SlideShare uma empresa Scribd logo
1 de 61
A Programmable VCO
for DVB-H Application
Saralah Alizadeh Arand
In The Name Of ALLAH
1
Saralah Alizadeh Arand
Outline
 Oscillator Basics
 Phase-noise
 VCO
 Noise Sources in VCO
 Design procedure
 Layout & post layout
 Comparison
 Conclusion
Oscillator Basics
2
Saralah Alizadeh Arand
 Oscillator Basics
 Feedback Model
 Negative resistance Model
Oscillator Basics
 What is an Oscillator?
 A circuit that produces an output signal of a specific frequency
 Oscillator Models
 Feedback :
 Negative Resistance:
Oscillator Basics
3
OSC
Vdd
Vout
Vss
Saralah Alizadeh Arand
Vdd
A
G
Vin Vout
+
+
-RA RP
Active
Circuit
Resonator
Feedback Model
 Feedback Model:
 Positive Feedback
 Transfer Function:
 Oscillation Condition:
 barkhausen criterion:
 The energy in the feedback path is the same magnitude and phase
as the input
Oscillator Basics
A
G
Vin Vout
+
+
G . A = 1∠0°
𝑉𝑜𝑢𝑡
Vin
=
G
1 − G . A
4
Saralah Alizadeh Arand
Feedback Model…
 For Stable Oscillation:
 Barkhausen Criterion Is Not Enough
 A Frequency Selective Element
 E.g. A Tank Circuit
 An Amplitude Limitig Element
 Nonlinear Behavior Of Devices Like Transistor
Oscillator Basics
5
Saralah Alizadeh Arand
Vdd
G
Vin Vout
+
+
Negative Resistance Model
 Negative Resistance:
 Oscillator:
 Negative Resistance (Active Circuit)
 Resonator (e.g. Tank Circuit)
 For A Stable Oscillation
 𝑹𝑷 + (−𝑹𝑨) = 𝟎 ⇒ 𝑹𝑷 = 𝑹𝑨
 NMOS Oscillator:
 Negative Resistance:
 𝑹𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 = −
𝟐
𝑮𝒎
 Oscillation Criteria:
 𝑮𝒎𝑻𝑶𝑻𝑨𝑳
. 𝑹𝑷 = 𝟏
 For Start up
 𝑮𝒎𝑻𝑶𝑻𝑨𝑳. 𝑹𝑷 > 𝟏
Oscillator Basics
-RA RP
Active
Circuit
Resonator
6
Saralah Alizadeh Arand
Negative
Resistance
Tank Circuit
Vdd
Vdd
Outline
 Oscillator Basics
 VCO
 Noise Sources in VCO
 Design procedure
 Layout & post layout
 Comparison
 Conclusion
7
Saralah Alizadeh Arand
 Phase Noise basics
 Leeson Model
 Phase-noise
Phase-noise
 Hajimiri Model
Phase-noise Basics
 What is the definition of Phase-noise?
 Noise power level at a frequency offset from the 𝝎𝟎
 The power is measured relative to the carrier
 Unit: dBc/Hz
Phase-noise
8
𝜔0
𝑃𝑆
𝑃𝑆𝑆𝐵
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
∆𝜔
1 𝐻𝑧
ℒ𝑡𝑜𝑡𝑎𝑙 ∆𝜔 = 10 log
𝑃𝑠𝑖𝑑𝑒𝑏𝑎𝑛𝑑 𝜔0 + Δ𝜔, 1𝐻𝑧
𝑃𝑐𝑎𝑟𝑟𝑖𝑒𝑟
Saralah Alizadeh Arand
Phase-noise Basics…
 Why Is Phase-noise Important?
Phase-noise
9
Saralah Alizadeh Arand
IF Filter
Phase-noise Models
 Phase-noise Models:
 Linear-Time Invariant Model (Leeson Model)
 Linear-Time Variant Model (Hajimiri Model)
Phase-noise
10
Saralah Alizadeh Arand
Leeson Model
 Linear-Time Invariant Model (Leeson Model)
 Phase noise:
 F: Active Device Noise Factor
 K: Boltzmans Constant
 T: Temperature
 Po: Output Power
 𝝎𝟎: Oscillator Center Frequency
 QL: loaded resonator quality factor
 𝚫𝝎 : frequency offset from carrier
Phase-noise
11
∆𝜔1/ 3
L (∆𝜔)
𝜔0/2
slope = 3 (due to 1/f3
)
slope = 2 (due to 1/f2
)
Noise floor
ℒ 𝜔0, Δ𝜔 = 10 log
2𝐹𝑘𝑇
𝑃0
. 1 +
𝜔0
2 𝐿Δ𝜔
2
. 1 +
𝜔𝑐
Δ𝜔
Saralah Alizadeh Arand
Leeson Model …
 Derivation of Leeson’s Equation:
 Using Feedback Model
 Transfer Function is:
 Oscillation Condition:
 Without loss of generality:
 𝑭 𝒔 is set equal to 1
 𝑩 𝒔  A Transconductance and a Tank circuit
Phase-noise
12
Saralah Alizadeh Arand
+
+
B(s)
F(s) Y(s)
X(s)
𝐻 𝑠 =
𝑌 𝑠
𝑋 𝑠
=
𝐹 𝑠
1 − 𝐹 𝑠 . 𝐵 𝑠
𝐹 𝑠 . 𝐵 𝑠 = 1
G(s)
+
+
Y(s)
X(s)
RP
Leeson Model …
 The impedance of the tank Circuit
 If : ∆𝜔 ≪ 𝜔0
 Noise Power Spectral Density :
Phase-noise
13
Saralah Alizadeh Arand
G(s)
+
+
Y(s)
X(s)
RP
𝑍 𝜔0 + ∆𝜔 =
𝑅𝑃
1 + 𝑗2 𝐿
∆𝜔
𝜔0
𝐻 𝑗𝜔 =
1
1 −
𝐺𝑚𝑅𝑃
1 + 𝑗2 𝐿
∆𝜔
𝜔0
= 1 +
1
𝑗2 𝐿
∆𝜔
𝜔0
𝐻 𝑠 =
𝐹 𝑠
1 − 𝐹 𝑠 . 𝐵 𝑠
𝑅𝑃. Gm = 1
𝑆𝑌 ∆𝜔 = 𝑆𝑋 ∆𝜔 . 𝐻 𝑗𝜔 . 𝐻∗
(𝑗𝜔)
𝑆𝑋 ∆𝜔 = 4FkT . 1 +
𝜔𝑐
Δ𝜔
𝑆𝑌 ∆𝜔 = 4FkT . 1 +
𝜔𝑐
Δ𝜔
. 1 +
1
𝑗2 𝐿
∆𝜔
𝜔0
. 1 −
1
𝑗2 𝐿
∆𝜔
𝜔0
ℒ 𝜔0, Δ𝜔 = 10 log
2𝐹𝑘𝑇
𝑃0
. 1 +
𝜔0
2 𝐿Δ𝜔
2
. 1 +
𝜔𝑐
Δ𝜔
 Phase noise:
Hajimiri Model …
 Linear-Time Variant Model (Hajimiri Model)
 Time Variant Model
 ISF (Impulse Sensitivity Function) (𝛤)
 Dimensionless
 Frequency Independent
 Amplitude Independent
 Periodic in 2𝝅
Phase-noise
14
Saralah Alizadeh Arand
C
L
i(t)
Hajimiri Model …
 Excess Phase:
 ISF is periodic and expressible as a Fourier series:
Phase-noise
15
Saralah Alizadeh Arand
𝛥𝜙 = 𝛤 𝜔0𝜏 .
𝛥𝑞
𝑞𝑚𝑎𝑥
ℎ𝜙 𝑡, 𝜏 =
𝛤 𝜔0𝜏
𝑞𝑚𝑎𝑥
. 𝑢(𝑡 − 𝜏)
𝜙 𝑡 =
−∞
∞
ℎ𝜙 𝑡, 𝜏 . 𝑖 𝜏 𝑑𝜏 =
−∞
𝑡
Γ 𝜔0𝜏
𝑞max
. 𝑖 𝜏 𝑑𝜏
𝛤 𝜔0𝜏 = 𝑐0 +
𝑛=1
∞
𝑐𝑛. cos 𝑛𝜔0𝜏
𝜙 𝑡 =
1
𝑞max
𝑐0
−∞
𝑡
𝑖 𝜏 𝑑𝜏 +
𝑛=1
∞
𝑐𝑛.
−∞
𝑡
𝑖 𝜏 𝑑𝜏 cos 𝑛𝜔0𝜏 𝑑𝜏
Hajimiri Model …
 Conversion of circuit noise to Excess Phase and Phase noise
 For input Noise Current:
 Phase noise:
 Phase noise in 𝟏/𝒇𝟐
Region:
Phase-noise
16
Saralah Alizadeh Arand
𝑖 𝜏 = 𝐼𝑛 cos[(𝑛𝜔0 + ∆𝜔)𝑡] 𝜙 𝑡 ≅
𝐼𝑛𝐶𝑛 sin ∆𝜔 𝑡
2𝑞𝑚𝑎𝑥 . ∆𝜔
𝑣𝑜𝑢𝑡 = Cos 𝜔0𝑡 + 𝜙 𝑡 𝑃𝑆𝐵𝐶 ∆𝜔 ≅ 10 log
𝐼𝑛𝐶𝑛
4 𝑞𝑚𝑎𝑥 ∆𝜔
2
𝐿 ∆𝜔 = 10 log10
𝑖𝑛
2
∆ 𝑛=0
∞
𝑐𝑛
2
4 . 𝑞𝑚𝑎𝑥
2
∆𝜔2
𝑛=0
∞
𝑐𝑛
2
=
1
𝜋
0
2𝜋
Γ 𝑥 2
𝑑𝑥 = 2Γ𝑟𝑚𝑠
2
𝐿 ∆𝜔 = 10 𝑙𝑜𝑔
Γ𝑟𝑚𝑠
2
𝑞𝑚𝑎𝑥
2 .
𝑖𝑛
2 Δ
2. Δ𝜔2
L (∆𝜔)
Log(∆𝜔)
1/f2
Region
Hajimiri Model …
 Phase noise in 𝟏/𝒇𝟑
Region :
 Current noise in 1/f region:
 Current noise in 1/f region:
 Reducing c0 will reduce flicker noise upconvertion.
 𝟏/𝒇𝟑 Corner Frequency:
Phase-noise
17
Saralah Alizadeh Arand
𝑖𝑛
2
,1 𝑓 = 𝑖𝑛
2
.
𝜔1 𝑓
Δ𝜔
𝐿 ∆𝜔 = 10 𝑙𝑜𝑔
𝑐0
𝑞𝑚𝑎𝑥
2 .
𝑖𝑛
2
Δ
8. Δ𝜔2
𝜔1 𝑓
Δ𝜔
L (∆𝜔)
Log(∆𝜔)
1/f 2
Region
1/f 3
Region
𝜔1 𝑓3 = 𝜔1 𝑓
𝑐0
2Γ𝑟𝑚𝑠
2
2
≈ 𝜔1 𝑓.
1
2
𝑐0
𝑐1
2
Hajimiri Model …
 The noise sources in many oscillators cannot be well modeled as
stationary
 Noise currents are a function of bias currents
 Cyclostationary
 𝜶 𝒙 :
 A deterministic periodic function that describing the noise
amplitude modulation
 Can be derived from device noise characteristics and operating
point
Phase-noise
18
Saralah Alizadeh Arand
𝜞𝒆𝒇𝒇 𝒙 = 𝚪 𝒙 . 𝜶 𝒙
Outline
 Oscillator Basics
 Phase-noise
 Noise Sources in VCO
 Design procedure
 Layout & post layout
 Comparison
 Conclusion
19
Saralah Alizadeh Arand
 VCO Basics
 VCO Structures
 VCO
VCO
VCO Basics
 VCO?
 A Circuit with an input Vtune and a periodic oscillating output
 VCO in an RF Link:
VCO
20
Saralah Alizadeh Arand
VCO
Vdd
Vout
Vtune
Vss
𝑉𝑂𝑈𝑇 = 𝑉0 sin 𝜔𝑐𝑡 + 𝜙
VCO Basics…
 VCO Parameters:
 Tuning Range:
 VCO Gain:
 An Important parameter in PLL
VCO
21
Saralah Alizadeh Arand
𝑇𝑢𝑛𝑖𝑛𝑔 𝑅𝑎𝑛𝑔𝑒 =
𝑚𝑎𝑥 − 𝑚𝑖𝑛
𝑐𝑒𝑛𝑡𝑒𝑟
𝐾𝑉𝐶𝑂 =
𝑑
𝑑𝑉𝑡𝑢𝑛𝑒
Frequency
Tuning Volatge
fmax
fmin
fc
K
VCO
Tuning Volatge
VCO Structures
 VCO Structures:
 NMOS & PMOS Structures:
 CMOS Structures:
VCO
22
Saralah Alizadeh Arand
Vdd
Vdd
Vdd Vdd
Vdd
VCO Structures…
 NMOS Structures
 Due to the inductors to the supply:
 Swing is up to twice the power supply voltage on each node
 Signal maximization Phase noise minimization
 (a) has a differential structure:
 Smaller harmonic distortion
 More symmetrical waveform
 Lower flicker noise upconversion
 (b) has less sensitivity to supply noise
 (a) has less sensitivity to ground noise
VCO
23
Saralah Alizadeh Arand
Vdd
Vdd
(a) (b)
VCO Structures…
 PMOS Structures
 Same as NMOS structures but:
 PMOS is not as fast as NMOS
 For the same transconductance  PMOS width is larger
 PMOS has lower flicker noise
VCO
24
Saralah Alizadeh Arand
a b
VCO Structures…
 CMOS Structures
 Negative resistance is generated by NMOS and PMOS
 It enabling to half power consumption For the same negative
resistance
 Removing the current source Structure (c)
 Advantages:
 Signal swing is maximized
 Tail is an important noise source
 Disadvantages:
 Higher harmonic distortion
 Higher upconversion of flicker noise
 Higher power supply sensitivity
VCO
25
Saralah Alizadeh Arand
Vdd Vdd
Vdd
a b c
VCO Structures…
 ISFeff Calculation:
 𝜞 𝒙 − Approximation:
 𝜶 𝒙 − Approximation:
 Noise sources:
 Thermal
 Flicker:
VCO
26
Saralah Alizadeh Arand
Γeff 𝑥 = Γ 𝑥 . 𝛼 𝑥
Γ 𝑥 =
′
′2
+ ′′2
𝐼2 = 4kTλ gm gm ∝ 𝑉
𝑔𝑠 − 𝑉𝑇 𝛼𝑡ℎ 𝑡 =
𝐼2 𝑡
𝐼2
𝑚𝑎𝑥
=
𝑉
𝑔𝑠 𝑡 − 𝑉𝑇
𝑉
𝑔𝑠,𝑚𝑎𝑥 − 𝑉𝑇
𝑉
𝑛
2
(Δ ) =
𝐾 𝐼𝐷𝑆
Δ 𝐶𝑜𝑥𝐿𝑒𝑓𝑓
2 𝛼1/𝑓 𝑡 =
𝑉
𝑛
2
𝑉
𝑛,𝑚𝑎𝑥
2 =
𝐼𝐷𝑆 𝑡
𝐼𝐷𝑆,𝑚𝑎𝑥
VCO Structures…
 ISFeff Comparison
VCO
27
Saralah Alizadeh Arand
0 0.2 0.4 0.6 0.8 1 1.2
x 10
-9
-1.5
-1
-0.5
0
0.5
1
1.5
NMF
ISF
ISFeff
Vdd
Vdd
 PMOS Structure:
 NMOS Structure:
 CMOS Structure:
0 0.2 0.4 0.6 0.8 1 1.2
x 10
-9
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
NMF
ISF
ISFeff
Vdd
0 0.5 1 1.5 2 2.5
x 10
-9
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
NMF
ISF
ISFeff
VCO Structures…
 ISFeff Comparison
VCO
28
Saralah Alizadeh Arand
0 0.2 0.4 0.6 0.8 1 1.2
x 10
-9
-1.5
-1
-0.5
0
0.5
1
1.5
NMF
ISF
ISFeff
Vdd
Vdd
0 0.2 0.4 0.6 0.8 1 1.2
x 10
-9
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
NMF
ISF
ISFeff
Vdd
0 0.5 1 1.5 2 2.5
x 10
-9
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
NMF
ISF
ISFeff
Outline
 Oscillator Basics
 Phase-noise
 VCO
 Design procedure
 Layout & post layout
 Comparison
 Conclusion
29
Saralah Alizadeh Arand
 Current Source Noise
 Cross Coupled Transistors Noise
Noise Sources in VCO
 Noise Sources in VCO
Noise Sources in VCO
 Current Source Noise
 Thermal Noise
 Flicker Noise
 Cross Coupled Transistors Noise
 Thermal Noise
 Flicker Noise
Noise Sources in VCO
30
Saralah Alizadeh Arand
Vdd
Vtune
Current Source Noise
 Current Source Noise
 Thermal Noise:
 Noise in 𝜔0 ⇒ Mixer ⇒ Low Frequency
 Suppressed By Tank
 Noise in 2𝜔0 ⇒ Mixer ⇒ 𝜔0
 PM Noise → Phase noise
 AM Noise
 Nonlinear Elements:
 Varactor
 Switches
 AM to PM
 → Phase noise
Noise Sources in VCO
31
Saralah Alizadeh Arand
Vdd
Vtune
Switchi
ng at f0
Vdd
Vtune
AM-PM Convertion
Switchi
ng at f0
Switchi
ng at f0
Phase-noise
𝝎0
AM&PM
2𝝎0
Current Source Noise…
 Current Source Noise
 Flicker Noise:
 𝑽𝒏
𝟐
=
𝑲
𝑪𝒐𝒙𝑾𝑳
.
𝟏
𝒇
 𝝎𝒎 ⇒ Mixer ⇒ 2 Side bande at 𝝎𝟎 ± 𝝎𝒎
 → Flicker Noise Upconversion
 AM Noise → Nonlinear Elements
 AM to PM
 → Phase noise
 L ↑→ Phase noise↓
Noise Sources in VCO
32
Saralah Alizadeh Arand
Vdd
Vtune
𝝎𝒎
Vdd
Vtune
AM-PM Convertion
Switchi
ng at f0
Switchi
ng at f0
Phase-noise
𝝎𝒎
𝝎0 ±𝝎𝒎
AM
Current Source Noise…
 Current Source Noise (Hajimiri Approach)
 Tail Node Oscillation:
 𝟐𝝎𝟎
 ISF
 C1 = 0 ⇒ Noise At 𝝎𝟎 Has no Effect
 Low Frequency Noise & → Phase noise
 Noise At 𝟐𝝎𝟎 → Phase noise
Noise Sources in VCO
33
Saralah Alizadeh Arand
Vdd
Vtune
Cross Coupled Transistors Noise
 Cross Coupled Transistors Noise
 Noise Sources:
 Cyclostationary
 Stationary Approach( Thermal Noise)
 In Most Sensitive Time
 At Zero Crossing of Output
 Thermal Noise:
 𝒊𝒄𝒄
𝟐
=
𝟏
𝟒
𝒊𝒏𝟏
𝟐
+ 𝒊𝒏𝟐
𝟐
+ 𝒊𝒑𝟏
𝟐
+ 𝒊𝒑𝟐
𝟐
=
𝟏
𝟐
𝒊𝒏
𝟐
+ 𝒊𝒑
𝟐
Noise Sources in VCO
34
Saralah Alizadeh Arand
Vdd
Vtune
i1(t) i2(t)
i1(t)- i2(t)
2
r
r
2r
 ISF Calculation
 Cyclostationary Approach:
Cross Coupled Transistors Noise…
 Flicker Noise:
 A Low Frequency Noise
 A Low Impedance At Drain
 Short
 Switch Noise Is In Parallel With The Bias Noise
 Upconversion
 Via The Same Mechanism For Tail Flicker Noise
Noise Sources in VCO
35
Saralah Alizadeh Arand
Vdd
Vtune
Low
Impedance
Vdd
Vtune
Switch
Flicker noise
Switch
Flicker noise
Outline
 Oscillator Basics
 Phase-noise
 VCO
 Noise Sources in VCO
 Layout & post layout
 Comparison
 Conclusion
36
Saralah Alizadeh Arand
 Device Sizing
 Bias Noise Suppression
Design procedure
 Design procedure
 Bias Current Optimization
 Frequency Tuning
 Noise Filtering
 New Noise Filtering
 Phase Noise Programing
Device sizing
 Device sizing:
 W/L?
 Negative Resistance:
 Starts up
 Compensation of Tank Losses
 For Stable Oscillation:
 For Symmetric Waveform:
Design procedure
37
Saralah Alizadeh Arand
Vdd
Vtune
M1
M2
M3
M4
Vdd
Vtune
Rin,n
Rin,p
Tank Circuit
M1
M2
M3
M4
Rin,n
Vdd
Rin,p
𝑅𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 𝑅𝑖𝑛𝑛
∥ 𝑅𝑖𝑛𝑝
= −
2
𝐺𝑚𝑛 + 𝐺𝑚𝑝
𝐺𝑚𝑇𝑂𝑇𝐴𝐿
. 𝑅𝑃 = 1 𝐺𝑚𝑇𝑂𝑇𝐴𝐿
. 𝑅𝑃 > 1
𝑔𝑚𝑛𝑚𝑜𝑠
= 𝑔𝑚𝑝𝑚𝑜𝑠
=
𝐾𝑛
′ 𝑊
𝑛𝐼𝐷
𝐿𝑛
=
𝐾𝑝
′
𝑊
𝑝𝐼𝐷
𝐿𝑝
=
4
3 𝑅𝑃
Device sizing
 Tank Circuit
 Inductor
 Varactor
 Design Issues:
 Frequency
 Quality Factor:
 Is dominated by IND Q
 Start up:
 Rp
Design procedure
38
Saralah Alizadeh Arand
Vtune
Tank Circuit
ω0 =
1
𝐿 𝐶
0
2
4
6
8
10
12
14
0.00E+00 5.00E+08 1.00E+09
Series
Resistance
Frequency
0
1
2
3
4
5
6
7
8
0.00E+00 5.00E+08 1.00E+09 1.50E+09 2.00E+09
Axis
Title
Axis Title
𝐺𝑚𝑇𝑂𝑇𝐴𝐿
. 𝑅𝑃 > 1
Device sizing
 Using PMOS as Tail:
 Set to 800 MHz
 I = 5mA
 Cadence Simulation
 Phase Noise:
 -120 dBc/Hz @ 1MHz
 Noise Sources Contributions:
 M6  Bias
 M5  Tail
 M1&M2 flicker noise
 Increase NMOS Length
Design procedure
39
Saralah Alizadeh Arand
M1
M2
M3
M4
M5
M6
Device Param Noise Contribution
%
M6 id 1.02E-12 69.57
M5 id 1.77E-13 12.09
M2 fn 4.98E-14 3.4
M1 fn 4.98E-14 3.4
M6 fn 4.61E-14 3.14
M2 id 2.81E-14 1.92
M1 id 2.81E-14 1.92
Device Param Noise Contribution
%
M6 id 8.98E-13 73.8
M5 id 1.53E-13 12.61
M6 fn 4.06E-14 3.34
M2 id 2.30E-14 1.89
M1 id 2.30E-14 1.89
M1 fn 1.26E-14 1.03
M2 fn 1.26E-14 1.03
L11 rn 8.38E-15 0.69
L11 rn 8.38E-15 0.69
M4 id 5.46E-15 0.45
M3 id 5.46E-15 0.45
Bias Noise Suppression
 M6  Bias
 Bias Noise Suppression
 Bypass Capacitor
 Noise Sources Contribution:
 -126.7dBc/Hz @1MHz
 6 dB Improvement
Design procedure
40
Saralah Alizadeh Arand
M1
M2
M3
M4
M5
M6
Device Param Noise Contribution
%
M6 id 8.98E-13 73.8
M5 id 1.53E-13 12.61
M6 fn 4.06E-14 3.34
M2 id 2.30E-14 1.89
M1 id 2.30E-14 1.89
M1 fn 1.26E-14 1.03
M2 fn 1.26E-14 1.03
L11 rn 8.38E-15 0.69
L11 rn 8.38E-15 0.69
M4 id 5.46E-15 0.45
M3 id 5.46E-15 0.45
M1
M2
M3
M4
M5
M6
Device Param Noise Contribution
%
M6 id 1.58E-13 43.11
M5 id 7.81E-14 21.35
M1 id 2.33E-14 6.38
M2 id 2.33E-14 6.38
M1 fn 1.28E-14 3.51
M2 fn 1.28E-14 3.51
L11 rn 8.42E-15 2.3
L11 rn 8.42E-15 2.3
M3 id 5.59E-15 1.53
M4 id 5.59E-15 1.53
 Phase noise:
 M5  Tail
 M1&M2  Thermal
Bias Current Optimization…
 VCO Operation Modes:
 Current Limited
 Voltage Limited
 Phase noise:
 Current Limited Mode:
 𝑉 =
4
𝜋
𝐼𝑏𝑖𝑎𝑠 . 𝑅𝑒𝑞
 Current ↑ ⇒ Voltage ↑ ,Noise power ↑
 ⇒ S/N ↑
 Voltage Limited Mode:
 𝑉 = 𝑉𝐷𝐷
 Current ↑ ⇒ Noise power ↑
 ⇒ S/N ↓
 Iopt = 6mA
Design procedure
41
Saralah Alizadeh Arand
 I = 5mA  6mA
Frequency Tuning
 DVB-H
 VHF-III ⇒ 170-230 MHz
 UHF-IV/V ⇒ 470-862 MHz
 L ⇒ 1.452-1.492 GHz
 ⇒ 400-930 MHz
 Tuning with Varactor:
 Large Varactor
 KVCO ↑
 AM to PM ↑
 Sensitivity ↑
Design procedure
42
Saralah Alizadeh Arand
VHF
III
100M 200M 500M
400M
300M 700M
600M 900M
800M 1G 1.2G 1.3G 1.4G
1.1G 1.5GHz
UHF-IV/V L
VHF
III
100M 200M 500M
400M
300M 700M
600M 900M
800M 1G 1.2G 1.3G 1.4G
1.1G 1.5GHz
UHF-IV/V L
Tank Circuit
Frequency Tuning…
 ⇒ 400-930 MHz
 Varactor Only
 Coarse Tuning & Fine Tuning
 Corse Tuning
 Capacitor Bank
 Fine Tuning
 Varactor
 Kvco ↓
 Sensitivity ↓
Design procedure
43
Saralah Alizadeh Arand
100M 200M 500M
400M
300M 700M
600M 900M
800M 1GHz
UHF-IV/V
Frequency
Tuning Volatge
c0
c1
D0
D1
D2
D3
Vtune
To VCO
c2
c3
0000
1111
1110
0001
0010
0011
.
.
.
.
.
.
c0 c1 c4
D0 D1 D2 D3 D4
c2 c3
c0
c1
c4
D0
D1
D2
D3
D4
c2
c3
Noise Filtering
 Noise Filtering
 Reduce Tail Noise
 Reduce NMOS Noise
 Tail noise Suppression
 Current Source Role:
 Vgs1 = -Vgs2
 Vgs2 ↑ ⇒ Vgs1 ↓ , M1: off , M2: Triode
 ro2 ↓ ⇒ Load Impedance ↓ ⇒ QTANK ↓
 ⇒Adding Tail
 Vgs2 ↑ ⇒ Vgs1 ↓ , M1: off , M2: Triode
 No signal current can flow through ro2
 ⇒ QTANK ↑
 Current Source
 A high impedance in series with Swithes
Design procedure
44
Saralah Alizadeh Arand
Vdd
Vtune
OFF Triode
Output Voltage
Load Impedance
Time
M1 M2
Vdd
Vtune
Output Voltage
Load Impedance
Time
Time
M1 M2
OFF Triode
Device Param Noise Contribution
%
M5 id 1.58E-13 43.11
M6 id 7.81E-14 21.35
M1 id 2.33E-14 6.38
M2 id 2.33E-14 6.38
M1 fn 1.28E-14 3.51
M2 fn 1.28E-14 3.51
L11 rn 8.42E-15 2.3
L11 rn 8.42E-15 2.3
M3 id 5.59E-15 1.53
M4 id 5.59E-15 1.53
M1
M2
M3
M4
M5
M6
Vdd
 Tail Noise
 NMOS Noise
Noise Filtering…
 Tail noise Suppression
 Tail thermal noise around 2𝝎𝟎 causes phase noise
 In any balanced circuit:
 Odd harmonics circulate in a differential path
 Even harmonics flow in a common-mode path
 ⇒ Current source need only provide high impedance to even harmonics
 High impedance is only required at 2𝝎𝟎
 ⇒ A Narrowband circuit
 → Suppress noise at 2𝝎𝟎
 A large capacitor
 Shorts noise frequencies around 2𝝎𝟎
 An inductor is inserted
 To raise the impedance
 Resonate at 2𝝎𝟎
 Our Structure with tail noise Suppression
Design procedure
45
Saralah Alizadeh Arand
Vdd Vdd
Vtune
Noise Filtering…
 NMOS Transistors noise suppression
 Inserting a High Impedance
 Resonate at 2𝝎𝟎
 Filter Design
 Center frequency:
 2 × 670𝑀𝐻𝑧 = 1.34𝐺𝐻𝑧
Design procedure
46
Saralah Alizadeh Arand
Vtune
Vtune
100M 200M 500M
400M
300M 700M
600M 900M
800M 1GHz
UHF-IV/V
670MHz
 Phase noise in 700MHz:
 -140.6 dBc/Hz @ 1MHz
 Noise Sources Contributions:
Device Param Noise Contribution%
I1.L1.r2 rn 9.75E-16 12.58
I1.L1.r1 rn 9.75E-16 12.58
M1 id 7.81E-16 10.08
M2 id 7.81E-16 10.07
M3 id 3.26E-16 4.21
M4 id 3.26E-16 4.21
L1.r2 rn 3.15E-16 4.06
L2.r1 rn 3.10E-16 4
L3.rs2 rn 2.12E-16 2.73
L3.rs1 rn 2.12E-16 2.73
M6 id 2.09E-16 2.7
M1.rb rn 1.71E-16 2.21
M2.rb rn 1.71E-16 2.21
New Noise Filtering…
 Phase noise in Other Frequencies:
 500MHz ⇒-136.2 dBc/Hz @ 1MHz
 700MHz ⇒-140.6 dBc/Hz @ 1MHz
 850MHz ⇒-137.1 dBc/Hz @ 1MHz
 Tuning The Filter
 Complicated
 Difficult
 Using Multiple Filtering Rather Than Tuning The Filter
 Simple
Design procedure
47
Saralah Alizadeh Arand
Vtune
100M 200M 500M
400M
300M 700M
600M 900M
800M 1GHz
UHF-IV/V
670MHz
1G
800M 1.4G
1.2G 1.8G
1.6G
c0 c1 c4
D0 D1 D2 D3 D4
c2 c3
c0
c1
c4
D0
D1
D2
D3
D4
c2
c3
D0 D1 D2 D3 D4
D0
D1
D2
D3
D4
Vtune
D0 … D4
New Noise Filtering…
 Multiple Filtering:
 Logic Unit:
Design procedure
48
Saralah Alizadeh Arand
100M 200M 500M
400M
300M 700M
600M 900M
800M 1GHz
UHF-IV/V
670MHz
1G
800M 1.4G
1.2G 1.8G
1.6G
c0 c1 c4
D0 D1 D2 D3 D4
c2 c3
c0
c1
c4
D0
D1
D2
D3
D4
c2
c3
f1 f2 f3 f4 f5
f1
f2
f3
f4
f5
D0 … D4
Logic
Unit
D2…D4
f0 … f4
Vtune
0000
1111
1110
Frequency
Tuning Volatge
0001
0010
0011
.
.
.
.
.
.
D
4
D
3
D
2
f1
f2
f3
f4
f5
New Noise Filtering…
 Multiple Filtering
 Phase Noise:
 500MHz ⇒-140.7 dBc/Hz @ 1MHz
 700MHz ⇒-140.6 dBc/Hz @ 1MHz
 850MHz ⇒-140.8 dBc/Hz @ 1MHz
Design procedure
49
Saralah Alizadeh Arand
c0 c1 c4
D0 D1 D2 D3 D4
c2 c3
c0
c1
c4
D0
D1
D2
D3
D4
c2
c3
f1 f2 f3 f4 f5
f1
f2
f3
f4
f5
D0 … D4
Logic
Unit
D2…D4
f0 … f4
Vtune
Phase Noise Programing
 Changing Bias Current
 ⇒ Will Change The Phase Noise
 When More Phase noise Is Tolerable
 We Can Reduce Tail Current
 Less Power Is Consumed
 4 Bit Is Used To Control The Current
 Phase noise v.s. Bias Current:
Design procedure
50
Saralah Alizadeh Arand
Bit4
Bit3
Bit2
Bit1
M5
M6
M7
M8
M9
M10
Power
Control Bits
Current
Consumption
(mA)
Simulation Phase-noise
(dBc/Hz @
1MHz)
Output
Amplitude
(v)
0000 6 schematic -140.9 1.341
0001 4.6 schematic -137.2 1.149
0010 3.75 schematic -136.4 .973
0100 2.73 schematic -135.6 .75
0111 2 schematic -133 .572
1010 1.5 schematic -131.2 .474
1111 1 schematic -129.6 .361
Output Buffer
 Output Buffer
 Open Drain Buffer
 Simple
 Off Chip Bias T
 C1 & C2 ⇒ Reduce VCO Output
Design procedure
51
Saralah Alizadeh Arand
R= 50 ohm
Bias T
C1
C2
VBias
Outline
 Oscillator Basics
 Phase-noise
 VCO
 Noise Sources in VCO
 Design procedure
 Comparison
 Conclusion
52
Saralah Alizadeh Arand
 Layout & post layout
 Layout
 Post Layout
Layout & post layout
Layout
 Layout:
Layout & post layout
53
Saralah Alizadeh Arand
D5 D4 D3
f1
f2
f3
f4
f5
c0 c1 c4
D0 D1 D2 D3 D4
c2 c3
c0
c1
c4
D0
D1
D2
D3
D4
c2
c3
f1
f2
f3
f4
f5
f1
f2
f3
f4
f5
Bit4
Bit3
Bit2
Bit1
M6
M7
M8
M9
M10
Vtune
Post Layout
 Start up:
 470MHz ⇒-140.7 dBc/Hz @ 1MHz
 650MHz ⇒-140.5 dBc/Hz @ 1MHz
 850MHz ⇒-140.6 dBc/Hz @ 1MHz
 Comparision:
Layout & post layout
54
Saralah Alizadeh Arand
 Phse noise:
Frequency
(MHz)
Simulation Phase-noise
(dBc/Hz @ 1MHz)
470 Schematic -140.8
Post layout -140.7
650 Schematic -140.9
Post layout -140.5
850 Schematic -140.8
Post layout -140.6
Post Layout
 Phase noise v.s. Bias Current:
 700MHz
Layout & post layout
55
Saralah Alizadeh Arand
Power
Control Bits
Current
Consumption
(mA)
Simulation Phase-noise
(dBc/Hz @
1MHz)
Output
Amplitude
(v)
0000 6 schematic -140.9 1.341
Post layout -140.5 1.337
0001 4.6 schematic -137.2 1.149
Post layout -136.9 1.147
0010 3.75 schematic -136.4 .973
Post layout -136 .97
0100 2.73 schematic -135.6 .75
Post layout -135.2 .747
0111 2 schematic -133 .572
Post layout -132.7 .569
1010 1.5 schematic -131.2 .474
Post layout -130.7 .473
1111 1 schematic -129.6 .361
Post layout -129.1 .36
Post Layout
 Coarse & Fine Tuning
Layout & post layout
56
Saralah Alizadeh Arand
Outline
 Oscillator Basics
 Phase-noise
 VCO
 Noise Sources in VCO
 Design procedure
 Layout & post layout
 Conclusion
57
Saralah Alizadeh Arand
Comparison
 Comparison
Comparison
 Comparison:
58
Saralah Alizadeh Arand
Comparison
Technology
Center
Frequency
(Hz)
Tuning
Percent
Power
(mW)
Phase-
noise
(dBc/Hz)
Offset
Frequency
(Hz)
FOM
[38] 0.18u cmos 1.8G 23% 5 -127.5 1M -185.6
[39] 0.18u cmos 1.8G 25% 34 -132 1M 181.8
[41] 0.18u cmos 975M 60% 5 -98 100k -170.8
[42] 0.18u cmos 1.8G 73% 4.8 -126 1M -184
[43] 0.18u cmos 1.34G 68% 9 -135.3 1M -187
This Work 0.18u cmos 670M 78% 10.8 -140.7 1M -187.5
𝑭𝑶𝑴 = 𝓛 𝒇𝒐𝒇𝒇𝒔𝒆𝒕 − 𝟐𝟎 𝒍𝒐𝒈
𝒇𝒐𝒔𝒄
𝒇𝒐𝒇𝒇𝒔𝒆𝒕
+ 𝟏𝟎 𝒍𝒐𝒈
𝑷𝒅𝒊𝒔𝒔
𝟏𝒎𝑾
Outline
 Oscillator Basics
 Phase-noise
 VCO
 Noise Sources in VCO
 Design procedure
 Layout & post layout
 Comparison
59
Saralah Alizadeh Arand
Conclusion
 Conclusion
Conclusion
 A Review of VCO
 Noise Sources → Phase Noise
 Noise Filtering
 Wide Band Noise Filtering
 Phase Noise Programing
 This VCO Is Not Fabricated
60
Saralah Alizadeh Arand
Conclusion
Thanks For Your Attention…
?

Mais conteúdo relacionado

Mais procurados

Design of cmos based ring oscillator
Design of cmos based ring oscillatorDesign of cmos based ring oscillator
Design of cmos based ring oscillatorUshaswini Chowdary
 
Rc phase shift oscillator
Rc phase shift oscillatorRc phase shift oscillator
Rc phase shift oscillatorRaj Mehra Mehar
 
Voltage controlled oscillators
Voltage controlled oscillatorsVoltage controlled oscillators
Voltage controlled oscillatorsZunAib Ali
 
Sequntial logic design
Sequntial logic designSequntial logic design
Sequntial logic designPavan Mukku
 
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATORFREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR SwgwmsaBoro
 
design and analysis of voltage controlled oscillator
design and analysis of voltage controlled oscillatordesign and analysis of voltage controlled oscillator
design and analysis of voltage controlled oscillatorvaibhav jindal
 
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewOriginal Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewAUTHELECTRONIC
 
Amplifier Design
Amplifier DesignAmplifier Design
Amplifier Designimranbashir
 
direct coupled transistor logic
direct coupled transistor logicdirect coupled transistor logic
direct coupled transistor logicsonalijagtap15
 
07 basic-electronics
07 basic-electronics07 basic-electronics
07 basic-electronicsSagar Bagwe
 

Mais procurados (19)

Design of cmos based ring oscillator
Design of cmos based ring oscillatorDesign of cmos based ring oscillator
Design of cmos based ring oscillator
 
Rc phase shift oscillator
Rc phase shift oscillatorRc phase shift oscillator
Rc phase shift oscillator
 
Voltage controlled oscillators
Voltage controlled oscillatorsVoltage controlled oscillators
Voltage controlled oscillators
 
Sequntial logic design
Sequntial logic designSequntial logic design
Sequntial logic design
 
Lecture17
Lecture17Lecture17
Lecture17
 
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATORFREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR
 
Phase locked loop
Phase locked loopPhase locked loop
Phase locked loop
 
5
55
5
 
Oscillators
OscillatorsOscillators
Oscillators
 
Oscillators
OscillatorsOscillators
Oscillators
 
design and analysis of voltage controlled oscillator
design and analysis of voltage controlled oscillatordesign and analysis of voltage controlled oscillator
design and analysis of voltage controlled oscillator
 
Pll
PllPll
Pll
 
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewOriginal Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
 
Shahrooz 17 tc 06
Shahrooz 17 tc 06Shahrooz 17 tc 06
Shahrooz 17 tc 06
 
Final Project
Final ProjectFinal Project
Final Project
 
Amplifier Design
Amplifier DesignAmplifier Design
Amplifier Design
 
555 timer tutorial
555 timer tutorial555 timer tutorial
555 timer tutorial
 
direct coupled transistor logic
direct coupled transistor logicdirect coupled transistor logic
direct coupled transistor logic
 
07 basic-electronics
07 basic-electronics07 basic-electronics
07 basic-electronics
 

Semelhante a A Programmable VCO for DVB-H Application

The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalAlan Elbanhawy
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)aicdesign
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)aicdesign
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationscuashok07
 
02 - Fundamentals of Power Line Carrier.pdf
02 - Fundamentals of Power Line Carrier.pdf02 - Fundamentals of Power Line Carrier.pdf
02 - Fundamentals of Power Line Carrier.pdfkrishnabhardwaj15
 
Sinusoidal oscillators
Sinusoidal oscillatorsSinusoidal oscillators
Sinusoidal oscillatorsTouqeer Jumani
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEnandivashishth
 
SESD_Lect8_OpAmp_limitations.pdf
SESD_Lect8_OpAmp_limitations.pdfSESD_Lect8_OpAmp_limitations.pdf
SESD_Lect8_OpAmp_limitations.pdfCarlosGamio5
 
Digital to analog convertor
Digital to analog convertorDigital to analog convertor
Digital to analog convertorsartaj ahmed
 
Switched capacitor filter
Switched capacitor filter Switched capacitor filter
Switched capacitor filter Minh Anh Nguyen
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)aicdesign
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)Claudia Sin
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppttariqqureshi33
 
ECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorKarthik Rathinavel
 
Physical designing of low power operational amplifier
Physical designing of low power operational amplifierPhysical designing of low power operational amplifier
Physical designing of low power operational amplifierDevendra Kushwaha
 
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier ZunAib Ali
 

Semelhante a A Programmable VCO for DVB-H Application (20)

The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
 
Aec manual for III SEM ECE Students VTU
Aec manual for III SEM ECE Students VTUAec manual for III SEM ECE Students VTU
Aec manual for III SEM ECE Students VTU
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
02 - Fundamentals of Power Line Carrier.pdf
02 - Fundamentals of Power Line Carrier.pdf02 - Fundamentals of Power Line Carrier.pdf
02 - Fundamentals of Power Line Carrier.pdf
 
IO Circuit_1.pptx
IO Circuit_1.pptxIO Circuit_1.pptx
IO Circuit_1.pptx
 
Sinusoidal oscillators
Sinusoidal oscillatorsSinusoidal oscillators
Sinusoidal oscillators
 
UNIT 1.pptx
UNIT 1.pptxUNIT 1.pptx
UNIT 1.pptx
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
SESD_Lect8_OpAmp_limitations.pdf
SESD_Lect8_OpAmp_limitations.pdfSESD_Lect8_OpAmp_limitations.pdf
SESD_Lect8_OpAmp_limitations.pdf
 
Digital to analog convertor
Digital to analog convertorDigital to analog convertor
Digital to analog convertor
 
Switched capacitor filter
Switched capacitor filter Switched capacitor filter
Switched capacitor filter
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)
 
VFD Fundamentals
VFD FundamentalsVFD Fundamentals
VFD Fundamentals
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppt
 
ECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorECE 626 project report Switched Capacitor
ECE 626 project report Switched Capacitor
 
Physical designing of low power operational amplifier
Physical designing of low power operational amplifierPhysical designing of low power operational amplifier
Physical designing of low power operational amplifier
 
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
 

Último

What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 

Último (20)

DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 

A Programmable VCO for DVB-H Application

  • 1. A Programmable VCO for DVB-H Application Saralah Alizadeh Arand In The Name Of ALLAH 1 Saralah Alizadeh Arand
  • 2. Outline  Oscillator Basics  Phase-noise  VCO  Noise Sources in VCO  Design procedure  Layout & post layout  Comparison  Conclusion Oscillator Basics 2 Saralah Alizadeh Arand  Oscillator Basics  Feedback Model  Negative resistance Model
  • 3. Oscillator Basics  What is an Oscillator?  A circuit that produces an output signal of a specific frequency  Oscillator Models  Feedback :  Negative Resistance: Oscillator Basics 3 OSC Vdd Vout Vss Saralah Alizadeh Arand Vdd A G Vin Vout + + -RA RP Active Circuit Resonator
  • 4. Feedback Model  Feedback Model:  Positive Feedback  Transfer Function:  Oscillation Condition:  barkhausen criterion:  The energy in the feedback path is the same magnitude and phase as the input Oscillator Basics A G Vin Vout + + G . A = 1∠0° 𝑉𝑜𝑢𝑡 Vin = G 1 − G . A 4 Saralah Alizadeh Arand
  • 5. Feedback Model…  For Stable Oscillation:  Barkhausen Criterion Is Not Enough  A Frequency Selective Element  E.g. A Tank Circuit  An Amplitude Limitig Element  Nonlinear Behavior Of Devices Like Transistor Oscillator Basics 5 Saralah Alizadeh Arand Vdd G Vin Vout + +
  • 6. Negative Resistance Model  Negative Resistance:  Oscillator:  Negative Resistance (Active Circuit)  Resonator (e.g. Tank Circuit)  For A Stable Oscillation  𝑹𝑷 + (−𝑹𝑨) = 𝟎 ⇒ 𝑹𝑷 = 𝑹𝑨  NMOS Oscillator:  Negative Resistance:  𝑹𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 = − 𝟐 𝑮𝒎  Oscillation Criteria:  𝑮𝒎𝑻𝑶𝑻𝑨𝑳 . 𝑹𝑷 = 𝟏  For Start up  𝑮𝒎𝑻𝑶𝑻𝑨𝑳. 𝑹𝑷 > 𝟏 Oscillator Basics -RA RP Active Circuit Resonator 6 Saralah Alizadeh Arand Negative Resistance Tank Circuit Vdd Vdd
  • 7. Outline  Oscillator Basics  VCO  Noise Sources in VCO  Design procedure  Layout & post layout  Comparison  Conclusion 7 Saralah Alizadeh Arand  Phase Noise basics  Leeson Model  Phase-noise Phase-noise  Hajimiri Model
  • 8. Phase-noise Basics  What is the definition of Phase-noise?  Noise power level at a frequency offset from the 𝝎𝟎  The power is measured relative to the carrier  Unit: dBc/Hz Phase-noise 8 𝜔0 𝑃𝑆 𝑃𝑆𝑆𝐵 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∆𝜔 1 𝐻𝑧 ℒ𝑡𝑜𝑡𝑎𝑙 ∆𝜔 = 10 log 𝑃𝑠𝑖𝑑𝑒𝑏𝑎𝑛𝑑 𝜔0 + Δ𝜔, 1𝐻𝑧 𝑃𝑐𝑎𝑟𝑟𝑖𝑒𝑟 Saralah Alizadeh Arand
  • 9. Phase-noise Basics…  Why Is Phase-noise Important? Phase-noise 9 Saralah Alizadeh Arand IF Filter
  • 10. Phase-noise Models  Phase-noise Models:  Linear-Time Invariant Model (Leeson Model)  Linear-Time Variant Model (Hajimiri Model) Phase-noise 10 Saralah Alizadeh Arand
  • 11. Leeson Model  Linear-Time Invariant Model (Leeson Model)  Phase noise:  F: Active Device Noise Factor  K: Boltzmans Constant  T: Temperature  Po: Output Power  𝝎𝟎: Oscillator Center Frequency  QL: loaded resonator quality factor  𝚫𝝎 : frequency offset from carrier Phase-noise 11 ∆𝜔1/ 3 L (∆𝜔) 𝜔0/2 slope = 3 (due to 1/f3 ) slope = 2 (due to 1/f2 ) Noise floor ℒ 𝜔0, Δ𝜔 = 10 log 2𝐹𝑘𝑇 𝑃0 . 1 + 𝜔0 2 𝐿Δ𝜔 2 . 1 + 𝜔𝑐 Δ𝜔 Saralah Alizadeh Arand
  • 12. Leeson Model …  Derivation of Leeson’s Equation:  Using Feedback Model  Transfer Function is:  Oscillation Condition:  Without loss of generality:  𝑭 𝒔 is set equal to 1  𝑩 𝒔  A Transconductance and a Tank circuit Phase-noise 12 Saralah Alizadeh Arand + + B(s) F(s) Y(s) X(s) 𝐻 𝑠 = 𝑌 𝑠 𝑋 𝑠 = 𝐹 𝑠 1 − 𝐹 𝑠 . 𝐵 𝑠 𝐹 𝑠 . 𝐵 𝑠 = 1 G(s) + + Y(s) X(s) RP
  • 13. Leeson Model …  The impedance of the tank Circuit  If : ∆𝜔 ≪ 𝜔0  Noise Power Spectral Density : Phase-noise 13 Saralah Alizadeh Arand G(s) + + Y(s) X(s) RP 𝑍 𝜔0 + ∆𝜔 = 𝑅𝑃 1 + 𝑗2 𝐿 ∆𝜔 𝜔0 𝐻 𝑗𝜔 = 1 1 − 𝐺𝑚𝑅𝑃 1 + 𝑗2 𝐿 ∆𝜔 𝜔0 = 1 + 1 𝑗2 𝐿 ∆𝜔 𝜔0 𝐻 𝑠 = 𝐹 𝑠 1 − 𝐹 𝑠 . 𝐵 𝑠 𝑅𝑃. Gm = 1 𝑆𝑌 ∆𝜔 = 𝑆𝑋 ∆𝜔 . 𝐻 𝑗𝜔 . 𝐻∗ (𝑗𝜔) 𝑆𝑋 ∆𝜔 = 4FkT . 1 + 𝜔𝑐 Δ𝜔 𝑆𝑌 ∆𝜔 = 4FkT . 1 + 𝜔𝑐 Δ𝜔 . 1 + 1 𝑗2 𝐿 ∆𝜔 𝜔0 . 1 − 1 𝑗2 𝐿 ∆𝜔 𝜔0 ℒ 𝜔0, Δ𝜔 = 10 log 2𝐹𝑘𝑇 𝑃0 . 1 + 𝜔0 2 𝐿Δ𝜔 2 . 1 + 𝜔𝑐 Δ𝜔  Phase noise:
  • 14. Hajimiri Model …  Linear-Time Variant Model (Hajimiri Model)  Time Variant Model  ISF (Impulse Sensitivity Function) (𝛤)  Dimensionless  Frequency Independent  Amplitude Independent  Periodic in 2𝝅 Phase-noise 14 Saralah Alizadeh Arand C L i(t)
  • 15. Hajimiri Model …  Excess Phase:  ISF is periodic and expressible as a Fourier series: Phase-noise 15 Saralah Alizadeh Arand 𝛥𝜙 = 𝛤 𝜔0𝜏 . 𝛥𝑞 𝑞𝑚𝑎𝑥 ℎ𝜙 𝑡, 𝜏 = 𝛤 𝜔0𝜏 𝑞𝑚𝑎𝑥 . 𝑢(𝑡 − 𝜏) 𝜙 𝑡 = −∞ ∞ ℎ𝜙 𝑡, 𝜏 . 𝑖 𝜏 𝑑𝜏 = −∞ 𝑡 Γ 𝜔0𝜏 𝑞max . 𝑖 𝜏 𝑑𝜏 𝛤 𝜔0𝜏 = 𝑐0 + 𝑛=1 ∞ 𝑐𝑛. cos 𝑛𝜔0𝜏 𝜙 𝑡 = 1 𝑞max 𝑐0 −∞ 𝑡 𝑖 𝜏 𝑑𝜏 + 𝑛=1 ∞ 𝑐𝑛. −∞ 𝑡 𝑖 𝜏 𝑑𝜏 cos 𝑛𝜔0𝜏 𝑑𝜏
  • 16. Hajimiri Model …  Conversion of circuit noise to Excess Phase and Phase noise  For input Noise Current:  Phase noise:  Phase noise in 𝟏/𝒇𝟐 Region: Phase-noise 16 Saralah Alizadeh Arand 𝑖 𝜏 = 𝐼𝑛 cos[(𝑛𝜔0 + ∆𝜔)𝑡] 𝜙 𝑡 ≅ 𝐼𝑛𝐶𝑛 sin ∆𝜔 𝑡 2𝑞𝑚𝑎𝑥 . ∆𝜔 𝑣𝑜𝑢𝑡 = Cos 𝜔0𝑡 + 𝜙 𝑡 𝑃𝑆𝐵𝐶 ∆𝜔 ≅ 10 log 𝐼𝑛𝐶𝑛 4 𝑞𝑚𝑎𝑥 ∆𝜔 2 𝐿 ∆𝜔 = 10 log10 𝑖𝑛 2 ∆ 𝑛=0 ∞ 𝑐𝑛 2 4 . 𝑞𝑚𝑎𝑥 2 ∆𝜔2 𝑛=0 ∞ 𝑐𝑛 2 = 1 𝜋 0 2𝜋 Γ 𝑥 2 𝑑𝑥 = 2Γ𝑟𝑚𝑠 2 𝐿 ∆𝜔 = 10 𝑙𝑜𝑔 Γ𝑟𝑚𝑠 2 𝑞𝑚𝑎𝑥 2 . 𝑖𝑛 2 Δ 2. Δ𝜔2 L (∆𝜔) Log(∆𝜔) 1/f2 Region
  • 17. Hajimiri Model …  Phase noise in 𝟏/𝒇𝟑 Region :  Current noise in 1/f region:  Current noise in 1/f region:  Reducing c0 will reduce flicker noise upconvertion.  𝟏/𝒇𝟑 Corner Frequency: Phase-noise 17 Saralah Alizadeh Arand 𝑖𝑛 2 ,1 𝑓 = 𝑖𝑛 2 . 𝜔1 𝑓 Δ𝜔 𝐿 ∆𝜔 = 10 𝑙𝑜𝑔 𝑐0 𝑞𝑚𝑎𝑥 2 . 𝑖𝑛 2 Δ 8. Δ𝜔2 𝜔1 𝑓 Δ𝜔 L (∆𝜔) Log(∆𝜔) 1/f 2 Region 1/f 3 Region 𝜔1 𝑓3 = 𝜔1 𝑓 𝑐0 2Γ𝑟𝑚𝑠 2 2 ≈ 𝜔1 𝑓. 1 2 𝑐0 𝑐1 2
  • 18. Hajimiri Model …  The noise sources in many oscillators cannot be well modeled as stationary  Noise currents are a function of bias currents  Cyclostationary  𝜶 𝒙 :  A deterministic periodic function that describing the noise amplitude modulation  Can be derived from device noise characteristics and operating point Phase-noise 18 Saralah Alizadeh Arand 𝜞𝒆𝒇𝒇 𝒙 = 𝚪 𝒙 . 𝜶 𝒙
  • 19. Outline  Oscillator Basics  Phase-noise  Noise Sources in VCO  Design procedure  Layout & post layout  Comparison  Conclusion 19 Saralah Alizadeh Arand  VCO Basics  VCO Structures  VCO VCO
  • 20. VCO Basics  VCO?  A Circuit with an input Vtune and a periodic oscillating output  VCO in an RF Link: VCO 20 Saralah Alizadeh Arand VCO Vdd Vout Vtune Vss 𝑉𝑂𝑈𝑇 = 𝑉0 sin 𝜔𝑐𝑡 + 𝜙
  • 21. VCO Basics…  VCO Parameters:  Tuning Range:  VCO Gain:  An Important parameter in PLL VCO 21 Saralah Alizadeh Arand 𝑇𝑢𝑛𝑖𝑛𝑔 𝑅𝑎𝑛𝑔𝑒 = 𝑚𝑎𝑥 − 𝑚𝑖𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 𝐾𝑉𝐶𝑂 = 𝑑 𝑑𝑉𝑡𝑢𝑛𝑒 Frequency Tuning Volatge fmax fmin fc K VCO Tuning Volatge
  • 22. VCO Structures  VCO Structures:  NMOS & PMOS Structures:  CMOS Structures: VCO 22 Saralah Alizadeh Arand Vdd Vdd Vdd Vdd Vdd
  • 23. VCO Structures…  NMOS Structures  Due to the inductors to the supply:  Swing is up to twice the power supply voltage on each node  Signal maximization Phase noise minimization  (a) has a differential structure:  Smaller harmonic distortion  More symmetrical waveform  Lower flicker noise upconversion  (b) has less sensitivity to supply noise  (a) has less sensitivity to ground noise VCO 23 Saralah Alizadeh Arand Vdd Vdd (a) (b)
  • 24. VCO Structures…  PMOS Structures  Same as NMOS structures but:  PMOS is not as fast as NMOS  For the same transconductance  PMOS width is larger  PMOS has lower flicker noise VCO 24 Saralah Alizadeh Arand a b
  • 25. VCO Structures…  CMOS Structures  Negative resistance is generated by NMOS and PMOS  It enabling to half power consumption For the same negative resistance  Removing the current source Structure (c)  Advantages:  Signal swing is maximized  Tail is an important noise source  Disadvantages:  Higher harmonic distortion  Higher upconversion of flicker noise  Higher power supply sensitivity VCO 25 Saralah Alizadeh Arand Vdd Vdd Vdd a b c
  • 26. VCO Structures…  ISFeff Calculation:  𝜞 𝒙 − Approximation:  𝜶 𝒙 − Approximation:  Noise sources:  Thermal  Flicker: VCO 26 Saralah Alizadeh Arand Γeff 𝑥 = Γ 𝑥 . 𝛼 𝑥 Γ 𝑥 = ′ ′2 + ′′2 𝐼2 = 4kTλ gm gm ∝ 𝑉 𝑔𝑠 − 𝑉𝑇 𝛼𝑡ℎ 𝑡 = 𝐼2 𝑡 𝐼2 𝑚𝑎𝑥 = 𝑉 𝑔𝑠 𝑡 − 𝑉𝑇 𝑉 𝑔𝑠,𝑚𝑎𝑥 − 𝑉𝑇 𝑉 𝑛 2 (Δ ) = 𝐾 𝐼𝐷𝑆 Δ 𝐶𝑜𝑥𝐿𝑒𝑓𝑓 2 𝛼1/𝑓 𝑡 = 𝑉 𝑛 2 𝑉 𝑛,𝑚𝑎𝑥 2 = 𝐼𝐷𝑆 𝑡 𝐼𝐷𝑆,𝑚𝑎𝑥
  • 27. VCO Structures…  ISFeff Comparison VCO 27 Saralah Alizadeh Arand 0 0.2 0.4 0.6 0.8 1 1.2 x 10 -9 -1.5 -1 -0.5 0 0.5 1 1.5 NMF ISF ISFeff Vdd Vdd  PMOS Structure:  NMOS Structure:  CMOS Structure: 0 0.2 0.4 0.6 0.8 1 1.2 x 10 -9 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 NMF ISF ISFeff Vdd 0 0.5 1 1.5 2 2.5 x 10 -9 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 NMF ISF ISFeff
  • 28. VCO Structures…  ISFeff Comparison VCO 28 Saralah Alizadeh Arand 0 0.2 0.4 0.6 0.8 1 1.2 x 10 -9 -1.5 -1 -0.5 0 0.5 1 1.5 NMF ISF ISFeff Vdd Vdd 0 0.2 0.4 0.6 0.8 1 1.2 x 10 -9 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 NMF ISF ISFeff Vdd 0 0.5 1 1.5 2 2.5 x 10 -9 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 NMF ISF ISFeff
  • 29. Outline  Oscillator Basics  Phase-noise  VCO  Design procedure  Layout & post layout  Comparison  Conclusion 29 Saralah Alizadeh Arand  Current Source Noise  Cross Coupled Transistors Noise Noise Sources in VCO  Noise Sources in VCO
  • 30. Noise Sources in VCO  Current Source Noise  Thermal Noise  Flicker Noise  Cross Coupled Transistors Noise  Thermal Noise  Flicker Noise Noise Sources in VCO 30 Saralah Alizadeh Arand Vdd Vtune
  • 31. Current Source Noise  Current Source Noise  Thermal Noise:  Noise in 𝜔0 ⇒ Mixer ⇒ Low Frequency  Suppressed By Tank  Noise in 2𝜔0 ⇒ Mixer ⇒ 𝜔0  PM Noise → Phase noise  AM Noise  Nonlinear Elements:  Varactor  Switches  AM to PM  → Phase noise Noise Sources in VCO 31 Saralah Alizadeh Arand Vdd Vtune Switchi ng at f0 Vdd Vtune AM-PM Convertion Switchi ng at f0 Switchi ng at f0 Phase-noise 𝝎0 AM&PM 2𝝎0
  • 32. Current Source Noise…  Current Source Noise  Flicker Noise:  𝑽𝒏 𝟐 = 𝑲 𝑪𝒐𝒙𝑾𝑳 . 𝟏 𝒇  𝝎𝒎 ⇒ Mixer ⇒ 2 Side bande at 𝝎𝟎 ± 𝝎𝒎  → Flicker Noise Upconversion  AM Noise → Nonlinear Elements  AM to PM  → Phase noise  L ↑→ Phase noise↓ Noise Sources in VCO 32 Saralah Alizadeh Arand Vdd Vtune 𝝎𝒎 Vdd Vtune AM-PM Convertion Switchi ng at f0 Switchi ng at f0 Phase-noise 𝝎𝒎 𝝎0 ±𝝎𝒎 AM
  • 33. Current Source Noise…  Current Source Noise (Hajimiri Approach)  Tail Node Oscillation:  𝟐𝝎𝟎  ISF  C1 = 0 ⇒ Noise At 𝝎𝟎 Has no Effect  Low Frequency Noise & → Phase noise  Noise At 𝟐𝝎𝟎 → Phase noise Noise Sources in VCO 33 Saralah Alizadeh Arand Vdd Vtune
  • 34. Cross Coupled Transistors Noise  Cross Coupled Transistors Noise  Noise Sources:  Cyclostationary  Stationary Approach( Thermal Noise)  In Most Sensitive Time  At Zero Crossing of Output  Thermal Noise:  𝒊𝒄𝒄 𝟐 = 𝟏 𝟒 𝒊𝒏𝟏 𝟐 + 𝒊𝒏𝟐 𝟐 + 𝒊𝒑𝟏 𝟐 + 𝒊𝒑𝟐 𝟐 = 𝟏 𝟐 𝒊𝒏 𝟐 + 𝒊𝒑 𝟐 Noise Sources in VCO 34 Saralah Alizadeh Arand Vdd Vtune i1(t) i2(t) i1(t)- i2(t) 2 r r 2r  ISF Calculation  Cyclostationary Approach:
  • 35. Cross Coupled Transistors Noise…  Flicker Noise:  A Low Frequency Noise  A Low Impedance At Drain  Short  Switch Noise Is In Parallel With The Bias Noise  Upconversion  Via The Same Mechanism For Tail Flicker Noise Noise Sources in VCO 35 Saralah Alizadeh Arand Vdd Vtune Low Impedance Vdd Vtune Switch Flicker noise Switch Flicker noise
  • 36. Outline  Oscillator Basics  Phase-noise  VCO  Noise Sources in VCO  Layout & post layout  Comparison  Conclusion 36 Saralah Alizadeh Arand  Device Sizing  Bias Noise Suppression Design procedure  Design procedure  Bias Current Optimization  Frequency Tuning  Noise Filtering  New Noise Filtering  Phase Noise Programing
  • 37. Device sizing  Device sizing:  W/L?  Negative Resistance:  Starts up  Compensation of Tank Losses  For Stable Oscillation:  For Symmetric Waveform: Design procedure 37 Saralah Alizadeh Arand Vdd Vtune M1 M2 M3 M4 Vdd Vtune Rin,n Rin,p Tank Circuit M1 M2 M3 M4 Rin,n Vdd Rin,p 𝑅𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 𝑅𝑖𝑛𝑛 ∥ 𝑅𝑖𝑛𝑝 = − 2 𝐺𝑚𝑛 + 𝐺𝑚𝑝 𝐺𝑚𝑇𝑂𝑇𝐴𝐿 . 𝑅𝑃 = 1 𝐺𝑚𝑇𝑂𝑇𝐴𝐿 . 𝑅𝑃 > 1 𝑔𝑚𝑛𝑚𝑜𝑠 = 𝑔𝑚𝑝𝑚𝑜𝑠 = 𝐾𝑛 ′ 𝑊 𝑛𝐼𝐷 𝐿𝑛 = 𝐾𝑝 ′ 𝑊 𝑝𝐼𝐷 𝐿𝑝 = 4 3 𝑅𝑃
  • 38. Device sizing  Tank Circuit  Inductor  Varactor  Design Issues:  Frequency  Quality Factor:  Is dominated by IND Q  Start up:  Rp Design procedure 38 Saralah Alizadeh Arand Vtune Tank Circuit ω0 = 1 𝐿 𝐶 0 2 4 6 8 10 12 14 0.00E+00 5.00E+08 1.00E+09 Series Resistance Frequency 0 1 2 3 4 5 6 7 8 0.00E+00 5.00E+08 1.00E+09 1.50E+09 2.00E+09 Axis Title Axis Title 𝐺𝑚𝑇𝑂𝑇𝐴𝐿 . 𝑅𝑃 > 1
  • 39. Device sizing  Using PMOS as Tail:  Set to 800 MHz  I = 5mA  Cadence Simulation  Phase Noise:  -120 dBc/Hz @ 1MHz  Noise Sources Contributions:  M6  Bias  M5  Tail  M1&M2 flicker noise  Increase NMOS Length Design procedure 39 Saralah Alizadeh Arand M1 M2 M3 M4 M5 M6 Device Param Noise Contribution % M6 id 1.02E-12 69.57 M5 id 1.77E-13 12.09 M2 fn 4.98E-14 3.4 M1 fn 4.98E-14 3.4 M6 fn 4.61E-14 3.14 M2 id 2.81E-14 1.92 M1 id 2.81E-14 1.92 Device Param Noise Contribution % M6 id 8.98E-13 73.8 M5 id 1.53E-13 12.61 M6 fn 4.06E-14 3.34 M2 id 2.30E-14 1.89 M1 id 2.30E-14 1.89 M1 fn 1.26E-14 1.03 M2 fn 1.26E-14 1.03 L11 rn 8.38E-15 0.69 L11 rn 8.38E-15 0.69 M4 id 5.46E-15 0.45 M3 id 5.46E-15 0.45
  • 40. Bias Noise Suppression  M6  Bias  Bias Noise Suppression  Bypass Capacitor  Noise Sources Contribution:  -126.7dBc/Hz @1MHz  6 dB Improvement Design procedure 40 Saralah Alizadeh Arand M1 M2 M3 M4 M5 M6 Device Param Noise Contribution % M6 id 8.98E-13 73.8 M5 id 1.53E-13 12.61 M6 fn 4.06E-14 3.34 M2 id 2.30E-14 1.89 M1 id 2.30E-14 1.89 M1 fn 1.26E-14 1.03 M2 fn 1.26E-14 1.03 L11 rn 8.38E-15 0.69 L11 rn 8.38E-15 0.69 M4 id 5.46E-15 0.45 M3 id 5.46E-15 0.45 M1 M2 M3 M4 M5 M6 Device Param Noise Contribution % M6 id 1.58E-13 43.11 M5 id 7.81E-14 21.35 M1 id 2.33E-14 6.38 M2 id 2.33E-14 6.38 M1 fn 1.28E-14 3.51 M2 fn 1.28E-14 3.51 L11 rn 8.42E-15 2.3 L11 rn 8.42E-15 2.3 M3 id 5.59E-15 1.53 M4 id 5.59E-15 1.53  Phase noise:  M5  Tail  M1&M2  Thermal
  • 41. Bias Current Optimization…  VCO Operation Modes:  Current Limited  Voltage Limited  Phase noise:  Current Limited Mode:  𝑉 = 4 𝜋 𝐼𝑏𝑖𝑎𝑠 . 𝑅𝑒𝑞  Current ↑ ⇒ Voltage ↑ ,Noise power ↑  ⇒ S/N ↑  Voltage Limited Mode:  𝑉 = 𝑉𝐷𝐷  Current ↑ ⇒ Noise power ↑  ⇒ S/N ↓  Iopt = 6mA Design procedure 41 Saralah Alizadeh Arand  I = 5mA  6mA
  • 42. Frequency Tuning  DVB-H  VHF-III ⇒ 170-230 MHz  UHF-IV/V ⇒ 470-862 MHz  L ⇒ 1.452-1.492 GHz  ⇒ 400-930 MHz  Tuning with Varactor:  Large Varactor  KVCO ↑  AM to PM ↑  Sensitivity ↑ Design procedure 42 Saralah Alizadeh Arand VHF III 100M 200M 500M 400M 300M 700M 600M 900M 800M 1G 1.2G 1.3G 1.4G 1.1G 1.5GHz UHF-IV/V L VHF III 100M 200M 500M 400M 300M 700M 600M 900M 800M 1G 1.2G 1.3G 1.4G 1.1G 1.5GHz UHF-IV/V L Tank Circuit
  • 43. Frequency Tuning…  ⇒ 400-930 MHz  Varactor Only  Coarse Tuning & Fine Tuning  Corse Tuning  Capacitor Bank  Fine Tuning  Varactor  Kvco ↓  Sensitivity ↓ Design procedure 43 Saralah Alizadeh Arand 100M 200M 500M 400M 300M 700M 600M 900M 800M 1GHz UHF-IV/V Frequency Tuning Volatge c0 c1 D0 D1 D2 D3 Vtune To VCO c2 c3 0000 1111 1110 0001 0010 0011 . . . . . . c0 c1 c4 D0 D1 D2 D3 D4 c2 c3 c0 c1 c4 D0 D1 D2 D3 D4 c2 c3
  • 44. Noise Filtering  Noise Filtering  Reduce Tail Noise  Reduce NMOS Noise  Tail noise Suppression  Current Source Role:  Vgs1 = -Vgs2  Vgs2 ↑ ⇒ Vgs1 ↓ , M1: off , M2: Triode  ro2 ↓ ⇒ Load Impedance ↓ ⇒ QTANK ↓  ⇒Adding Tail  Vgs2 ↑ ⇒ Vgs1 ↓ , M1: off , M2: Triode  No signal current can flow through ro2  ⇒ QTANK ↑  Current Source  A high impedance in series with Swithes Design procedure 44 Saralah Alizadeh Arand Vdd Vtune OFF Triode Output Voltage Load Impedance Time M1 M2 Vdd Vtune Output Voltage Load Impedance Time Time M1 M2 OFF Triode Device Param Noise Contribution % M5 id 1.58E-13 43.11 M6 id 7.81E-14 21.35 M1 id 2.33E-14 6.38 M2 id 2.33E-14 6.38 M1 fn 1.28E-14 3.51 M2 fn 1.28E-14 3.51 L11 rn 8.42E-15 2.3 L11 rn 8.42E-15 2.3 M3 id 5.59E-15 1.53 M4 id 5.59E-15 1.53 M1 M2 M3 M4 M5 M6 Vdd  Tail Noise  NMOS Noise
  • 45. Noise Filtering…  Tail noise Suppression  Tail thermal noise around 2𝝎𝟎 causes phase noise  In any balanced circuit:  Odd harmonics circulate in a differential path  Even harmonics flow in a common-mode path  ⇒ Current source need only provide high impedance to even harmonics  High impedance is only required at 2𝝎𝟎  ⇒ A Narrowband circuit  → Suppress noise at 2𝝎𝟎  A large capacitor  Shorts noise frequencies around 2𝝎𝟎  An inductor is inserted  To raise the impedance  Resonate at 2𝝎𝟎  Our Structure with tail noise Suppression Design procedure 45 Saralah Alizadeh Arand Vdd Vdd Vtune
  • 46. Noise Filtering…  NMOS Transistors noise suppression  Inserting a High Impedance  Resonate at 2𝝎𝟎  Filter Design  Center frequency:  2 × 670𝑀𝐻𝑧 = 1.34𝐺𝐻𝑧 Design procedure 46 Saralah Alizadeh Arand Vtune Vtune 100M 200M 500M 400M 300M 700M 600M 900M 800M 1GHz UHF-IV/V 670MHz  Phase noise in 700MHz:  -140.6 dBc/Hz @ 1MHz  Noise Sources Contributions: Device Param Noise Contribution% I1.L1.r2 rn 9.75E-16 12.58 I1.L1.r1 rn 9.75E-16 12.58 M1 id 7.81E-16 10.08 M2 id 7.81E-16 10.07 M3 id 3.26E-16 4.21 M4 id 3.26E-16 4.21 L1.r2 rn 3.15E-16 4.06 L2.r1 rn 3.10E-16 4 L3.rs2 rn 2.12E-16 2.73 L3.rs1 rn 2.12E-16 2.73 M6 id 2.09E-16 2.7 M1.rb rn 1.71E-16 2.21 M2.rb rn 1.71E-16 2.21
  • 47. New Noise Filtering…  Phase noise in Other Frequencies:  500MHz ⇒-136.2 dBc/Hz @ 1MHz  700MHz ⇒-140.6 dBc/Hz @ 1MHz  850MHz ⇒-137.1 dBc/Hz @ 1MHz  Tuning The Filter  Complicated  Difficult  Using Multiple Filtering Rather Than Tuning The Filter  Simple Design procedure 47 Saralah Alizadeh Arand Vtune 100M 200M 500M 400M 300M 700M 600M 900M 800M 1GHz UHF-IV/V 670MHz 1G 800M 1.4G 1.2G 1.8G 1.6G c0 c1 c4 D0 D1 D2 D3 D4 c2 c3 c0 c1 c4 D0 D1 D2 D3 D4 c2 c3 D0 D1 D2 D3 D4 D0 D1 D2 D3 D4 Vtune D0 … D4
  • 48. New Noise Filtering…  Multiple Filtering:  Logic Unit: Design procedure 48 Saralah Alizadeh Arand 100M 200M 500M 400M 300M 700M 600M 900M 800M 1GHz UHF-IV/V 670MHz 1G 800M 1.4G 1.2G 1.8G 1.6G c0 c1 c4 D0 D1 D2 D3 D4 c2 c3 c0 c1 c4 D0 D1 D2 D3 D4 c2 c3 f1 f2 f3 f4 f5 f1 f2 f3 f4 f5 D0 … D4 Logic Unit D2…D4 f0 … f4 Vtune 0000 1111 1110 Frequency Tuning Volatge 0001 0010 0011 . . . . . . D 4 D 3 D 2 f1 f2 f3 f4 f5
  • 49. New Noise Filtering…  Multiple Filtering  Phase Noise:  500MHz ⇒-140.7 dBc/Hz @ 1MHz  700MHz ⇒-140.6 dBc/Hz @ 1MHz  850MHz ⇒-140.8 dBc/Hz @ 1MHz Design procedure 49 Saralah Alizadeh Arand c0 c1 c4 D0 D1 D2 D3 D4 c2 c3 c0 c1 c4 D0 D1 D2 D3 D4 c2 c3 f1 f2 f3 f4 f5 f1 f2 f3 f4 f5 D0 … D4 Logic Unit D2…D4 f0 … f4 Vtune
  • 50. Phase Noise Programing  Changing Bias Current  ⇒ Will Change The Phase Noise  When More Phase noise Is Tolerable  We Can Reduce Tail Current  Less Power Is Consumed  4 Bit Is Used To Control The Current  Phase noise v.s. Bias Current: Design procedure 50 Saralah Alizadeh Arand Bit4 Bit3 Bit2 Bit1 M5 M6 M7 M8 M9 M10 Power Control Bits Current Consumption (mA) Simulation Phase-noise (dBc/Hz @ 1MHz) Output Amplitude (v) 0000 6 schematic -140.9 1.341 0001 4.6 schematic -137.2 1.149 0010 3.75 schematic -136.4 .973 0100 2.73 schematic -135.6 .75 0111 2 schematic -133 .572 1010 1.5 schematic -131.2 .474 1111 1 schematic -129.6 .361
  • 51. Output Buffer  Output Buffer  Open Drain Buffer  Simple  Off Chip Bias T  C1 & C2 ⇒ Reduce VCO Output Design procedure 51 Saralah Alizadeh Arand R= 50 ohm Bias T C1 C2 VBias
  • 52. Outline  Oscillator Basics  Phase-noise  VCO  Noise Sources in VCO  Design procedure  Comparison  Conclusion 52 Saralah Alizadeh Arand  Layout & post layout  Layout  Post Layout Layout & post layout
  • 53. Layout  Layout: Layout & post layout 53 Saralah Alizadeh Arand D5 D4 D3 f1 f2 f3 f4 f5 c0 c1 c4 D0 D1 D2 D3 D4 c2 c3 c0 c1 c4 D0 D1 D2 D3 D4 c2 c3 f1 f2 f3 f4 f5 f1 f2 f3 f4 f5 Bit4 Bit3 Bit2 Bit1 M6 M7 M8 M9 M10 Vtune
  • 54. Post Layout  Start up:  470MHz ⇒-140.7 dBc/Hz @ 1MHz  650MHz ⇒-140.5 dBc/Hz @ 1MHz  850MHz ⇒-140.6 dBc/Hz @ 1MHz  Comparision: Layout & post layout 54 Saralah Alizadeh Arand  Phse noise: Frequency (MHz) Simulation Phase-noise (dBc/Hz @ 1MHz) 470 Schematic -140.8 Post layout -140.7 650 Schematic -140.9 Post layout -140.5 850 Schematic -140.8 Post layout -140.6
  • 55. Post Layout  Phase noise v.s. Bias Current:  700MHz Layout & post layout 55 Saralah Alizadeh Arand Power Control Bits Current Consumption (mA) Simulation Phase-noise (dBc/Hz @ 1MHz) Output Amplitude (v) 0000 6 schematic -140.9 1.341 Post layout -140.5 1.337 0001 4.6 schematic -137.2 1.149 Post layout -136.9 1.147 0010 3.75 schematic -136.4 .973 Post layout -136 .97 0100 2.73 schematic -135.6 .75 Post layout -135.2 .747 0111 2 schematic -133 .572 Post layout -132.7 .569 1010 1.5 schematic -131.2 .474 Post layout -130.7 .473 1111 1 schematic -129.6 .361 Post layout -129.1 .36
  • 56. Post Layout  Coarse & Fine Tuning Layout & post layout 56 Saralah Alizadeh Arand
  • 57. Outline  Oscillator Basics  Phase-noise  VCO  Noise Sources in VCO  Design procedure  Layout & post layout  Conclusion 57 Saralah Alizadeh Arand Comparison  Comparison
  • 58. Comparison  Comparison: 58 Saralah Alizadeh Arand Comparison Technology Center Frequency (Hz) Tuning Percent Power (mW) Phase- noise (dBc/Hz) Offset Frequency (Hz) FOM [38] 0.18u cmos 1.8G 23% 5 -127.5 1M -185.6 [39] 0.18u cmos 1.8G 25% 34 -132 1M 181.8 [41] 0.18u cmos 975M 60% 5 -98 100k -170.8 [42] 0.18u cmos 1.8G 73% 4.8 -126 1M -184 [43] 0.18u cmos 1.34G 68% 9 -135.3 1M -187 This Work 0.18u cmos 670M 78% 10.8 -140.7 1M -187.5 𝑭𝑶𝑴 = 𝓛 𝒇𝒐𝒇𝒇𝒔𝒆𝒕 − 𝟐𝟎 𝒍𝒐𝒈 𝒇𝒐𝒔𝒄 𝒇𝒐𝒇𝒇𝒔𝒆𝒕 + 𝟏𝟎 𝒍𝒐𝒈 𝑷𝒅𝒊𝒔𝒔 𝟏𝒎𝑾
  • 59. Outline  Oscillator Basics  Phase-noise  VCO  Noise Sources in VCO  Design procedure  Layout & post layout  Comparison 59 Saralah Alizadeh Arand Conclusion  Conclusion
  • 60. Conclusion  A Review of VCO  Noise Sources → Phase Noise  Noise Filtering  Wide Band Noise Filtering  Phase Noise Programing  This VCO Is Not Fabricated 60 Saralah Alizadeh Arand Conclusion
  • 61. Thanks For Your Attention… ?