SlideShare uma empresa Scribd logo
1 de 66
Baixar para ler offline
Reduction Formula
Reduction Formula
Reduction (or recurrence) formulae expresses a given integral as
the sum of a function and a known integral.
Integration by parts often used to find the formula.
Reduction Formula
   Reduction (or recurrence) formulae expresses a given integral as
   the sum of a function and a known integral.
   Integration by parts often used to find the formula.


e.g. (i) (1987)       

                                                     n  1
    Given that I n   cos n xdx, prove that I n  
                      2

                                                          I n2
                     0                              n 
                                                         
                                                         2
    where n is an integer and n  2, hence evaluate  cos 5 xdx
                                                         0

     2
I n   cos n xdx
     0

     2
I n   cos n xdx
     0
     
     2
    cos n 1 x cos xdx
     0

     2
I n   cos n xdx
     0
     
     2                      u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx   du  n  1 cos n  2 x sin xdx dv  cos xdx
     0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                         2
   
             2     2
                                     
                                                
                                                 0

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n
    nI n  n  1I n  2

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n
    nI n  n  1I n  2

      In   n  1I
                    n2
             n 

2


0
  cos 5 xdx  I 5

2


0
  cos 5 xdx  I 5
             4
             I3
             5

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0
                      
              8
             sin x 0
                      2
             15

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0
                      
               8
             sin x 0
                      2
              15
               8 
              sin  sin 0 
                            
              15   2       
               8
            
              15
ii  Given that I n   cot n xdx, find I 6
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x
                                                      du  cosec 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x

         u   n2
                      du  I n  2                    du  cosec 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x

         u   n2
                      du  I n  2                    du  cosec 2 xdx

            1 n 1
             u  I n2
          n 1
            1
             cot n 1 x  I n  2
          n 1
 cot 6 xdx  I 6
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
                 1 5     1 3
              cot x  cot x  cot x   dx
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
                 1 5     1 3
              cot x  cot x  cot x   dx
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  x  c
                 5       3
(iii) (2004 Question 8b)
                 
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                4 tan n x sec 2 xdx
                 0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0

                                                         when x  0, u  0
                                                                    
                                                               x       ,u  1
                                                                    4
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
                                                               x       ,u  1
                                                                    4
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                        1
a ) Show that I n  I n2           
                                      n 1
                                       
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0                     0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
               u       n 1   1
                                                               x       ,u  1
                                                                  4
                n  1 0
                      
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                        1
a ) Show that I n  I n2           
                                      n 1
                                       
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0                     0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
               u       n 1   1
                                                               x       ,u  1
                                                                  4
                n  1 0
                      
                  1                       1
                    0               
                n 1                    n 1
 1
                                       n

b) Deduce that J n  J n1                for n  1
                               2n  1
 1
                                       n

b) Deduce that J n  J n1                for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1
 1
                                        n

b) Deduce that J n  J n1                 for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                      n             n
 1
                                          n

b) Deduce that J n  J n1                   for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                       n              n



                 1  I 2 n  I 2 n2 
                       n
 1
                                          n

b) Deduce that J n  J n1                   for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                       n              n



                 1  I 2 n  I 2 n2 
                       n



                    1
                           n

               
                   2n  1
 1
                                        n
                         m
c) Show that J m        
                     4   n 1   2n  1
 1
                                               n
                               m
c) Show that J m             
                          4     n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
 1
                                                n
                                 m
c) Show that J m             
                          4      n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m             m 1

                                       J m2
          2m  1         2m  3
 1
                                                n
                                 m
c) Show that J m             
                          4      n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m             m 1

                                       J m2
          2m  1         2m  3
           1          1                 1
                  m             m 1                    1

                                                        J0
          2m  1         2m  3                     1
 1
                                                     n
                                      m
c) Show that J m                
                             4        n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m                  m 1

                                            J m2
          2m  1             2m  3
           1          1                      1
                  m                  m 1                    1

                                                             J0
          2m  1             2m  3                      1
                  1           
                         n
           m
                             4 dx
          n 1   2n  1          0
 1
                                                     n
                                      m
c) Show that J m                
                             4        n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m                  m 1

                                            J m2
          2m  1             2m  3
           1          1                      1
                  m                  m 1                    1

                                                             J0
          2m  1             2m  3                      1
                  1            
                         n
           m
                             4 dx
          n 1   2n  1          0


                  1
                         n
           m                          
                             x 04
          n 1   2n  1
                  1
                         n
           m
                                 
                           
          n 1   2n  1          4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
                                                                    du
                                                             dx 
                                                                  1 u2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
                                                                    du
                                                             dx 
                                                                  1 u2
                                                  when x  0, u  0
                                                               
                                                          x       ,u  1
                                                               4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                               4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                            4
                           1
e) Deduce that 0  I n         and conclude that J n  0 as n  
                         n 1
1  un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                  when x  0, u  0
   In  
         0 1 u2
                                                                
                                                           x       ,u  1
                                                              4
                             1
e) Deduce that 0  I n           and conclude that J n  0 as n  
                           n 1
    un
           0, for all u  0
   1 u 2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                            4
                              1
e) Deduce that 0  I n         and conclude that J n  0 as n  
                            n 1
    un
            0, for all u  0
   1 u 2

              n
          1 u
 In           du  0, for all u  0
         0 1 u2
1
I n  I n 2   
                 n 1
1
I n  I n 2   
                 n 1
       1
In        I n 2
     n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
                   1
 0  In 
                 n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
                  In  0
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
                  In  0

                  J n   1 I 2 n  0
                              n
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In                                  Exercise 2D; 1, 2, 3, 6, 8,
          n 1                                   9, 10, 12, 14
              1
  as n  ,      0
            n 1
                  In  0

                  J n   1 I 2 n  0
                              n

Mais conteúdo relacionado

Semelhante a X2 t04 04 reduction formula (2012)

Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)Nigel Simmons
 
Mathematics presentation trigonometry and circle
Mathematics presentation   trigonometry and circleMathematics presentation   trigonometry and circle
Mathematics presentation trigonometry and circleDewi Setiyani Putri
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeNamit Kotiya
 
Precalc review for calc p pt
Precalc review for calc p ptPrecalc review for calc p pt
Precalc review for calc p ptgregcross22
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14Sanyam Singh
 

Semelhante a X2 t04 04 reduction formula (2012) (6)

Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
Mathematics presentation trigonometry and circle
Mathematics presentation   trigonometry and circleMathematics presentation   trigonometry and circle
Mathematics presentation trigonometry and circle
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
 
Precalc review for calc p pt
Precalc review for calc p ptPrecalc review for calc p pt
Precalc review for calc p pt
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
 

Mais de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mais de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 

Último (20)

Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 

X2 t04 04 reduction formula (2012)

  • 2. Reduction Formula Reduction (or recurrence) formulae expresses a given integral as the sum of a function and a known integral. Integration by parts often used to find the formula.
  • 3. Reduction Formula Reduction (or recurrence) formulae expresses a given integral as the sum of a function and a known integral. Integration by parts often used to find the formula. e.g. (i) (1987)  n  1 Given that I n   cos n xdx, prove that I n   2   I n2 0  n   2 where n is an integer and n  2, hence evaluate  cos 5 xdx 0
  • 4. 2 I n   cos n xdx 0
  • 5. 2 I n   cos n xdx 0  2   cos n 1 x cos xdx 0
  • 6. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx 0
  • 7. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0
  • 8. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0
  • 9. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0
  • 10. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n
  • 11. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n  nI n  n  1I n  2
  • 12. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n  nI n  n  1I n  2 In   n  1I  n2  n 
  • 13.  2  0 cos 5 xdx  I 5
  • 14.  2  0 cos 5 xdx  I 5 4  I3 5
  • 15.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3
  • 16.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0
  • 17.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0  8  sin x 0 2 15
  • 18.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0  8  sin x 0 2 15 8    sin  sin 0   15  2  8  15
  • 19. ii  Given that I n   cot n xdx, find I 6
  • 20. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx
  • 21. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx
  • 22. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx
  • 23. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x du  cosec 2 xdx
  • 24. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x   u n2 du  I n  2 du  cosec 2 xdx
  • 25. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x   u n2 du  I n  2 du  cosec 2 xdx 1 n 1  u  I n2 n 1 1  cot n 1 x  I n  2 n 1
  • 26.  cot 6 xdx  I 6
  • 27.  cot 6 xdx  I 6 1 5   cot x  I 4 5
  • 28.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3
  • 29.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3
  • 30.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3 1 5 1 3   cot x  cot x  cot x   dx 5 3
  • 31.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3 1 5 1 3   cot x  cot x  cot x   dx 5 3 1 5 1 3   cot x  cot x  cot x  x  c 5 3
  • 32. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1
  • 33. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0
  • 34. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0    4 tan n x sec 2 xdx 0
  • 35. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0
  • 36. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 when x  0, u  0  x ,u  1 4
  • 37. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  x ,u  1 4
  • 38. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  u  n 1 1 x ,u  1  4  n  1 0 
  • 39. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  u  n 1 1 x ,u  1  4  n  1 0  1 1  0  n 1 n 1
  • 40.  1 n b) Deduce that J n  J n1  for n  1 2n  1
  • 41.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1
  • 42.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n
  • 43.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n   1  I 2 n  I 2 n2  n
  • 44.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n   1  I 2 n  I 2 n2  n  1 n  2n  1
  • 45.  1 n  m c) Show that J m   4 n 1 2n  1
  • 46.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1
  • 47.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3
  • 48.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1
  • 49.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1  1  n m    4 dx n 1 2n  1 0
  • 50.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1  1  n m    4 dx n 1 2n  1 0  1 n m     x 04 n 1 2n  1  1 n m    n 1 2n  1 4
  • 51. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2
  • 52. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0
  • 53. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u du dx  1 u2
  • 54. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u du dx  1 u2 when x  0, u  0  x ,u  1 4
  • 55. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4
  • 56. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1
  • 57. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1 un  0, for all u  0 1 u 2
  • 58. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1 un  0, for all u  0 1 u 2 n 1 u  In   du  0, for all u  0 0 1 u2
  • 59. 1 I n  I n 2  n 1
  • 60. 1 I n  I n 2  n 1 1 In   I n 2 n 1
  • 61. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1
  • 62. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1
  • 63. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1
  • 64. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1  In  0
  • 65. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1  In  0  J n   1 I 2 n  0 n
  • 66. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  Exercise 2D; 1, 2, 3, 6, 8, n 1 9, 10, 12, 14 1 as n  , 0 n 1  In  0  J n   1 I 2 n  0 n