SlideShare a Scribd company logo
1 of 12
Download to read offline
Vastus Medialis Oblique/Vastus Lateralis Muscle
Activity Ratios for Selected Exercises in Persons
With and Without Patellofemoral Pain Syndrome

                                                                                                        --




Background and Purpose. The purpose of this study was to determine which                                 Kay Cemy
of selected exercises with and without the feet free to move would enhance
vastus medialis oblique muscle (VMO) activity over that of the vastus lateralis
muscle ( W ) and whether the use of taping would increase VMO activity.
Subjects. Twenty-one subjects without patellofemoral pain (PFP) syndrome and
10 subjects with PFP syndrome, aged 19 to 43 years @=26, SD= 71, partici-
pated. Metbods. Subjects were studied for the normalized, integrated electro-
myographic (IEMG) activity of their M O , W , and adductor magnus muscle
(subjects without PFP syndrome) and the V M O m ratio using wire electrodes.
Results. One exercise demonstrated greater activation of the VMO over the W
when compared with similar exercises in subjects without PFP syndrome. The
mean VMOhT activity ratio for terminal knee extension was 1.2 (SD= 0.5) with
the hip medially rotated and 1.0 (SD= 0.4) with the hip laterally rotated. Al-
though subjects reported that patellar taping decreased pain 94% during the
step-down exercise, the V M O m ratio was not changed. Conclusion and
Discussforr The results suggest that neither exercises purported to selectively
activate VMO activity nor patellar taping improve the V M O m ratio over simi-
lar exercises. lCerny K. Vastus medialis oblique/vastus lateralis muscle activity
ratios for selected exercises in persons with and without patellofemoral pain
syndrome. Phys Ther. 1995; 75672- 683.1

Key Words: Adductor magnus, Electromyography, Patellc$moral, Vastus lateralis,
Vastus medialis oblique.




Patellofemoral joint pain (PFP) is com-           common site of knee pain in sports             PFP syndrome.4-6-8As a result, both
mon in the general population, occur-             medicine clinics.'-5 Lateral malalign-         surgical and conservative treatments to
ring more often in women and in                   ment of the patella has been sug-              correct this rnalalignrnent have been
athletes, with the joint being the most           gested as one of the major causes of           suggested.1~4-10

                                                                                                 Many exercise treatments emphasize
                                                                                                 the importance of the vastus medialis
K Cerny, PhD, PT,is Professor, Department of Physical Therapy, College of Health and Human       oblique muscle (VM0)6,8,10 because of
Services, California State University, Long Beach, Long Beach, C 90840-5603 (USA)
                                                                A                                its medial pull on the patella.11-15
(KCERNY@CSULB.EDU).
                                                                                                 Some researcherslb-19 suggest that
The study protocol was approved by the Human Subjects Committee, California State University,    contraction of the hip adductor and
Long Beach.                                                                                      quadriceps femoris muscles simulta-
Results of this research were previously presented at the 1991 and 1992 Annual Conferences of    neously would preferentially activate
the California Chapter of the American Physical Therapy Association and at the 1991 and 1922     the VMO. Other researchersl7.19 report
Annual Conferences of the Long Beach Veterans Administration Hospital-California State Univer-   that the vastus medialis muscle (VM) is
sity, Long Beach-Memorial Medical Center of Long Beach.
                                                                                                 activated preferentially in response to
m k article was submitted August 24, 1994, and was accepted April 3, 1995.

26 / 672                                                                       Physical Therapy / Volume 75, Number 8 / August 1995
Table 1, Subject Anthmpometric Data

                                                                                              Body Weight (Ibb)
                                       NO. of          -
                                                       Age   0                                -
                                       Subjects        X           SD           Range         X            SD            Range


Subjects without PFPB syndrome
  Women                                10
  Men                                  11
Subjects with PFP syndrome
  Women
  Men

"PFP=patellofemoral pain.
b l lb=0.4536 kg.


valgus stress at the knee caused by         The primary purpose of this study was       fore beginning the study. The subjects
hip lateral rotation during knee exten-     to determine whether any of the exer-       rated their pain after stepdown exer-
sion exercises and that hip medial          cises purported to increase the activity    cise on a scale of 1 to 10, with 1 being
rotation, therefore, decreases the activ-   of the VMO over the VL, the VMO/VL          minimal pain and 10 being the worst
ity of the VM. Still others9'20921 have     activity ratio, did so when compared        pain that they could imagine, and they
reported greater VMO activity during        with similar exercises in subjects with     reported the percentage of change in
knee extension with the knee rela-          and without PlT. A secondary pur-           pain with step down after taping. The
tively flex.ed than in terminal knee        pose of this investigation was to deter-    subjects with PlT were required to
extension. Knee extension exercise          mine whether therapeutic medial-glide       have at least a 50% reduction in pain
with tibia'l medial rotation has been       taping altered the activity of the VMO      with patellar taping to participate in
proposed because the VMO is pur-            or the V or the VMO/VL activity ratio.
                                                     L                                  the study. All subjects provided in-
ported to prevent lateral rotation of       Another purpose was to determine            formed consent consistent with univer-
the tibial8.19 and therefore to decrease    which of similar exercises increased        sity policy.
the quadriceps femoris muscle angle         the activity of the VMO, VL, and ad-
(Q angle) and lateral patellar track-       ductor magnus muscle (AM). Finally, I
ing.22 Pronation of the subtalar joint      wanted to determine whether gender
and medial rotation of the tibia, how-      influenced the muscle activity studied.     Myoelectric activity was measured by
ever, have also been claimed to in-                                                     use of indwelling wire electrodes of
crease lateral tracki11g.~,~3                Method                                     50-pm nickel alloy. The electrodes,
                                                                                        insulated except for 2 rnrn at the ends,
McConnel16J6trains patients with PFP        Subjects                                    were inserted into the muscle with a
syndrome in unilateral and bilateral                                                    25-gauge needle. The needle was
limb flexion exercises in weight bear-      Twenty-one subjects who had no              withdrawn, leaving the barbed ends of
ing (walk stance and wall slide) and        known lower-limb musculoskeletal            the wire electrodes in place. The wire
stepdown exercises because these            impairments and who exhibited no            electrodes were inserted into the VMO
patients have increased pain with           signs of neurological impairment and        and V of all subjects. In addition, a
                                                                                              L
these activities. Although soft bracing     10 subjects with PlT participated in        wire electrode was placed in the A  M
has previously been suggested to            this study. The subjects' average age,      of the subjects without PlT syndrome
negate the valgus force of the quadri-      average body weight, and gender are         to ensure that they were contracting
ceps femoris muscles on the patella,l,5     shown in Table 1. Subjects with syrnp-      the muscle during exercises. The wire
McConnel16J6suggests improving              toms had a physician's diagnosis of         for the VMO was placed in the middle
patellar tracking, decreasing pain, and     PFP within 6 years of the testing date      of the muscle belly. The wire for the
increasing the vastus medialis oblique/     and reported retropatellar pain during      V was placed in the muscle approxi-
                                                                                         L
vastus lateralis muscle (VMO/VL)            at least two of the following activities:   mately one t i d of the distance from
                                                                                                      hr
activity ratio in persons with PlT by       (1) squatting, (2) ascending and de-        the patella to the anterior superior iliac
taping the patella or tensor fascia lata    scending stairs, and (3) prolonged          spine. The wire for the A was in-
                                                                                                                  M
muscle medially. Little evidence exists                 All
                                            sitting.1-3s4 subjects with PlT per-        serted into the muscle just anterior to
to support the use of the exercises         formed a step-down exercise from a          the gracilis muscle, approximately one
and procedures reviewed.                    22.9-cm (9-in) stool with and without       t i d of the distance from the medial
                                                                                         hr
                                            medial-glide taping of the patella be-      femoral epicondyle to the syrnphysis


Physical 'Therapy / Volume 75, Number 8 / August 1995                                                                   673 / 27
pubis. The locations of the VL and AM           corded during rest and during maxi-         Exercises for Subjects Without
inseltions were chosen because they             mal manual resistance tests. All            PFP Syndrome: Open Chain
proved to be the most distal locations,         recordings during the resistance tests
consistently affording a full electro-          were obtained with the subjects posi-       Three groups of open-chain activities
myographic (EMG) interference pat-              tioned supine and supported on their        were used for interexercise compari-
tern upon muscle activation during              elbows. For the VMO and VL tests, the       son: quadriceps femoris muscle setting
pilot testing. The distal VL insertion          subjects' knee extension was resisted       ("quad sets"), knee extension, and
was used to sample the oblique por-             while the hip and knee were flexed          isometric holds. All exercises were
tion of the VL, which is purported to           approximately 30 degrees. For the AM        performed against the resistance of an
best oppose the action of the VM0.12            test, the subjects were resisted for hip    ankle cuff weight equal to 5% of each
The distal AM insertion was used to             adduction with the knee extended.           subject's body weight to the nearest
sample its activity near the origin of                                                      pound.
the VMO.'3 The leg each subject said            Exercise Pmcedures
was the dominant leg was tested in all                                                      Quad sets (QS). Quad sets were
except one of the subjects without              Exercises included what Lehmkuhl            isometric exercises performed in full
PFP syndrome. The nondorninant limb             and Smith24 and Soderberg25 have            knee extension with the subjects posi-
was tested in one subject without PFP           described as "open-chain and                tioned long sitting and supported on
syndrome because he had a previous              "closed-chain" activities of the lower      their hands with their heels lifted off of
knee surgery on the dominant side.              limb, performed in random order for 5       the table to decrease the possibility of
The most severely involved leg of the           seconds each. Lower-limb open-chain         substitution by hip extensor activity.
subjects with PFP was tested.                   exercises were performed with the           The six quad set exercises were done
                                                sole of the foot free to move, whereas      with (1) the hip and ankle positioned
In order to decrease the chance of              closed-chain exercises had the sole of      in neutral (QS), (2) the hip maximally
wire electrode migration during test-           the foot planted on the floor. The          medially rotated and the ankle posi-
ing, subjects contracted the inserted           terms "open chain and "closed chain"        tioned in neutral (QSMR), (3) the hip
muscle maximally several times after            are used here to denote whether the         maximally laterally rotated and the
needle insertion to pull the wire into          distal limb segment was free to move        ankle positioned in neutral (QSLR), (4)
the muscle. In addition, the investiga-         when the quadriceps femoris muscles         the hip maximally adducted against a
tor moved the limb into full knee               contracted. Open-chain exercises were       pillow bolster with the ankle posi-
flexion and extension and full hip              randomly chosen to be performed             tioned in neutral (QSA), (5) the hip
abduction and adduction to allow the            prior to or after closed-chain exercises.   positioned in neutral and the ankle
wire to slip further into the tissues           Subjects practiced dynamic exercises        maximally dorsiflexed (QSDF), and (6)
before taping the external wire to the          until the investigators were satisfied      the hip positioned in neutral and the
limb with a stress-relief loop.                 that movements were smoothly timed          ankle maximally plantar flexed
                                                with a metronome at 1 beat per sec-         (QSPF).
Surface ground plates and the teleme-           ond. Starting positions of the knee
try system were attached to the sub-            were monitored with a standard goni-        Knee extension (KE). The knee
ject, and the electrode wires were              ometer. Subjects moved and their            extension exercises were performed
connected to attachment posts on the            EMG activity was recorded during            with the subjects in a sitting position
ground plates. Myoelectric signals              exercises, beginning on the beat of a       with the knee flexed from 30 to 0
were differentially amplified, band-            metronome. Movement began with a            degrees and the ankle positioned in
pass filtered (50-850 Hz), and trans-           "go" command from the investigator          neutral. The movement was timed
mitted by FM-FM telemetry to a re-              immediately following a "ready" com-        with a metronome for 3 seconds,
ceiver interfaced to a B&L computer             mand at the previous metronome              followed by a 2-second hold at full
(model 286): Placement of electrodes            beat. Electromyographic recording           extension. The three exercises were
in the vastus muscles rather than rec-          during isometric exercises began after      performed with (1) the hip positioned
tus femoris muscle was confirmed by             the raw EMG level stabilized in a full      in neutral (ICE), (2) the hip maximally
noting activity during isometric knee           interference pattern. In consideration      laterally rotated (KELR), and (3) the
extension and silence during com-               of the tolerance of the subjects with       hip maximally medially rotated
bined isometric hip and knee flexion.           PFP syndrome, fewer exercises were          (KEMR).
Placement in the AM rather than the             performed by the subjects with PFP
VM was confirmed by noting activity             syndrome than by the subjects without       Isometric holds in flexion (IS). Iso-
during isometric hip adduction and              PFP syndrome. Abbreviations and             metric hold exercises were isometric
silence during isometric knee exten-            definitions of the exercises used in this   knee extension exercises performed
sion. The EMG activity was then re-             study are presented in Table 2.             with the subjects in a sitting position
                                                                                            with their hip and ankle positioned in
                                                                                            neutral. The five exercises were done
                                                                                            with (1) the knee flexed 15 degrees
'B&L Engineering, 12309 E Florence Ave, Santa Fe Springs, C 90670
                                                           A                                and the tibia in neutral rotation (IS15),

                                                                          Physical Therapy / Volume 75, Number 8 / August 1995
Table 2. Exercise Abbreviations and Dejinitions

Abbreviation                                                                   Definition


Exercises for subjects without patellofemoral joint pain syndrome
  Open chain
    Quadriceps femoris muscle set (QS)                                         lsornetric at full knee extension
     QS                                                                        Hip and ankle neutral
       QSML                                                                    Hip maximally medially rotated, ankle neutral
      QSLR                                                                     Hip maximally laterally rotated, ankle neutral
       QSA                                                                     Hip adducting against a bolster, ankle neutral
       QSDF                                                                    Hip neutral, ankle maximalty dorsiflexed
       QSPF                                                                    Hip neutral, ankle maximally plantar flexed
    Knee extension (KE)                                                        30" to 0" extension, ankle neutral
       KE                                                                      Hip neutral
       KEMR                                                                    Hip maximally medially rotated
       KELH                                                                    Hip maximally laterally rotated
    Isometric hold (IS)                                                        Hip and ankle neutral
       IS15                                                                    Knee at 15" flexion, tibia in neutral rotation
       IS45                                                                    Knee at 45" flexion, tibia in neutral rotation
       IS60                                                                    Knee at 60" flexion, tibia in neutral rotation
       IS45MR                                                                  Knee at 45" flexion, tibia maximally medially rotated
       IS45LR                                                                  Knee at 45" flexion, tibia maximally laterally rotated
  Closed chain
    Walk stance-stepdown (WS-SD)
                                                                               Unilateral knee flexion to 45", hip in neutral rotation and subtalar
                                                                                joint unconstrained
      WSS                                                                      WS with subtalar joint in maximal supination
      WSP                                                                      WS with subtalar joint in maximal pronation
      WSPT                                                                     WS after patellar medial-glide taping
      WSTT                                                                     WS after medial-glidetaping of the tensor fascia lata muscle
                                                                               Step down from a 22.9-cm (9-in)stool leading with contralateral
      SD                                                                         limb, hip in neutral rotation and subtalar joint unconstrained
    Wall slide (WSI)
      WSI                                                                      Bilateral knee flexion to 45", hip in neutral rotation
      WSIA                                                                     WSI while hip adducting against bolster
Exercises for subjects with patellofemoral joint pain syndrome
  Open chain
    QS, 1515, IS601, KE                                                        As described above
  Closed chain
    WS, WSI, WSIA, SD                                                          As described above
                                                                               Isometric knee extension and hip adduction against a bolster sitting
                                                                                 with sole of foot on floor



(2) the knee flexed 60 degrees and the              Exercises for Subjects Without                   seconds, followed by a 2-second hold
tibia in neutral rotation (IS60), (3) the           PFP Syndmme: Closed Chain                        at the end position.
knee flexed 45 degrees and the tibia
in neutral rotation (IS45), (4) the knee            Two groups of closed-chain exercises             Walk stance-step down (WS-SO).
flexed 45 degrees and the tibia maxi-               were used for interexercise compari-             Walk-stance exercises were unilateral
rnally laterally rotated (IS45LR), and              son: (1) walk-stance and step-down               exercises performed to 45 degrees of
(5) the knee flexed 45 degrees and the              exercises and (2) wall-slide exercises.          knee flexion with the hip in neutral
tibia maximally medially rotated                    Movements were performed for 3                   rotation and the subject's weight sup-
(IS45MR)

Physical Therapy /Volume 75, Number 8 /August 1995
ported on the forward, tested limb.              exercises with and without patellar           correlation coefficients (ICC[3,1D for
The opposite toe was permitted to                taping.                                       two repeated measures of QS, QSA,
remain on the floor for balance only.                                                          IS60, IS15, WS, WSl, WSlA, SD, and
Balance was also provided by touch-              Open-chain exercises were QS, IS15,           knee extension from 30 to 0 degrees
ing the hands of an investigator. The            IS60, and KE. Closed-chain exercises          of flexion using the same EMG pro-
five exercises were performed with (1)           were done both before and after the           cessing as in this study. Two insertion
the subtalar joint unconstrained (WS);           patella was taped medially with a             sites in locations bordering within 1.27
(2) the subtalar joint maximally supi-           medial frontal-plane tilt and rotation to     cm (0.5 in) of those used in thls study
nated (WSS); (3) subtalar joint maxi-            position the inferior pole of the patella     were sampled for each muscle. Eighty
mally pronated (WSP); (4) the subtalar           inferiorly. The closed-chain exercises        percent of all ICCs were above .30.
joint unconstrained after the patella            were WS, WSl, WSlA, SD, and isomet-           Reliability averaged .81 for the VMO,
was taped medially with a media                  ric knee extension and hip adduction          ranging from .37 to .98, and averaged
frontal-plane tilt and rotation to posi-         in a sitting position with hips and           .91 for the VL, ranging from .77 to .98.
tion the inferior pole of the patella            knees flexed to 90 degrees (ISQA).            The VMO/VL ratio averaged .93, rang-
inferiorly (WSPT); and (5) the subtalar          This exercise was considered closed           ing from .88 to .%, with the exception
joint unconstrained after tensor fascia          chain because subjects were instructed        of .55 for walk stance using the lower
lata muscle medial-glide taping                  to contract the vastus muscles by             insertion sites. The walk-stance ratio
(WSrr3.                                          pushing the foot against the floor and        for the upper insertion sites was .97.
                                                 to squeeze the bolster maximally.
The final exercise was a step down                                                             The average EMG value was calcu-
from a 22.9-cm stool, with the subject           At the end of testing, wire electrodes        lated for each muscle of each subject
leading with the contralateral limb              were slipped out of the muscle, and           for each exercise, and a VMO/VL ratio
while the tested limb was in neutral             the skin was cleaned with alcohol.            was calculated from these values.
hip rotation. The hold was with the              Total testing time was 1 2 to 2 hours
                                                                         Y                     Mean values for VMO, VL, and AM
contralateral foot just off of the floor         per subject.                                  myoelectric activity and the VMO/VL
(SD).                                                                                          ratio were calculated for each exercise.
                                                 Data Anahsis                                  Exercises in each of the five groups of
Wall slide (WSO. The wall-slide exer-                                                          exercises for subjects without PFP
cises were bilateral exercises that the          The EMG activity was digitized at             syndrome (QS, KE, IS, WS-SD, WSl)
subjects performed from an upright               2,000 samples per second through an           were compared across exercises for
standing position to 45 degrees of               AID convertert run by the B&L soft-           muscle activity and VMO/VL ratio by a
knee flexion while the trunk main-               ware (version 4.19).*The software             two-way repeated-measures multivari-
tained contact with the wall. This was           then rectified the signals and set noise      ate analysis of variance (MANOVA),
done to prevent decreasing the quad-             thresholds from the first 2 seconds of        with gender as the grouping factor.
riceps femoris muscle demand by                  activity of the resting EMG record. The       Exercises for openchain activities for
shlftig the center of gravity of the             threshold was the lowest level of             patients with PFP syndrome were
trunk anteriorly. The subjects' feet             activity recorded below which 95% of          compared across exercises for muscle
were parallel, shoulder width apart,             the resting EMG signal was found.             activity and VMOm ratio by a one-
and just far enough from the wall to             Only EMG activity greater than thresh-        way repeated-measures MANOVA.
allow knee flexion to 45 degrees. The            old was then quantified by integration.       Exercises for closed-chain activities for
hips were in neutral rotation. The two           Signals were integrated each 1/50 sec-        subjects with PFP were compared
wall-slide exercises were performed as           ond for each 5-second exercise. The           across exercises for muscle activity
(1) a straight wall slide (WSl) and (2) a        EMG values for each exercise were             and VMONL ratio by a two-way
wall slide while squeezing a pillow              normalized by the software by division        repeated-measures MANOVA, with
bolster between the knees (WSlA).                by the EMG value from the maximal             taping as the grouping factor. When
                                                 exercise tests. All EMG values reported       MANOVA results were sigdicant, a
Exercises for Subjects With PFP                  are therefore expressed as a percent-         subsequent univariate analysis of vari-
Syndmme                                          age of maximal activity.                      ance (ANOVA) was done for each
                                                                                               muscle tested. A level of significance
Procedures were identical to those for           Within-day reliability of the integrated,     of .05 was accepted, and a Bonferroni
subjects without PFP syndrome, unless            normalized EMG values for the VMO,            adjustment was used for post hoc
otherwise noted. Groups of exercises             the VL, and the VMOnZ ratio was               t tests. The BMDP statistical
for interexercise comparison were                previously established in 12 subjects         was used for all analyses.
open-chain exercises and closed-chain            without PFP syndrome by intraclass


                                                                                               AU reported significant results refer to
tModel DT2801-A, Data Translation, 100 Locke Dr, Marlborough, MA 01752-1192.
                                                                                               post hoc sigmlicance. For these results,
QMDP Statistical Software Inc, Los Angeles, CA 90086

30 / 676                                                                       Physical Therapy / Volume 75, Number 8 / August 1995
Table 3. Integrated Electromyograpbic Activity (Percentage ofMaximum) During Quadriceps Femoris Musclea Set of Exercises
for Subjects Without Patellofemoral Pain Syndrome (N=20)

                        VMO                             VL                               AM                           VMONL
                        X    SD Minimum Maximum         X     SD Minimum Maximum x             SD   Minimum Maximum   X   SD Minimum Maximum


Neutral                 53 26    13           97        50 23        6         80        12 22b 0          68         1.2 0.5 0.6      3.0
Hip medial rotation     53 28    10         111         46 22        7         79        16 25      0      78         1.2 0.5 0.4      2.9
Hip latetal rotation    48 27     9           91        48 24        3         87        7 10       0      31         1.1 0.6 0.2      3.5
Hip adduction           56 23     2           94        52 19 20               86        32 206     1      75         1.1 0.4 0.0      2.1
Ankle dorsiflexion      58 24     7          92         52 21      10          92        14 25      0      78         1.2 0.4 0.2      2.0
Ankle plantar flexion 52 24       7          84         50 27        5        105        5 11       0      45         1.2 0.5 0.6      2.8

"Muscle ahbreviations: vastus medialis oblique (VMO), vastus lateralis (VL),adductor magnus (AM)
b~ignificant
           post hoc difference for two-way analysis of variance (F= 11.7; df= 1,8; P=.0031).


the MANOVA and ANOVA results                          position for the VMO, VL, or V M O M              (34%+ 18% and 35%+ 15%, respec-
were also significant.                                ratio (Tab. 3). The EMG activity                  tively) than in either rotated position
                                                      ranged from 48% to 58% of maximum                 of the hlp. The VMO activity was
Subjects Without PFP Syndrome                         for the VMO and from 46% to 52% of                28%+6% for KEMR and 22%+12% for
                                                      maximum for the VL. The VMO/VL                    KELR, whereas VL activity was
Due to rc:cording difficulties, one male              ratio ranged from 1.1 to 1.2. Although            28%2 13% for KEMR and 26%+ 12%
subject's data were lost for the quad                 AM activity was higher for QSA                    for KELR (Tab. 4). No difference, how-
set and closed-chain exercises.                       (32%2200/0) than for QS (12%222%),                ever, was seen in the VMO/VL ratio
                                                      the increased AM activity did not affect          between KE and either KEMR or
Open-chain exemises. Means and                        the VMO, VL, or VMO/VL ratio activity             KELR. Comparison between KEMR
standard deviations of data and com-                  (Tab. 3).                                         and KELR showed higher VMO activ-
parisons that yielded statistically signif-                                                             ity and VMO/VL activity ratio in KEMR
icant results are reported in Tables 3                Knee extension exercises were com-                than in KELR (Tab. 4). The VMO/VL




-
through 5. No differences in myoelec-                 pared post hoc between KE and both                ratio was 1.220.5 for KEMR and
tric activity due to gender were seen.                KEMR and KELR and between KEMR                    1.020.4 for KELR.
Comparison of the quad set exercise                   and KELR. Comparisons of KE with
with all its variants showed no differ-               KEMR and KELR showed higher VMO                   Isometric hold exercises were com-
ences due to ankle or hip rotation                    and VL activity in the KE exercise                pared post hoc between IS60 and both




Table 4. Integrated Electromyograpbic Activity (Percentage of Maximum) During Knee Extension Exercises From 30 to 0 Degrees
for Subjects Without Patellofemoral Pain Syndrome (N= 21)"

                       VMO                               VL                                AM                         VMONL
                       2    SD   Minimum Maximum         X    SD         Minimum Maximum   X   SD Minimum Maximum     X   SD Minimum Maximum
                            -                                                                                         -




HIP neutral            34 18b.c 3            81          35 15d,e 14             64        4    8   0       36        1.1 0.4 0.6     2.0
HIP medial rotation 28 16b       8           84          28    13d       7       54        3    8   0       37        1.2 0.5' 0.5    2.4
Hip lateral rotat~on 22 12'      4           64          26    12e 10            51        8 26     0      116        1.O 0.4' 0.3    2.2
--    --


"Muscle abbreviations: vastus medialis oblique (VMO), vastus lateralis (VL),adductor magnus (AM).
b~ignificanr
           post hoc difference for two-way analysis of variance (ANOVA) (F= 10.2; df= 1,19; P=.0049.)
'Significanl. post hoc difference for two-way ANOVA (F=21.1; df= 1,19; F . 0 0 0 2 ) .
d~ignilicant
           post hoc difference for two-way ANOVA ( F 1 7 . 3 ; df= 1,19; F ,0005).
eSignilicanf post hoc difference for two-way ANOVA (F=13.4; d p 1 , 1 9 ; P=.0017).
'Significant past hoc daerence for two-way ANOVA (F=10.0; df=1,19; F . 0 0 4 9 ) .

Physical Therapy / Volume 75, Number 8 /August 1995
-
Table 6. Integrated Electromyographic Activfty (Percentage of Mam'mum) During Zsometrlc Exercise for Subjects Without
Patellofemoral Pain Syndrome (N=21,P

                       VMO
                       2   SD    Minimum Maximum
                                                     VL
                                                     X    SD Minimum Maximum
                                                                                     AM
                                                                                     X   SD Minimum Maximum
                                                                                                                    VMONL
                                                                                                                    x   SD Minimum Maximum


Knee flexion posture
  60"                  5     3b 1         14          5    3C 1           12         1 2     0              6       1.3 1.2 0.1      5.0
  45"                  5     4   0        17          7     6 0           18         1 3     0             12       1.3 1.3 0.2      4.4
    Tibial medial
      rotation         6     4   0        15          8     5 2           17         1 2     0             10       1.2 1.4 0.2       4.8
    Tibial lateral
      rotation         5     4   0        17          8     6 1           20         1 2     0             10       1.0 1.0 0.1       3.6
  15"                  18 1 2 ~0          61         22 10C 8             42         3 4     0             15       1.0 0.5 0.3      2.5


"Muscle abbreviations:vastus medialis oblique (VMO), vastus lateralis (VL), adductor magnus (AM).
*significantpost hoc difference for two-way analysis of variance (ANOVA) (F=34.9; df--1,19; P=.0000).
'Significant post hoc di5erence for two-way ANOVA (F=84.7; dp1,19; P=.0000)

IS15 and IS45 and between IS45 and                Separate analysis by gender for the               cally sigmlicant results for open- and
both IS45MR and IS45LR. Less myo-                 VMO and V comparing WS with
                                                              L                                     closed-chain exercises are given in
electric activity of the VMO and V  L             WSS, WSP, WSFT, WS'IT, and SD                     Tables 8 and 9, respectively. The
was seen in IS60 (5%+3% for both)                 tended to show greater activity for               VMOM. ratio did not d&er in com-
than in IS15 (18%+12% and                         both the VMO and V during the SD
                                                                       L                            parisons of QS with IS60, IS15, and KE
22%+ I@?,respectively) without a                  exercise than during the WS exercise              and of IS60 with IS15 (Tab. 8). Higher
change in the VMO/VL ratio (Tab. 5).              (Tab. 6). Both muscle values for                  VMO and V activity, however, oc-
                                                                                                                 L
Tibial rotation did not affect the VMO            women but only VL values for men                  curred during the QS activity than in
or V activity or the VMO/VL ratio for
    L                                             were different between SD and WS.                 any other open-chain activity. The QS
the 45-degree position.                           When data from men and women                      activity was 101%+30% for the VMO
                                                  were combined, the difference in                  and 90?!+36% for the VL. The highest
Closed-chain exemises. Data were                  VMO activity between SD and W wasS                activity in other open-chain exercises
lost while recording the activity during          sigmlicant (P=.0000). No influence of             was 49/02 17% for the VMO and
the WSFT in 1 male subject. Analysis              gender or exercise was seen for either            48%+ 17% for the V during KE. In
                                                                                                                         L
was therefore performed on 19 sub-                AM activity or VMO/VL ratio for the               addition, IS15 demanded more vastus
jects for all six exercises in the WS-SD          WS-SD exercise comparisons, although              muscle activity than did IS60 (Tab. 8).
group and also for al 20 subjects for
                       l                          a trend toward increased AM activity              The VMO activity increased from
the remaining five exercises. No differ-          from W to SD was found.
                                                         S                                          6%+ 5% for IS60 to 40%+ 25% for IS15,
ences resulted between these analyses.                                                              whereas V activity increased from
                                                                                                                L
                                                  No differences in EMG activity due to             7%+6% to 37%+21%, respectively.
Means and standard deviations of data             gender were seen in WSl exercises.
and comparisons that yielded statisti-            Likewise, no difference in VMO/VL                     Patellar taping did not affect closed-
cally significant results are reported in         ratio was seen between WSl and                        chain muscle activity, even though the
Tables 6 and 7. Gender/exercise inter-            WSh, but greater activity was seen in                 decrease in pain after patellar taping
actions were seen for the VMO and                 the AM, VMO, and V during WSlA
                                                                       L                                for the SD exercise averaged 94%.
VL for the WS-SD exercise group.                  than in WS1 (Tab. 7). The AM activity                 Analyses comparing W with WSl, SD,
                                                                                                                                S
Athough muscle activity was similar               increased from 2%+ 3% to 30%+ 53%                     and ISQA and WSl with WSlA were
between men and women for all WS                  when adduction was added to the WS1                   not sigdicant for the VMOM ratio
exercises, ranging from 11% to 15%                exercise. The VMO increased from                      (Tab. 9). Both the VMO and VL were
for women and from 11% to 16% for                 9 ? + 6 %to 17%+7%, whereas the V  L                  less active in the W (31%+ 23 for
                                                                                                                            S
men, women required approximately                 increased from 9?+5% to 17%+8%                        VMO and 38%+36% for VL.) than in
twice the activity as men for SD (Tab.            with the addition of adduction to WSl.                the SD (65%?22% for VMO and
6). Average VMO activity was                                                                            77%+36% for VL) or ISQA (63%+31%
24%211% for men and 45%+60/0 for                  Subjects With PFP Syndrome                            for VMO and 69/0+36% for VL). The
women, whereas VL activity averaged                                                                     VMO increased its activity when ad-
19??7% for men and 41%+3% for                     Means and standard deviations of data                 duction was added to the wall slide
women.                                            and comparisons that yielded statisti-                from 13%+7% to 30%+ 18%. The

32 / 678                                                                       Physical Therapy /Volume 75, Number 8 /August 1995
Table 6. Integrated Electromyographic Activity (Percentage ofMaximum) During Walk-Stanceand Step-Down Exercbes for
Subjects Without Patellofemoral Pain Syndrome (N= 2 0 7

                          VMO                  VL                    AM                    VMOM
                          -
                          X SD Minimum Maximum          X
                                                  SD Minimum Maximum                   X
                                                                        SD Minimum Maximum   SD Minimum Maximum       X

Walk-stance neutral                                                                    11 24b 0             105       1.3 0.2 0.4   4.9
  Women                   12 8'    2         27         11    5d    2         20
  Men                     13 6e    5         22         13     9'   3         30
Walk-stance supinated                                                                      9 10      0       55       1.1 0.4 0.5   2.6
  Women                   15   9   6         29         14     6    7         23
  Men                     14   6   5         28         15     7    5         32
Walk-stance pronated                                                                     5      7    0       26       1.0 0.4 0.4   2.1
  Women                   14   9   3         37         15     8    4         32
  Men                     15   6   8         26         16     6    5         23
Walk-stance TFLg tape                                                                      7 13      0       56       1.1 0.5 0.5   2.3
  Women                   14   7   8         26         13     4    7         20
  Men                     13   6   3         23         13     8    4         28
Walk-stance patellar
    tape (n= 19)                                                                         9 15        0       59       1.3 0.9 0.5   4.1
  Women(n=lO)             12   6   2         21         11     6    3         22
  Men (n=9)               13   6   4         25         11     8    5         31
Step down                                                                              21 2d) 0              71       1.2 0.6 0.5   3.4
  Women                   45 6'    35        54         41 13d 23             69
  Men                     2411     7         40e        19     7' 10          32


aMuscle abbreviations: vastus medialis oblique (VMO), vastus lateralis (VL), adductor rnagnus (AM).
  rend for past hoc difference for two-way analysis of variance (ANOVA) not significant ( P 3 . 9 ; df-1,18; P=.0630).
"Significantpost hoc difference for one-way ANOVA (F=154.4; df-1,9; P=.0000).
d~ignificantpost hoc dierence for one-way ANOVA (F=61.6; df-1,9; P=.0000).
'Trend for post hoc difference for one-way ANOVA not significant (F=10.3;df-1,9; P=.0106), Note: P=.0000 when men and women combined
(F=102.9; df-1,181.
/Significant post hoc differencefor one-way ANOVA ( F11.8; d f - 1,9; F ,0074).
Tensor fascia lata muscle.




Table 7. Integrated Electtomyographic Activity (Percentage of Mm'mum) During Wall-Slide Exercbes With and Without H p
                                                                                                                   i
Adduction for Subjects Without Patellofemoral Pain Syndrome (N=207

                      VMO                          VL                              AM                                 VMONL
                      -
                      X   SD Minimum Maximum %              SD Minimum Maximum     X       SD       Minimum Maximum   x   SD Minimum Maximum


Without adduction      9 6b    1        18           9 5'      1         18          2       3d 0           12        1.3 1.2 0.3   5.3
With adduction         17 7b   6        32          17 8'      5         31         30 53d 1               240        1.2 0.7 0.4   3.1


aMuscle abbreviations: vastus medialis oblique WMO),vastus lateralis (VL), adductor magnus (AM)
b~ignificant
           difference for two-way analysis of variance (ANOVA) (F=28.3; df-1,18; P=.0000).
'Significant difference for two-way ANOVA (F=35.5; df-1,18; P=.0000).
d~ignificant
           difference for two-way ANOVA (F=6.0; df-1,18; e . 0 2 5 3 )

Physical Therapy / Volume 75, Number 8 /August 1995
increase in the VL activity from                            Discussion                                        effectively compare the EMG signal




-
16%? 10%for WSI to 36%?32% with                                                                               between muscles, each of which may
WSlA did not reach the rigor of post                        Technique                                         be a different distance from the re-
ha: significance.                                                                                             cording electrode, and between sub-
                                                            The amount of EMG signal recorded is              jects, each of whom may have
                                                            dependent on the location and size of             different-sized muscles and different
                                                            the recording electrodes. In order to             distances from active muscle to elec-




Table 8. Integrated Electromyographic Activity (Percentage of Maximum1 During Open-Chain Exercises for Subjects With
Patellofemoral Pain Syndrome (N= 10)"

                           VMO                                           VL                                          VMONL
                           -                                                                                         -
                           X          SD           Minimum    Maximum    X         SD         Minimum   Maximum      X   SD       Minimum   Maximum


Quadriceps femoris
 muscle set                101        3Pd          54         149        90        36e-g      42        149          1.2    0.5   0.8       2.3
Isometric at 60'             6         5b*h         1          14         7         6e,i       2         22          1.0    1.0   0.0       3.3
Isometric at 15"           40         25C,h        12          81        37        21f,j       6         73          1.2    0.6   0.3       2.4
Extension 30"-0"           49         17d          31          79        48        17g        27         67          1.1    0.4   0.5       2.2


"Muscle abbreviations: vastus medialis oblique (VMO), vastus lateralis (VL). Note: extension was not compared with isometric exercises.
           post hoc difference for analysis of variance (ANOVA) (F= 103.4; df= 1 9 ; P= ,0000).
b~ignificant
'Significant post hoc difference for ANOVA (F=60.1; df= 1,9; F . 0 0 0 0 ) .
          post hoc difference for ANOVA (F=41.4; df= 1,9; P= ,0001).
d~ignificant




-
'Significant post hoc difference for ANOVA (F= 52.2; df= 1,9; P= .0000).
/significant post hoc difference for ANOVA (F=29.0; d p 1,9; P=.0004).
RSignificantpost hoc difference for ANOVA (F=21.1; d p 1 , 9 ; P= ,0013).
'significant post hoc difference for ANOVA (F=25.6;df= 1,9; e . 0 0 0 7 ) .
'Significant post hoc ditference for ANOVA (F=24.4; df-1,9; F . 0 0 0 8 ) .




Table 9. Integrated Electromyographic Activity (Percentage of Mmammum)
                                                                    During Closed-Chain Exercises for Subjects With
Patellofernoral Pain Syndrome (N= 101"

                                 VMO                                         VL                                      VMONL
                                 -
                                 X   SD             Minimum Maximum          X       SD       Minimum Maximum        x      SD    Minimum Maximum


Walk stance                      31        23beC        6        89          38      36d,e     8        137           1.O   0.6   0.3       2.6
Wall slide                       13         7'          2        28           16     109       5         45          0.9    0.5   0.3       2.0
Wall slide with adduction        30        18'          8        74          36      32g       11       131           1.0   0.5   0.3       2.0
Step down                        65        22b      31           98          77      36d      40        171          0.9    0.3   0.5       1.4
Isometric sitting at 90'
  with adduction                 63        31"      13          148          69      36e      27        173           1.0   0.4   0.4       1.9

"Muscle abbreviations:vastus medialis oblique (VMO), vastus lateralis 0 2 .
                                                                       . ) Data averaged for patellar taped and untaped exercises
           post hoc difference for two-way analysis of variance (ANOVA) (F=50.9; df= 1,9; P=.0001).
b~ignificant
'Significant post hoc ditference for two-way ANOVA (F=18.5; df=1,9;P=.0020).
           post hoc diference for two-way ANOVA (F=218.3; d p 1 , 9 ; P=0000).
d~ignificant
'Significant post hoc difference for two-way ANOVA (F=56.3; df=1,9;P=0000).
&&cant       post hoc d8erence for two-way ANOVA (F=11.1; df= 1,9; P= ,0088).
8Trend for past hoc difference for two-way ANOVA (F=6.3; df=1,9; e . 0 3 3 6 ) .

                                                                                           Physical Therapy / Volume 75, Number 8 / August 1995
trodes, a method of expressing the          known, as both muscles may be in-           cally compare their data and their
EMG activity of a spechc muscle as a        creasing their activity the same            results could be in error due to vol-
ratio of activity to some reference         amounts. Normalized EMG data are            ume conduction of adductor muscle
value eliminates the influence of loca-     ratio data. A true absence of activity      activity to their widely spaced (22.54
tion and size of recording electrodes.      can exist, and ratios are used in nor-      c [rli surface electrodes over
                                                                                          m       a
Use of the maximum isometric EMG            malization of the data.                     the VM. Hanten and Sculthies' adduc-
activity as the normalizing factor al-                                                  tion exercise, although not requiring
lows expression of activity in an easily    Knee flexor activity may have oc-           quadriceps femoris muscle activity, still
understandable ratio and has been           curred in some of the openchain             elicited high levels of activity in both
shown to provide better reliability         exercises and most likely occurred in       the VMO and VL.18 Perhaps conscious
(ICC) than using either dynamic maxi-       the closed-chain exercises. The pur-        activation of the vastus muscles with
mal or submaximal EMG activity in the       pose of this study was to compare           adduction negates any benefit of ad-
gastrocnemius muscle.26                     results across similar exercises, regard-   duction exercise to preferentially aai-
                                            less of whether other activity was          vate the VMO. Wheatley and Jahnkel9
The software used for data collection       present. Rather than examine vastus         also reported greater V activity dur-
                                                                                                                 M
prevented collection of data for less       muscle activity when no other activity      ing QS with leg lateral rotation. In
than 5 seconds per trial. Because           was present, this study was designed        addition, the findings of my study are
movement during dynamic exercise            to study exercises widely used in           not consistent with the theories that
would be much slower than custom-           physical therapy.                           the VMO is selectively activated in a
ary in clinical practice if movement                                                    flexed position of the knee, during
was prolonged for 5 seconds, only 3         VMOIVL Ratio                                tibial medial or lateral rotation, or
seconds of movement was used, with                                                      during subtalar joint pronation.6.9.18-23
a 2-second hold at the end position.        This study did not support the claims
As a result, two fifths of each dynamic     that certain commonly used exercises        Results of taping the patella and the
exercise was actually isometric. Be-        or patellar or tensor fascia lata muscle    tensor fascia lata muscle in my study
cause no differences were found in          medial-ghde taping enhance VMO              are in contrast to McConnell's finding
VMO/VL ratios at different isometric        activity over VL activity. The only         of an increased VMO/VL activity ratio
positions, this practice of collecting 2    exercise to show a higher VMO/VL            in symptomatic subjects with such
seconds of isometric data in each           ratio in comparison with similar exer-      taping, even though subjects with PFP
dynamic exercise probably had no            cises was KEMR in comparison with           in my study reported greatly reduced
effect on the overall ratio. Further-       KELR. This finding is in contrast to the    pain during the SD exercise after
more, exercises with movement were          commonly held hypothesis that hip           medial-glide taping.16 McConnell did
compared only with other exercises          lateral rotation, by creating a knee        not report her EMG recording proce-
with movement, except that K was E          abduction torque, enhances the activ-       dures. Whether her VMO data may
compared with ISs and ISQA was              ity of the VM'9 but is consistent with      have been contaminated by volume
compared with exercises with move-          the reported lack of preferential activa-   conduction of activity of nearby mus-
ment in subjects with PFP syndrome.         tion of the VMO during knee exten-          cles to the VMO electrode, therefore,
                                            sion with a knee abduction torque.27~2~     cannot be judged.
I had no method of quantifying my           Whether the small magnitude of in-
ability to control the speed of move-       crease in VMO/VL ratio (0.2) found          Some caution must be taken in inter-
ment. Undoubtedly, some error ex-           with medial over lateral rotation of the    preting the findings of no effects of
isted in subjects' ability to move at a     femur is clinically significant is not      specific exercise or taping on the
constant speed with the metronome.          known. Its significance most likely         VMO/VL activity ratio because of the
Likewise, I had no better method of         depends on the magnitude of the             low number of subjects in this study.
controlling isometric knee flexion          lateral tracking of the patella.            Ratio differences of 0.7 for ISs, 0.3 for
positions than use of a standard goni-                                                  QSs, and 0.6 for KEs, WS-SD, and
ometer. The error introduced by these       Likewise, preferential activation of the    WSls in subjects without PFP syn-
shortcomings is unknown. These              VMO over the VL is not consistent           drome and of 0.7 for openchain exer-
techniques, however, approximate            with this and other EMG studies of hip      cises, 0.5 for closed-chain exercises,
clinical practice more than would a         adduction27or tibial rotationl8.29 with     and 0.4 for taping in subjects with PFP
more elaborate method used to con-          knee extension. Two investigations of       syndrome were necessary to satisfy a
trol speed or position.                     openchain adduction exercises that          statistical power of .80.3O True differ-
                                            did not require a simultaneous quadri-      ences less than these ratios, therefore,
The VMONL ratio was used in this            ceps femoris muscle contraction, how-       could have been present without
study because it reflects the relative      ever, did show preferential activation      rejection of the null hypothesis. The
contributions of the VMO and VL. I          of the V or VM0.18J9 Wheatley and
                                                     M                                  magnitude of change in the VMO/VL
believe an increase of VMO activity         Jahnke19 reported that V action po-
                                                                     M                  ratio necessary for therapeutic effect is
with a specific exercise is meaningless     tentials occurred during hip adduction,     unknown. Certainly, the greater the
if the relative activity of the VL is un-   but they did not quantlfy or statisti-

Physical 'Therapy / Volume 75, Number 8 / August 1995
increase in magnitude, the greater will      flexed or moving for at least 3 seconds         Conclusions
be the medial pull on the patella.           of all other open-chain activities. As a
                                             result, subjects had the opportunity to         Whether in the subjects with PFP or in
Lack of preferential activation of the       produce high levels of EMG activity in          those without PFP, only one exercise
VMO over the V due to exercise
                 L                           the QS exercises while maintaining              resulted in a higher VMONL activity
purported to produce such activation         their test position. I suggest that they        ratio over similar exercises. The KEMR
or due to patellar taping leads to the       produced this high level of activity            showed a higher VMONL ratio than
question of whether the VMO can be           because they were well motivated.               the KELR. Exercises more commonly
trained to selectively increase its activ-   Attempts at increasing EMG activity             prescribed to enhance VMO activity
ity. Studies of EMG biofeedback train-       during the other openchain exercises            over that of the VL, however, failed to
ing for the VMO are needed to answer         would have either increased the speed           selectively activate the VMO. Further-
this question.                               of movement (controlled with a met-             more, the results of this study indicate
                                             ronome) or moved the leg from the               that medial-glide taping of the patella
Because no dfierence in the VMONL            isometric test position. Either of these        or tensor fascia lata muscle does not
ratio was found with patellar taping         activities would have resulted in dis-          alter the VMONL ratio.
although pain was decreased an aver-         carding the data and repeating the
age of 94%, I question that taping           exercise until the desired velocity or          Acknowledgments
decreases pain due to appropriate            posture was attained. As a result, the
realignment of the patella. The ability      EMG activity was lower for these                I thank the following California State
to reliably determine patellar align-        exercises. Because 0thers27,3~   have           University, Long Beach, physical ther-
ment is p0or.3~  Therefore, the ability      found higher vastus muscle activity in          apy students for their assistance in this
to appropriately realign the patella is      QS than in straight leg raising, the QS         project: Janet Froggatt, Anthony
questionable. Furthermore, I found no        has consistently been shown to be an            Granger, Cynthia Grauf, Kathy Harbert
evidence in the literature that patellar     excellent exercise for recruiting vastus        Greenwood, Michael Greenwood,
taping can maintain the position of the      muscle activity.                                Gregory R Jue, Mark Klem, Sonja
patella during exercise. The effect on                                                       Maul, Nancy Rhoan, Susan Royce,
PFP of placebo taping of the patella or      The increased activity in both the              Stacy Sarnano, Ernie Sanchez, Milan
of taping the patella with randomly          VMO and VL during IS15 over IS60                Steijn, David Swink, Carol Whitmire,
chosen direction has not been studied.       in both the subjects with and with-             and Laura Olsen. I thank Michael
The positive effect of taping may be         out PFP syndrome is expected due                Monahan for his question in class that
due to additional sensory input or the       to the increased quadriceps femoris             inspired this research, and I thank
placebo effect. The effect of patellar       muscle demand at 15 degrees with-               Charles Felder, PT, OCS, instructor for
taping, therefore, should be studied in      out preferential demand for VMO                 McCOM~~~    seminars, who consulted
a large group of subjects with PFP.          a ~ t i v i t y . ~ ~ ~ " ~ ~ This3 increased
                                                                           ~.3 -35           with me on this project and who
Two groups of subjects without               mechanical demand at 15 degrees                 taught me the McComell taping
knowledge of taping theory randomly          is due to the combined effects of               technique.
assigned to receive medial or lateral        increased gravitational lever arm
patellar taping can be studied using a       and decreased muscle length and
blind research design.                       lever arm of the quadriceps femoris             References
                                             muscle.                                         1 Levine J. Chondromalacia patellae. Tbe Phy-
Both subjects with and without PFP                                                           sician and Sportsmedicine. 1979;7(8):41-49.
appeared to have similar VMO/VL              Because the WSlA tended to recruit              2 Outerbridge RE. Further studies on the aeti-
ratios in open-chain exercise, whereas                      w, ,
                                             greater ~ 0 and AM                 than         ology of ch~ndromalacia
                                                                                             Surg [Brl. 1964;46:179-190.
                                                                                                                         patellae. J Bone Joint
subjects with PFP appeared to have           the wS1and because the SD and ISQA              3 Puniello MS. Iliotibial band tightness and
lower ratios in closed-chain exercise        recruited greater VMO, VL, and AM               medial patellar glide in patients with patel-
than subjects without PEP. Whether           activity than the WS, the sumested              lofernoral dysfunction. J Ortbop sports ~ h y s
this apparent difference is statistically    benefit of these closedcharexercises             Tber. 1993;17:144-148.
                                                                                             4 Fulkerson JP, Hungerford DS. Disorders of
sigdicant or whether it is important is      in persons with      may be due to a            the Patellofemoral loitzt. 2nd ed. Baltimore.
unknown. Statistical comparison in           high level of coactivation of the knee          ~ dw : ~ ~ i i m swiikins; 1990
                                                                                                    i       &
further studies would be beneficial.         extensors and hlp extensors (AM) to             5 Malek MM, Mangine RE. Patellofemoral pain
                                             better conkdl the femur. A comparison           syndrome: a comprehensive and conservative
                                                                                             approach. J Orthop Sports Phys Tber. 1981;2:
VMO, VL, and AM Activity                     of lower-limb extensor muscle activity          108-116,
                                                                                             ~-     - - -


                                             between closed-chain exercises that             6 McConnell J. The management of chondro-
Subjects in this study averaged higher       mandate multisegment control of the             malacia patellae: a long-term solution. Austra-
VMO and V activity during the QS
            L                                lower limb and open-chain exercises             lian Journal of Physiotherapy. 1986;32:215-
                                                                                             q-9
                                                                                             LL3.
exercises than in other open-chain           in subjects with Pm 'yndrome                    7 Schutzer SF. Ramsby GR, Fulkerson JP.
exercises. They were at end range of         be beneficial.                                  Computed tomographic classification of patel-
knee extension for 5 seconds during                                                          lofemoral pain patients. OrthoD Clin North
                                                                                             Am. 1986;17:235-248.
the QS exercises but were either more

                                                                         Physical Therapy / Volume 75, Number 8 / August 1995
8 Kettlekamp DB. Management of patellar              compression syndrome. Am J Phys Med. 1992;              data. Journal of Electromyography and Kinai-
malalignment. J Bone Joint Surg [Am). 1981;63:       20:434-440.                                             010gy. 1994;4:47-59.
1344-1348.                                           18 Hanten WP, Schulthies SS. Exercise effect            27 Karst GM, Jewett PD. Electromyographic
9 Mariani PP, Camso I. An electromyographic          on electromyographic activity of the vastus             analysis of exercises proposed for differential
investigation of subluxation of the patella.         medialis oblique and vastus lateralis muscles.          activation of medial and lateral quadriceps
J Bone Joint Surg [Brl. 1979;61:169-171.             ~ h y Zher. 19%;70:561-565.
                                                            s                                                femoris muscle components. Phys 7hw. 1 9 3 ;
10 Antich TJ, Brewster CE. Modification of           19 Wheatley MD, Jahnke WD. Electromyo-                  75286-299.
quadriceps femoris muscle exercises during           graphic study of the superficial thigh and hip          28 Andriacchi TP,Andersson GBJ, Onengren
knee rehabilitation. Phys Zhw. 1986;66:1246-         muscles in L~ormal   individuals. Arch Phys Med         R, Mikosz RP. A study of factors influencing
1251.                                                Rehabil. 1951;32:508-515.                               muscle activity about the knee joint. J m o p
11 Lieb FJ, Perry J. Quadriceps function: an         20 Boucher JP, King MA, Lefebre R, Pepin A.             Res. 1984;1:266-275.
anatomical and mechanical study using ampu-          Quadriceps femoris muscle activity in patel-            29 Duane-Cintra AI, Furlani J. Electromyo-
tated limbs. J Bone Joint Surg IAml. 1968;50:        lofemoral pain syndrome. Am J Phys Med.                 graphic study of the quadriceps femoris in
1535-1548.                                           1992;20:527-532.                                        man. Electromyogr Clin Neurophysiol. 1981;21:
12 Weinstabl R, Schaf W, Firas W. The exten-         21 Sczepanski TL, Gross MT, Cuncan PW,                  539-554.
sor apparatus of the knee joint and its periph-      Chandler JM. Effect of contraction type, angu-          30 Glantz SA. Primer of Bio-Statistics. 3rd ed.
eral vasti: anatomic investigation and clinical      lar velocitv and arc of motion on the VM0:VL            New York, N Y McGraw Hill; 1992:155-187,
relevance. Surg Radio1 Anat. 1989;ll:17-22.          ratio. J O h o p Sports Phys 7hw. 1991;14:256-          311, 401-405.
13 Bose K, Kanagasuntheram R, Osman MBH.             262.                                                    31 Fitzgerald GK, McClure PW. Reliability of
Vastus medialis oblique: an anatomic and             22 vanKampen A, Huiskes R. The three-                   measurements obtained with four tests of
physiologic study. Orthopedics. 1980;3:880-          dimensional tracking pattern of the human               patellofemoral alignment. Phys Zher. 195;75:
883.                                                 patella, J Otthop Res. 190;8:372-382.                   84-90.
14 Hehne IIJ. Biomechanics of the patel-             23 McCulloch MU, Brunt D, Vander Linden D.              32 Soderberg GL, Cook TM. An electromyo-
lofemoral joint and its clinical relevance. Clin     The effect of foot orthotics and gait velocity          graphic analysis of quadriceps femoris muscle
 Orthop. 1990;258:7>85.                              on lower limb kinematics and temporal events            setting and straight leg raising. Phys Zher.
15 Slocum DB, Larson RL. Rotary instability of       of stance. J Orthop Sports Phys Zhw. 1993;17:           1983;63:1434-1438.
the knee. J Bone Joint Surg [Am). 1968;50:211-       2-10.                                                   33 Basmajian JV. Muscles Alive. 5th ed. Balti-
225.                                                 24 Lehmkuhl LD, Smith LK. Brunnstrijm's                 more, Md: Williams & Wilkins; 1985:324-332.
16 McConnell J. Training the vastus medialis         Clinical Kinesiology. 4th ed. Philadelphia, Pa:         34 Eloranta V. Patterning of muscle activity in
oblique in the management of patellofemoral          FA Davis Co; 19837-8.                                   static knee extension. Electromyogr Clin Nac-
pain. In: Proceedings of the 10th International      25 Soderberg GL. Kinesiology: Application to            rophysiol. 1989;29:369-375.
Congress of' the World Confederation for Phys-       Pathological Motion. Baltimore, Md: Williams            35 Moller BN, Krebs B, Tidemand-Dal C,
ical Zherapy; Sydney, Neu South Wales,               & Wilkins; 1986:60-61.                                  Aaris K. Isometric contractions in the patel-
Australia; 1987.                                     26 Knutson LM, Soderberg GL, Ballantyne BT,             lofemoral pain syndrome: an electromyo-
17 Doucene SA, Goble EM. The effect of ex-           Clarke WR. Study of various normalization               graphic study. Arch Orthop Trauma Surg.
ercise on patellar tracking in lateral patellar      procedures for within-day electromyographic             1986;105:24-27.




  L t PROFILE help you manage your professional development!
   e
             Call 1.800/999.APTA* to enroll today!
                                                   '1-800/999-2782, ext 3395, 8:30 am-5:30 pm Eastern time                                             UJ85

More Related Content

What's hot

Hamstring Avulsion Repair Rehabilitation
Hamstring Avulsion Repair RehabilitationHamstring Avulsion Repair Rehabilitation
Hamstring Avulsion Repair RehabilitationRoss Nakaji
 
Tahran 2020 modified posterior shoulder stretching exercises sis
Tahran 2020   modified posterior shoulder stretching exercises sisTahran 2020   modified posterior shoulder stretching exercises sis
Tahran 2020 modified posterior shoulder stretching exercises sisOLGUINHUERTACRISTIAN
 
Lluis Til. Sports Medicine & Orthopedics - FCBarcelona; Olympic Training Cent...
Lluis Til. Sports Medicine & Orthopedics - FCBarcelona; Olympic Training Cent...Lluis Til. Sports Medicine & Orthopedics - FCBarcelona; Olympic Training Cent...
Lluis Til. Sports Medicine & Orthopedics - FCBarcelona; Olympic Training Cent...MuscleTech Network
 
Crimson Publishers-Assessment of the Muscle Strength and Range of Motion Ankl...
Crimson Publishers-Assessment of the Muscle Strength and Range of Motion Ankl...Crimson Publishers-Assessment of the Muscle Strength and Range of Motion Ankl...
Crimson Publishers-Assessment of the Muscle Strength and Range of Motion Ankl...Crimsonpublishers-Sportsmedicine
 
Examination Of Extremities
Examination Of ExtremitiesExamination Of Extremities
Examination Of Extremitiesyeditepe tıp
 
Slater and hart, 2017 agachamento
Slater and hart, 2017 agachamentoSlater and hart, 2017 agachamento
Slater and hart, 2017 agachamentoFábio Lanferdini
 
Bryan Heiderscheit - MRI findings
Bryan Heiderscheit - MRI findingsBryan Heiderscheit - MRI findings
Bryan Heiderscheit - MRI findingsMuscleTech Network
 
Transversus abdominis and obliquus internus activity during pilates exercises...
Transversus abdominis and obliquus internus activity during pilates exercises...Transversus abdominis and obliquus internus activity during pilates exercises...
Transversus abdominis and obliquus internus activity during pilates exercises...Dra. Welker Fisioterapeuta
 
Pm&r volume issue 2014 [doi 10.1016%2 fj.pmrj.2014.10.004] park, kyung hee; o...
Pm&r volume issue 2014 [doi 10.1016%2 fj.pmrj.2014.10.004] park, kyung hee; o...Pm&r volume issue 2014 [doi 10.1016%2 fj.pmrj.2014.10.004] park, kyung hee; o...
Pm&r volume issue 2014 [doi 10.1016%2 fj.pmrj.2014.10.004] park, kyung hee; o...Vido Bošković
 
Kt hemiplegia
Kt hemiplegiaKt hemiplegia
Kt hemiplegiaeli wati
 
Comparison of the effects of exercise in water and on land on the rehabilitat...
Comparison of the effects of exercise in water and on land on the rehabilitat...Comparison of the effects of exercise in water and on land on the rehabilitat...
Comparison of the effects of exercise in water and on land on the rehabilitat...FUAD HAZIME
 
Hamstring Strain Injuries - Aspetar Experience Nicol van Dyk & Philipp Jacobsen
Hamstring Strain Injuries - Aspetar Experience Nicol van Dyk & Philipp JacobsenHamstring Strain Injuries - Aspetar Experience Nicol van Dyk & Philipp Jacobsen
Hamstring Strain Injuries - Aspetar Experience Nicol van Dyk & Philipp JacobsenNicol van Dyk
 
The effect of patellar taping on the onset of vm and vl muscle activity in pe...
The effect of patellar taping on the onset of vm and vl muscle activity in pe...The effect of patellar taping on the onset of vm and vl muscle activity in pe...
The effect of patellar taping on the onset of vm and vl muscle activity in pe...FUAD HAZIME
 

What's hot (19)

Core Will It Survive
Core  Will It SurviveCore  Will It Survive
Core Will It Survive
 
Hamstring Avulsion Repair Rehabilitation
Hamstring Avulsion Repair RehabilitationHamstring Avulsion Repair Rehabilitation
Hamstring Avulsion Repair Rehabilitation
 
Tahran 2020 modified posterior shoulder stretching exercises sis
Tahran 2020   modified posterior shoulder stretching exercises sisTahran 2020   modified posterior shoulder stretching exercises sis
Tahran 2020 modified posterior shoulder stretching exercises sis
 
Lluis Til. Sports Medicine & Orthopedics - FCBarcelona; Olympic Training Cent...
Lluis Til. Sports Medicine & Orthopedics - FCBarcelona; Olympic Training Cent...Lluis Til. Sports Medicine & Orthopedics - FCBarcelona; Olympic Training Cent...
Lluis Til. Sports Medicine & Orthopedics - FCBarcelona; Olympic Training Cent...
 
Mark Sherry - hamstring
Mark Sherry - hamstring Mark Sherry - hamstring
Mark Sherry - hamstring
 
Eenm (03)
Eenm (03)Eenm (03)
Eenm (03)
 
Crimson Publishers-Assessment of the Muscle Strength and Range of Motion Ankl...
Crimson Publishers-Assessment of the Muscle Strength and Range of Motion Ankl...Crimson Publishers-Assessment of the Muscle Strength and Range of Motion Ankl...
Crimson Publishers-Assessment of the Muscle Strength and Range of Motion Ankl...
 
Examination Of Extremities
Examination Of ExtremitiesExamination Of Extremities
Examination Of Extremities
 
The Athletic Hamstring
The Athletic HamstringThe Athletic Hamstring
The Athletic Hamstring
 
Marivo_SIF_2016[1094]
Marivo_SIF_2016[1094]Marivo_SIF_2016[1094]
Marivo_SIF_2016[1094]
 
Slater and hart, 2017 agachamento
Slater and hart, 2017 agachamentoSlater and hart, 2017 agachamento
Slater and hart, 2017 agachamento
 
Bryan Heiderscheit - MRI findings
Bryan Heiderscheit - MRI findingsBryan Heiderscheit - MRI findings
Bryan Heiderscheit - MRI findings
 
"Down and Dirty Osteopathy"
"Down and Dirty Osteopathy""Down and Dirty Osteopathy"
"Down and Dirty Osteopathy"
 
Transversus abdominis and obliquus internus activity during pilates exercises...
Transversus abdominis and obliquus internus activity during pilates exercises...Transversus abdominis and obliquus internus activity during pilates exercises...
Transversus abdominis and obliquus internus activity during pilates exercises...
 
Pm&r volume issue 2014 [doi 10.1016%2 fj.pmrj.2014.10.004] park, kyung hee; o...
Pm&r volume issue 2014 [doi 10.1016%2 fj.pmrj.2014.10.004] park, kyung hee; o...Pm&r volume issue 2014 [doi 10.1016%2 fj.pmrj.2014.10.004] park, kyung hee; o...
Pm&r volume issue 2014 [doi 10.1016%2 fj.pmrj.2014.10.004] park, kyung hee; o...
 
Kt hemiplegia
Kt hemiplegiaKt hemiplegia
Kt hemiplegia
 
Comparison of the effects of exercise in water and on land on the rehabilitat...
Comparison of the effects of exercise in water and on land on the rehabilitat...Comparison of the effects of exercise in water and on land on the rehabilitat...
Comparison of the effects of exercise in water and on land on the rehabilitat...
 
Hamstring Strain Injuries - Aspetar Experience Nicol van Dyk & Philipp Jacobsen
Hamstring Strain Injuries - Aspetar Experience Nicol van Dyk & Philipp JacobsenHamstring Strain Injuries - Aspetar Experience Nicol van Dyk & Philipp Jacobsen
Hamstring Strain Injuries - Aspetar Experience Nicol van Dyk & Philipp Jacobsen
 
The effect of patellar taping on the onset of vm and vl muscle activity in pe...
The effect of patellar taping on the onset of vm and vl muscle activity in pe...The effect of patellar taping on the onset of vm and vl muscle activity in pe...
The effect of patellar taping on the onset of vm and vl muscle activity in pe...
 

Similar to VMO and VL muscle activity ratios for knee rehab exercises

Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...
Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...
Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...FUAD HAZIME
 
Touro footankle.4.19.12
Touro footankle.4.19.12Touro footankle.4.19.12
Touro footankle.4.19.12Adrian Miranda
 
Transversus%20 abdominis%20and%20obliquus%20internus%20activity%20during%20pi...
Transversus%20 abdominis%20and%20obliquus%20internus%20activity%20during%20pi...Transversus%20 abdominis%20and%20obliquus%20internus%20activity%20during%20pi...
Transversus%20 abdominis%20and%20obliquus%20internus%20activity%20during%20pi...Dra. Welker Fisioterapeuta
 
Plugin transversus%20 abdominis%20and%20obliquus%20internus%20activity%20duri...
Plugin transversus%20 abdominis%20and%20obliquus%20internus%20activity%20duri...Plugin transversus%20 abdominis%20and%20obliquus%20internus%20activity%20duri...
Plugin transversus%20 abdominis%20and%20obliquus%20internus%20activity%20duri...Dra. Welker Fisioterapeuta
 
Tendon Loading Program for Long Distance Runner
Tendon Loading Program for Long Distance Runner Tendon Loading Program for Long Distance Runner
Tendon Loading Program for Long Distance Runner Lauren Jarmusz
 
Management of recurrent dislocation of patella by reconstructing2
Management of recurrent dislocation of patella by reconstructing2Management of recurrent dislocation of patella by reconstructing2
Management of recurrent dislocation of patella by reconstructing2Jitesh Jain
 
Hip muscle exercise JOSPT 2013
Hip muscle exercise  JOSPT 2013Hip muscle exercise  JOSPT 2013
Hip muscle exercise JOSPT 2013Victor Olivares
 
Nicola Taddio Arezzo Nicolas Foundation 2011 Shoulder Cadaver Lab
Nicola Taddio Arezzo Nicolas Foundation 2011 Shoulder Cadaver Lab Nicola Taddio Arezzo Nicolas Foundation 2011 Shoulder Cadaver Lab
Nicola Taddio Arezzo Nicolas Foundation 2011 Shoulder Cadaver Lab Nicola Taddio
 
Shoulder-Pain-In-Patients-with-SCI.ppt
Shoulder-Pain-In-Patients-with-SCI.pptShoulder-Pain-In-Patients-with-SCI.ppt
Shoulder-Pain-In-Patients-with-SCI.pptfffjjjooo0852
 
Poster Tl Sciatic Scoliosis
Poster Tl Sciatic ScoliosisPoster Tl Sciatic Scoliosis
Poster Tl Sciatic Scoliosislavosky
 
Asca flexibility dimensions
Asca flexibility dimensionsAsca flexibility dimensions
Asca flexibility dimensionsCharlie Hoolihan
 
A Study to compare the effect of Open versus Closed kinetic chain exercises i...
A Study to compare the effect of Open versus Closed kinetic chain exercises i...A Study to compare the effect of Open versus Closed kinetic chain exercises i...
A Study to compare the effect of Open versus Closed kinetic chain exercises i...IOSR Journals
 
Current Issues in Sports Medicine: The Knee
Current Issues in Sports Medicine: The KneeCurrent Issues in Sports Medicine: The Knee
Current Issues in Sports Medicine: The Kneecyclicamp
 
Electromyographic activity of selected trunk muscles in subjects
Electromyographic activity of selected trunk muscles in subjectsElectromyographic activity of selected trunk muscles in subjects
Electromyographic activity of selected trunk muscles in subjectsJuan Aguirre Vargas
 
Surgical Versus Ponseti Approach for the Management of CTEV - Dr. CHINTAN N. ...
Surgical Versus Ponseti Approach for the Management of CTEV - Dr. CHINTAN N. ...Surgical Versus Ponseti Approach for the Management of CTEV - Dr. CHINTAN N. ...
Surgical Versus Ponseti Approach for the Management of CTEV - Dr. CHINTAN N. ...DrChintan Patel
 
Patellar kinematics, Part II
Patellar kinematics, Part IIPatellar kinematics, Part II
Patellar kinematics, Part IIFUAD HAZIME
 
Exercise therapy with the PNF concept
Exercise therapy with the PNF conceptExercise therapy with the PNF concept
Exercise therapy with the PNF conceptMaster - Science Lab
 

Similar to VMO and VL muscle activity ratios for knee rehab exercises (20)

Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...
Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...
Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...
 
Touro footankle.4.19.12
Touro footankle.4.19.12Touro footankle.4.19.12
Touro footankle.4.19.12
 
Feb2013 rr-selkowitz
Feb2013 rr-selkowitzFeb2013 rr-selkowitz
Feb2013 rr-selkowitz
 
Transversus%20 abdominis%20and%20obliquus%20internus%20activity%20during%20pi...
Transversus%20 abdominis%20and%20obliquus%20internus%20activity%20during%20pi...Transversus%20 abdominis%20and%20obliquus%20internus%20activity%20during%20pi...
Transversus%20 abdominis%20and%20obliquus%20internus%20activity%20during%20pi...
 
Plugin transversus%20 abdominis%20and%20obliquus%20internus%20activity%20duri...
Plugin transversus%20 abdominis%20and%20obliquus%20internus%20activity%20duri...Plugin transversus%20 abdominis%20and%20obliquus%20internus%20activity%20duri...
Plugin transversus%20 abdominis%20and%20obliquus%20internus%20activity%20duri...
 
Tendon Loading Program for Long Distance Runner
Tendon Loading Program for Long Distance Runner Tendon Loading Program for Long Distance Runner
Tendon Loading Program for Long Distance Runner
 
Management of recurrent dislocation of patella by reconstructing2
Management of recurrent dislocation of patella by reconstructing2Management of recurrent dislocation of patella by reconstructing2
Management of recurrent dislocation of patella by reconstructing2
 
Hip muscle exercise JOSPT 2013
Hip muscle exercise  JOSPT 2013Hip muscle exercise  JOSPT 2013
Hip muscle exercise JOSPT 2013
 
Nicola Taddio Arezzo Nicolas Foundation 2011 Shoulder Cadaver Lab
Nicola Taddio Arezzo Nicolas Foundation 2011 Shoulder Cadaver Lab Nicola Taddio Arezzo Nicolas Foundation 2011 Shoulder Cadaver Lab
Nicola Taddio Arezzo Nicolas Foundation 2011 Shoulder Cadaver Lab
 
Shoulder-Pain-In-Patients-with-SCI.ppt
Shoulder-Pain-In-Patients-with-SCI.pptShoulder-Pain-In-Patients-with-SCI.ppt
Shoulder-Pain-In-Patients-with-SCI.ppt
 
Poster Tl Sciatic Scoliosis
Poster Tl Sciatic ScoliosisPoster Tl Sciatic Scoliosis
Poster Tl Sciatic Scoliosis
 
Asca flexibility dimensions
Asca flexibility dimensionsAsca flexibility dimensions
Asca flexibility dimensions
 
A Study to compare the effect of Open versus Closed kinetic chain exercises i...
A Study to compare the effect of Open versus Closed kinetic chain exercises i...A Study to compare the effect of Open versus Closed kinetic chain exercises i...
A Study to compare the effect of Open versus Closed kinetic chain exercises i...
 
Current Issues in Sports Medicine: The Knee
Current Issues in Sports Medicine: The KneeCurrent Issues in Sports Medicine: The Knee
Current Issues in Sports Medicine: The Knee
 
Hamstring activation
Hamstring activationHamstring activation
Hamstring activation
 
Electromyographic activity of selected trunk muscles in subjects
Electromyographic activity of selected trunk muscles in subjectsElectromyographic activity of selected trunk muscles in subjects
Electromyographic activity of selected trunk muscles in subjects
 
Emg glúteo medio
Emg glúteo medioEmg glúteo medio
Emg glúteo medio
 
Surgical Versus Ponseti Approach for the Management of CTEV - Dr. CHINTAN N. ...
Surgical Versus Ponseti Approach for the Management of CTEV - Dr. CHINTAN N. ...Surgical Versus Ponseti Approach for the Management of CTEV - Dr. CHINTAN N. ...
Surgical Versus Ponseti Approach for the Management of CTEV - Dr. CHINTAN N. ...
 
Patellar kinematics, Part II
Patellar kinematics, Part IIPatellar kinematics, Part II
Patellar kinematics, Part II
 
Exercise therapy with the PNF concept
Exercise therapy with the PNF conceptExercise therapy with the PNF concept
Exercise therapy with the PNF concept
 

More from FUAD HAZIME

Princípios físicos da água
Princípios físicos da águaPrincípios físicos da água
Princípios físicos da águaFUAD HAZIME
 
A Lenda do Valor P
A Lenda do Valor PA Lenda do Valor P
A Lenda do Valor PFUAD HAZIME
 
A randomised, placebo controlled trial of low level laser therapy for activat...
A randomised, placebo controlled trial of low level laser therapy for activat...A randomised, placebo controlled trial of low level laser therapy for activat...
A randomised, placebo controlled trial of low level laser therapy for activat...FUAD HAZIME
 
Systematic review and meta analysis comparing land and aquatic exercise for p...
Systematic review and meta analysis comparing land and aquatic exercise for p...Systematic review and meta analysis comparing land and aquatic exercise for p...
Systematic review and meta analysis comparing land and aquatic exercise for p...FUAD HAZIME
 
Voluntary activation and decreased force production of the qs after total kne...
Voluntary activation and decreased force production of the qs after total kne...Voluntary activation and decreased force production of the qs after total kne...
Voluntary activation and decreased force production of the qs after total kne...FUAD HAZIME
 
Preoperative physical therapy in primary total knee arthroplasty
Preoperative physical therapy in primary total knee arthroplastyPreoperative physical therapy in primary total knee arthroplasty
Preoperative physical therapy in primary total knee arthroplastyFUAD HAZIME
 
Predictive risk factors for stif knees in total knee arthroplasty
Predictive risk factors for stif knees in total knee arthroplastyPredictive risk factors for stif knees in total knee arthroplasty
Predictive risk factors for stif knees in total knee arthroplastyFUAD HAZIME
 
Management of extensor mechanism deficit as a consequence of patellar tendon ...
Management of extensor mechanism deficit as a consequence of patellar tendon ...Management of extensor mechanism deficit as a consequence of patellar tendon ...
Management of extensor mechanism deficit as a consequence of patellar tendon ...FUAD HAZIME
 
Knee strenght after total knee arthroplasty
Knee strenght after total knee arthroplastyKnee strenght after total knee arthroplasty
Knee strenght after total knee arthroplastyFUAD HAZIME
 
In hospital complications after total joint arthroplasty
In hospital complications after total joint arthroplastyIn hospital complications after total joint arthroplasty
In hospital complications after total joint arthroplastyFUAD HAZIME
 
Full thicness burn formation after the use of electrical stimulation for reha...
Full thicness burn formation after the use of electrical stimulation for reha...Full thicness burn formation after the use of electrical stimulation for reha...
Full thicness burn formation after the use of electrical stimulation for reha...FUAD HAZIME
 
Factors affecting length of stay and need for rehabilitation after hip and kn...
Factors affecting length of stay and need for rehabilitation after hip and kn...Factors affecting length of stay and need for rehabilitation after hip and kn...
Factors affecting length of stay and need for rehabilitation after hip and kn...FUAD HAZIME
 
Effectiveness of pt artro systematic review and metanalysis
Effectiveness of pt artro systematic review and metanalysisEffectiveness of pt artro systematic review and metanalysis
Effectiveness of pt artro systematic review and metanalysisFUAD HAZIME
 
Effectiveness of physiotherapy exercise after knee arthroplasty for oa.
Effectiveness of physiotherapy exercise after knee arthroplasty for oa.Effectiveness of physiotherapy exercise after knee arthroplasty for oa.
Effectiveness of physiotherapy exercise after knee arthroplasty for oa.FUAD HAZIME
 
Effectiveness of cpm and conventional physical therapy after total knee arthr...
Effectiveness of cpm and conventional physical therapy after total knee arthr...Effectiveness of cpm and conventional physical therapy after total knee arthr...
Effectiveness of cpm and conventional physical therapy after total knee arthr...FUAD HAZIME
 
Does shortened length of hospital stay affect total knee arthroplasty rehabil...
Does shortened length of hospital stay affect total knee arthroplasty rehabil...Does shortened length of hospital stay affect total knee arthroplasty rehabil...
Does shortened length of hospital stay affect total knee arthroplasty rehabil...FUAD HAZIME
 
Does a standard outpatient physiotherapy regime improve the range of knee mot...
Does a standard outpatient physiotherapy regime improve the range of knee mot...Does a standard outpatient physiotherapy regime improve the range of knee mot...
Does a standard outpatient physiotherapy regime improve the range of knee mot...FUAD HAZIME
 
Determinants of function knee arthroplasty
Determinants of function knee arthroplastyDeterminants of function knee arthroplasty
Determinants of function knee arthroplastyFUAD HAZIME
 
Cryotherapy for postoperative pain relief following knee arthroplasty
Cryotherapy for postoperative pain relief following knee arthroplastyCryotherapy for postoperative pain relief following knee arthroplasty
Cryotherapy for postoperative pain relief following knee arthroplastyFUAD HAZIME
 

More from FUAD HAZIME (20)

Princípios físicos da água
Princípios físicos da águaPrincípios físicos da água
Princípios físicos da água
 
Us
UsUs
Us
 
A Lenda do Valor P
A Lenda do Valor PA Lenda do Valor P
A Lenda do Valor P
 
A randomised, placebo controlled trial of low level laser therapy for activat...
A randomised, placebo controlled trial of low level laser therapy for activat...A randomised, placebo controlled trial of low level laser therapy for activat...
A randomised, placebo controlled trial of low level laser therapy for activat...
 
Systematic review and meta analysis comparing land and aquatic exercise for p...
Systematic review and meta analysis comparing land and aquatic exercise for p...Systematic review and meta analysis comparing land and aquatic exercise for p...
Systematic review and meta analysis comparing land and aquatic exercise for p...
 
Voluntary activation and decreased force production of the qs after total kne...
Voluntary activation and decreased force production of the qs after total kne...Voluntary activation and decreased force production of the qs after total kne...
Voluntary activation and decreased force production of the qs after total kne...
 
Preoperative physical therapy in primary total knee arthroplasty
Preoperative physical therapy in primary total knee arthroplastyPreoperative physical therapy in primary total knee arthroplasty
Preoperative physical therapy in primary total knee arthroplasty
 
Predictive risk factors for stif knees in total knee arthroplasty
Predictive risk factors for stif knees in total knee arthroplastyPredictive risk factors for stif knees in total knee arthroplasty
Predictive risk factors for stif knees in total knee arthroplasty
 
Management of extensor mechanism deficit as a consequence of patellar tendon ...
Management of extensor mechanism deficit as a consequence of patellar tendon ...Management of extensor mechanism deficit as a consequence of patellar tendon ...
Management of extensor mechanism deficit as a consequence of patellar tendon ...
 
Knee strenght after total knee arthroplasty
Knee strenght after total knee arthroplastyKnee strenght after total knee arthroplasty
Knee strenght after total knee arthroplasty
 
In hospital complications after total joint arthroplasty
In hospital complications after total joint arthroplastyIn hospital complications after total joint arthroplasty
In hospital complications after total joint arthroplasty
 
Full thicness burn formation after the use of electrical stimulation for reha...
Full thicness burn formation after the use of electrical stimulation for reha...Full thicness burn formation after the use of electrical stimulation for reha...
Full thicness burn formation after the use of electrical stimulation for reha...
 
Factors affecting length of stay and need for rehabilitation after hip and kn...
Factors affecting length of stay and need for rehabilitation after hip and kn...Factors affecting length of stay and need for rehabilitation after hip and kn...
Factors affecting length of stay and need for rehabilitation after hip and kn...
 
Effectiveness of pt artro systematic review and metanalysis
Effectiveness of pt artro systematic review and metanalysisEffectiveness of pt artro systematic review and metanalysis
Effectiveness of pt artro systematic review and metanalysis
 
Effectiveness of physiotherapy exercise after knee arthroplasty for oa.
Effectiveness of physiotherapy exercise after knee arthroplasty for oa.Effectiveness of physiotherapy exercise after knee arthroplasty for oa.
Effectiveness of physiotherapy exercise after knee arthroplasty for oa.
 
Effectiveness of cpm and conventional physical therapy after total knee arthr...
Effectiveness of cpm and conventional physical therapy after total knee arthr...Effectiveness of cpm and conventional physical therapy after total knee arthr...
Effectiveness of cpm and conventional physical therapy after total knee arthr...
 
Does shortened length of hospital stay affect total knee arthroplasty rehabil...
Does shortened length of hospital stay affect total knee arthroplasty rehabil...Does shortened length of hospital stay affect total knee arthroplasty rehabil...
Does shortened length of hospital stay affect total knee arthroplasty rehabil...
 
Does a standard outpatient physiotherapy regime improve the range of knee mot...
Does a standard outpatient physiotherapy regime improve the range of knee mot...Does a standard outpatient physiotherapy regime improve the range of knee mot...
Does a standard outpatient physiotherapy regime improve the range of knee mot...
 
Determinants of function knee arthroplasty
Determinants of function knee arthroplastyDeterminants of function knee arthroplasty
Determinants of function knee arthroplasty
 
Cryotherapy for postoperative pain relief following knee arthroplasty
Cryotherapy for postoperative pain relief following knee arthroplastyCryotherapy for postoperative pain relief following knee arthroplasty
Cryotherapy for postoperative pain relief following knee arthroplasty
 

Recently uploaded

How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 

Recently uploaded (20)

How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 

VMO and VL muscle activity ratios for knee rehab exercises

  • 1. Vastus Medialis Oblique/Vastus Lateralis Muscle Activity Ratios for Selected Exercises in Persons With and Without Patellofemoral Pain Syndrome -- Background and Purpose. The purpose of this study was to determine which Kay Cemy of selected exercises with and without the feet free to move would enhance vastus medialis oblique muscle (VMO) activity over that of the vastus lateralis muscle ( W ) and whether the use of taping would increase VMO activity. Subjects. Twenty-one subjects without patellofemoral pain (PFP) syndrome and 10 subjects with PFP syndrome, aged 19 to 43 years @=26, SD= 71, partici- pated. Metbods. Subjects were studied for the normalized, integrated electro- myographic (IEMG) activity of their M O , W , and adductor magnus muscle (subjects without PFP syndrome) and the V M O m ratio using wire electrodes. Results. One exercise demonstrated greater activation of the VMO over the W when compared with similar exercises in subjects without PFP syndrome. The mean VMOhT activity ratio for terminal knee extension was 1.2 (SD= 0.5) with the hip medially rotated and 1.0 (SD= 0.4) with the hip laterally rotated. Al- though subjects reported that patellar taping decreased pain 94% during the step-down exercise, the V M O m ratio was not changed. Conclusion and Discussforr The results suggest that neither exercises purported to selectively activate VMO activity nor patellar taping improve the V M O m ratio over simi- lar exercises. lCerny K. Vastus medialis oblique/vastus lateralis muscle activity ratios for selected exercises in persons with and without patellofemoral pain syndrome. Phys Ther. 1995; 75672- 683.1 Key Words: Adductor magnus, Electromyography, Patellc$moral, Vastus lateralis, Vastus medialis oblique. Patellofemoral joint pain (PFP) is com- common site of knee pain in sports PFP syndrome.4-6-8As a result, both mon in the general population, occur- medicine clinics.'-5 Lateral malalign- surgical and conservative treatments to ring more often in women and in ment of the patella has been sug- correct this rnalalignrnent have been athletes, with the joint being the most gested as one of the major causes of suggested.1~4-10 Many exercise treatments emphasize the importance of the vastus medialis K Cerny, PhD, PT,is Professor, Department of Physical Therapy, College of Health and Human oblique muscle (VM0)6,8,10 because of Services, California State University, Long Beach, Long Beach, C 90840-5603 (USA) A its medial pull on the patella.11-15 (KCERNY@CSULB.EDU). Some researcherslb-19 suggest that The study protocol was approved by the Human Subjects Committee, California State University, contraction of the hip adductor and Long Beach. quadriceps femoris muscles simulta- Results of this research were previously presented at the 1991 and 1992 Annual Conferences of neously would preferentially activate the California Chapter of the American Physical Therapy Association and at the 1991 and 1922 the VMO. Other researchersl7.19 report Annual Conferences of the Long Beach Veterans Administration Hospital-California State Univer- that the vastus medialis muscle (VM) is sity, Long Beach-Memorial Medical Center of Long Beach. activated preferentially in response to m k article was submitted August 24, 1994, and was accepted April 3, 1995. 26 / 672 Physical Therapy / Volume 75, Number 8 / August 1995
  • 2. Table 1, Subject Anthmpometric Data Body Weight (Ibb) NO. of - Age 0 - Subjects X SD Range X SD Range Subjects without PFPB syndrome Women 10 Men 11 Subjects with PFP syndrome Women Men "PFP=patellofemoral pain. b l lb=0.4536 kg. valgus stress at the knee caused by The primary purpose of this study was fore beginning the study. The subjects hip lateral rotation during knee exten- to determine whether any of the exer- rated their pain after stepdown exer- sion exercises and that hip medial cises purported to increase the activity cise on a scale of 1 to 10, with 1 being rotation, therefore, decreases the activ- of the VMO over the VL, the VMO/VL minimal pain and 10 being the worst ity of the VM. Still others9'20921 have activity ratio, did so when compared pain that they could imagine, and they reported greater VMO activity during with similar exercises in subjects with reported the percentage of change in knee extension with the knee rela- and without PlT. A secondary pur- pain with step down after taping. The tively flex.ed than in terminal knee pose of this investigation was to deter- subjects with PlT were required to extension. Knee extension exercise mine whether therapeutic medial-glide have at least a 50% reduction in pain with tibia'l medial rotation has been taping altered the activity of the VMO with patellar taping to participate in proposed because the VMO is pur- or the V or the VMO/VL activity ratio. L the study. All subjects provided in- ported to prevent lateral rotation of Another purpose was to determine formed consent consistent with univer- the tibial8.19 and therefore to decrease which of similar exercises increased sity policy. the quadriceps femoris muscle angle the activity of the VMO, VL, and ad- (Q angle) and lateral patellar track- ductor magnus muscle (AM). Finally, I ing.22 Pronation of the subtalar joint wanted to determine whether gender and medial rotation of the tibia, how- influenced the muscle activity studied. Myoelectric activity was measured by ever, have also been claimed to in- use of indwelling wire electrodes of crease lateral tracki11g.~,~3 Method 50-pm nickel alloy. The electrodes, insulated except for 2 rnrn at the ends, McConnel16J6trains patients with PFP Subjects were inserted into the muscle with a syndrome in unilateral and bilateral 25-gauge needle. The needle was limb flexion exercises in weight bear- Twenty-one subjects who had no withdrawn, leaving the barbed ends of ing (walk stance and wall slide) and known lower-limb musculoskeletal the wire electrodes in place. The wire stepdown exercises because these impairments and who exhibited no electrodes were inserted into the VMO patients have increased pain with signs of neurological impairment and and V of all subjects. In addition, a L these activities. Although soft bracing 10 subjects with PlT participated in wire electrode was placed in the A M has previously been suggested to this study. The subjects' average age, of the subjects without PlT syndrome negate the valgus force of the quadri- average body weight, and gender are to ensure that they were contracting ceps femoris muscles on the patella,l,5 shown in Table 1. Subjects with syrnp- the muscle during exercises. The wire McConnel16J6suggests improving toms had a physician's diagnosis of for the VMO was placed in the middle patellar tracking, decreasing pain, and PFP within 6 years of the testing date of the muscle belly. The wire for the increasing the vastus medialis oblique/ and reported retropatellar pain during V was placed in the muscle approxi- L vastus lateralis muscle (VMO/VL) at least two of the following activities: mately one t i d of the distance from hr activity ratio in persons with PlT by (1) squatting, (2) ascending and de- the patella to the anterior superior iliac taping the patella or tensor fascia lata scending stairs, and (3) prolonged spine. The wire for the A was in- M muscle medially. Little evidence exists All sitting.1-3s4 subjects with PlT per- serted into the muscle just anterior to to support the use of the exercises formed a step-down exercise from a the gracilis muscle, approximately one and procedures reviewed. 22.9-cm (9-in) stool with and without t i d of the distance from the medial hr medial-glide taping of the patella be- femoral epicondyle to the syrnphysis Physical 'Therapy / Volume 75, Number 8 / August 1995 673 / 27
  • 3. pubis. The locations of the VL and AM corded during rest and during maxi- Exercises for Subjects Without inseltions were chosen because they mal manual resistance tests. All PFP Syndrome: Open Chain proved to be the most distal locations, recordings during the resistance tests consistently affording a full electro- were obtained with the subjects posi- Three groups of open-chain activities myographic (EMG) interference pat- tioned supine and supported on their were used for interexercise compari- tern upon muscle activation during elbows. For the VMO and VL tests, the son: quadriceps femoris muscle setting pilot testing. The distal VL insertion subjects' knee extension was resisted ("quad sets"), knee extension, and was used to sample the oblique por- while the hip and knee were flexed isometric holds. All exercises were tion of the VL, which is purported to approximately 30 degrees. For the AM performed against the resistance of an best oppose the action of the VM0.12 test, the subjects were resisted for hip ankle cuff weight equal to 5% of each The distal AM insertion was used to adduction with the knee extended. subject's body weight to the nearest sample its activity near the origin of pound. the VMO.'3 The leg each subject said Exercise Pmcedures was the dominant leg was tested in all Quad sets (QS). Quad sets were except one of the subjects without Exercises included what Lehmkuhl isometric exercises performed in full PFP syndrome. The nondorninant limb and Smith24 and Soderberg25 have knee extension with the subjects posi- was tested in one subject without PFP described as "open-chain and tioned long sitting and supported on syndrome because he had a previous "closed-chain" activities of the lower their hands with their heels lifted off of knee surgery on the dominant side. limb, performed in random order for 5 the table to decrease the possibility of The most severely involved leg of the seconds each. Lower-limb open-chain substitution by hip extensor activity. subjects with PFP was tested. exercises were performed with the The six quad set exercises were done sole of the foot free to move, whereas with (1) the hip and ankle positioned In order to decrease the chance of closed-chain exercises had the sole of in neutral (QS), (2) the hip maximally wire electrode migration during test- the foot planted on the floor. The medially rotated and the ankle posi- ing, subjects contracted the inserted terms "open chain and "closed chain" tioned in neutral (QSMR), (3) the hip muscle maximally several times after are used here to denote whether the maximally laterally rotated and the needle insertion to pull the wire into distal limb segment was free to move ankle positioned in neutral (QSLR), (4) the muscle. In addition, the investiga- when the quadriceps femoris muscles the hip maximally adducted against a tor moved the limb into full knee contracted. Open-chain exercises were pillow bolster with the ankle posi- flexion and extension and full hip randomly chosen to be performed tioned in neutral (QSA), (5) the hip abduction and adduction to allow the prior to or after closed-chain exercises. positioned in neutral and the ankle wire to slip further into the tissues Subjects practiced dynamic exercises maximally dorsiflexed (QSDF), and (6) before taping the external wire to the until the investigators were satisfied the hip positioned in neutral and the limb with a stress-relief loop. that movements were smoothly timed ankle maximally plantar flexed with a metronome at 1 beat per sec- (QSPF). Surface ground plates and the teleme- ond. Starting positions of the knee try system were attached to the sub- were monitored with a standard goni- Knee extension (KE). The knee ject, and the electrode wires were ometer. Subjects moved and their extension exercises were performed connected to attachment posts on the EMG activity was recorded during with the subjects in a sitting position ground plates. Myoelectric signals exercises, beginning on the beat of a with the knee flexed from 30 to 0 were differentially amplified, band- metronome. Movement began with a degrees and the ankle positioned in pass filtered (50-850 Hz), and trans- "go" command from the investigator neutral. The movement was timed mitted by FM-FM telemetry to a re- immediately following a "ready" com- with a metronome for 3 seconds, ceiver interfaced to a B&L computer mand at the previous metronome followed by a 2-second hold at full (model 286): Placement of electrodes beat. Electromyographic recording extension. The three exercises were in the vastus muscles rather than rec- during isometric exercises began after performed with (1) the hip positioned tus femoris muscle was confirmed by the raw EMG level stabilized in a full in neutral (ICE), (2) the hip maximally noting activity during isometric knee interference pattern. In consideration laterally rotated (KELR), and (3) the extension and silence during com- of the tolerance of the subjects with hip maximally medially rotated bined isometric hip and knee flexion. PFP syndrome, fewer exercises were (KEMR). Placement in the AM rather than the performed by the subjects with PFP VM was confirmed by noting activity syndrome than by the subjects without Isometric holds in flexion (IS). Iso- during isometric hip adduction and PFP syndrome. Abbreviations and metric hold exercises were isometric silence during isometric knee exten- definitions of the exercises used in this knee extension exercises performed sion. The EMG activity was then re- study are presented in Table 2. with the subjects in a sitting position with their hip and ankle positioned in neutral. The five exercises were done with (1) the knee flexed 15 degrees 'B&L Engineering, 12309 E Florence Ave, Santa Fe Springs, C 90670 A and the tibia in neutral rotation (IS15), Physical Therapy / Volume 75, Number 8 / August 1995
  • 4. Table 2. Exercise Abbreviations and Dejinitions Abbreviation Definition Exercises for subjects without patellofemoral joint pain syndrome Open chain Quadriceps femoris muscle set (QS) lsornetric at full knee extension QS Hip and ankle neutral QSML Hip maximally medially rotated, ankle neutral QSLR Hip maximally laterally rotated, ankle neutral QSA Hip adducting against a bolster, ankle neutral QSDF Hip neutral, ankle maximalty dorsiflexed QSPF Hip neutral, ankle maximally plantar flexed Knee extension (KE) 30" to 0" extension, ankle neutral KE Hip neutral KEMR Hip maximally medially rotated KELH Hip maximally laterally rotated Isometric hold (IS) Hip and ankle neutral IS15 Knee at 15" flexion, tibia in neutral rotation IS45 Knee at 45" flexion, tibia in neutral rotation IS60 Knee at 60" flexion, tibia in neutral rotation IS45MR Knee at 45" flexion, tibia maximally medially rotated IS45LR Knee at 45" flexion, tibia maximally laterally rotated Closed chain Walk stance-stepdown (WS-SD) Unilateral knee flexion to 45", hip in neutral rotation and subtalar joint unconstrained WSS WS with subtalar joint in maximal supination WSP WS with subtalar joint in maximal pronation WSPT WS after patellar medial-glide taping WSTT WS after medial-glidetaping of the tensor fascia lata muscle Step down from a 22.9-cm (9-in)stool leading with contralateral SD limb, hip in neutral rotation and subtalar joint unconstrained Wall slide (WSI) WSI Bilateral knee flexion to 45", hip in neutral rotation WSIA WSI while hip adducting against bolster Exercises for subjects with patellofemoral joint pain syndrome Open chain QS, 1515, IS601, KE As described above Closed chain WS, WSI, WSIA, SD As described above Isometric knee extension and hip adduction against a bolster sitting with sole of foot on floor (2) the knee flexed 60 degrees and the Exercises for Subjects Without seconds, followed by a 2-second hold tibia in neutral rotation (IS60), (3) the PFP Syndmme: Closed Chain at the end position. knee flexed 45 degrees and the tibia in neutral rotation (IS45), (4) the knee Two groups of closed-chain exercises Walk stance-step down (WS-SO). flexed 45 degrees and the tibia maxi- were used for interexercise compari- Walk-stance exercises were unilateral rnally laterally rotated (IS45LR), and son: (1) walk-stance and step-down exercises performed to 45 degrees of (5) the knee flexed 45 degrees and the exercises and (2) wall-slide exercises. knee flexion with the hip in neutral tibia maximally medially rotated Movements were performed for 3 rotation and the subject's weight sup- (IS45MR) Physical Therapy /Volume 75, Number 8 /August 1995
  • 5. ported on the forward, tested limb. exercises with and without patellar correlation coefficients (ICC[3,1D for The opposite toe was permitted to taping. two repeated measures of QS, QSA, remain on the floor for balance only. IS60, IS15, WS, WSl, WSlA, SD, and Balance was also provided by touch- Open-chain exercises were QS, IS15, knee extension from 30 to 0 degrees ing the hands of an investigator. The IS60, and KE. Closed-chain exercises of flexion using the same EMG pro- five exercises were performed with (1) were done both before and after the cessing as in this study. Two insertion the subtalar joint unconstrained (WS); patella was taped medially with a sites in locations bordering within 1.27 (2) the subtalar joint maximally supi- medial frontal-plane tilt and rotation to cm (0.5 in) of those used in thls study nated (WSS); (3) subtalar joint maxi- position the inferior pole of the patella were sampled for each muscle. Eighty mally pronated (WSP); (4) the subtalar inferiorly. The closed-chain exercises percent of all ICCs were above .30. joint unconstrained after the patella were WS, WSl, WSlA, SD, and isomet- Reliability averaged .81 for the VMO, was taped medially with a media ric knee extension and hip adduction ranging from .37 to .98, and averaged frontal-plane tilt and rotation to posi- in a sitting position with hips and .91 for the VL, ranging from .77 to .98. tion the inferior pole of the patella knees flexed to 90 degrees (ISQA). The VMO/VL ratio averaged .93, rang- inferiorly (WSPT); and (5) the subtalar This exercise was considered closed ing from .88 to .%, with the exception joint unconstrained after tensor fascia chain because subjects were instructed of .55 for walk stance using the lower lata muscle medial-glide taping to contract the vastus muscles by insertion sites. The walk-stance ratio (WSrr3. pushing the foot against the floor and for the upper insertion sites was .97. to squeeze the bolster maximally. The final exercise was a step down The average EMG value was calcu- from a 22.9-cm stool, with the subject At the end of testing, wire electrodes lated for each muscle of each subject leading with the contralateral limb were slipped out of the muscle, and for each exercise, and a VMO/VL ratio while the tested limb was in neutral the skin was cleaned with alcohol. was calculated from these values. hip rotation. The hold was with the Total testing time was 1 2 to 2 hours Y Mean values for VMO, VL, and AM contralateral foot just off of the floor per subject. myoelectric activity and the VMO/VL (SD). ratio were calculated for each exercise. Data Anahsis Exercises in each of the five groups of Wall slide (WSO. The wall-slide exer- exercises for subjects without PFP cises were bilateral exercises that the The EMG activity was digitized at syndrome (QS, KE, IS, WS-SD, WSl) subjects performed from an upright 2,000 samples per second through an were compared across exercises for standing position to 45 degrees of AID convertert run by the B&L soft- muscle activity and VMO/VL ratio by a knee flexion while the trunk main- ware (version 4.19).*The software two-way repeated-measures multivari- tained contact with the wall. This was then rectified the signals and set noise ate analysis of variance (MANOVA), done to prevent decreasing the quad- thresholds from the first 2 seconds of with gender as the grouping factor. riceps femoris muscle demand by activity of the resting EMG record. The Exercises for openchain activities for shlftig the center of gravity of the threshold was the lowest level of patients with PFP syndrome were trunk anteriorly. The subjects' feet activity recorded below which 95% of compared across exercises for muscle were parallel, shoulder width apart, the resting EMG signal was found. activity and VMOm ratio by a one- and just far enough from the wall to Only EMG activity greater than thresh- way repeated-measures MANOVA. allow knee flexion to 45 degrees. The old was then quantified by integration. Exercises for closed-chain activities for hips were in neutral rotation. The two Signals were integrated each 1/50 sec- subjects with PFP were compared wall-slide exercises were performed as ond for each 5-second exercise. The across exercises for muscle activity (1) a straight wall slide (WSl) and (2) a EMG values for each exercise were and VMONL ratio by a two-way wall slide while squeezing a pillow normalized by the software by division repeated-measures MANOVA, with bolster between the knees (WSlA). by the EMG value from the maximal taping as the grouping factor. When exercise tests. All EMG values reported MANOVA results were sigdicant, a Exercises for Subjects With PFP are therefore expressed as a percent- subsequent univariate analysis of vari- Syndmme age of maximal activity. ance (ANOVA) was done for each muscle tested. A level of significance Procedures were identical to those for Within-day reliability of the integrated, of .05 was accepted, and a Bonferroni subjects without PFP syndrome, unless normalized EMG values for the VMO, adjustment was used for post hoc otherwise noted. Groups of exercises the VL, and the VMOnZ ratio was t tests. The BMDP statistical for interexercise comparison were previously established in 12 subjects was used for all analyses. open-chain exercises and closed-chain without PFP syndrome by intraclass AU reported significant results refer to tModel DT2801-A, Data Translation, 100 Locke Dr, Marlborough, MA 01752-1192. post hoc sigmlicance. For these results, QMDP Statistical Software Inc, Los Angeles, CA 90086 30 / 676 Physical Therapy / Volume 75, Number 8 / August 1995
  • 6. Table 3. Integrated Electromyograpbic Activity (Percentage ofMaximum) During Quadriceps Femoris Musclea Set of Exercises for Subjects Without Patellofemoral Pain Syndrome (N=20) VMO VL AM VMONL X SD Minimum Maximum X SD Minimum Maximum x SD Minimum Maximum X SD Minimum Maximum Neutral 53 26 13 97 50 23 6 80 12 22b 0 68 1.2 0.5 0.6 3.0 Hip medial rotation 53 28 10 111 46 22 7 79 16 25 0 78 1.2 0.5 0.4 2.9 Hip latetal rotation 48 27 9 91 48 24 3 87 7 10 0 31 1.1 0.6 0.2 3.5 Hip adduction 56 23 2 94 52 19 20 86 32 206 1 75 1.1 0.4 0.0 2.1 Ankle dorsiflexion 58 24 7 92 52 21 10 92 14 25 0 78 1.2 0.4 0.2 2.0 Ankle plantar flexion 52 24 7 84 50 27 5 105 5 11 0 45 1.2 0.5 0.6 2.8 "Muscle ahbreviations: vastus medialis oblique (VMO), vastus lateralis (VL),adductor magnus (AM) b~ignificant post hoc difference for two-way analysis of variance (F= 11.7; df= 1,8; P=.0031). the MANOVA and ANOVA results position for the VMO, VL, or V M O M (34%+ 18% and 35%+ 15%, respec- were also significant. ratio (Tab. 3). The EMG activity tively) than in either rotated position ranged from 48% to 58% of maximum of the hlp. The VMO activity was Subjects Without PFP Syndrome for the VMO and from 46% to 52% of 28%+6% for KEMR and 22%+12% for maximum for the VL. The VMO/VL KELR, whereas VL activity was Due to rc:cording difficulties, one male ratio ranged from 1.1 to 1.2. Although 28%2 13% for KEMR and 26%+ 12% subject's data were lost for the quad AM activity was higher for QSA for KELR (Tab. 4). No difference, how- set and closed-chain exercises. (32%2200/0) than for QS (12%222%), ever, was seen in the VMO/VL ratio the increased AM activity did not affect between KE and either KEMR or Open-chain exemises. Means and the VMO, VL, or VMO/VL ratio activity KELR. Comparison between KEMR standard deviations of data and com- (Tab. 3). and KELR showed higher VMO activ- parisons that yielded statistically signif- ity and VMO/VL activity ratio in KEMR icant results are reported in Tables 3 Knee extension exercises were com- than in KELR (Tab. 4). The VMO/VL - through 5. No differences in myoelec- pared post hoc between KE and both ratio was 1.220.5 for KEMR and tric activity due to gender were seen. KEMR and KELR and between KEMR 1.020.4 for KELR. Comparison of the quad set exercise and KELR. Comparisons of KE with with all its variants showed no differ- KEMR and KELR showed higher VMO Isometric hold exercises were com- ences due to ankle or hip rotation and VL activity in the KE exercise pared post hoc between IS60 and both Table 4. Integrated Electromyograpbic Activity (Percentage of Maximum) During Knee Extension Exercises From 30 to 0 Degrees for Subjects Without Patellofemoral Pain Syndrome (N= 21)" VMO VL AM VMONL 2 SD Minimum Maximum X SD Minimum Maximum X SD Minimum Maximum X SD Minimum Maximum - - HIP neutral 34 18b.c 3 81 35 15d,e 14 64 4 8 0 36 1.1 0.4 0.6 2.0 HIP medial rotation 28 16b 8 84 28 13d 7 54 3 8 0 37 1.2 0.5' 0.5 2.4 Hip lateral rotat~on 22 12' 4 64 26 12e 10 51 8 26 0 116 1.O 0.4' 0.3 2.2 -- -- "Muscle abbreviations: vastus medialis oblique (VMO), vastus lateralis (VL),adductor magnus (AM). b~ignificanr post hoc difference for two-way analysis of variance (ANOVA) (F= 10.2; df= 1,19; P=.0049.) 'Significanl. post hoc difference for two-way ANOVA (F=21.1; df= 1,19; F . 0 0 0 2 ) . d~ignilicant post hoc difference for two-way ANOVA ( F 1 7 . 3 ; df= 1,19; F ,0005). eSignilicanf post hoc difference for two-way ANOVA (F=13.4; d p 1 , 1 9 ; P=.0017). 'Significant past hoc daerence for two-way ANOVA (F=10.0; df=1,19; F . 0 0 4 9 ) . Physical Therapy / Volume 75, Number 8 /August 1995
  • 7. - Table 6. Integrated Electromyographic Activfty (Percentage of Mam'mum) During Zsometrlc Exercise for Subjects Without Patellofemoral Pain Syndrome (N=21,P VMO 2 SD Minimum Maximum VL X SD Minimum Maximum AM X SD Minimum Maximum VMONL x SD Minimum Maximum Knee flexion posture 60" 5 3b 1 14 5 3C 1 12 1 2 0 6 1.3 1.2 0.1 5.0 45" 5 4 0 17 7 6 0 18 1 3 0 12 1.3 1.3 0.2 4.4 Tibial medial rotation 6 4 0 15 8 5 2 17 1 2 0 10 1.2 1.4 0.2 4.8 Tibial lateral rotation 5 4 0 17 8 6 1 20 1 2 0 10 1.0 1.0 0.1 3.6 15" 18 1 2 ~0 61 22 10C 8 42 3 4 0 15 1.0 0.5 0.3 2.5 "Muscle abbreviations:vastus medialis oblique (VMO), vastus lateralis (VL), adductor magnus (AM). *significantpost hoc difference for two-way analysis of variance (ANOVA) (F=34.9; df--1,19; P=.0000). 'Significant post hoc di5erence for two-way ANOVA (F=84.7; dp1,19; P=.0000) IS15 and IS45 and between IS45 and Separate analysis by gender for the cally sigmlicant results for open- and both IS45MR and IS45LR. Less myo- VMO and V comparing WS with L closed-chain exercises are given in electric activity of the VMO and V L WSS, WSP, WSFT, WS'IT, and SD Tables 8 and 9, respectively. The was seen in IS60 (5%+3% for both) tended to show greater activity for VMOM. ratio did not d&er in com- than in IS15 (18%+12% and both the VMO and V during the SD L parisons of QS with IS60, IS15, and KE 22%+ I@?,respectively) without a exercise than during the WS exercise and of IS60 with IS15 (Tab. 8). Higher change in the VMO/VL ratio (Tab. 5). (Tab. 6). Both muscle values for VMO and V activity, however, oc- L Tibial rotation did not affect the VMO women but only VL values for men curred during the QS activity than in or V activity or the VMO/VL ratio for L were different between SD and WS. any other open-chain activity. The QS the 45-degree position. When data from men and women activity was 101%+30% for the VMO were combined, the difference in and 90?!+36% for the VL. The highest Closed-chain exemises. Data were VMO activity between SD and W wasS activity in other open-chain exercises lost while recording the activity during sigmlicant (P=.0000). No influence of was 49/02 17% for the VMO and the WSFT in 1 male subject. Analysis gender or exercise was seen for either 48%+ 17% for the V during KE. In L was therefore performed on 19 sub- AM activity or VMO/VL ratio for the addition, IS15 demanded more vastus jects for all six exercises in the WS-SD WS-SD exercise comparisons, although muscle activity than did IS60 (Tab. 8). group and also for al 20 subjects for l a trend toward increased AM activity The VMO activity increased from the remaining five exercises. No differ- from W to SD was found. S 6%+ 5% for IS60 to 40%+ 25% for IS15, ences resulted between these analyses. whereas V activity increased from L No differences in EMG activity due to 7%+6% to 37%+21%, respectively. Means and standard deviations of data gender were seen in WSl exercises. and comparisons that yielded statisti- Likewise, no difference in VMO/VL Patellar taping did not affect closed- cally significant results are reported in ratio was seen between WSl and chain muscle activity, even though the Tables 6 and 7. Gender/exercise inter- WSh, but greater activity was seen in decrease in pain after patellar taping actions were seen for the VMO and the AM, VMO, and V during WSlA L for the SD exercise averaged 94%. VL for the WS-SD exercise group. than in WS1 (Tab. 7). The AM activity Analyses comparing W with WSl, SD, S Athough muscle activity was similar increased from 2%+ 3% to 30%+ 53% and ISQA and WSl with WSlA were between men and women for all WS when adduction was added to the WS1 not sigdicant for the VMOM ratio exercises, ranging from 11% to 15% exercise. The VMO increased from (Tab. 9). Both the VMO and VL were for women and from 11% to 16% for 9 ? + 6 %to 17%+7%, whereas the V L less active in the W (31%+ 23 for S men, women required approximately increased from 9?+5% to 17%+8% VMO and 38%+36% for VL.) than in twice the activity as men for SD (Tab. with the addition of adduction to WSl. the SD (65%?22% for VMO and 6). Average VMO activity was 77%+36% for VL) or ISQA (63%+31% 24%211% for men and 45%+60/0 for Subjects With PFP Syndrome for VMO and 69/0+36% for VL). The women, whereas VL activity averaged VMO increased its activity when ad- 19??7% for men and 41%+3% for Means and standard deviations of data duction was added to the wall slide women. and comparisons that yielded statisti- from 13%+7% to 30%+ 18%. The 32 / 678 Physical Therapy /Volume 75, Number 8 /August 1995
  • 8. Table 6. Integrated Electromyographic Activity (Percentage ofMaximum) During Walk-Stanceand Step-Down Exercbes for Subjects Without Patellofemoral Pain Syndrome (N= 2 0 7 VMO VL AM VMOM - X SD Minimum Maximum X SD Minimum Maximum X SD Minimum Maximum SD Minimum Maximum X Walk-stance neutral 11 24b 0 105 1.3 0.2 0.4 4.9 Women 12 8' 2 27 11 5d 2 20 Men 13 6e 5 22 13 9' 3 30 Walk-stance supinated 9 10 0 55 1.1 0.4 0.5 2.6 Women 15 9 6 29 14 6 7 23 Men 14 6 5 28 15 7 5 32 Walk-stance pronated 5 7 0 26 1.0 0.4 0.4 2.1 Women 14 9 3 37 15 8 4 32 Men 15 6 8 26 16 6 5 23 Walk-stance TFLg tape 7 13 0 56 1.1 0.5 0.5 2.3 Women 14 7 8 26 13 4 7 20 Men 13 6 3 23 13 8 4 28 Walk-stance patellar tape (n= 19) 9 15 0 59 1.3 0.9 0.5 4.1 Women(n=lO) 12 6 2 21 11 6 3 22 Men (n=9) 13 6 4 25 11 8 5 31 Step down 21 2d) 0 71 1.2 0.6 0.5 3.4 Women 45 6' 35 54 41 13d 23 69 Men 2411 7 40e 19 7' 10 32 aMuscle abbreviations: vastus medialis oblique (VMO), vastus lateralis (VL), adductor rnagnus (AM). rend for past hoc difference for two-way analysis of variance (ANOVA) not significant ( P 3 . 9 ; df-1,18; P=.0630). "Significantpost hoc difference for one-way ANOVA (F=154.4; df-1,9; P=.0000). d~ignificantpost hoc dierence for one-way ANOVA (F=61.6; df-1,9; P=.0000). 'Trend for post hoc difference for one-way ANOVA not significant (F=10.3;df-1,9; P=.0106), Note: P=.0000 when men and women combined (F=102.9; df-1,181. /Significant post hoc differencefor one-way ANOVA ( F11.8; d f - 1,9; F ,0074). Tensor fascia lata muscle. Table 7. Integrated Electtomyographic Activity (Percentage of Mm'mum) During Wall-Slide Exercbes With and Without H p i Adduction for Subjects Without Patellofemoral Pain Syndrome (N=207 VMO VL AM VMONL - X SD Minimum Maximum % SD Minimum Maximum X SD Minimum Maximum x SD Minimum Maximum Without adduction 9 6b 1 18 9 5' 1 18 2 3d 0 12 1.3 1.2 0.3 5.3 With adduction 17 7b 6 32 17 8' 5 31 30 53d 1 240 1.2 0.7 0.4 3.1 aMuscle abbreviations: vastus medialis oblique WMO),vastus lateralis (VL), adductor magnus (AM) b~ignificant difference for two-way analysis of variance (ANOVA) (F=28.3; df-1,18; P=.0000). 'Significant difference for two-way ANOVA (F=35.5; df-1,18; P=.0000). d~ignificant difference for two-way ANOVA (F=6.0; df-1,18; e . 0 2 5 3 ) Physical Therapy / Volume 75, Number 8 /August 1995
  • 9. increase in the VL activity from Discussion effectively compare the EMG signal - 16%? 10%for WSI to 36%?32% with between muscles, each of which may WSlA did not reach the rigor of post Technique be a different distance from the re- ha: significance. cording electrode, and between sub- The amount of EMG signal recorded is jects, each of whom may have dependent on the location and size of different-sized muscles and different the recording electrodes. In order to distances from active muscle to elec- Table 8. Integrated Electromyographic Activity (Percentage of Maximum1 During Open-Chain Exercises for Subjects With Patellofemoral Pain Syndrome (N= 10)" VMO VL VMONL - - X SD Minimum Maximum X SD Minimum Maximum X SD Minimum Maximum Quadriceps femoris muscle set 101 3Pd 54 149 90 36e-g 42 149 1.2 0.5 0.8 2.3 Isometric at 60' 6 5b*h 1 14 7 6e,i 2 22 1.0 1.0 0.0 3.3 Isometric at 15" 40 25C,h 12 81 37 21f,j 6 73 1.2 0.6 0.3 2.4 Extension 30"-0" 49 17d 31 79 48 17g 27 67 1.1 0.4 0.5 2.2 "Muscle abbreviations: vastus medialis oblique (VMO), vastus lateralis (VL). Note: extension was not compared with isometric exercises. post hoc difference for analysis of variance (ANOVA) (F= 103.4; df= 1 9 ; P= ,0000). b~ignificant 'Significant post hoc difference for ANOVA (F=60.1; df= 1,9; F . 0 0 0 0 ) . post hoc difference for ANOVA (F=41.4; df= 1,9; P= ,0001). d~ignificant - 'Significant post hoc difference for ANOVA (F= 52.2; df= 1,9; P= .0000). /significant post hoc difference for ANOVA (F=29.0; d p 1,9; P=.0004). RSignificantpost hoc difference for ANOVA (F=21.1; d p 1 , 9 ; P= ,0013). 'significant post hoc difference for ANOVA (F=25.6;df= 1,9; e . 0 0 0 7 ) . 'Significant post hoc ditference for ANOVA (F=24.4; df-1,9; F . 0 0 0 8 ) . Table 9. Integrated Electromyographic Activity (Percentage of Mmammum) During Closed-Chain Exercises for Subjects With Patellofernoral Pain Syndrome (N= 101" VMO VL VMONL - X SD Minimum Maximum X SD Minimum Maximum x SD Minimum Maximum Walk stance 31 23beC 6 89 38 36d,e 8 137 1.O 0.6 0.3 2.6 Wall slide 13 7' 2 28 16 109 5 45 0.9 0.5 0.3 2.0 Wall slide with adduction 30 18' 8 74 36 32g 11 131 1.0 0.5 0.3 2.0 Step down 65 22b 31 98 77 36d 40 171 0.9 0.3 0.5 1.4 Isometric sitting at 90' with adduction 63 31" 13 148 69 36e 27 173 1.0 0.4 0.4 1.9 "Muscle abbreviations:vastus medialis oblique (VMO), vastus lateralis 0 2 . . ) Data averaged for patellar taped and untaped exercises post hoc difference for two-way analysis of variance (ANOVA) (F=50.9; df= 1,9; P=.0001). b~ignificant 'Significant post hoc ditference for two-way ANOVA (F=18.5; df=1,9;P=.0020). post hoc diference for two-way ANOVA (F=218.3; d p 1 , 9 ; P=0000). d~ignificant 'Significant post hoc difference for two-way ANOVA (F=56.3; df=1,9;P=0000). &&cant post hoc d8erence for two-way ANOVA (F=11.1; df= 1,9; P= ,0088). 8Trend for past hoc difference for two-way ANOVA (F=6.3; df=1,9; e . 0 3 3 6 ) . Physical Therapy / Volume 75, Number 8 / August 1995
  • 10. trodes, a method of expressing the known, as both muscles may be in- cally compare their data and their EMG activity of a spechc muscle as a creasing their activity the same results could be in error due to vol- ratio of activity to some reference amounts. Normalized EMG data are ume conduction of adductor muscle value eliminates the influence of loca- ratio data. A true absence of activity activity to their widely spaced (22.54 tion and size of recording electrodes. can exist, and ratios are used in nor- c [rli surface electrodes over m a Use of the maximum isometric EMG malization of the data. the VM. Hanten and Sculthies' adduc- activity as the normalizing factor al- tion exercise, although not requiring lows expression of activity in an easily Knee flexor activity may have oc- quadriceps femoris muscle activity, still understandable ratio and has been curred in some of the openchain elicited high levels of activity in both shown to provide better reliability exercises and most likely occurred in the VMO and VL.18 Perhaps conscious (ICC) than using either dynamic maxi- the closed-chain exercises. The pur- activation of the vastus muscles with mal or submaximal EMG activity in the pose of this study was to compare adduction negates any benefit of ad- gastrocnemius muscle.26 results across similar exercises, regard- duction exercise to preferentially aai- less of whether other activity was vate the VMO. Wheatley and Jahnkel9 The software used for data collection present. Rather than examine vastus also reported greater V activity dur- M prevented collection of data for less muscle activity when no other activity ing QS with leg lateral rotation. In than 5 seconds per trial. Because was present, this study was designed addition, the findings of my study are movement during dynamic exercise to study exercises widely used in not consistent with the theories that would be much slower than custom- physical therapy. the VMO is selectively activated in a ary in clinical practice if movement flexed position of the knee, during was prolonged for 5 seconds, only 3 VMOIVL Ratio tibial medial or lateral rotation, or seconds of movement was used, with during subtalar joint pronation.6.9.18-23 a 2-second hold at the end position. This study did not support the claims As a result, two fifths of each dynamic that certain commonly used exercises Results of taping the patella and the exercise was actually isometric. Be- or patellar or tensor fascia lata muscle tensor fascia lata muscle in my study cause no differences were found in medial-ghde taping enhance VMO are in contrast to McConnell's finding VMO/VL ratios at different isometric activity over VL activity. The only of an increased VMO/VL activity ratio positions, this practice of collecting 2 exercise to show a higher VMO/VL in symptomatic subjects with such seconds of isometric data in each ratio in comparison with similar exer- taping, even though subjects with PFP dynamic exercise probably had no cises was KEMR in comparison with in my study reported greatly reduced effect on the overall ratio. Further- KELR. This finding is in contrast to the pain during the SD exercise after more, exercises with movement were commonly held hypothesis that hip medial-glide taping.16 McConnell did compared only with other exercises lateral rotation, by creating a knee not report her EMG recording proce- with movement, except that K was E abduction torque, enhances the activ- dures. Whether her VMO data may compared with ISs and ISQA was ity of the VM'9 but is consistent with have been contaminated by volume compared with exercises with move- the reported lack of preferential activa- conduction of activity of nearby mus- ment in subjects with PFP syndrome. tion of the VMO during knee exten- cles to the VMO electrode, therefore, sion with a knee abduction torque.27~2~ cannot be judged. I had no method of quantifying my Whether the small magnitude of in- ability to control the speed of move- crease in VMO/VL ratio (0.2) found Some caution must be taken in inter- ment. Undoubtedly, some error ex- with medial over lateral rotation of the preting the findings of no effects of isted in subjects' ability to move at a femur is clinically significant is not specific exercise or taping on the constant speed with the metronome. known. Its significance most likely VMO/VL activity ratio because of the Likewise, I had no better method of depends on the magnitude of the low number of subjects in this study. controlling isometric knee flexion lateral tracking of the patella. Ratio differences of 0.7 for ISs, 0.3 for positions than use of a standard goni- QSs, and 0.6 for KEs, WS-SD, and ometer. The error introduced by these Likewise, preferential activation of the WSls in subjects without PFP syn- shortcomings is unknown. These VMO over the VL is not consistent drome and of 0.7 for openchain exer- techniques, however, approximate with this and other EMG studies of hip cises, 0.5 for closed-chain exercises, clinical practice more than would a adduction27or tibial rotationl8.29 with and 0.4 for taping in subjects with PFP more elaborate method used to con- knee extension. Two investigations of syndrome were necessary to satisfy a trol speed or position. openchain adduction exercises that statistical power of .80.3O True differ- did not require a simultaneous quadri- ences less than these ratios, therefore, The VMONL ratio was used in this ceps femoris muscle contraction, how- could have been present without study because it reflects the relative ever, did show preferential activation rejection of the null hypothesis. The contributions of the VMO and VL. I of the V or VM0.18J9 Wheatley and M magnitude of change in the VMO/VL believe an increase of VMO activity Jahnke19 reported that V action po- M ratio necessary for therapeutic effect is with a specific exercise is meaningless tentials occurred during hip adduction, unknown. Certainly, the greater the if the relative activity of the VL is un- but they did not quantlfy or statisti- Physical 'Therapy / Volume 75, Number 8 / August 1995
  • 11. increase in magnitude, the greater will flexed or moving for at least 3 seconds Conclusions be the medial pull on the patella. of all other open-chain activities. As a result, subjects had the opportunity to Whether in the subjects with PFP or in Lack of preferential activation of the produce high levels of EMG activity in those without PFP, only one exercise VMO over the V due to exercise L the QS exercises while maintaining resulted in a higher VMONL activity purported to produce such activation their test position. I suggest that they ratio over similar exercises. The KEMR or due to patellar taping leads to the produced this high level of activity showed a higher VMONL ratio than question of whether the VMO can be because they were well motivated. the KELR. Exercises more commonly trained to selectively increase its activ- Attempts at increasing EMG activity prescribed to enhance VMO activity ity. Studies of EMG biofeedback train- during the other openchain exercises over that of the VL, however, failed to ing for the VMO are needed to answer would have either increased the speed selectively activate the VMO. Further- this question. of movement (controlled with a met- more, the results of this study indicate ronome) or moved the leg from the that medial-glide taping of the patella Because no dfierence in the VMONL isometric test position. Either of these or tensor fascia lata muscle does not ratio was found with patellar taping activities would have resulted in dis- alter the VMONL ratio. although pain was decreased an aver- carding the data and repeating the age of 94%, I question that taping exercise until the desired velocity or Acknowledgments decreases pain due to appropriate posture was attained. As a result, the realignment of the patella. The ability EMG activity was lower for these I thank the following California State to reliably determine patellar align- exercises. Because 0thers27,3~ have University, Long Beach, physical ther- ment is p0or.3~ Therefore, the ability found higher vastus muscle activity in apy students for their assistance in this to appropriately realign the patella is QS than in straight leg raising, the QS project: Janet Froggatt, Anthony questionable. Furthermore, I found no has consistently been shown to be an Granger, Cynthia Grauf, Kathy Harbert evidence in the literature that patellar excellent exercise for recruiting vastus Greenwood, Michael Greenwood, taping can maintain the position of the muscle activity. Gregory R Jue, Mark Klem, Sonja patella during exercise. The effect on Maul, Nancy Rhoan, Susan Royce, PFP of placebo taping of the patella or The increased activity in both the Stacy Sarnano, Ernie Sanchez, Milan of taping the patella with randomly VMO and VL during IS15 over IS60 Steijn, David Swink, Carol Whitmire, chosen direction has not been studied. in both the subjects with and with- and Laura Olsen. I thank Michael The positive effect of taping may be out PFP syndrome is expected due Monahan for his question in class that due to additional sensory input or the to the increased quadriceps femoris inspired this research, and I thank placebo effect. The effect of patellar muscle demand at 15 degrees with- Charles Felder, PT, OCS, instructor for taping, therefore, should be studied in out preferential demand for VMO McCOM~~~ seminars, who consulted a large group of subjects with PFP. a ~ t i v i t y . ~ ~ ~ " ~ ~ This3 increased ~.3 -35 with me on this project and who Two groups of subjects without mechanical demand at 15 degrees taught me the McComell taping knowledge of taping theory randomly is due to the combined effects of technique. assigned to receive medial or lateral increased gravitational lever arm patellar taping can be studied using a and decreased muscle length and blind research design. lever arm of the quadriceps femoris References muscle. 1 Levine J. Chondromalacia patellae. Tbe Phy- Both subjects with and without PFP sician and Sportsmedicine. 1979;7(8):41-49. appeared to have similar VMO/VL Because the WSlA tended to recruit 2 Outerbridge RE. Further studies on the aeti- ratios in open-chain exercise, whereas w, , greater ~ 0 and AM than ology of ch~ndromalacia Surg [Brl. 1964;46:179-190. patellae. J Bone Joint subjects with PFP appeared to have the wS1and because the SD and ISQA 3 Puniello MS. Iliotibial band tightness and lower ratios in closed-chain exercise recruited greater VMO, VL, and AM medial patellar glide in patients with patel- than subjects without PEP. Whether activity than the WS, the sumested lofernoral dysfunction. J Ortbop sports ~ h y s this apparent difference is statistically benefit of these closedcharexercises Tber. 1993;17:144-148. 4 Fulkerson JP, Hungerford DS. Disorders of sigdicant or whether it is important is in persons with may be due to a the Patellofemoral loitzt. 2nd ed. Baltimore. unknown. Statistical comparison in high level of coactivation of the knee ~ dw : ~ ~ i i m swiikins; 1990 i & further studies would be beneficial. extensors and hlp extensors (AM) to 5 Malek MM, Mangine RE. Patellofemoral pain better conkdl the femur. A comparison syndrome: a comprehensive and conservative approach. J Orthop Sports Phys Tber. 1981;2: VMO, VL, and AM Activity of lower-limb extensor muscle activity 108-116, ~- - - - between closed-chain exercises that 6 McConnell J. The management of chondro- Subjects in this study averaged higher mandate multisegment control of the malacia patellae: a long-term solution. Austra- VMO and V activity during the QS L lower limb and open-chain exercises lian Journal of Physiotherapy. 1986;32:215- q-9 LL3. exercises than in other open-chain in subjects with Pm 'yndrome 7 Schutzer SF. Ramsby GR, Fulkerson JP. exercises. They were at end range of be beneficial. Computed tomographic classification of patel- knee extension for 5 seconds during lofemoral pain patients. OrthoD Clin North Am. 1986;17:235-248. the QS exercises but were either more Physical Therapy / Volume 75, Number 8 / August 1995
  • 12. 8 Kettlekamp DB. Management of patellar compression syndrome. Am J Phys Med. 1992; data. Journal of Electromyography and Kinai- malalignment. J Bone Joint Surg [Am). 1981;63: 20:434-440. 010gy. 1994;4:47-59. 1344-1348. 18 Hanten WP, Schulthies SS. Exercise effect 27 Karst GM, Jewett PD. Electromyographic 9 Mariani PP, Camso I. An electromyographic on electromyographic activity of the vastus analysis of exercises proposed for differential investigation of subluxation of the patella. medialis oblique and vastus lateralis muscles. activation of medial and lateral quadriceps J Bone Joint Surg [Brl. 1979;61:169-171. ~ h y Zher. 19%;70:561-565. s femoris muscle components. Phys 7hw. 1 9 3 ; 10 Antich TJ, Brewster CE. Modification of 19 Wheatley MD, Jahnke WD. Electromyo- 75286-299. quadriceps femoris muscle exercises during graphic study of the superficial thigh and hip 28 Andriacchi TP,Andersson GBJ, Onengren knee rehabilitation. Phys Zhw. 1986;66:1246- muscles in L~ormal individuals. Arch Phys Med R, Mikosz RP. A study of factors influencing 1251. Rehabil. 1951;32:508-515. muscle activity about the knee joint. J m o p 11 Lieb FJ, Perry J. Quadriceps function: an 20 Boucher JP, King MA, Lefebre R, Pepin A. Res. 1984;1:266-275. anatomical and mechanical study using ampu- Quadriceps femoris muscle activity in patel- 29 Duane-Cintra AI, Furlani J. Electromyo- tated limbs. J Bone Joint Surg IAml. 1968;50: lofemoral pain syndrome. Am J Phys Med. graphic study of the quadriceps femoris in 1535-1548. 1992;20:527-532. man. Electromyogr Clin Neurophysiol. 1981;21: 12 Weinstabl R, Schaf W, Firas W. The exten- 21 Sczepanski TL, Gross MT, Cuncan PW, 539-554. sor apparatus of the knee joint and its periph- Chandler JM. Effect of contraction type, angu- 30 Glantz SA. Primer of Bio-Statistics. 3rd ed. eral vasti: anatomic investigation and clinical lar velocitv and arc of motion on the VM0:VL New York, N Y McGraw Hill; 1992:155-187, relevance. Surg Radio1 Anat. 1989;ll:17-22. ratio. J O h o p Sports Phys 7hw. 1991;14:256- 311, 401-405. 13 Bose K, Kanagasuntheram R, Osman MBH. 262. 31 Fitzgerald GK, McClure PW. Reliability of Vastus medialis oblique: an anatomic and 22 vanKampen A, Huiskes R. The three- measurements obtained with four tests of physiologic study. Orthopedics. 1980;3:880- dimensional tracking pattern of the human patellofemoral alignment. Phys Zher. 195;75: 883. patella, J Otthop Res. 190;8:372-382. 84-90. 14 Hehne IIJ. Biomechanics of the patel- 23 McCulloch MU, Brunt D, Vander Linden D. 32 Soderberg GL, Cook TM. An electromyo- lofemoral joint and its clinical relevance. Clin The effect of foot orthotics and gait velocity graphic analysis of quadriceps femoris muscle Orthop. 1990;258:7>85. on lower limb kinematics and temporal events setting and straight leg raising. Phys Zher. 15 Slocum DB, Larson RL. Rotary instability of of stance. J Orthop Sports Phys Zhw. 1993;17: 1983;63:1434-1438. the knee. J Bone Joint Surg [Am). 1968;50:211- 2-10. 33 Basmajian JV. Muscles Alive. 5th ed. Balti- 225. 24 Lehmkuhl LD, Smith LK. Brunnstrijm's more, Md: Williams & Wilkins; 1985:324-332. 16 McConnell J. Training the vastus medialis Clinical Kinesiology. 4th ed. Philadelphia, Pa: 34 Eloranta V. Patterning of muscle activity in oblique in the management of patellofemoral FA Davis Co; 19837-8. static knee extension. Electromyogr Clin Nac- pain. In: Proceedings of the 10th International 25 Soderberg GL. Kinesiology: Application to rophysiol. 1989;29:369-375. Congress of' the World Confederation for Phys- Pathological Motion. Baltimore, Md: Williams 35 Moller BN, Krebs B, Tidemand-Dal C, ical Zherapy; Sydney, Neu South Wales, & Wilkins; 1986:60-61. Aaris K. Isometric contractions in the patel- Australia; 1987. 26 Knutson LM, Soderberg GL, Ballantyne BT, lofemoral pain syndrome: an electromyo- 17 Doucene SA, Goble EM. The effect of ex- Clarke WR. Study of various normalization graphic study. Arch Orthop Trauma Surg. ercise on patellar tracking in lateral patellar procedures for within-day electromyographic 1986;105:24-27. L t PROFILE help you manage your professional development! e Call 1.800/999.APTA* to enroll today! '1-800/999-2782, ext 3395, 8:30 am-5:30 pm Eastern time UJ85