SlideShare uma empresa Scribd logo
1 de 21
CHAPTER 5 Operational Amplifier
Operational  Amplifiers Buffer Amplifier Summing Amplifier Differential Amplifier Positive & negative Feedback
OPERATIONAL AMPLIFIER Block Diagram of Op-amp
[object Object],[object Object],[object Object],[object Object],[object Object]
Ideal Op-Amp Model ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Inverting amplifier -the inverting amplifier, will amplify the input,Vs and invert(sonsang) the value which is going to be negative value.
Inverting amplifier I R1 =V R1 /R 1 = (V S -V i )/R 1 = ( V S -~0)/R 1 = V S /R 1 = 0.5/1kOhm = 0.5mA I R F = (V i  -V OUT )/ R F = (0-V OUT )/ R F = -V OUT / R F So, V OUT = -I RF R F = -I R1 R F (I RF =I R1 ) = - (0.5mA) (20kOhm) = -10V (Since it is inverting, the  output will be –ve) Closed loop voltage   gain ,A VCL = V OUT  /Vs = -10V/0.5V = -20 A VCL = V OUT  /Vs = -V S  (R F /R 1 ) /Vs  A VCL = -R F /R 1 =-20
Non inverting amplifier V-term= Vs I R1 =V S /R 1 So,  V S =I R1 R 1 I RF = (V OUT -V S )/R F But I R1 = I RF V S /R 1 = (V OUT -V S )/R F V OUT -V S = (R F /R 1 )V S V OUT  = (R F /R 1 )V S +V S = V S [(R F /R 1 )+1] V OUT / Vs = (R F /R 1 )+1 = 1+ R F /R 1 = A V So, A V = 1+ R F /R 1 Thus, for R 1 = 1kOhm and R F =20kOhm,  Vs= 0.5V as before, the non inverting amplifier provide voltage gain of  A V = 1+ 20k/1k = 21 V OUT = 21Vs = 21(0.5) = 10.5V -the value,Vs will be amplify but not going to be invert.
Op amp summing amplifier I1=V1/R1 I2=V2/R2 IT=(0-V OUT )/RF but IT= I1+ I2 -V OUT / RF =V1/R1+V2/R2 -V OUT = [V1/R1+V2/R2] RF Let R1=10kOhm, R2=20kOhm, RF=40kOhm, V1=1.2V, V2= -1.9V So, -V OUT = [V1/R1+V2/R2] RF -V OUT = [1.2/10k+(-1.9)/20k] 40k =1V V OUT = -1V
Differential amplifier - amplify the difference between two signal -the difference between this two signal is considered an error -this error is going to be Vout. The gain is 1 since it only comparing. V OUT =(V 2 -V 1 ) X R F /R 1 -Example: V1=2.2V ,V2=1.5V ,RD=RF=86kohm, VOUT=?  R1=R2=10kohm VOUT=(1.5-2.2)X(86k/10k) = (0.7) X 8.6 = -6V
Integrator ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example.  Sketch and label the values of the output signal Vout for Vin that is 1kHz  square wave with a peak voltage of  +  1 V (2Vp-p) Solution.  The input signal is specified as square wave varying between +1V and -1V at 1 kHz rate, T= 1/f = 1/1kHz = 1ms. which means that the input will be +1V for half time, or 0.5ms and at -1V at 0.5ms.
For t=0 to 0.5ms, Vi=1V Vo1= -(1/R1C1) X ∫VIN dt + Vo(0) =-1/(10kΩ x 0.01µF) x  + 0 = -10000 x = -10000 x 0.5ms = -5V For t =0.5ms to 1.0ms Vo2= -(1/R1C1) X ∫VIN dt + Vo1 =-1/(10kΩ x 0.01µF) x  + (-5V) = [-10000 x  ] - 5V = [-10000 x (-0.5ms)] -5V = 0 V
Op Amp differentiator -The output of differentiator is proportional to the rate of change of  input;  VOUT= - (RFC1) x dVIN/dt -Cut off frequency, fc=1/2  R1C1 -If f > fc , it stops acting as  differentiator and act as inverting amplifier. Example: Calculate VOUT in figure above where RF=2.2k Ohm and C= 0.001uF and where VIN is ramp input that goes from +5V to -5V in time given from figure shown above.
Solution. For t= 0 to 50us Vout= - (RFC1) x dVIN/dt = -(2.2k)(0.001u) x 10/(50u) = -0.44V For t=50us to 100us Vout= -(2.2k)(0.001u) x [-10/(50u)] = 0.44V For t=100us to 150us Vout=-(2.2k)(0.001u) x 10/(50u) = -0.44V For t= 150us to 200us Vout= -(2.2k)(0.001u) x [-10/(50u)] = 0.44V
Voltage follower -Output is connected directly to its inverting input, thus producing the output  that is equal to the non inverting input voltage in both amplitude and  polarity.  Output = Input, so Gain, A=1
Offset value of op amp ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example: Calculate VOUT in figure above where RF=1.7k Ohm,R1=10kOhm and C= 0.008uF and where V IN  is ramp input shown in figure below. At what freq. it will stop acting as differentiator?What its gain now?

Mais conteúdo relacionado

Mais procurados

slew rate in opamp
slew rate in opampslew rate in opamp
slew rate in opamp
Jay Patel
 

Mais procurados (20)

Op amps
Op ampsOp amps
Op amps
 
Power amplifiers
Power amplifiersPower amplifiers
Power amplifiers
 
slew rate in opamp
slew rate in opampslew rate in opamp
slew rate in opamp
 
Basic of Diode Rectifiers
Basic of Diode RectifiersBasic of Diode Rectifiers
Basic of Diode Rectifiers
 
Op amp-electronics
Op amp-electronicsOp amp-electronics
Op amp-electronics
 
Op amp
Op ampOp amp
Op amp
 
Feedback amplifiers
Feedback  amplifiersFeedback  amplifiers
Feedback amplifiers
 
Rec101 unit iii operational amplifier
Rec101 unit iii operational amplifierRec101 unit iii operational amplifier
Rec101 unit iii operational amplifier
 
Presentation on Op-amp by Sourabh kumar
Presentation on Op-amp by Sourabh kumarPresentation on Op-amp by Sourabh kumar
Presentation on Op-amp by Sourabh kumar
 
Power electronics Phase Controlled Rectifiers - SCR
Power electronics   Phase Controlled Rectifiers - SCRPower electronics   Phase Controlled Rectifiers - SCR
Power electronics Phase Controlled Rectifiers - SCR
 
RATINGS OF SCR
RATINGS OF SCRRATINGS OF SCR
RATINGS OF SCR
 
Applications of op amps
Applications of op ampsApplications of op amps
Applications of op amps
 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converter
 
OP AMP Applications
OP AMP ApplicationsOP AMP Applications
OP AMP Applications
 
Power amplifier
Power amplifierPower amplifier
Power amplifier
 
power amplifier.pptx
power amplifier.pptxpower amplifier.pptx
power amplifier.pptx
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
 
Basics of op amp
Basics of op ampBasics of op amp
Basics of op amp
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
Op amp basics
Op amp basicsOp amp basics
Op amp basics
 

Destaque (8)

The operational amplifier (part 2)
The operational amplifier (part 2)The operational amplifier (part 2)
The operational amplifier (part 2)
 
Operational Amplifiers
Operational AmplifiersOperational Amplifiers
Operational Amplifiers
 
Oscillators
OscillatorsOscillators
Oscillators
 
Oscillators
OscillatorsOscillators
Oscillators
 
Operation amplifier
Operation amplifierOperation amplifier
Operation amplifier
 
Operational Amplifiers
Operational AmplifiersOperational Amplifiers
Operational Amplifiers
 
Oscillator multivibrotor
Oscillator multivibrotorOscillator multivibrotor
Oscillator multivibrotor
 
Oscillators
OscillatorsOscillators
Oscillators
 

Semelhante a Chapter 5 operational amplifier

Fundamentals of oprational Amplifiers.pptx
Fundamentals of oprational Amplifiers.pptxFundamentals of oprational Amplifiers.pptx
Fundamentals of oprational Amplifiers.pptx
adityaraj7711
 
Operational amplifiers
Operational amplifiersOperational amplifiers
Operational amplifiers
vshalsheth
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
Sarah Krystelle
 

Semelhante a Chapter 5 operational amplifier (20)

Sig con
Sig conSig con
Sig con
 
Op amp applications cw nonlinear applications
Op amp applications cw nonlinear applicationsOp amp applications cw nonlinear applications
Op amp applications cw nonlinear applications
 
Fundamentals of oprational Amplifiers.pptx
Fundamentals of oprational Amplifiers.pptxFundamentals of oprational Amplifiers.pptx
Fundamentals of oprational Amplifiers.pptx
 
unit 3.ppt
unit 3.pptunit 3.ppt
unit 3.ppt
 
Lic lab manual
Lic lab manualLic lab manual
Lic lab manual
 
operational amplifiers
operational amplifiersoperational amplifiers
operational amplifiers
 
Ajal op amp
Ajal op ampAjal op amp
Ajal op amp
 
Operational amplifiers
Operational amplifiersOperational amplifiers
Operational amplifiers
 
L6 and L7 full wave rectifier, PIV.ppt
L6 and L7 full wave rectifier, PIV.pptL6 and L7 full wave rectifier, PIV.ppt
L6 and L7 full wave rectifier, PIV.ppt
 
L6 and L7 full wave rectifier, PIV.ppt
L6 and L7 full wave rectifier, PIV.pptL6 and L7 full wave rectifier, PIV.ppt
L6 and L7 full wave rectifier, PIV.ppt
 
Operational Amplifiers Basic
Operational Amplifiers BasicOperational Amplifiers Basic
Operational Amplifiers Basic
 
Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)
 
Operational amplifiers
Operational amplifiersOperational amplifiers
Operational amplifiers
 
Operational amplifiers
Operational amplifiersOperational amplifiers
Operational amplifiers
 
UNIT-3 OPAMP.pptx
UNIT-3 OPAMP.pptxUNIT-3 OPAMP.pptx
UNIT-3 OPAMP.pptx
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
 
Ic apps lab_manual_jwfiles
Ic apps lab_manual_jwfilesIc apps lab_manual_jwfiles
Ic apps lab_manual_jwfiles
 
OP-AMP.pptx
OP-AMP.pptxOP-AMP.pptx
OP-AMP.pptx
 
Analog CMOS design
Analog CMOS designAnalog CMOS design
Analog CMOS design
 

Mais de Hattori Sidek (20)

Chapter 4 frequency modulation
Chapter 4 frequency modulationChapter 4 frequency modulation
Chapter 4 frequency modulation
 
Chapter 3 am receivers
Chapter 3 am receiversChapter 3 am receivers
Chapter 3 am receivers
 
Ch8 file processing
Ch8 file processingCh8 file processing
Ch8 file processing
 
Ch6 pointers (latest)
Ch6 pointers (latest)Ch6 pointers (latest)
Ch6 pointers (latest)
 
Ch5 array nota
Ch5 array notaCh5 array nota
Ch5 array nota
 
Ch4 functions
Ch4 functionsCh4 functions
Ch4 functions
 
Ch3 selection
Ch3 selectionCh3 selection
Ch3 selection
 
Ch3 repetition
Ch3 repetitionCh3 repetition
Ch3 repetition
 
Ch2 introduction to c
Ch2 introduction to cCh2 introduction to c
Ch2 introduction to c
 
Ch1 principles of software development
Ch1 principles of software developmentCh1 principles of software development
Ch1 principles of software development
 
Ch7 structures
Ch7 structuresCh7 structures
Ch7 structures
 
13 atm
13 atm13 atm
13 atm
 
12 wireless la-ns
12 wireless la-ns12 wireless la-ns
12 wireless la-ns
 
11 circuit-packet
11 circuit-packet11 circuit-packet
11 circuit-packet
 
10 high speedla-ns
10 high speedla-ns10 high speedla-ns
10 high speedla-ns
 
9 lan
9 lan9 lan
9 lan
 
8 spread spectrum
8 spread spectrum8 spread spectrum
8 spread spectrum
 
7 multiplexing
7 multiplexing7 multiplexing
7 multiplexing
 
6 data linkcontrol
6  data linkcontrol6  data linkcontrol
6 data linkcontrol
 
5 digital datacomm
5 digital datacomm5 digital datacomm
5 digital datacomm
 

Último

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Último (20)

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 

Chapter 5 operational amplifier

  • 2. Operational Amplifiers Buffer Amplifier Summing Amplifier Differential Amplifier Positive & negative Feedback
  • 3. OPERATIONAL AMPLIFIER Block Diagram of Op-amp
  • 4.
  • 5.
  • 6. Inverting amplifier -the inverting amplifier, will amplify the input,Vs and invert(sonsang) the value which is going to be negative value.
  • 7. Inverting amplifier I R1 =V R1 /R 1 = (V S -V i )/R 1 = ( V S -~0)/R 1 = V S /R 1 = 0.5/1kOhm = 0.5mA I R F = (V i -V OUT )/ R F = (0-V OUT )/ R F = -V OUT / R F So, V OUT = -I RF R F = -I R1 R F (I RF =I R1 ) = - (0.5mA) (20kOhm) = -10V (Since it is inverting, the output will be –ve) Closed loop voltage gain ,A VCL = V OUT /Vs = -10V/0.5V = -20 A VCL = V OUT /Vs = -V S (R F /R 1 ) /Vs A VCL = -R F /R 1 =-20
  • 8. Non inverting amplifier V-term= Vs I R1 =V S /R 1 So, V S =I R1 R 1 I RF = (V OUT -V S )/R F But I R1 = I RF V S /R 1 = (V OUT -V S )/R F V OUT -V S = (R F /R 1 )V S V OUT = (R F /R 1 )V S +V S = V S [(R F /R 1 )+1] V OUT / Vs = (R F /R 1 )+1 = 1+ R F /R 1 = A V So, A V = 1+ R F /R 1 Thus, for R 1 = 1kOhm and R F =20kOhm, Vs= 0.5V as before, the non inverting amplifier provide voltage gain of A V = 1+ 20k/1k = 21 V OUT = 21Vs = 21(0.5) = 10.5V -the value,Vs will be amplify but not going to be invert.
  • 9. Op amp summing amplifier I1=V1/R1 I2=V2/R2 IT=(0-V OUT )/RF but IT= I1+ I2 -V OUT / RF =V1/R1+V2/R2 -V OUT = [V1/R1+V2/R2] RF Let R1=10kOhm, R2=20kOhm, RF=40kOhm, V1=1.2V, V2= -1.9V So, -V OUT = [V1/R1+V2/R2] RF -V OUT = [1.2/10k+(-1.9)/20k] 40k =1V V OUT = -1V
  • 10. Differential amplifier - amplify the difference between two signal -the difference between this two signal is considered an error -this error is going to be Vout. The gain is 1 since it only comparing. V OUT =(V 2 -V 1 ) X R F /R 1 -Example: V1=2.2V ,V2=1.5V ,RD=RF=86kohm, VOUT=? R1=R2=10kohm VOUT=(1.5-2.2)X(86k/10k) = (0.7) X 8.6 = -6V
  • 11.
  • 12. Example. Sketch and label the values of the output signal Vout for Vin that is 1kHz square wave with a peak voltage of + 1 V (2Vp-p) Solution. The input signal is specified as square wave varying between +1V and -1V at 1 kHz rate, T= 1/f = 1/1kHz = 1ms. which means that the input will be +1V for half time, or 0.5ms and at -1V at 0.5ms.
  • 13. For t=0 to 0.5ms, Vi=1V Vo1= -(1/R1C1) X ∫VIN dt + Vo(0) =-1/(10kΩ x 0.01µF) x + 0 = -10000 x = -10000 x 0.5ms = -5V For t =0.5ms to 1.0ms Vo2= -(1/R1C1) X ∫VIN dt + Vo1 =-1/(10kΩ x 0.01µF) x + (-5V) = [-10000 x ] - 5V = [-10000 x (-0.5ms)] -5V = 0 V
  • 14. Op Amp differentiator -The output of differentiator is proportional to the rate of change of input; VOUT= - (RFC1) x dVIN/dt -Cut off frequency, fc=1/2 R1C1 -If f > fc , it stops acting as differentiator and act as inverting amplifier. Example: Calculate VOUT in figure above where RF=2.2k Ohm and C= 0.001uF and where VIN is ramp input that goes from +5V to -5V in time given from figure shown above.
  • 15. Solution. For t= 0 to 50us Vout= - (RFC1) x dVIN/dt = -(2.2k)(0.001u) x 10/(50u) = -0.44V For t=50us to 100us Vout= -(2.2k)(0.001u) x [-10/(50u)] = 0.44V For t=100us to 150us Vout=-(2.2k)(0.001u) x 10/(50u) = -0.44V For t= 150us to 200us Vout= -(2.2k)(0.001u) x [-10/(50u)] = 0.44V
  • 16. Voltage follower -Output is connected directly to its inverting input, thus producing the output that is equal to the non inverting input voltage in both amplitude and polarity. Output = Input, so Gain, A=1
  • 17.
  • 18.
  • 19.
  • 20.
  • 21. Example: Calculate VOUT in figure above where RF=1.7k Ohm,R1=10kOhm and C= 0.008uF and where V IN is ramp input shown in figure below. At what freq. it will stop acting as differentiator?What its gain now?