SlideShare uma empresa Scribd logo
1 de 156
Baixar para ler offline
Numerical Methods - Interpolation
Unequal Intervals
Dr. N. B. Vyas
Department of Mathematics,
Atmiya Institute of Tech. and Science, Rajkot (Guj.)
niravbvyas@gmail.com
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn
This polynomial Pn is called interpolation polynomial.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn
This polynomial Pn is called interpolation polynomial.
x0, x1, . . . , xn is called the nodes ( tabular points, pivotal
points or arguments).
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x
and y, where the values of x need not necessarily be equally
spaced.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x
and y, where the values of x need not necessarily be equally
spaced.
It is required to find Pn(x), a polynomial of degree n such that y
and Pn(x) agree at the tabulated points.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x
and y, where the values of x need not necessarily be equally
spaced.
It is required to find Pn(x), a polynomial of degree n such that y
and Pn(x) agree at the tabulated points.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
+
(x − x0)(x − x2) . . . (x − xn)
(x1 − x0)(x1 − x2) . . . (x1 − xn)
y1 + . . .
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
+
(x − x0)(x − x2) . . . (x − xn)
(x1 − x0)(x1 − x2) . . . (x1 − xn)
y1 + . . .
+
(x − x0)(x − x1) . . . (x − xn−1)
(xn − x0)(xn − x1) . . . (xn − xn−1)
yn
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
+
(x − x0)(x − x2) . . . (x − xn)
(x1 − x0)(x1 − x2) . . . (x1 − xn)
y1 + . . .
+
(x − x0)(x − x1) . . . (x − xn−1)
(xn − x0)(xn − x1) . . . (xn − xn−1)
yn
NOTE:
The above formula can be used irrespective of whether the values
x0, x1, . . . , xn are equally spaced or not.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
+
(y − y0)(y − y2) . . . (y − yn)
(y1 − y0)(y1 − y2) . . . (y1 − yn)
x1 + . . .
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
+
(y − y0)(y − y2) . . . (y − yn)
(y1 − y0)(y1 − y2) . . . (y1 − yn)
x1 + . . .
+
(y − y0)(y − y1) . . . (y − yn−1)
(yn − y0)(yn − y1) . . . (yn − yn−1)
xn
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
+
(y − y0)(y − y2) . . . (y − yn)
(y1 − y0)(y1 − y2) . . . (y1 − yn)
x1 + . . .
+
(y − y0)(y − y1) . . . (y − yn−1)
(yn − y0)(yn − y1) . . . (yn − yn−1)
xn
This relation is referred as Lagrange’s inverse interpolation
formula.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Given the table of values:
x 150 152 154 156
y =
√
x 12.247 12.329 12.410 12.490
Evaluate
√
155 using Lagrange’s interpolation formula.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
+
(x − x0)(x − x1)(x − x3)
(x2 − x0)(x2 − x1)(x2 − x3)
y2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
+
(x − x0)(x − x1)(x − x3)
(x2 − x0)(x2 − x1)(x2 − x3)
y2
+
(x − x0)(x − x1)(x − x2)
(x3 − x0)(x3 − x1)(x3 − x2)
y3
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
+
(x − x0)(x − x1)(x − x3)
(x2 − x0)(x2 − x1)(x2 − x3)
y2
+
(x − x0)(x − x1)(x − x2)
(x3 − x0)(x3 − x1)(x3 − x2)
y3
for x = 155
∴ f(155) =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Compute f(0.4) for the table below by the Lagrange’s
interpolation:
x 0.3 0.5 0.6
f(x) 0.61 0.69 0.72
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using Lagrange’s formula, find the form of f(x) for the following
data:
x 0 1 2 5
f(x) 2 3 12 147
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using Lagrange’s formula, find x for y = 7 for the following data:
x 1 3 4
y 4 12 19
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using Lagrange’s formula, express the function
3x2 + x + 1
(x − 1)(x − 2)(x − 3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
+
(x − x0)(x − x1)
(x2 − x0)(x2 − x1)
y2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
+
(x − x0)(x − x1)
(x2 − x0)(x2 − x1)
y2
substituting above values, we get
y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
+
(x − x0)(x − x1)
(x2 − x0)(x2 − x1)
y2
substituting above values, we get
y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Thus
3x2 + x + 1
(x − 1)(x − 2)(x − 3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Thus
3x2 + x + 1
(x − 1)(x − 2)(x − 3)
=
2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)
(x − 1)(x − 2)(x − 3)
=
2.5
(x − 1)
-
15
(x − 2)
+
15.5
(x − 3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
E(f, x) = f(x) − Pn(x) =
(x − x0)(x − x1) . . . (x − xn)
(n + 1)!
f(n+1)(ξ)
where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
E(f, x) = f(x) − Pn(x) =
(x − x0)(x − x1) . . . (x − xn)
(n + 1)!
f(n+1)(ξ)
where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)
since, ξ is an unknown, it is difficult to find the value of error.
However, we can find a bound of the error. The bound of the
error is obtained as
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
E(f, x) = f(x) − Pn(x) =
(x − x0)(x − x1) . . . (x − xn)
(n + 1)!
f(n+1)(ξ)
where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)
since, ξ is an unknown, it is difficult to find the value of error.
However, we can find a bound of the error. The bound of the
error is obtained as
|E(f, x)| ≤
|(x − x0)(x − x1) . . . (x − xn)|
(n + 1)!
max
a≤ξ≤b
|f(n+1)(ξ)|
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find
an approximate value of sin(0.15) by Lagrange interpolation.
Obtain a bound on the error at x = 0.15.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
To increase the degree the addition of another interpolation point
leads to re-computation.
i.e. no previous work is useful.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
To increase the degree the addition of another interpolation point
leads to re-computation.
i.e. no previous work is useful.
E.g: In calculating Pk(x), no obvious advantage can be taken of
the fact that one already has calculated Pk−1(x).
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
To increase the degree the addition of another interpolation point
leads to re-computation.
i.e. no previous work is useful.
E.g: In calculating Pk(x), no obvious advantage can be taken of
the fact that one already has calculated Pk−1(x).
That means we need to calculate entirely new polynomial.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Then the first divided difference of f for the arguments
x0, x1, . . . , xn are defined by ,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Then the first divided difference of f for the arguments
x0, x1, . . . , xn are defined by ,
f(x0, x1) =
f(x1) − f(x0)
x1 − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Then the first divided difference of f for the arguments
x0, x1, . . . , xn are defined by ,
f(x0, x1) =
f(x1) − f(x0)
x1 − x0
f(x1, x2) =
f(x2) − f(x1)
x2 − x1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
The second divided difference of f for three arguments
x0, x1, x2 is defined by
f(x0, x1, x2) =
f(x1, x2) − f(x0, x1)
x2 − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
The second divided difference of f for three arguments
x0, x1, x2 is defined by
f(x0, x1, x2) =
f(x1, x2) − f(x0, x1)
x2 − x0
and similarly the divided difference of order n is defined by
f(x0, x1, . . . , xn) =
f(x1, x2, . . . , xn) − f(x0, x1, . . . , xn−1)
xn − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Properties:
The divided differences are symmetrical in all their arguments;
that is, the value of any divided difference is independent of the
order of the arguments.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Properties:
The divided differences are symmetrical in all their arguments;
that is, the value of any divided difference is independent of the
order of the arguments.
The divided difference operator is linear.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Properties:
The divided differences are symmetrical in all their arguments;
that is, the value of any divided difference is independent of the
order of the arguments.
The divided difference operator is linear.
The nth order divided differences of a polynomial of degree n are
constant, equal to the coefficient of xn.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
By the definition of divided difference,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
By the definition of divided difference,
f(x, x0) =
f(x) − f(x0)
x − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
By the definition of divided difference,
f(x, x0) =
f(x) − f(x0)
x − x0
∴
f(x) = f(x0) + (x − x0)f(x, x0) − −(1)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
which yields
f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
which yields
f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2)
Similarly
f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
which yields
f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2)
Similarly
f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3)
and in general
f(x, x0, ..., xn−1) = f(x0, x1, ..., xn) + (x − xn)f(x, x0, x1, ..., xn) − −(4)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on, and finally the last term (4) by
(x − x0) (x − x1) ... (x − xn−1) and
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on, and finally the last term (4) by
(x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4)
we obtain
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on, and finally the last term (4) by
(x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4)
we obtain
f(x) =
f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ... +
(x − x0) (x − x1) ... (x − xn−1) f (x0, x1, ..., xn)
This formula is called Newton’s divided difference formula.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
The divided difference upto third order
x y 1stdiv.diff. 2nddiv.diff. 3rddiv.diff.
x0 y0
[x0, x1]
x1 y1 [x0, x1, x2]
[x1, x2] [x0, x1, x2, x3]
x2 y2 [x1, x2, x3]
[x2, x3]
x3 y3
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Obtain the divided difference table for the data:
x -1 0 2 3
y -8 3 1 12
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. We have the following divided difference table for the data:
x y First d.d Second d.d Third d.d
-1 -8
3 + 8
0 + 1
= 11
0 3
−1 − 11
2 + 1
= −4
1 − 3
2 − 0
= −1
4 + 4
3 + 1
= 2
2 1
11 + 1
3 − 0
= 4
12 − 1
3 − 2
= 11
3 12
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find f(x) as a polynomial in x for the following data by Newtons
divided difference formula:
x -4 -1 0 2 5
f(x) 1245 33 5 9 1335
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. We have the following divided difference table for the data:
x y 1st d.d 2nd d.d 3rd d.d 4th d.d
-4 1245
−404
-1 33 94
−28 −14
0 5 10 3
2 13
2 9 88
442
5 1335
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
+ (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
+ (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4]
= ...
= 3x4 − 5x3 + 6x2 − 14x + 5
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find f(x) as a polynomial in x for the following data by Newtons
divided difference formula:
x -2 -1 0 1 3 4
f(x) 9 16 17 18 44 81
Hence, interpolate at x = 0.5 and x = 3.1.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. We form the divided difference table for the given data.
x f(x) 1st d.d 2nd d.d 3rd d.d 4th d.d
−2 9
7
−1 16 −3
1 1
0 17 0 0
1 1
1 18 4 0
13 1
3 44 8
37
4 81
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
= ...
= x3 + 17
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find the missing term in the following table:
x 0 1 2 3 4
y 1 3 9 - 81
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Divided difference table:
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Divided difference table:
By Newton’s divided difference formula
f(x) =
f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ...
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
Spline interpolation is a form of interpolation where the
interpolant is a special type of piecewise polynomial called a
spline
Consider the problem of interpolating between the data points
(x0, y0), (x1, y1), . . . , (xn, yn) by means of spline fitting.
Then the cubic spline f(x) is such that
(i) f(x) is a linear polynomial outside the interval (x0, xn)
(ii) f(x) is a cubic polynomial in each of the subintervals,
(iii) f (x) and f (x) are continuous at each point.
Since f(x) is cubic in each of the subintervals f (x) shall be
linear.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1
where Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1),
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1
where Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1),
i = 1, 2, 3, ..., (n − 1)
and M0 = 0, Mn = 0, xi+1 − xi = h.
which gives n + 1 equations in n + 1 unknowns Mi(i = 0, 1, ..., n)
which can be solved. Substituting the value of Mi gives the
concerned cubic spline.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Obtain cubic spline for the following data:
x 0 1 2 3
y 2 -6 -8 2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. The following values of x and y are given:
x 1 2 3 4
y 1 2 5 11
Find the cubic splines and evaluate y(1.5) and y (3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find whether the following functions are cubic splines ?
1.
f(x) = 5x3 − 3x2, −1 ≤ x ≤ 0
= −5x3 − 3x2, 0 ≤ x ≤ 1
2.
f(x) = −2x3 − x2, −1 ≤ x ≤ 0
= 2x3 + 3x2, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0 = lim
x→0−
f (x)
therefore, the function f (x) is continuous on (−1, 1).
f (x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0 = lim
x→0−
f (x)
therefore, the function f (x) is continuous on (−1, 1).
f (x) = 30x−6, −1 ≤ x ≤ 0
= −30x − 6, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0 = lim
x→0−
f (x)
therefore, the function f (x) is continuous on (−1, 1).
f (x) = 30x−6, −1 ≤ x ≤ 0
= −30x − 6, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Diagonalization
DiagonalizationDiagonalization
Diagonalization
 
taylors theorem
taylors theoremtaylors theorem
taylors theorem
 
Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolation
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
Cauchy integral theorem &amp; formula (complex variable & numerical method )
Cauchy integral theorem &amp; formula (complex variable & numerical method )Cauchy integral theorem &amp; formula (complex variable & numerical method )
Cauchy integral theorem &amp; formula (complex variable & numerical method )
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Ch05 4
Ch05 4Ch05 4
Ch05 4
 
Lagrange equation and its application
Lagrange equation and its applicationLagrange equation and its application
Lagrange equation and its application
 
Vector space
Vector spaceVector space
Vector space
 
Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
 
classification of second order partial differential equation
classification of second order partial differential equationclassification of second order partial differential equation
classification of second order partial differential equation
 
Power method
Power methodPower method
Power method
 

Semelhante a Interpolation with unequal interval

Lecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceLecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inference
asimnawaz54
 
this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...
BhojRajAdhikari5
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials
math260
 
04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrv04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrv
Pooja Sakhla
 

Semelhante a Interpolation with unequal interval (20)

Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementation
 
Chs4
Chs4Chs4
Chs4
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Paper06
Paper06Paper06
Paper06
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
Basics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingBasics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programming
 
Lecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceLecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inference
 
2 vectors notes
2 vectors notes2 vectors notes
2 vectors notes
 
Basics of quantum mechanics
Basics of quantum mechanicsBasics of quantum mechanics
Basics of quantum mechanics
 
Probability distribution
Probability distributionProbability distribution
Probability distribution
 
this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...
 
Module 2 Lesson 2 Notes
Module 2 Lesson 2 NotesModule 2 Lesson 2 Notes
Module 2 Lesson 2 Notes
 
Radial Basis Function Interpolation
Radial Basis Function InterpolationRadial Basis Function Interpolation
Radial Basis Function Interpolation
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdf
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials
 
04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrv04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrv
 
Es272 ch5b
Es272 ch5bEs272 ch5b
Es272 ch5b
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
Shannon’s Information Measures and Markov Structures
Shannon’s Information Measures and Markov StructuresShannon’s Information Measures and Markov Structures
Shannon’s Information Measures and Markov Structures
 
COMPLEX PROJECT-3.pptx
COMPLEX PROJECT-3.pptxCOMPLEX PROJECT-3.pptx
COMPLEX PROJECT-3.pptx
 

Mais de Dr. Nirav Vyas

Mais de Dr. Nirav Vyas (20)

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Special functions
Special functionsSpecial functions
Special functions
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 

Último

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Último (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 

Interpolation with unequal interval

  • 1. Numerical Methods - Interpolation Unequal Intervals Dr. N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) niravbvyas@gmail.com Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 2. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 3. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 4. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 5. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 6. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 7. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn This polynomial Pn is called interpolation polynomial. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 8. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn This polynomial Pn is called interpolation polynomial. x0, x1, . . . , xn is called the nodes ( tabular points, pivotal points or arguments). Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 9. Interpolation with unequal intervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 10. Interpolation with unequal intervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x and y, where the values of x need not necessarily be equally spaced. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 11. Interpolation with unequal intervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x and y, where the values of x need not necessarily be equally spaced. It is required to find Pn(x), a polynomial of degree n such that y and Pn(x) agree at the tabulated points. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 12. Interpolation with unequal intervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x and y, where the values of x need not necessarily be equally spaced. It is required to find Pn(x), a polynomial of degree n such that y and Pn(x) agree at the tabulated points. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 13. Lagrange’s Interpolation This polynomial is given by the following formula: Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 14. Lagrange’s Interpolation This polynomial is given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 15. Lagrange’s Interpolation This polynomial is given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 + (x − x0)(x − x2) . . . (x − xn) (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 + . . . Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 16. Lagrange’s Interpolation This polynomial is given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 + (x − x0)(x − x2) . . . (x − xn) (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 + . . . + (x − x0)(x − x1) . . . (x − xn−1) (xn − x0)(xn − x1) . . . (xn − xn−1) yn Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 17. Lagrange’s Interpolation This polynomial is given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 + (x − x0)(x − x2) . . . (x − xn) (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 + . . . + (x − x0)(x − x1) . . . (x − xn−1) (xn − x0)(xn − x1) . . . (xn − xn−1) yn NOTE: The above formula can be used irrespective of whether the values x0, x1, . . . , xn are equally spaced or not. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 18. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 19. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 20. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 21. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 + (y − y0)(y − y2) . . . (y − yn) (y1 − y0)(y1 − y2) . . . (y1 − yn) x1 + . . . Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 22. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 + (y − y0)(y − y2) . . . (y − yn) (y1 − y0)(y1 − y2) . . . (y1 − yn) x1 + . . . + (y − y0)(y − y1) . . . (y − yn−1) (yn − y0)(yn − y1) . . . (yn − yn−1) xn Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 23. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 + (y − y0)(y − y2) . . . (y − yn) (y1 − y0)(y1 − y2) . . . (y1 − yn) x1 + . . . + (y − y0)(y − y1) . . . (y − yn−1) (yn − y0)(yn − y1) . . . (yn − yn−1) xn This relation is referred as Lagrange’s inverse interpolation formula. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 24. Example Ex. Given the table of values: x 150 152 154 156 y = √ x 12.247 12.329 12.410 12.490 Evaluate √ 155 using Lagrange’s interpolation formula. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 25. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 26. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 27. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 28. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 29. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 30. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 + (x − x0)(x − x1)(x − x3) (x2 − x0)(x2 − x1)(x2 − x3) y2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 31. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 + (x − x0)(x − x1)(x − x3) (x2 − x0)(x2 − x1)(x2 − x3) y2 + (x − x0)(x − x1)(x − x2) (x3 − x0)(x3 − x1)(x3 − x2) y3 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 32. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 + (x − x0)(x − x1)(x − x3) (x2 − x0)(x2 − x1)(x2 − x3) y2 + (x − x0)(x − x1)(x − x2) (x3 − x0)(x3 − x1)(x3 − x2) y3 for x = 155 ∴ f(155) = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 33. Example Ex. Compute f(0.4) for the table below by the Lagrange’s interpolation: x 0.3 0.5 0.6 f(x) 0.61 0.69 0.72 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 34. Example Ex. Using Lagrange’s formula, find the form of f(x) for the following data: x 0 1 2 5 f(x) 2 3 12 147 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 35. Example Ex. Using Lagrange’s formula, find x for y = 7 for the following data: x 1 3 4 y 4 12 19 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 36. Example Ex. Using Lagrange’s formula, express the function 3x2 + x + 1 (x − 1)(x − 2)(x − 3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 37. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 38. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 39. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 40. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 41. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 42. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 + (x − x0)(x − x1) (x2 − x0)(x2 − x1) y2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 43. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 + (x − x0)(x − x1) (x2 − x0)(x2 − x1) y2 substituting above values, we get y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 44. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 + (x − x0)(x − x1) (x2 − x0)(x2 − x1) y2 substituting above values, we get y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 45. Example Thus 3x2 + x + 1 (x − 1)(x − 2)(x − 3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 46. Example Thus 3x2 + x + 1 (x − 1)(x − 2)(x − 3) = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2) (x − 1)(x − 2)(x − 3) = 2.5 (x − 1) - 15 (x − 2) + 15.5 (x − 3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 47. Error in Interpolation Error in Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 48. Error in Interpolation Error in Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as E(f, x) = f(x) − Pn(x) = (x − x0)(x − x1) . . . (x − xn) (n + 1)! f(n+1)(ξ) where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 49. Error in Interpolation Error in Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as E(f, x) = f(x) − Pn(x) = (x − x0)(x − x1) . . . (x − xn) (n + 1)! f(n+1)(ξ) where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x) since, ξ is an unknown, it is difficult to find the value of error. However, we can find a bound of the error. The bound of the error is obtained as Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 50. Error in Interpolation Error in Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as E(f, x) = f(x) − Pn(x) = (x − x0)(x − x1) . . . (x − xn) (n + 1)! f(n+1)(ξ) where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x) since, ξ is an unknown, it is difficult to find the value of error. However, we can find a bound of the error. The bound of the error is obtained as |E(f, x)| ≤ |(x − x0)(x − x1) . . . (x − xn)| (n + 1)! max a≤ξ≤b |f(n+1)(ξ)| Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 51. Example Ex. Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find an approximate value of sin(0.15) by Lagrange interpolation. Obtain a bound on the error at x = 0.15. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 52. Lagrange’s Interpolation Disadvantages: In practice, we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 53. Lagrange’s Interpolation Disadvantages: In practice, we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. To increase the degree the addition of another interpolation point leads to re-computation. i.e. no previous work is useful. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 54. Lagrange’s Interpolation Disadvantages: In practice, we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. To increase the degree the addition of another interpolation point leads to re-computation. i.e. no previous work is useful. E.g: In calculating Pk(x), no obvious advantage can be taken of the fact that one already has calculated Pk−1(x). Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 55. Lagrange’s Interpolation Disadvantages: In practice, we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. To increase the degree the addition of another interpolation point leads to re-computation. i.e. no previous work is useful. E.g: In calculating Pk(x), no obvious advantage can be taken of the fact that one already has calculated Pk−1(x). That means we need to calculate entirely new polynomial. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 56. Divided Difference Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 57. Divided Difference Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Then the first divided difference of f for the arguments x0, x1, . . . , xn are defined by , Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 58. Divided Difference Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Then the first divided difference of f for the arguments x0, x1, . . . , xn are defined by , f(x0, x1) = f(x1) − f(x0) x1 − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 59. Divided Difference Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Then the first divided difference of f for the arguments x0, x1, . . . , xn are defined by , f(x0, x1) = f(x1) − f(x0) x1 − x0 f(x1, x2) = f(x2) − f(x1) x2 − x1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 60. Divided Difference The second divided difference of f for three arguments x0, x1, x2 is defined by f(x0, x1, x2) = f(x1, x2) − f(x0, x1) x2 − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 61. Divided Difference The second divided difference of f for three arguments x0, x1, x2 is defined by f(x0, x1, x2) = f(x1, x2) − f(x0, x1) x2 − x0 and similarly the divided difference of order n is defined by f(x0, x1, . . . , xn) = f(x1, x2, . . . , xn) − f(x0, x1, . . . , xn−1) xn − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 62. Divided Difference Properties: The divided differences are symmetrical in all their arguments; that is, the value of any divided difference is independent of the order of the arguments. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 63. Divided Difference Properties: The divided differences are symmetrical in all their arguments; that is, the value of any divided difference is independent of the order of the arguments. The divided difference operator is linear. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 64. Divided Difference Properties: The divided differences are symmetrical in all their arguments; that is, the value of any divided difference is independent of the order of the arguments. The divided difference operator is linear. The nth order divided differences of a polynomial of degree n are constant, equal to the coefficient of xn. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 65. Newton’s Divided Difference Interpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 66. Newton’s Divided Difference Interpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 67. Newton’s Divided Difference Interpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. By the definition of divided difference, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 68. Newton’s Divided Difference Interpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. By the definition of divided difference, f(x, x0) = f(x) − f(x0) x − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 69. Newton’s Divided Difference Interpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. By the definition of divided difference, f(x, x0) = f(x) − f(x0) x − x0 ∴ f(x) = f(x0) + (x − x0)f(x, x0) − −(1) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 70. Newton’s Divided Difference Interpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 71. Newton’s Divided Difference Interpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 which yields f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 72. Newton’s Divided Difference Interpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 which yields f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2) Similarly f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 73. Newton’s Divided Difference Interpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 which yields f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2) Similarly f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3) and in general f(x, x0, ..., xn−1) = f(x0, x1, ..., xn) + (x − xn)f(x, x0, x1, ..., xn) − −(4) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 74. Newton’s Divided Difference Interpolation multiplying equation (2) by (x − x0) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 75. Newton’s Divided Difference Interpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 76. Newton’s Divided Difference Interpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, and finally the last term (4) by (x − x0) (x − x1) ... (x − xn−1) and Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 77. Newton’s Divided Difference Interpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, and finally the last term (4) by (x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4) we obtain Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 78. Newton’s Divided Difference Interpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, and finally the last term (4) by (x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4) we obtain f(x) = f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ... + (x − x0) (x − x1) ... (x − xn−1) f (x0, x1, ..., xn) This formula is called Newton’s divided difference formula. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 79. Newton’s Divided Difference Interpolation The divided difference upto third order x y 1stdiv.diff. 2nddiv.diff. 3rddiv.diff. x0 y0 [x0, x1] x1 y1 [x0, x1, x2] [x1, x2] [x0, x1, x2, x3] x2 y2 [x1, x2, x3] [x2, x3] x3 y3 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 80. Example Ex. Obtain the divided difference table for the data: x -1 0 2 3 y -8 3 1 12 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 81. Example Sol. We have the following divided difference table for the data: x y First d.d Second d.d Third d.d -1 -8 3 + 8 0 + 1 = 11 0 3 −1 − 11 2 + 1 = −4 1 − 3 2 − 0 = −1 4 + 4 3 + 1 = 2 2 1 11 + 1 3 − 0 = 4 12 − 1 3 − 2 = 11 3 12 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 82. Example Ex. Find f(x) as a polynomial in x for the following data by Newtons divided difference formula: x -4 -1 0 2 5 f(x) 1245 33 5 9 1335 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 83. Example Sol. We have the following divided difference table for the data: x y 1st d.d 2nd d.d 3rd d.d 4th d.d -4 1245 −404 -1 33 94 −28 −14 0 5 10 3 2 13 2 9 88 442 5 1335 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 84. Example The Newtons divided difference formula gives: Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 85. Example The Newtons divided difference formula gives: f(x) = f(x0) + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 86. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 87. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 88. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 89. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 90. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] + (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 91. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] + (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4] = ... = 3x4 − 5x3 + 6x2 − 14x + 5 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 92. Example Ex. Find f(x) as a polynomial in x for the following data by Newtons divided difference formula: x -2 -1 0 1 3 4 f(x) 9 16 17 18 44 81 Hence, interpolate at x = 0.5 and x = 3.1. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 93. Example Sol. We form the divided difference table for the given data. x f(x) 1st d.d 2nd d.d 3rd d.d 4th d.d −2 9 7 −1 16 −3 1 1 0 17 0 0 1 1 1 18 4 0 13 1 3 44 8 37 4 81 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 94. Example Since, the fourth order differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 95. Example Since, the fourth order differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 96. Example Since, the fourth order differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 97. Example Since, the fourth order differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 98. Example Since, the fourth order differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] = ... = x3 + 17 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 99. Example Ex. Find the missing term in the following table: x 0 1 2 3 4 y 1 3 9 - 81 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 100. Example Sol. Divided difference table: Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 101. Example Sol. Divided difference table: By Newton’s divided difference formula f(x) = f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ... Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 102. Spline Interpolation Spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline Consider the problem of interpolating between the data points (x0, y0), (x1, y1), . . . , (xn, yn) by means of spline fitting. Then the cubic spline f(x) is such that (i) f(x) is a linear polynomial outside the interval (x0, xn) (ii) f(x) is a cubic polynomial in each of the subintervals, (iii) f (x) and f (x) are continuous at each point. Since f(x) is cubic in each of the subintervals f (x) shall be linear. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 103. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 104. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 105. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 106. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 107. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 where Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 108. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 where Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2, 3, ..., (n − 1) and M0 = 0, Mn = 0, xi+1 − xi = h. which gives n + 1 equations in n + 1 unknowns Mi(i = 0, 1, ..., n) which can be solved. Substituting the value of Mi gives the concerned cubic spline. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 109. Example Ex. Obtain cubic spline for the following data: x 0 1 2 3 y 2 -6 -8 2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 110. Example Sol. Since points are equispaced with h = 1 and n = 3, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 111. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 112. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 113. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 114. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 115. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 116. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 117. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 118. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 119. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 120. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 121. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 122. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 123. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 124. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 125. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 126. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 127. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 128. Example Ex. The following values of x and y are given: x 1 2 3 4 y 1 2 5 11 Find the cubic splines and evaluate y(1.5) and y (3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 129. Example Sol. Since points are equispaced with h = 1 and n = 3, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 130. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 131. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 132. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 133. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 134. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 135. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 136. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 137. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 138. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 139. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 140. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 141. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 142. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 143. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 144. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 145. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 146. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 147. Example Ex. Find whether the following functions are cubic splines ? 1. f(x) = 5x3 − 3x2, −1 ≤ x ≤ 0 = −5x3 − 3x2, 0 ≤ x ≤ 1 2. f(x) = −2x3 − x2, −1 ≤ x ≤ 0 = 2x3 + 3x2, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 148. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 149. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 150. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 151. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 152. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 153. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 154. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 = lim x→0− f (x) therefore, the function f (x) is continuous on (−1, 1). f (x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 155. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 = lim x→0− f (x) therefore, the function f (x) is continuous on (−1, 1). f (x) = 30x−6, −1 ≤ x ≤ 0 = −30x − 6, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 156. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 = lim x→0− f (x) therefore, the function f (x) is continuous on (−1, 1). f (x) = 30x−6, −1 ≤ x ≤ 0 = −30x − 6, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals