SlideShare a Scribd company logo
Reduction Formula
Reduction Formula
Reduction (or recurrence) formulae expresses a given integral as
the sum of a function and a known integral.
Integration by parts often used to find the formula.
Reduction Formula
   Reduction (or recurrence) formulae expresses a given integral as
   the sum of a function and a known integral.
   Integration by parts often used to find the formula.


e.g. (i) (1987)       

                                                     n  1
    Given that I n   cos n xdx, prove that I n  
                      2

                                                          I n2
                     0                              n 
                                                         
                                                         2
    where n is an integer and n  2, hence evaluate  cos 5 xdx
                                                         0

     2
I n   cos n xdx
     0

     2
I n   cos n xdx
     0
     
     2
    cos n 1 x cos xdx
     0

     2
I n   cos n xdx
     0
     
     2                      u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx   du  n  1 cos n  2 x sin xdx dv  cos xdx
     0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                         2
   
             2     2
                                     
                                                
                                                 0

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n
    nI n  n  1I n  2

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n
    nI n  n  1I n  2

      In   n  1I
                    n2
             n 

2


0
  cos 5 xdx  I 5

2


0
  cos 5 xdx  I 5
             4
             I3
             5

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0
                      
              8
             sin x 0
                      2
             15

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0
                      
               8
             sin x 0
                      2
              15
               8 
              sin  sin 0 
                            
              15   2       
               8
            
              15
ii  Given that I n   cot n xdx, find I 6
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x
                                                      du  cosec 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x

         u   n2
                      du  I n  2                    du  cosec 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x

         u   n2
                      du  I n  2                    du  cosec 2 xdx

            1 n 1
             u  I n2
          n 1
            1
             cot n 1 x  I n  2
          n 1
 cot 6 xdx  I 6
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
                 1 5     1 3
              cot x  cot x  cot x   dx
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
                 1 5     1 3
              cot x  cot x  cot x   dx
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  x  c
                 5       3
(iii) (2004 Question 8b)
                 
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                4 tan n x sec 2 xdx
                 0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0

                                                         when x  0, u  0
                                                                    
                                                               x       ,u  1
                                                                    4
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
                                                               x       ,u  1
                                                                    4
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                        1
a ) Show that I n  I n2           
                                      n 1
                                       
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0                     0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
               u       n 1   1
                                                               x       ,u  1
                                                                  4
                n  1 0
                      
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                        1
a ) Show that I n  I n2           
                                      n 1
                                       
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0                     0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
               u       n 1   1
                                                               x       ,u  1
                                                                  4
                n  1 0
                      
                  1                       1
                    0               
                n 1                    n 1
 1
                                       n

b) Deduce that J n  J n1                for n  1
                               2n  1
 1
                                       n

b) Deduce that J n  J n1                for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1
 1
                                        n

b) Deduce that J n  J n1                 for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                      n             n
 1
                                          n

b) Deduce that J n  J n1                   for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                       n              n



                 1  I 2 n  I 2 n2 
                       n
 1
                                          n

b) Deduce that J n  J n1                   for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                       n              n



                 1  I 2 n  I 2 n2 
                       n



                    1
                           n

               
                   2n  1
 1
                                        n
                         m
c) Show that J m        
                     4   n 1   2n  1
 1
                                               n
                               m
c) Show that J m             
                          4     n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
 1
                                                n
                                 m
c) Show that J m             
                          4      n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m             m 1

                                       J m2
          2m  1         2m  3
 1
                                                n
                                 m
c) Show that J m             
                          4      n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m             m 1

                                       J m2
          2m  1         2m  3
           1          1                 1
                  m             m 1                    1

                                                        J0
          2m  1         2m  3                     1
 1
                                                     n
                                      m
c) Show that J m                
                             4        n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m                  m 1

                                            J m2
          2m  1             2m  3
           1          1                      1
                  m                  m 1                    1

                                                             J0
          2m  1             2m  3                      1
                  1           
                         n
           m
                             4 dx
          n 1   2n  1          0
 1
                                                     n
                                      m
c) Show that J m                
                             4        n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m                  m 1

                                            J m2
          2m  1             2m  3
           1          1                      1
                  m                  m 1                    1

                                                             J0
          2m  1             2m  3                      1
                  1            
                         n
           m
                             4 dx
          n 1   2n  1          0


                  1
                         n
           m                          
                             x 04
          n 1   2n  1
                  1
                         n
           m
                                 
                           
          n 1   2n  1          4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
                                                                    du
                                                             dx 
                                                                  1 u2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
                                                                    du
                                                             dx 
                                                                  1 u2
                                                  when x  0, u  0
                                                               
                                                          x       ,u  1
                                                               4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                               4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                            4
                           1
e) Deduce that 0  I n         and conclude that J n  0 as n  
                         n 1
1  un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                  when x  0, u  0
   In  
         0 1 u2
                                                                
                                                           x       ,u  1
                                                              4
                             1
e) Deduce that 0  I n           and conclude that J n  0 as n  
                           n 1
    un
           0, for all u  0
   1 u 2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                            4
                              1
e) Deduce that 0  I n         and conclude that J n  0 as n  
                            n 1
    un
            0, for all u  0
   1 u 2

              n
          1 u
 In           du  0, for all u  0
         0 1 u2
1
I n  I n 2   
                 n 1
1
I n  I n 2   
                 n 1
       1
In        I n 2
     n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
                   1
 0  In 
                 n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
                  In  0
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
                  In  0

                  J n   1 I 2 n  0
                              n
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In                                  Exercise 2D; 1, 2, 3, 6, 8,
          n 1                                   9, 10, 12, 14
              1
  as n  ,      0
            n 1
                  In  0

                  J n   1 I 2 n  0
                              n

More Related Content

Similar to X2 t04 04 reduction formula (2012)

Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)Nigel Simmons
 
Mathematics presentation trigonometry and circle
Mathematics presentation   trigonometry and circleMathematics presentation   trigonometry and circle
Mathematics presentation trigonometry and circleDewi Setiyani Putri
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeNamit Kotiya
 
Precalc review for calc p pt
Precalc review for calc p ptPrecalc review for calc p pt
Precalc review for calc p ptgregcross22
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14Sanyam Singh
 

Similar to X2 t04 04 reduction formula (2012) (6)

Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
Mathematics presentation trigonometry and circle
Mathematics presentation   trigonometry and circleMathematics presentation   trigonometry and circle
Mathematics presentation trigonometry and circle
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
 
Precalc review for calc p pt
Precalc review for calc p ptPrecalc review for calc p pt
Precalc review for calc p pt
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersPedroFerreira53928
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxCeline George
 
2024_Student Session 2_ Set Plan Preparation.pptx
2024_Student Session 2_ Set Plan Preparation.pptx2024_Student Session 2_ Set Plan Preparation.pptx
2024_Student Session 2_ Set Plan Preparation.pptxmansk2
 
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdfINU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdfbu07226
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasiemaillard
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Mohamed Rizk Khodair
 
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdfPost Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdfPragya - UEM Kolkata Quiz Club
 
size separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceuticssize separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceuticspragatimahajan3
 
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...Sayali Powar
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/siemaillard
 
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdfTelling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdfTechSoup
 
IATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdffIATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdff17thcssbs2
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxakshayaramakrishnan21
 
Morse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxMorse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxjmorse8
 
Neurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeNeurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeSaadHumayun7
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesashishpaul799
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

“O BEIJO” EM ARTE .
“O BEIJO” EM ARTE                       .“O BEIJO” EM ARTE                       .
“O BEIJO” EM ARTE .
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptx
 
2024_Student Session 2_ Set Plan Preparation.pptx
2024_Student Session 2_ Set Plan Preparation.pptx2024_Student Session 2_ Set Plan Preparation.pptx
2024_Student Session 2_ Set Plan Preparation.pptx
 
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdfINU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).
 
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdfPost Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
 
size separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceuticssize separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceutics
 
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdfTelling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
 
IATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdffIATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdff
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptx
 
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
Operations Management - Book1.p  - Dr. Abdulfatah A. SalemOperations Management - Book1.p  - Dr. Abdulfatah A. Salem
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
 
Morse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxMorse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptx
 
Neurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeNeurulation and the formation of the neural tube
Neurulation and the formation of the neural tube
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyes
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
 

X2 t04 04 reduction formula (2012)

  • 2. Reduction Formula Reduction (or recurrence) formulae expresses a given integral as the sum of a function and a known integral. Integration by parts often used to find the formula.
  • 3. Reduction Formula Reduction (or recurrence) formulae expresses a given integral as the sum of a function and a known integral. Integration by parts often used to find the formula. e.g. (i) (1987)  n  1 Given that I n   cos n xdx, prove that I n   2   I n2 0  n   2 where n is an integer and n  2, hence evaluate  cos 5 xdx 0
  • 4. 2 I n   cos n xdx 0
  • 5. 2 I n   cos n xdx 0  2   cos n 1 x cos xdx 0
  • 6. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx 0
  • 7. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0
  • 8. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0
  • 9. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0
  • 10. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n
  • 11. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n  nI n  n  1I n  2
  • 12. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n  nI n  n  1I n  2 In   n  1I  n2  n 
  • 13.  2  0 cos 5 xdx  I 5
  • 14.  2  0 cos 5 xdx  I 5 4  I3 5
  • 15.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3
  • 16.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0
  • 17.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0  8  sin x 0 2 15
  • 18.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0  8  sin x 0 2 15 8    sin  sin 0   15  2  8  15
  • 19. ii  Given that I n   cot n xdx, find I 6
  • 20. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx
  • 21. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx
  • 22. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx
  • 23. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x du  cosec 2 xdx
  • 24. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x   u n2 du  I n  2 du  cosec 2 xdx
  • 25. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x   u n2 du  I n  2 du  cosec 2 xdx 1 n 1  u  I n2 n 1 1  cot n 1 x  I n  2 n 1
  • 26.  cot 6 xdx  I 6
  • 27.  cot 6 xdx  I 6 1 5   cot x  I 4 5
  • 28.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3
  • 29.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3
  • 30.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3 1 5 1 3   cot x  cot x  cot x   dx 5 3
  • 31.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3 1 5 1 3   cot x  cot x  cot x   dx 5 3 1 5 1 3   cot x  cot x  cot x  x  c 5 3
  • 32. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1
  • 33. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0
  • 34. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0    4 tan n x sec 2 xdx 0
  • 35. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0
  • 36. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 when x  0, u  0  x ,u  1 4
  • 37. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  x ,u  1 4
  • 38. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  u  n 1 1 x ,u  1  4  n  1 0 
  • 39. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  u  n 1 1 x ,u  1  4  n  1 0  1 1  0  n 1 n 1
  • 40.  1 n b) Deduce that J n  J n1  for n  1 2n  1
  • 41.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1
  • 42.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n
  • 43.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n   1  I 2 n  I 2 n2  n
  • 44.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n   1  I 2 n  I 2 n2  n  1 n  2n  1
  • 45.  1 n  m c) Show that J m   4 n 1 2n  1
  • 46.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1
  • 47.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3
  • 48.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1
  • 49.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1  1  n m    4 dx n 1 2n  1 0
  • 50.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1  1  n m    4 dx n 1 2n  1 0  1 n m     x 04 n 1 2n  1  1 n m    n 1 2n  1 4
  • 51. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2
  • 52. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0
  • 53. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u du dx  1 u2
  • 54. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u du dx  1 u2 when x  0, u  0  x ,u  1 4
  • 55. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4
  • 56. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1
  • 57. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1 un  0, for all u  0 1 u 2
  • 58. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1 un  0, for all u  0 1 u 2 n 1 u  In   du  0, for all u  0 0 1 u2
  • 59. 1 I n  I n 2  n 1
  • 60. 1 I n  I n 2  n 1 1 In   I n 2 n 1
  • 61. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1
  • 62. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1
  • 63. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1
  • 64. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1  In  0
  • 65. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1  In  0  J n   1 I 2 n  0 n
  • 66. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  Exercise 2D; 1, 2, 3, 6, 8, n 1 9, 10, 12, 14 1 as n  , 0 n 1  In  0  J n   1 I 2 n  0 n