMA ante el IRMEl caso del proyecto BioCLIMA ante el IRM
El caso del proyecto BioCLIMA ante el IRM
 
Incremento de la Resiliencia Climática basada en Ecosistemas de Comunidades R...
Incremento de la Resiliencia Climática basada en Ecosistemas de Comunidades R...Incremento de la Resiliencia Climática basada en Ecosistemas de Comunidades R...
Incremento de la Resiliencia Climática basada en Ecosistemas de Comunidades R...
 
Herencia Colombia
Herencia ColombiaHerencia Colombia
Herencia Colombia
 
Reseña general de la última reunión de la Junta del FVC (B.35) y de sus princ...
Reseña general de la última reunión de la Junta del FVC (B.35) y de sus princ...Reseña general de la última reunión de la Junta del FVC (B.35) y de sus princ...
Reseña general de la última reunión de la Junta del FVC (B.35) y de sus princ...
 
Radiografía de los Litigios Climáticos en México
Radiografía de los Litigios Climáticos en MéxicoRadiografía de los Litigios Climáticos en México
Radiografía de los Litigios Climáticos en México
 
El caso de los Acuerdos del CENACE y la SENER del 2020
El caso de los Acuerdos del CENACE y la SENER del 2020El caso de los Acuerdos del CENACE y la SENER del 2020
El caso de los Acuerdos del CENACE y la SENER del 2020
 
nteragindo com o Fundo Verde do Clima
nteragindo com o Fundo Verde do Climanteragindo com o Fundo Verde do Clima
nteragindo com o Fundo Verde do Clima
 
O Fundo Verde do Clima, processo de acreditação e acesso aos fundos
O Fundo Verde do Clima, processo de acreditação e acesso aos fundosO Fundo Verde do Clima, processo de acreditação e acesso aos fundos
O Fundo Verde do Clima, processo de acreditação e acesso aos fundos
 
Panorama dos fundos climáticos no Brasil
Panorama dos fundos climáticos no BrasilPanorama dos fundos climáticos no Brasil
Panorama dos fundos climáticos no Brasil
 
Riesgo de falla de presa de relaves: Proyecto Minero Mirador-Ecuador
Riesgo de falla de presa de relaves: Proyecto Minero Mirador-EcuadorRiesgo de falla de presa de relaves: Proyecto Minero Mirador-Ecuador
Riesgo de falla de presa de relaves: Proyecto Minero Mirador-Ecuador
 
Pérdida de Biodiversidad y Afectación al Corredor Biológico Mesoamericano del...
Pérdida de Biodiversidad y Afectación al Corredor Biológico Mesoamericano del...Pérdida de Biodiversidad y Afectación al Corredor Biológico Mesoamericano del...
Pérdida de Biodiversidad y Afectación al Corredor Biológico Mesoamericano del...
 
Minería en Crucitas:Costa Rica 2008-2022 ppp 18-10-22 (1).pptx
Minería en Crucitas:Costa Rica 2008-2022 ppp 18-10-22 (1).pptxMinería en Crucitas:Costa Rica 2008-2022 ppp 18-10-22 (1).pptx
Minería en Crucitas:Costa Rica 2008-2022 ppp 18-10-22 (1).pptx
 
Impactos de la minería en Centroamérica: Estudios de casos
Impactos de la minería en Centroamérica:  Estudios de casosImpactos de la minería en Centroamérica:  Estudios de casos
Impactos de la minería en Centroamérica: Estudios de casos
 
Boletim da Litigancia Climática no Brasil 2022
Boletim da Litigancia Climática no Brasil 2022Boletim da Litigancia Climática no Brasil 2022
Boletim da Litigancia Climática no Brasil 2022
 
Litígio climático BNDES/BNDESPar: Mudanças climáticas, direitos humanos e de...
 Litígio climático BNDES/BNDESPar: Mudanças climáticas, direitos humanos e de... Litígio climático BNDES/BNDESPar: Mudanças climáticas, direitos humanos e de...
Litígio climático BNDES/BNDESPar: Mudanças climáticas, direitos humanos e de...
 
Reclaiming hydrogen for a renewable future
Reclaiming hydrogen for a renewable futureReclaiming hydrogen for a renewable future
Reclaiming hydrogen for a renewable future
 
Hidrógeno como propuesta energética: Situación en Latinoamérica, retos, riesg...
Hidrógeno como propuesta energética: Situación en Latinoamérica, retos, riesg...Hidrógeno como propuesta energética: Situación en Latinoamérica, retos, riesg...
Hidrógeno como propuesta energética: Situación en Latinoamérica, retos, riesg...
 

Último

Inteligencia estrategica en la solucion del problema de desechos solidos en C...
Inteligencia estrategica en la solucion del problema de desechos solidos en C...Inteligencia estrategica en la solucion del problema de desechos solidos en C...
Inteligencia estrategica en la solucion del problema de desechos solidos en C...
Enrique Posada
 
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdfDESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
alvaradoliguagabriel
 
Briofitas, biología general. Características, especie, reino y filum
Briofitas, biología general. Características, especie, reino y filumBriofitas, biología general. Características, especie, reino y filum
Briofitas, biología general. Características, especie, reino y filum
NataliaFlores563038
 

Último (20)

Elaboración de Planes de contingencia.ppt
Elaboración de Planes de contingencia.pptElaboración de Planes de contingencia.ppt
Elaboración de Planes de contingencia.ppt
 
domesticación de plantas y evolución genetica
domesticación de plantas y evolución geneticadomesticación de plantas y evolución genetica
domesticación de plantas y evolución genetica
 
ppt-ciencias-para-la-ciudadanc3ada-4-a-b.pptx
ppt-ciencias-para-la-ciudadanc3ada-4-a-b.pptxppt-ciencias-para-la-ciudadanc3ada-4-a-b.pptx
ppt-ciencias-para-la-ciudadanc3ada-4-a-b.pptx
 
Inteligencia estrategica en la solucion del problema de desechos solidos en C...
Inteligencia estrategica en la solucion del problema de desechos solidos en C...Inteligencia estrategica en la solucion del problema de desechos solidos en C...
Inteligencia estrategica en la solucion del problema de desechos solidos en C...
 
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdfDESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
 
Inundación en Santa Cruz rio Pirai 1983.pptx
Inundación en Santa Cruz rio Pirai 1983.pptxInundación en Santa Cruz rio Pirai 1983.pptx
Inundación en Santa Cruz rio Pirai 1983.pptx
 
Ciclo del Azufre de forma natural y quimica.pptx
Ciclo del Azufre de forma natural y quimica.pptxCiclo del Azufre de forma natural y quimica.pptx
Ciclo del Azufre de forma natural y quimica.pptx
 
ENFERMEDADES DEL GANADO BOVINO EXPOSICION.pptx
ENFERMEDADES DEL GANADO BOVINO EXPOSICION.pptxENFERMEDADES DEL GANADO BOVINO EXPOSICION.pptx
ENFERMEDADES DEL GANADO BOVINO EXPOSICION.pptx
 
TEMA Combustibles-fosiles como fuentes de energia.pdf
TEMA Combustibles-fosiles como fuentes de energia.pdfTEMA Combustibles-fosiles como fuentes de energia.pdf
TEMA Combustibles-fosiles como fuentes de energia.pdf
 
Libro-Rojo-de-Peces-Marinos-de-Colombia.pdf
Libro-Rojo-de-Peces-Marinos-de-Colombia.pdfLibro-Rojo-de-Peces-Marinos-de-Colombia.pdf
Libro-Rojo-de-Peces-Marinos-de-Colombia.pdf
 
CICLOS BIOGEOQUIMICOS en la nutricion vegetal.pptx
CICLOS BIOGEOQUIMICOS en la nutricion vegetal.pptxCICLOS BIOGEOQUIMICOS en la nutricion vegetal.pptx
CICLOS BIOGEOQUIMICOS en la nutricion vegetal.pptx
 
moluscos especialidad conquistadores,,,,
moluscos especialidad conquistadores,,,,moluscos especialidad conquistadores,,,,
moluscos especialidad conquistadores,,,,
 
Contaminacion Rio Mantaro y propuesta de soluciones
Contaminacion Rio Mantaro y propuesta de solucionesContaminacion Rio Mantaro y propuesta de soluciones
Contaminacion Rio Mantaro y propuesta de soluciones
 
PRODUCCION LIMPIA .pptx espero les sirva para sus trabajos
PRODUCCION LIMPIA .pptx espero les sirva para sus trabajosPRODUCCION LIMPIA .pptx espero les sirva para sus trabajos
PRODUCCION LIMPIA .pptx espero les sirva para sus trabajos
 
Briofitas, biología general. Características, especie, reino y filum
Briofitas, biología general. Características, especie, reino y filumBriofitas, biología general. Características, especie, reino y filum
Briofitas, biología general. Características, especie, reino y filum
 
Recursos Naturales del Perú estudios generales
Recursos Naturales del Perú estudios generalesRecursos Naturales del Perú estudios generales
Recursos Naturales del Perú estudios generales
 
Manual-de-Buenas-Practicas-Ganaderas_2019_ResCA-Guatemala.pdf
Manual-de-Buenas-Practicas-Ganaderas_2019_ResCA-Guatemala.pdfManual-de-Buenas-Practicas-Ganaderas_2019_ResCA-Guatemala.pdf
Manual-de-Buenas-Practicas-Ganaderas_2019_ResCA-Guatemala.pdf
 
Captación de aguas superficiales norma 777 parte 1.pdf
Captación de aguas superficiales norma 777 parte 1.pdfCaptación de aguas superficiales norma 777 parte 1.pdf
Captación de aguas superficiales norma 777 parte 1.pdf
 
Charlas de medio ambiente para compartir en grupo
Charlas de medio ambiente para compartir en grupoCharlas de medio ambiente para compartir en grupo
Charlas de medio ambiente para compartir en grupo
 
LCE - RLCE -2024 - PeruCsdddddddddddddddddddompras.pdf
LCE - RLCE -2024 - PeruCsdddddddddddddddddddompras.pdfLCE - RLCE -2024 - PeruCsdddddddddddddddddddompras.pdf
LCE - RLCE -2024 - PeruCsdddddddddddddddddddompras.pdf
 

Presentación de Luis Cifuentes

  • 1. 1V3e-sp ¿Es posible aumentar el compromiso de Chile con políticas integradas para el clima y un aire limpio? Luis Abdón Cifuentes Encuentro ¿Es posible aumentar el compromiso de Chile con políticas integradas para el clima y un aire limpio? Organizado por … Martes 28 de Mayo 2019 Campus Lo Contador
  • 2. 3V3e-sp ¿Es posible aumentar el compromiso de Chile con políticas integradas para el clima y un aire limpio? La respuesta es SI! Claro que si!  Es más: es necesario aumentar el compromiso de Chile. Con o sin integración de políticas.  Pero integrando las políticas podemos contribuir al bien global, y además al bienestar local.  Veamos cómo y por qué!
  • 3. 4V3e-sp ¿Por qué?  Porque las emisiones de gases efecto invernadero y contaminantes locales son “dos caras de una misma moneda”  Entonces, ¿Por qué tratarlos de forma separada?
  • 4. 5V3e-sp La meta de de Chile es calificada de “altamente insuficiente” por el Climate Action Tracker  https://climateactiontracker.org/countries/chile/ (recuperado el 27 Mayo 2019) Commitments with this rating fall outside the fair share range and are not at all consistent with holding warming to below 2°C let alone with the Paris Agreementʼs stronger 1.5°C limit. If all government targets were in this range, warming would reach between 3°C and 4°C. COUNTRY SUMMARY PLEDGES AND TARGETS FAIR SHARE CURRENT POLICY PROJECTIONS ASSUMPTIONS SOURCES Country summary 1990 2000 2010 2020 2030 2040 2050 −50 0 50 100 150 Historical emissions, excl forestry Historical emissions/removals from forestry Current policy projections Planned policy: 2050 Energy Strategy 2020 pledge Reference for 2020 pledge NDC (unconditional) NDC (conditional) Years EMISSIONS[MtCO₂e/a] Stacked Bars(2025, 159) Rating systemAll countries
  • 6. 7V3e-sp Public Health Ancillary Benefits Framework 7 Local/Regional Pollutant Emissions Ambient Concentrations reductions Short/medium term benefits Activities / Energy Use GHG Emissions GHG Reduction Targets Global warming potential reduction Long-term benefits Policy options Technology options AQ Standards
  • 7. 8V3e-sp Cifuentes, LA, Air Pollution in Santiago, Chile: Health Effects and Policy COP5 Side Event: The Public Health Opportunities and Hazards of Global Warming Workshop, Bonn, Germany. October 30, 1999 B
  • 8. 9V3e-sp 25 Local/Regional Pollutant Emissions Ambient Concentrations Short-term benefits Activities / Energy Use GHG Emissions GHG Reduction Targets Global warming potential reduction Long-term benefits Policy options Technology options AQ Standards Relative Size of Ancillary Benefits $/tonC $/(ug/m3)
  • 9. 10V3e-sp Cobenefits Conceptual framework  Figure 8.8: Conceptual framework for analyzing ancillary and co-benefits and costs.  IPCC Third Assessment Report. WGIII, Chapter 8: Global, Regional, and National Costs and Ancillary Benefits of Mitigation
  • 10. 11V3e-sp Una gran cantidad de reportes lo confirman
  • 11. 12V3e-sp ¿Por qué es deseable integrar las políticas climáticas con las políticas del aire limpio? Esto es una larga historia:  1998: Integrated Co-Control Air Pollution Program (ICAP) COP5  2001: IPCC Third Assessment Report (TAR) : Cobenefits Framework  2011: UNEP Integrated Assessment  2019: Carbon Pricing Leadership Coalition
  • 12. 13V3e-sp Cobeneficios: Contaminación del aire y cambio climático CAMBIO CLIMÁTICO Contaminación del aire Gases de efecto invernadero CH4 N2O PFC SF6 HFC Fuente: Adaptado de Sophie Punte, Clean Air Initiative for Asian Cities y Leonora Rojas-Bracho, INE, Mexico. PM O3 COSO2 NOx Pb VOC EMISIONES CO2 Contaminantes locales y regionales BC Cambio Climático
  • 13. 14V3e-sp SLCP - CCVC  https://www.wri.org/blog/2018/10/3-charts-explain-one-most-overlooked-opportunities-address-climate-change-and-poverty
  • 14. Forzamiento Radiativo en 2011 relativo a 1750 Fuente: AR5, (IPCC, 2014) 15
  • 15. 16V3e-sp ¿Por qué es importante controlar los contaminantes climáticos de vida corta?  Shindell, D., Kuylenstierna, J., Vignati, E., Dingenen, R. Van, Amann, M., Klimont, Z., … Williams, M. (2012). Simultaneously Mitigating Near-Term Climate Change and Improving Human Health. Science, 183. https://doi.org/10.1126/science.1210026 (Figura 1)
  • 16. 17V3e-sp WHO Special Report: Reducing short-lived climate pollutants a must for health and climate The World Health Organization’s Special Report on Health and Climate Change released at COP 24 makes seven recommendations to advance climate, health and development. • “targeted action on short-lived climate pollutants would help to save over two million lives each year and reduce the extent of global warming by 0.5 °C, by the middle of the century”
  • 18. 19V3e-sp Emisiones BC 2013 Total : 22.604 ton Fuente: Estudio “Apoyo a la Iniciativa para el Plan de mitigación de los contaminantes climáticos de vida corta en Chile”, solicitado por la Subsecretaría de Medio Ambiente. GreenlabUC y USM 8% Incendios Resultado en base a la mediana 59% CPR Leña + Papel y celulosa 23% Móvil Combustión de leña en sector comercial, público y residencial 44% Industrial del papel y celulosa 15% Otras industrias 8% Maquinaria fuera de ruta 11% Transporte terrestre en ruta 7% Otros transporte 5% Otras fuentes antropógenicas 2% Quemas e incedios forestales 8%
  • 19. 20V3e-sp  Figure 41. GTP and GWP values for several time horizons for BC climate forcing. Values are shown for the BC direct effect and the total climate forcing. The calculations use the industrial-era climate forcing values displayed in Figure 35 and an annual BC emission of 8700 Gg yr1. The whiskers represent the uncertainty range as described in the text.  Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
  • 20. 21V3e-sp  El PCG es un indicador basado en propiedades radiativas que se utiliza para estimar el potencial futuro impacto en el clima de la emisión de diferentes contaminantes atmosféricos  Se calcula en base al forzamiento radiativo [W/m2] causado por el contaminante en un determinado horizonte temporal, relativo al forzamiento radiativo causado por el CO2  Para un contaminante x, su PCG en un horizonte temporal T se calcula como:  Donde ax es el forzamiento radiativo producto de la emisión del contaminante [W/(m2-kg)] y [x(t)] corresponde al decaimiento del GEI en el tiempo  Los horizontes temporales (T) típicamente utilizados son: 20, 100 y 500 años; siendo 100 años el más común Métrica para medir Impacto en CC: PCG 𝑃𝐶𝐺 𝑥 = 0 𝑇 𝑎 𝑥 ∗ 𝑥 𝑡 𝑑𝑡 0 𝑇 𝑎 𝐶𝑂2 ∗ 𝐶𝑂2 𝑡 𝑑𝑡
  • 21. 22V3e-sp [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE][CELLRANGE] [CELLRANGE][CELLRANGE] [CELLRANGE] 0 50 100 150 200 250 300 PCG100 PCG20 GgCO2e BC HFCs CF4 y SF6 CH4 N2O CO2 Importancia de los CCVC Al considerar el BC, el impacto climático aumenta en un 18% [7%; 33%] (PCG100) y en un 50%[18%; 90%] (PCG20) , respecto al inventario GEI El impacto a 20 años es 1.6x 90% CI are shown (considering only BC uncertainty) GEI CCVC (*): MMA. (2016). Segundo Informe Bienal de Actualización de Chile sobre Cambio Climático. Se utilizaron las emisiones brutas de CO2, CH4, HFC N2O, CF4 y SF6 reportadas por el Informe Bienal, con PCG del AR5 para estimar las emisiones en CO2e. Emisiones GEI resultan en 112.3 Gg CO2e, utilizando PCG del AR5 y emisiones de CH4 y HFCs del inventario de CCVC 112 Gas/SLCP PCG100 PCG20 CO2 86 86 N2O 9 9 CH4 16 47 SF 0 0 HFCs 1 2 BC 20 72 Total 133 216
  • 22. 24V3e-sp NE: Termoeléctricas  Reducciones estimadas en el AGIES:  MP: 14.000 ton/año  NOx: 53.000 ton/año  La distribución por tipo de combustible se estimó a partir de las emisiones de BC del sector industria (Inventario CCVC 2013)  Se utiliza la fracción BC de MP, por disponibilidad de reducción de emisiones de este contaminante Referencias: Geoaire and KAS Ingeniería, ‘Análisis General Del Impacto Económico Y Social de Una Norma de Emisión Para Termoeléctricas’, 2009., pg 192 Fracción BC: En base a EMEP/EEA(2013). Cap. 1.A.1 Energy industries, Tablas: 3-2, 3-4, 3.5, 3-6, 3-7, 3-12 Combustible Fracción BC/MP Biogás 2,50% Biomasa 2,55% Carbón 0,66% Fuel Oil Nro. 6 3,05% Gas Natural 2,50% Petcoke 0,66% Petróleo Diésel 4,12% Petróleo IFO-180 3,05% Propano 2,50% Fracción BC Tabla 3-5 Factores de emisión por combustible para generación de energía [ton/ton comb. Combustible CH4 BC CO NOx COV Biogás 5,06E-05 4,90E-07 8,60E-04 1,96E-03 5,73E-05 Biomasa 4,39E-04 6,43E-05 1,32E-03 1,19E-03 1,07E-04 Carbón 5,06E-05 2,49E-06 2,55E-04 6,12E-03 2,93E-05 Petróleo 1,32E-04 4,75E-05 6,63E-04 6,24E-03 1,01E-04 Gas Natural 5,06E-05 1,15E-06 2,01E-03 4,58E-03 1,34E-04 Diésel 1,37E-04 1,22E-05 7,39E-04 2,96E-03 3,65E-05 GLP 5,06E-05 1,13E-06 1,97E-03 4,51E-03 1,32E-04 Fuente: (EMEP/EEA, 2016) Tablas: 3-2, 3-4, 3,5, 3-6, 3-7, 3-12 e (IPCC, 2006) Para estimar las emisiones se debe considerar también las tecnologías de abatimiento para central. En el análisis general de impacto económico y social para la norma de termoeléctri presenta un cuadro70 con la tecnología de abatimiento de cada central71, esta informació actualizada para el año 2013 utilizando las declaraciones al RETC. Luego, a cada tecnología asignó un porcentaje de abatimiento de acuerdo a distinta bibliografía: Tabla 3-6 Eficiencia de abatimiento por tecnología para termoeléctricas Tecnología Contaminante Remoción típica Fuente de información Precipitador electrostático MP(1) 98% CONAMA, 200972 Filtro de mangas MP(1) 95% CONAMA, 2009 Low Nox NOx 57% EPA ,201373 Inyección agua NOx 45% EPA, 200674 (1): Se utiliza el supuesto de que una tecnología de control de material particulado remueve en la misma prop el BC presente en él. Fuente: Elaboración propia en base a las fuentes referenciadas
  • 23. 25V3e-sp Caso Sector Generación Eléctrica Análisis Unitario por MWh generado:  Factor Emisión CO2 : 1 (0.86-1.60) tonCO2/MWh  Factor emisión MP : 0.2 (0.04-0,9) kgMP/MWh. (BC= 0.66% MP) Daño por MWh:  Daño Emisiones MP: 5500 (70-10.000) USD/ton  0.017 (0.000-0.043) USD/MWh  Daño Emisiones CO2: 5 USD/ton):  4.9 (4.3-8.0) USD/ton  Razón entre daño por MWH  GEI/Salud 5,537 (120- 42000)  GEI: CO2/BC: > 10.000x  En este caso la principal razón para mitigar las emisiones es la reducción de emisiones de GEI.  Las emisiones de MP y BC de las centrales a carbón es ínfima.
  • 24. 26V3e-sp Fracción BC/MP2,5 Leña CPR Equipo Media Percentil 10 Percen til 90 Chimenea/Salamandra 7% 5% 7.% Doble Cámara 10% 5% 28% Estufa/Cocina simple 10% 5% 28% Caldera 16% 5% 41%
  • 25. 27V3e-sp Caso Sector Leña Residencial Asumamos que la leña es carbono neutral  Factor Emisión CO2 = 0  Factor emisión BC= 7% – 16% MP Daño por tonelada emitida  Daño Emisiones MP: depende de la localidad, pero > 10.000 USD/ton  Daño Emisiones GEI: 5 USD/ton):  350 a 800 USD/tonMP (GWP BC = 1000)  En este caso la principal razón para mitigar las emisiones de MP es la reducción del impacto de MP en la salud, por lo que las reducciones de BC son un beneficio ancilar. ¿Cuanto se puede ofertar a partir de estas reducciones?  Emisión total de BC en sector CPR: 10.1 Gg CO2e  Esto es casi un 8% del inventario actual (PCG 100 años ) y un 16% con PCG20 años. Gas/SLCP PCG100 PCG20 CO2 86 86 N2O 9 9 CH4 16 47 SF 0 0 HFCs 1 2 BC 20 72 Total 133 216
  • 26. 28V3e-sp Conclusiones  Los CCVC son muy importantes para reducir el aumento de temperatura global en el corto plazo (pueden reducir hasta 0.6C en el corto plazo)  Su consideración en el inventario aumenta las emisiones en casi un 20% (PCG100 años) y 33% (PCG20 años). Pero estas emisiones son es más fáciles de reducir que las emisiones de CO2.  Considerar los CCVC en las medidas de reducción aumenta los beneficios de reducción de GEI, y crea beneficios cuando no existían (ejemplo, leña carbono neutral)  Pero la pregunta clave todavía permanece: ¿cuál es la motivación para implementar las medidas? ¿Salud o CC?  De esto depende cuales beneficios son ancilares y cuales son directos.  En cualquier caso, considerar ambos efectos es lo correcto.
  • 33. 35V3e-sp  Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171 Figure 42. Conceptual framework for evaluating the feasibility of mitigating environmental impacts. The principal aspects are scientific understanding and technical and programmatic feasibility. Each aspect has evolutionary phases that reach maturity in several steps. Different emission sources are generally at different phases in the evolution of knowledge associated with each mitigation aspect. This assessment has primarily focused on the aspect of scientific understanding.
  • 34. 36V3e-sp  Source: Climate and Clean Air Coalition  https://www.c2es.org/content/short-lived-climate-pollutants/
  • 35. 37V3e-sp  Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
  • 36. 38V3e-sp  Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171 38
  • 37. 39V3e-sp  Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
  • 38. 40V3e-sp  Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
  • 39. 41V3e-sp  Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
  • 40. 42V3e-sp Emisión de GEI y HDP para vehículos convencionales e híbridos comparables Vehículo Convencional Vehículo Híbrido Efecto neto recambio 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0 50 100 150 200 EmisionesHDP(g/km) Emisiones GEI (g/km) Fuente: Elaboración propia en base a VCA (2000-2010). "VCA Carfueldata." from http://www.vcacarfueldata.org.uk/.
  • 41. 43V3e-sp Emisiones unitarias transporte privado versus público Bus Euro III con SCR VL promedio Bus Euro III 0 2 4 6 8 10 12 14 16 0 50 100 150 200 250 300 EmisionesHDP(mgPM2.5e/pax-km) Emisiones GEI (gCO2/pax-km) Fuente: Tasas de ocupación en base a DICTUC (2009). Análisis Técnico-Económico de la Aplicación de la Revisión de Norma de Emisión para Motores de Buses de Locomoción Colectiva de la Ciudad de Santiago. Factores de emisión VL promedio en base INE (2008) Parque Vehicular 2008.
  • 42. 44V3e-sp • Source: Climate and Clean Air Coalition • https://www.c2es.org/content/short-lived-climate-pollutants/
  • 44. 46V3e-sp  Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
  • 45. 47V3e-sp  Mitigation (Art. 4) – The Paris Agreement establishes binding commitments by all Parties to prepare, communicate and maintain a nationally determined contribution (NDC) and to pursue domestic measures to achieve them. It also prescribes that Parties shall communicate their NDCs every 5 years and provide information necessary for clarity and transparency. To set a firm foundation for higher ambition, each successive NDC will represent a progression beyond the previous one and reflect the highest possible ambition. Developed countries should continue to take the lead by undertaking absolute economy-wide reduction targets, while developing countries should continue enhancing their mitigation efforts, and are encouraged to move toward economy-wide targets over time in the light of different national circumstances.  Paris Agreement - Status of Ratification  To this date, 27 may 19, 185 Parties have ratified of 197 Parties to the Convention.

Notas do Editor

  1. UN Climate Change News, 3 May 2018 -  The World Health Organization (WHO) has warned that records for extreme weather events are being broken at an unprecedented rate, and that there is a real risk for the world to lose its capacity to sustain human life if the Earth’s climate is further altered by adding ever more heat-trapping greenhouse gases. WHO officials expressed the warning whilst presenting new data at the 2018 UN Climate Change Conference in Bonn that shows that 9 out of 10 people breathe air containing high levels of pollutants and that around 7 million people every year die from exposure to fine particles in polluted air. The figure could be far surpassed by deaths caused by rising global temperatures and extreme weather if emissions, primarily caused by the burning of fossil fuels and deforestation, are allowed to rise at their present rate.  “We see the Paris Agreement as a fundamental public health agreement, potentially the most important public health agreement of the century. If we don’t meet the climate challenge, if we don’t bring down greenhouse gas emissions, then we are undermining the environmental determinates of health on which we depend: we undermine water supplies, we undermine our air, we undermine food security,” said Dr. Diarmid Campbell-Lendrum, WHO Team Lead on Climate Change and Health.
  2. 3 Charts Explain One of the Most Overlooked Opportunities to Address Climate Change and Poverty by Katherine Ross Katherine Ross and Thomas Damassa - October 02, 2018 Most people associate climate change with carbon dioxide, a long-lived greenhouse gas (GHG). But scientists estimate that carbon dioxide (CO2) is only responsible for about half of the world's current warming. The other half comes from lesser known but highly potent short-lived climate pollutants (SLCPs), such as methane, black carbon, hydrofluorocarbons (HFCs) and tropospheric ozone. SLCPs have a powerful impact on global temperature and the climate system, particularly over short time horizons. For example, methane has a warming impact that is 86 times that of carbon dioxide over a twenty-year time horizon. In the near term, taking fast, ambitious action to reduce SLCPs is vital to reducing the rate of global warming and keeping temperature rise below 1.5 degrees Celsius (2.7 degrees Fahrenheit)—an ambition that all countries signed on to as part of the Paris Agreement and an essential goal for ensuring poor and vulnerable communities are spared from climate catastrophes. Reducing SLCPs also can save lives and deliver multiple benefits for sustainable development and human well-being. Yet despite their significance, SLCPs are not well represented in countries' national climate plans, known as nationally determined contributions (NDCs). A new WRI/Oxfam working paper published today explains why reducing SLCPs should be a big part of every country's climate and development agendas, and how countries' NDCs can produce effective and equitable actions. 1) Short-Lived Climate Pollutants Impact Health and Agriculture Despite their esoteric name, short-lived climate pollutants matter to all of us. They're a consequence of how we produce energy, grow food, drive and cool ourselves. Methane is perhaps the best-known SLCP, emitted as a result of oil and gas production, as well as by rice production, livestock and during the decay of organic waste in landfills and water treatment facilities. Tropospheric ozone forms as a byproduct of other air pollutants, including methane. Burning biomass for cookstoves or burning coal for electricity and household heating can produce black carbon. HFCs are a product of air conditioning and refrigeration systems, both of which are on the rise as temperatures and incomes around the world go up. While SLCPs are often emitted from food production and everyday household practices, they can also be harmful. For example, tropospheric ozone is a health hazard and reduces crop yields, while black carbon increases the risk of heart and lung disease. At a global level, experts estimate that reducing SLCPs can prevent as much as 52 million metric tons of crop losses per year, and avoid an estimated 2.4 million premature deaths from outdoor air pollution annually by 2030. Reducing SLCPs can therefore provide many sustainable development benefits, including poverty reduction, food security, improved health, clean energy, gender equality and more sustainable cities. However, governments should be careful to implement policies that respect and respond to community needs. For example, to reduce black carbon emissions from cooking and heating, cleaner fuels must first be readily available and affordable. However, solutions must factor in the cultural sensitivities and nuances associated with cooking in particular places and cultures in order to deliver equitable benefits to people—particularly opportunities for women and girls. 2) We Need to Reduce Short-Lived Climate Pollutants Now to Limit Global Warming to 1.5°C Reducing SLCPs is also central to fighting climate change. SLCPs have a powerful impact on global temperature and the climate system, particularly over shorter time horizons. Despite being short-lived, they are highly potent and currently produced continuously from many sources. Significant reductions in SLCPs can avoid 0.6 degrees Celsius (1.1 degrees F) of warming by mid-century—an essential down payment on limiting temperature rise to 1.5-2 degrees Celsius (2.7-3.6 degrees Fahrenheit), the level scientists say is necessary for preventing the worst impacts. Indeed, without a focus on SLCPs, we increase the risk of overshooting 1.5 degrees Celsius of warming and triggering potential tipping points – dangerous feedback loops in the climate system that are irreversible, impossible to recover from, and which would likely disproportionately affect the world's poorest and most vulnerable communities.
  3. Figure SPM.5 | Radiative forcing estimates in 2011 relative to 1750 and aggregated uncertainties for the main drivers of climate change. Values are global average radiative forcing (RF14), partitioned according to the emitted compounds or processes that result in a combination of drivers. The best estimates of the net radiative forcing are shown as black diamonds with corresponding uncertainty intervals; the numerical values are provided on the right of the figure, together with the confidence level in the net forcing (VH – very high, H – high, M – medium, L – low, VL – very low). Albedo forcing due to black carbon on snow and ice is included in the black carbon aerosol bar. Small forcings due to contrails (0.05 W m–2, including contrail induced cirrus), and HFCs, PFCs and SF6 (total 0.03 W m–2) are not shown. Concentration-based RFs for gases can be obtained by summing the like-coloured bars. Volcanic forcing is not included as its episodic nature makes is difficult to compare to other forcing mechanisms. Total anthropogenic radiative forcing is provided for three different years relative to 1750. For further technical details, including uncertainty ranges associated with individual components and processes, see the Technical Summary Supplementary Material. {8.5; Figures 8.14–8.18; Figures TS.6 and TS.7}
  4. Fig. 1. Observed temperatures (42) through 2009 and projected temperatures thereafter under various scenarios, all relative to the 1890–1910 mean. Results for future scenarios are the central values from analytic equations estimating the response to forcings calculated from composition-climate modeling and literature assessments (7). The rightmost bars give 2070 ranges, including uncertainty in radiative forcing and climate sensitivity. A portion of the uncertainty is systematic, so that overlapping ranges do not mean there is no significant difference (for example, if climate sensitivity is large, it is large regardless of the scenario, so all temperatures would be toward the high end of their ranges; see www. giss.nasa.gov/staff/dshindell/Sci2012).
  5. A special World Health Organization (WHO) report released today calls on all countries to “identify and promote actions to reduce both carbon emissions and air pollution, with specific commitments to reduce emissions of short-lived climate pollut­ants in their Nationally Determined Contributions (NDCs)”. The report continues, “targeted action on short-lived climate pol­lutants would help to save over two mil­lion lives each year and reduce the extent of global warming by 0.5 °C, by the middle of the century” and makes the point that integrating actions on climate mitigation, air quality management and health would result in more gains and improve the efficiency of public policy. “We focus on short-lived climate pollutants because of two things – one, the link to health – these are air pollutants that have the most immediate impact on health and tackling them makes real sense, and two because the temperature impact of these highly warming pollutants is many times that of carbon dioxide,” Mr McDougal said. “But since these substances are short lived in the atmosphere, action to prevent their emissions can have an immediate effect on temperature,” “By taking global action the world can avoid up to 0.6 degrees Celsius of warming between now and 2050," he said. "So, if we are going to meet the targets set in the Paris Agreement we have to absolutely tackle SLCPs in addition to carbon dioxide.” The report singles out two short lived climate pollutants with the greatest impact on climate change and health, black carbon and methane. Black carbon (or soot), is produced by inefficient combustion in sources such as cookstoves and diesel engines. Black carbon affects regional climate systems, accelerating glacier retreat in mountainous regions and the Arctic and disrupting the South Asian mon­soon. It is also a significant contributor (5–15%) of urban exposure to fine particulate matter. Methane is a powerful greenhouse gas which reacts with other pollutants to form ozone at ground level, which is responsible for 230 000 deaths from chronic res­piratory disease each year. Reducing short-lived climate pollutants is the first of seven recommendations made in the report. The other six are: Include the health implications of miti­gation and adaptation measures in the design of economic and fiscal policies, in­cluding carbon pricing and the reform of fossil fuel subsidies. Include the commitments to safeguard health from the UNFCCC and Paris Agreement, in the rulebook for the Paris Agreement; and systematically include health in NDCs, National Adaptation Plans and National Communications to the UNFCCC. Remove existing barriers to investment in health adaptation to climate change, especially for climate-resilient health systems and “climate-smart” health care facilities. Facilitate and promote the engagement of the health community as trusted, connected and committed advocates for climate action. Mobilize city Mayors and other subnational leaders, as champions of intersectoral action to cut carbon emissions, increase resilience, and promote health. Systematically track progress in health resulting from climate change mitigation and adaption, and report to the UN Framework Convention on Climate Change, global health governance processes and the monitoring system for the SDGs. The report urges countries to do more to mitigate against climate change saying the benefits far outweigh the costs. If the mitigation commitments in the Paris Agree­ment are met, the report says, millions of lives could be saved through reduced air pollution, by the middle of the century. More stringent mitigation policies would also re­sult in greater health benefits. According to the report, the most recent evidence indicates that the health gains from ener­gy scenarios to meet the Paris climate goals would more than meet the financial cost of mitigation at global level and would exceed that in countries such as China and India by several times. The report warns that failure to act undermines the social and environmental determinants of health, includ­ing people’s access to clean air, safe drinking-wa­ter, sufficient food and secure shelter. Climate change will affect the health particularly in the poorest, most vulnerable communities such as small-island developing States (SIDS) and least developed countries, thus widening health inequities. The COP 24 Special Report: Health and Climate Change was written at the request of Frank Bainimarama, COP 23 President and Prime Minister of Fiji, with the aim to provide: Global knowledge on the interconnection between climate change and health. An overview of the initiatives and tools with which the national, regional and global public health community is supporting and scaling up actions to implement the Paris Agreement for a healthier, more sustainable society. Recommendations for UNFCCC negotiators and policy-makers on maximizing the health benefits of tackling climate change and avoiding the worst health impacts of this global challenge.
  6. Figure 41. GTP and GWP values for several time horizons for BC climate forcing. Values are shown for the BC direct effect and the total climate forcing. The calculations use the industrial-era climate forcing values displayed in Figure 35 and an annual BC emission of 8700 Gg yr1. The whiskers represent the un- certainty range as described in the text.
  7. Los 109.9 milones de tCO2e son estimados usando los PCG_100 del AR2. Por ejemplo, el PCG de metano en dicho AR era de 21, mientras que en el AR5 es 28.
  8. Figure 42. Conceptual framework for evaluating the feasibility of mitigating environmental impacts. The principal aspects are scientific understanding and technical and programmatic feasibility. Each aspect has evo- lutionary phases that reach maturity in several steps. Different emission sources are generally at different phases in the evolution of knowledge associated with each mitigation aspect. This assessment has primarily focused on the aspect of scientific understanding.
  9. Black Carbon Black carbon results from incomplete combustion of biomass and fossil fuels. Its major sources are diesel cars and trucks, cook stoves, forest fires, and agricultural open burning. Black carbon has a short atmospheric lifetime, on the order of a few days to weeks. Due to a very brief atmospheric lifetime, black carbon’s climate effects are strongly regional. Black carbon particles give soot its black color and, like any black surface, strongly absorb sunlight. In snow-covered areas, the deposition of black carbon darkens snow and ice, increasing their absorption of sunlight and making them melt more rapidly. Black carbon may be responsible for a significant fraction of recent warming in the rapidly changing Arctic, contributing to the acceleration of sea ice loss, and melting of glaciers, which are a major source of fresh water for millions. Additionally, since black carbon contributes to respiratory and cardiovascular illnesses, reductions in this pollutant would have significant co-benefits for human health, particularly in developing countries. Black carbon’s short lifetime also means that its contribution to climate warming Methane Methane has an atmospheric lifetime of about 12 years and a global warming potential of 28 over a hundred-year period. It makes up about 10 percent of greenhouse gas emissions in the United States and roughly 16 percent worldwide. Globally, methane emissions are generated primarily by ruminant livestock (produced by bacteria in the rumen of animals as a result of the fermentation process, known as enteric fermentation), oil and gas production and distribution, coal mining, solid waste landfills, cultivation of rice, and biomass burning. Reductions in methane emissions also improve local air quality by reducing volatile organic compounds, hazardous air pollutants, and ground-level ozone, which harms agriculture and human health. Tropospheric Ozone Ozone occurs at both the troposphere (ground level) and in the stratosphere. Tropospheric ozone is created from the chemical reactions of carbon monoxide, nitrogen oxides, and volatile organic compounds, known as precursors. Ground-level ozone, carbon monoxide, and nitrogen dioxide are all known as criteria air pollutants, regulated by the EPA due to their harmful health effects. They are found at the source of any fossil fuel combustion, and reducing fossil fuel use at power plants, industrial facilities, and vehicles can reduce ozone levels. Fluorinated gases Fluorinated gases (F-gases) are created from human-related activity. There are four types of F-gases: hydrofluorocarbons, perfluorocarbons, nitrogen fluoride, and sulfur hexafluoride. Usage of hydrofluorocarbons and perfluorocarbons have increased in the last two decades because they are good substitutes to ozone depleting substances that were phased out under the Montreal Protocol. Hydrofluorocarbons are used in air conditioning, refrigeration, foam blowing, aerosols, and as solvents. Hydrofluorocarbons are the fastest-growing greenhouse gases, increasing globally at a rate of 10 percent to 15 percent per year. The global warming potential of HFCs can be thousands of times greater than carbon dioxide’s and can have a significant impact on climate change. The greatest source of HFCs, and the greatest source of any high global warming potential gas, is leakage from refrigeration and air conditioning equipment. Given their high emission rates and, on average, have a relatively short atmospheric lifetime (compared to carbon dioxide), efforts to reduce hydrofluorocarbon emissions in the near term will significantly reduce projected temperature increases in the coming decades. While hydrofluorocarbons now contribute 2 percent of total global warming emissions, their use is expected to grow dramatically over time (see Figure below).
  10. Figure 8. Emission rates of BC in the year 2000 by source category and ratios of co-emitted aerosols (e.g., primary organic aerosol, POA) and aerosol precursors (e.g., SO2) to BC. For reference, it is often assumed that the ratio of OA to primary organic carbon (OC) varies from 1.1 to 1.4, depending on the source (section 3.2.2). SPEW emissions are shown as colored bars and are described by Lamarque et al. [2010]. GAINS estimates are from UNEP/WMO [2011a, 2011b], and RETRO emissions for open burning are described by Schultz et al. [2008]. Sulfur emissions from Streets et al. [2009] were used for ratios to SPEW. Regions are shown in Figure 7.
  11. Figure 35. Globally averaged climate forcing in units of W m2 from BC emissions in the year 2005 compared to those in 1750 (the industrial era). The bars and whiskers show the best estimates and uncer- tainties, respectively, of the different climate forcing terms from BC acting alone. The exception is the bot- tom bar which shows the net climate forcing from BC and its co-emitted species from BC-rich sources. Whiskers represent the assessed 90% uncertainty range (5% to 95%). The three smaller bars immediately below the direct forcing bar and legend display the separate contributions to industrial-era radiative forc- ing from fossil fuel, biofuel, and open burning emissions. The white line on the combined liquid-cloud forcing bar indicates the 0.10 0.2 W m2 contribution from semi-direct effects. The additional direct forcing of +0.17 W m2 shown with the dashed line represents the direct radiative forcing from pre-indus- trial emissions (i.e., prior to 1750). The combined colored and dashed bar represents our estimate of the all-source (i.e., natural plus anthropogenic) direct radiative forcing, namely, a +0.88 W m2 best estimate with a +0.18 to +1.47 W m2 uncertainty range (section 6). Likewise, the dashed line on the snow and sea- ice terms corresponds to their additional climate forcing prior to 1750, and the combined bars give their all source forcing (section 8). For snow and ice effects, their adjusted forcing and radiative forcings, respec- tively, have been scaled by their higher efficacy to give effective forcings as shown. The total climate forc- ing from all BC effects is shown as 1.1Wm2. The uncertainty for this bar is assessed using a Monte Carlo method that assumes correlated errors in some of the forcing terms (see text for details). The col- umns on the right give the numeric value for each climate forcing and its uncertainty; they also present a level of scientific understanding (LOSU) for each forcing term. LOSU follows IPCC practice [Forster et al., 2007] and represents our assessment of confidence in our own evaluation of a given climate forcing (see Table 26 and section 10 for further details). See Figure 38 and section 11 for details of the total cli- mate forcing resulting from co-emissions from BC-rich sources shown in the bottom bar.
  12. Figure 37. Total climate forcing for BC-rich source categories continuously emitting at year-2000 rates scaled to match observations in 2005. Three sets of climate forcings are shown for each source as bars with a best estimate (black circle) and uncertainty range. The top bar contains the components for which attri- bution to particular species is straightforward: direct forcing by aerosol and most gases, and cryosphere forcing by aerosol (including climate feedback). The second bar shows the components for which there is less confidence in apportionment to individual species and, therefore, to sources. These components in- clude all cloud indirect effects and forcing by nitrate from NOx. Effects of BC on liquid clouds include the cloud albedo and semi-direct effects. Other BC-cloud forcings represent the effects of cloud absorption, mixed-phase clouds, and ice clouds. The bottom bar in each group shows estimated net climate forcing by each emission source, combining all forcings and their uncertainties.
  13. Figure 40. First-year and longer-term climate forcing of BC sources. The forcings are shown by cate- gory (top panel) and by source activity (bottom panel) corresponding to the categories in Figures 37 and 39. Totals and individual terms that make up integrated long-term (1–100 year) climate forcings, ex- cluding the first-year forcing, are shown for individual terms and the total forcing with the first-year forc- ing excluded. The total for the first-year forcing and its uncertainty are also shown in both panels. This figure shows integrated forcing from (a) a single year of emissions (top: 2000 emission rates scaled to match atmospheric observations) or (b) a finite quantity of fuel burned, and does not assume that emis- sions are sustained.
  14. ***Lac: Cual es el de reduccion considerado para el SCR para cada contaminante?
  15. Black Carbon Black carbon results from incomplete combustion of biomass and fossil fuels. Its major sources are diesel cars and trucks, cook stoves, forest fires, and agricultural open burning. Black carbon has a short atmospheric lifetime, on the order of a few days to weeks. Due to a very brief atmospheric lifetime, black carbon’s climate effects are strongly regional. Black carbon particles give soot its black color and, like any black surface, strongly absorb sunlight. In snow-covered areas, the deposition of black carbon darkens snow and ice, increasing their absorption of sunlight and making them melt more rapidly. Black carbon may be responsible for a significant fraction of recent warming in the rapidly changing Arctic, contributing to the acceleration of sea ice loss, and melting of glaciers, which are a major source of fresh water for millions. Additionally, since black carbon contributes to respiratory and cardiovascular illnesses, reductions in this pollutant would have significant co-benefits for human health, particularly in developing countries. Black carbon’s short lifetime also means that its contribution to climate warming Methane Methane has an atmospheric lifetime of about 12 years and a global warming potential of 28 over a hundred-year period. It makes up about 10 percent of greenhouse gas emissions in the United States and roughly 16 percent worldwide. Globally, methane emissions are generated primarily by ruminant livestock (produced by bacteria in the rumen of animals as a result of the fermentation process, known as enteric fermentation), oil and gas production and distribution, coal mining, solid waste landfills, cultivation of rice, and biomass burning. Reductions in methane emissions also improve local air quality by reducing volatile organic compounds, hazardous air pollutants, and ground-level ozone, which harms agriculture and human health. Tropospheric Ozone Ozone occurs at both the troposphere (ground level) and in the stratosphere. Tropospheric ozone is created from the chemical reactions of carbon monoxide, nitrogen oxides, and volatile organic compounds, known as precursors. Ground-level ozone, carbon monoxide, and nitrogen dioxide are all known as criteria air pollutants, regulated by the EPA due to their harmful health effects. They are found at the source of any fossil fuel combustion, and reducing fossil fuel use at power plants, industrial facilities, and vehicles can reduce ozone levels. Fluorinated gases Fluorinated gases (F-gases) are created from human-related activity. There are four types of F-gases: hydrofluorocarbons, perfluorocarbons, nitrogen fluoride, and sulfur hexafluoride. Usage of hydrofluorocarbons and perfluorocarbons have increased in the last two decades because they are good substitutes to ozone depleting substances that were phased out under the Montreal Protocol. Hydrofluorocarbons are used in air conditioning, refrigeration, foam blowing, aerosols, and as solvents. Hydrofluorocarbons are the fastest-growing greenhouse gases, increasing globally at a rate of 10 percent to 15 percent per year. The global warming potential of HFCs can be thousands of times greater than carbon dioxide’s and can have a significant impact on climate change. The greatest source of HFCs, and the greatest source of any high global warming potential gas, is leakage from refrigeration and air conditioning equipment. Given their high emission rates and, on average, have a relatively short atmospheric lifetime (compared to carbon dioxide), efforts to reduce hydrofluorocarbon emissions in the near term will significantly reduce projected temperature increases in the coming decades. While hydrofluorocarbons now contribute 2 percent of total global warming emissions, their use is expected to grow dramatically over time (see Figure below).
  16. 3 Charts Explain One of the Most Overlooked Opportunities to Address Climate Change and Poverty by Katherine Ross Katherine Ross and Thomas Damassa - October 02, 2018 Most people associate climate change with carbon dioxide, a long-lived greenhouse gas (GHG). But scientists estimate that carbon dioxide (CO2) is only responsible for about half of the world's current warming. The other half comes from lesser known but highly potent short-lived climate pollutants (SLCPs), such as methane, black carbon, hydrofluorocarbons (HFCs) and tropospheric ozone. SLCPs have a powerful impact on global temperature and the climate system, particularly over short time horizons. For example, methane has a warming impact that is 86 times that of carbon dioxide over a twenty-year time horizon. In the near term, taking fast, ambitious action to reduce SLCPs is vital to reducing the rate of global warming and keeping temperature rise below 1.5 degrees Celsius (2.7 degrees Fahrenheit)—an ambition that all countries signed on to as part of the Paris Agreement and an essential goal for ensuring poor and vulnerable communities are spared from climate catastrophes. Reducing SLCPs also can save lives and deliver multiple benefits for sustainable development and human well-being. Yet despite their significance, SLCPs are not well represented in countries' national climate plans, known as nationally determined contributions (NDCs). A new WRI/Oxfam working paper published today explains why reducing SLCPs should be a big part of every country's climate and development agendas, and how countries' NDCs can produce effective and equitable actions. 1) Short-Lived Climate Pollutants Impact Health and Agriculture Despite their esoteric name, short-lived climate pollutants matter to all of us. They're a consequence of how we produce energy, grow food, drive and cool ourselves. Methane is perhaps the best-known SLCP, emitted as a result of oil and gas production, as well as by rice production, livestock and during the decay of organic waste in landfills and water treatment facilities. Tropospheric ozone forms as a byproduct of other air pollutants, including methane. Burning biomass for cookstoves or burning coal for electricity and household heating can produce black carbon. HFCs are a product of air conditioning and refrigeration systems, both of which are on the rise as temperatures and incomes around the world go up. While SLCPs are often emitted from food production and everyday household practices, they can also be harmful. For example, tropospheric ozone is a health hazard and reduces crop yields, while black carbon increases the risk of heart and lung disease. At a global level, experts estimate that reducing SLCPs can prevent as much as 52 million metric tons of crop losses per year, and avoid an estimated 2.4 million premature deaths from outdoor air pollution annually by 2030. Reducing SLCPs can therefore provide many sustainable development benefits, including poverty reduction, food security, improved health, clean energy, gender equality and more sustainable cities. However, governments should be careful to implement policies that respect and respond to community needs. For example, to reduce black carbon emissions from cooking and heating, cleaner fuels must first be readily available and affordable. However, solutions must factor in the cultural sensitivities and nuances associated with cooking in particular places and cultures in order to deliver equitable benefits to people—particularly opportunities for women and girls. 2) We Need to Reduce Short-Lived Climate Pollutants Now to Limit Global Warming to 1.5°C Reducing SLCPs is also central to fighting climate change. SLCPs have a powerful impact on global temperature and the climate system, particularly over shorter time horizons. Despite being short-lived, they are highly potent and currently produced continuously from many sources. Significant reductions in SLCPs can avoid 0.6 degrees Celsius (1.1 degrees F) of warming by mid-century—an essential down payment on limiting temperature rise to 1.5-2 degrees Celsius (2.7-3.6 degrees Fahrenheit), the level scientists say is necessary for preventing the worst impacts. Indeed, without a focus on SLCPs, we increase the risk of overshooting 1.5 degrees Celsius of warming and triggering potential tipping points – dangerous feedback loops in the climate system that are irreversible, impossible to recover from, and which would likely disproportionately affect the world's poorest and most vulnerable communities.