SlideShare uma empresa Scribd logo
1 de 32
1
Shallow foundations are those that transmit
structural loads to the near surface soils.
According to the Terzaghi, a foundation is
shallow foundation if its depth is equal to or less
than its width i.e d ≤ w.
For most of the residential buildings or
buildings with moderate height or multistoreyed
building on soil with sufficient strength, shallow
foundation is used from economical
consideration.
2
Near surface soil should be strong enough
Foundation structures should be able to
sustain the applied loads without exceeding
the safe bearing capacity of the soil.
 The settlement of the structure should be
should be within the tolerable limits.
3
When the upper soil layer is highly
compressible and too weak
In the case of Expansive soils
In case of Bridge abutments and piers
because of soil erosion at the ground
surface
Soils such as loess are collapsible in
nature
4
 Spread footing: A spread footing is one which
supports either one wall or one column.
Spread footing may be of the following types –
 Strip footing
 Pad footing
Fig: Pad Footing
5
Combined footing: When a spread footing
supports the load of more than one column or
wall.
Fig: Combined Footings
6
Strap footing: : A strap footing comprises of
two or more footings of individual columns,
connected by a beam, called a strap.
Raft foundation: A raft foundation is a
combined footing that covers the entire area
beneath a structure and supports all the walls and
columns.
Fig: Strap Footings
7
Fig- Raft foundations
 Requirements for the raft foundations:
 The allowable soil pressure is low, or the building loads are heavy
 Use of spread footings would cover more than one-half of the area
 Soil is sufficiently erratic so that the differential settlement difficult to control
8
Bearing capacity of soil
Ground water table
Depth of frost action
Depth of volume change due to presence of
expansive soils
Local erosion of soil due to flowing water
Underground defects such as root holes,
cavities, mine shafts, etc.
excavation, ditch, pond, water course, filled
up ground
9
The distribution of soil pressure under a footing is a function of the
type of soil, the relative rigidity of the soil and the footing, and the
depth of foundation at level of contact between footing and soil.
10
A RISING WATER TABLE HAVE FOLLOWING ADVERSE EFFECTS :
1) Appreciable reduction in the bearing capacity
2) Development of uplift pressure
3) Possible ground heave due to the reduction of the
effective stresses caused by the increasing pore water
pressures.
4) Expansion of the heavily compacted fills under the
foundation
5) Appreciable settlements of the poorly compacted fills
11
 Soil stiffness is generally measured in the terms of Modulus of sub-
grade reaction (K-value).
Where, p = load intensity corresponding to settlement of plate (30cm x 30cm)
of 0.125 cm.
 TABLE: K-VALUE CHANGES WITH SOIL CHARACTERISTICS
12
 Foundation Size Effect on Modulus of Sub grade Reaction in
Clayey Soil :
 Foundation Size Effect on Modulus of Subgrade Reaction In
Sandy Soils:
13
Factors influencing Bearing Capacity:
I. Type of soil III. Unit weight of soil
II. Surcharge load IV. Depth of foundation
V. Mode of failure VI. Size of footing
VII. Shape of footing VIII. Depth of water table
IX. Eccentricity in footing load
X. Inclination of footing load
XI. Inclination of ground
XII.Inclination of base of foundation
14
 General shear failure: Seen in dense and stiff soil.
Fig: Fig: General shear failure
 Local shear failure: Seen in relatively loose and soft soil.
Fig: Fig: Local shear failure
15
 Punching shear failure: Seen in loose , soft soil and at deeper elevations.
Fig- punching shear failure
TERZAGHI’S BEARING CAPACITY THEORY:
According to Terzaghi the equation for ultimate bearing capacity for a strip footing
is obtained as follows, ultimate bearing capacity
qf = cNC + γDNq +0.5 γBNγ
16
Circular footing :
qf = 1.3 cNc + γDNq +0.3 γBNγ
Square footing:
qf = 1.3 cNc + γDNq +0.4 γBNγ
Rectangular footing:
qf = (1+0.3 B/L)cNc + γDNq + (1-0.2 B/L)0.5γBNγ
Ultimate bearing capacity with the effect of water table is given by,
qf= cNC + γDNq RW1+0.5 γBNγ RW2
17
qf = cNC + γDNq RW1+0.5 γBNγ RW2
Effect of Water Table fluctuation :
CASE 1:
Where, ZW1 is the depth of water table from ground level.
CASE 2:
Where, ZW2 is the depth of water table from foundation level.
18
 General shear failure:
qf = c Nc sc dc ic + q (Nq-1) sq dq iq + 0.5γ B Nγ sγ dγ iγ W
 Local shear failure:
qf = ⅔ c N'c sc dc ic + q (Nq-1) sq dq iq + 0.5γ B N'γ sγ dγ iγ W
 Shape factors for different shapes of footings:
19
Depth factors:
Inclination factor :
Values of W:
1. Water table remain at or below a depth of (Df + B), then W= 1.
2. Water table located at depth Df or likely to rise above the base
then, W= 0.5
3. If Df < Dw < (Df + B), then Wbe obtained by linear interpolation
20
The total settlement of a footing in clay may be considered to three
components (Skempton and Bjerrum, 1957)
 Immediate Settlement:
Values for influence factors, If :
21
Primary Consolidation: The primary consolidation
settlement Sc is given by the following formula:
Sc =
Values of for different types of soil :
22
Secondary consolidation: Secondary consolidation
settlement is more important in the case of organic and highly-
compressible inorganic clays which is given by,
Ss =
Cα = Secondary Compression Index =
Fig: void ratio vs. time (log scale)
23
1) Effect of Depth of Foundation:
Corrected settlement = Scorrected = Sc x Depth factor
Fig: Fox’s correction curves for settlements of flexible
Rectangular footings of BxL at depth D
24
2) Effect of the rigidity of foundation:
 Rigidity factor =
= 0.8
 TABLE: Permissible uniform and differential settlement and tilt for footings
25
 LOADING SYSTEMS: There are two loading set-up :
Fig: set up for gravity loading platform Fig: set up for reaction loading platform
 DETERMINATION OF SETTLEMENT:
According to Terzaghi and Peck (1948):
26
 According to Bond (1961):
 Table: Values of index n for different soils:
 DETERMINATION OF BEARING CAPACITY:
 Bearing capacity can be obtained from the load settlement curve
that can be plotted from settlement data.
27
Fig : Load- settlement curves
o obtained from test
From the corrected load settlement curves (given below)the
ultimate bearing capacity in case of dense cohesionless soils or
cohesive soils can be obtained without difficulty (curves D and
B ) as the failure is well defined.
28
 Fig : Corrected Load–Settlement curve (in log-log scale)
The bearing capacity of sands and gravels increases with the size of
footings.
29
 The following conclusions can be drawn , they are -
 Shallow foundations are used when the soil has sufficient strength
within a short depth below the ground level.
 Terzaghi’s equation is generally used for computation of bearing
capacity of soil.
 For design purpose, it is usually necessary to investigate both the
bearing capacity of soil and the settlement of a footing.
 Plate load test is used to determine the ultimate bearing capacity
and settlement of a footing in field.
 There are another tests like S.P.T and C.P.T also used to determine
ultimate bearing capacity.
30
IS 6403: 1981 (Reaffirmed 2002): Code of practice for determination of breaking
capacity of shallow foundations
IS:1888:1982 (Reaffirmed 1995) : Method of load test on soils
IS 1080 - 1985 (Reaffirmed 1997): Code of practice for design and construction of
shallow foundations in soils (other than raft, ring and shell).
IS 2950 (Part1) -1981 (Reaffirmed 1998): Code of practice for design and
construction of raft foundations - part 1 design.
IS 8009 (Part 1) - 1976 (Re affirmed 1998): Code of practice for calculation of
settlements of foundations part-1(swallow foundations subjected to symmetrical static
vertical loads).
IS 8009 (Part 2) - 1980 (Re affirmed 1995): Code of practice for calculation of
settlements of foundations part-2(deep foundations subjected to symmetrical static
vertical loading).
IS 9214 - 1979 (Re affirmed 1997): Method of determination of modulus of
subgrade reaction (k-value) of soils in field.
Soil mechanics and foundation: Punmia, Jain and Jain.
NPTEL – Advanced foundation engineering.
31
THANK YOU
32

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Bearing capacity of soil
Bearing capacity of soilBearing capacity of soil
Bearing capacity of soil
 
Chapter 3 shallow foundations
Chapter 3 shallow foundationsChapter 3 shallow foundations
Chapter 3 shallow foundations
 
Lecture 1. bearing capacity of soil
Lecture 1. bearing capacity of soilLecture 1. bearing capacity of soil
Lecture 1. bearing capacity of soil
 
Pile foundation
Pile  foundation Pile  foundation
Pile foundation
 
Standard Penetration Test for soils
Standard Penetration Test for soilsStandard Penetration Test for soils
Standard Penetration Test for soils
 
Liquefaction of Soil
Liquefaction of SoilLiquefaction of Soil
Liquefaction of Soil
 
4.0 bearing capacity shallow foundations
4.0 bearing capacity shallow foundations4.0 bearing capacity shallow foundations
4.0 bearing capacity shallow foundations
 
Expansive soil
Expansive soilExpansive soil
Expansive soil
 
Pile foundation
Pile foundationPile foundation
Pile foundation
 
Footing design(09.02.03.096)
Footing design(09.02.03.096)Footing design(09.02.03.096)
Footing design(09.02.03.096)
 
Shallow foundation
Shallow foundationShallow foundation
Shallow foundation
 
Different types of pile
Different types of pile Different types of pile
Different types of pile
 
TERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYTERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORY
 
shallow foundation, types and factor
shallow foundation, types and factorshallow foundation, types and factor
shallow foundation, types and factor
 
Bearing capacity of soil final
Bearing capacity of soil  final Bearing capacity of soil  final
Bearing capacity of soil final
 
Earth pressure( soil mechanics)
Earth pressure( soil mechanics)Earth pressure( soil mechanics)
Earth pressure( soil mechanics)
 
Laterally Loaded Piles
Laterally Loaded PilesLaterally Loaded Piles
Laterally Loaded Piles
 
Lecture 2 bearing capacity
Lecture 2 bearing capacityLecture 2 bearing capacity
Lecture 2 bearing capacity
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
 

Destaque

Building Types And Components1
Building Types And Components1Building Types And Components1
Building Types And Components1
stooty s
 
Lafarge_Climate_2015_EN_Final
Lafarge_Climate_2015_EN_FinalLafarge_Climate_2015_EN_Final
Lafarge_Climate_2015_EN_Final
Sophie Tricaud
 

Destaque (20)

Shallow foundation
Shallow foundationShallow foundation
Shallow foundation
 
Shallow Foundation
Shallow FoundationShallow Foundation
Shallow Foundation
 
Tackle earthquake in engineering buildings
Tackle earthquake in engineering buildingsTackle earthquake in engineering buildings
Tackle earthquake in engineering buildings
 
Shallow foundation
Shallow foundationShallow foundation
Shallow foundation
 
Raft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approachRaft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approach
 
Raffles Institute_Building construction framing systems
Raffles Institute_Building construction framing systemsRaffles Institute_Building construction framing systems
Raffles Institute_Building construction framing systems
 
Raft foundations
Raft foundationsRaft foundations
Raft foundations
 
Building Types And Components1
Building Types And Components1Building Types And Components1
Building Types And Components1
 
Software And Computer Applications for civil engineering
Software And Computer Applications for civil engineeringSoftware And Computer Applications for civil engineering
Software And Computer Applications for civil engineering
 
design philosophy in structure design in civil engineering
design philosophy in structure design in civil engineeringdesign philosophy in structure design in civil engineering
design philosophy in structure design in civil engineering
 
Shilpesh CV
Shilpesh CVShilpesh CV
Shilpesh CV
 
Lafarge_Climate_2015_EN_Final
Lafarge_Climate_2015_EN_FinalLafarge_Climate_2015_EN_Final
Lafarge_Climate_2015_EN_Final
 
SOFTWARES IN CIVIL ENGINEERING
SOFTWARES IN CIVIL ENGINEERINGSOFTWARES IN CIVIL ENGINEERING
SOFTWARES IN CIVIL ENGINEERING
 
Slope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineeringSlope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineering
 
Portfolio Civil / Structural Engineer | Designer | Manager
Portfolio Civil / Structural Engineer | Designer | ManagerPortfolio Civil / Structural Engineer | Designer | Manager
Portfolio Civil / Structural Engineer | Designer | Manager
 
Advanced Type Civil Engineering Structures
Advanced Type  Civil Engineering StructuresAdvanced Type  Civil Engineering Structures
Advanced Type Civil Engineering Structures
 
Introduction to Civil Engineering
Introduction to Civil Engineering Introduction to Civil Engineering
Introduction to Civil Engineering
 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)
 
Superstructure construction
Superstructure constructionSuperstructure construction
Superstructure construction
 
Introduction to Civil Engineering
Introduction to Civil EngineeringIntroduction to Civil Engineering
Introduction to Civil Engineering
 

Semelhante a Shallow foundation(by indrajit mitra)01

lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdflecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
2cd
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
jamvantsolanki
 
Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)
Irfan Malik
 
rk Effect of water table on soil During construction
rk Effect of water table on soil During constructionrk Effect of water table on soil During construction
rk Effect of water table on soil During construction
Roop Kishor
 
Geotech Engg. Ch#05 bearing capacity
Geotech Engg. Ch#05 bearing capacityGeotech Engg. Ch#05 bearing capacity
Geotech Engg. Ch#05 bearing capacity
Irfan Malik
 

Semelhante a Shallow foundation(by indrajit mitra)01 (20)

BEARING CAPACITY OF SOIL.pptx
BEARING CAPACITY OF SOIL.pptxBEARING CAPACITY OF SOIL.pptx
BEARING CAPACITY OF SOIL.pptx
 
Bearing capacity
Bearing capacityBearing capacity
Bearing capacity
 
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdflecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
 
SHALLOW FOUNDATION
SHALLOW FOUNDATIONSHALLOW FOUNDATION
SHALLOW FOUNDATION
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Bearing-Capacity-part
Bearing-Capacity-partBearing-Capacity-part
Bearing-Capacity-part
 
BEARING CAPASITY OFSOIL.pptx
BEARING CAPASITY OFSOIL.pptxBEARING CAPASITY OFSOIL.pptx
BEARING CAPASITY OFSOIL.pptx
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
 
Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)
 
Unit-2-Bearing capacity of Shallow foundation.pdf
Unit-2-Bearing capacity  of Shallow foundation.pdfUnit-2-Bearing capacity  of Shallow foundation.pdf
Unit-2-Bearing capacity of Shallow foundation.pdf
 
Bearing capasity of soil
Bearing capasity of soilBearing capasity of soil
Bearing capasity of soil
 
rk Effect of water table on soil During construction
rk Effect of water table on soil During constructionrk Effect of water table on soil During construction
rk Effect of water table on soil During construction
 
Chapter 13
Chapter 13Chapter 13
Chapter 13
 
Geotech Engg. Ch#05 bearing capacity
Geotech Engg. Ch#05 bearing capacityGeotech Engg. Ch#05 bearing capacity
Geotech Engg. Ch#05 bearing capacity
 
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.pptUnit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
 
pilefoundation_16th aug.ppt
pilefoundation_16th aug.pptpilefoundation_16th aug.ppt
pilefoundation_16th aug.ppt
 
3.4 Foundations.pptx
3.4 Foundations.pptx3.4 Foundations.pptx
3.4 Foundations.pptx
 
Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...
Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...
Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...
 

Último

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
 

Último (20)

(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 

Shallow foundation(by indrajit mitra)01

  • 1. 1
  • 2. Shallow foundations are those that transmit structural loads to the near surface soils. According to the Terzaghi, a foundation is shallow foundation if its depth is equal to or less than its width i.e d ≤ w. For most of the residential buildings or buildings with moderate height or multistoreyed building on soil with sufficient strength, shallow foundation is used from economical consideration. 2
  • 3. Near surface soil should be strong enough Foundation structures should be able to sustain the applied loads without exceeding the safe bearing capacity of the soil.  The settlement of the structure should be should be within the tolerable limits. 3
  • 4. When the upper soil layer is highly compressible and too weak In the case of Expansive soils In case of Bridge abutments and piers because of soil erosion at the ground surface Soils such as loess are collapsible in nature 4
  • 5.  Spread footing: A spread footing is one which supports either one wall or one column. Spread footing may be of the following types –  Strip footing  Pad footing Fig: Pad Footing 5
  • 6. Combined footing: When a spread footing supports the load of more than one column or wall. Fig: Combined Footings 6
  • 7. Strap footing: : A strap footing comprises of two or more footings of individual columns, connected by a beam, called a strap. Raft foundation: A raft foundation is a combined footing that covers the entire area beneath a structure and supports all the walls and columns. Fig: Strap Footings 7
  • 8. Fig- Raft foundations  Requirements for the raft foundations:  The allowable soil pressure is low, or the building loads are heavy  Use of spread footings would cover more than one-half of the area  Soil is sufficiently erratic so that the differential settlement difficult to control 8
  • 9. Bearing capacity of soil Ground water table Depth of frost action Depth of volume change due to presence of expansive soils Local erosion of soil due to flowing water Underground defects such as root holes, cavities, mine shafts, etc. excavation, ditch, pond, water course, filled up ground 9
  • 10. The distribution of soil pressure under a footing is a function of the type of soil, the relative rigidity of the soil and the footing, and the depth of foundation at level of contact between footing and soil. 10
  • 11. A RISING WATER TABLE HAVE FOLLOWING ADVERSE EFFECTS : 1) Appreciable reduction in the bearing capacity 2) Development of uplift pressure 3) Possible ground heave due to the reduction of the effective stresses caused by the increasing pore water pressures. 4) Expansion of the heavily compacted fills under the foundation 5) Appreciable settlements of the poorly compacted fills 11
  • 12.  Soil stiffness is generally measured in the terms of Modulus of sub- grade reaction (K-value). Where, p = load intensity corresponding to settlement of plate (30cm x 30cm) of 0.125 cm.  TABLE: K-VALUE CHANGES WITH SOIL CHARACTERISTICS 12
  • 13.  Foundation Size Effect on Modulus of Sub grade Reaction in Clayey Soil :  Foundation Size Effect on Modulus of Subgrade Reaction In Sandy Soils: 13
  • 14. Factors influencing Bearing Capacity: I. Type of soil III. Unit weight of soil II. Surcharge load IV. Depth of foundation V. Mode of failure VI. Size of footing VII. Shape of footing VIII. Depth of water table IX. Eccentricity in footing load X. Inclination of footing load XI. Inclination of ground XII.Inclination of base of foundation 14
  • 15.  General shear failure: Seen in dense and stiff soil. Fig: Fig: General shear failure  Local shear failure: Seen in relatively loose and soft soil. Fig: Fig: Local shear failure 15
  • 16.  Punching shear failure: Seen in loose , soft soil and at deeper elevations. Fig- punching shear failure TERZAGHI’S BEARING CAPACITY THEORY: According to Terzaghi the equation for ultimate bearing capacity for a strip footing is obtained as follows, ultimate bearing capacity qf = cNC + γDNq +0.5 γBNγ 16
  • 17. Circular footing : qf = 1.3 cNc + γDNq +0.3 γBNγ Square footing: qf = 1.3 cNc + γDNq +0.4 γBNγ Rectangular footing: qf = (1+0.3 B/L)cNc + γDNq + (1-0.2 B/L)0.5γBNγ Ultimate bearing capacity with the effect of water table is given by, qf= cNC + γDNq RW1+0.5 γBNγ RW2 17 qf = cNC + γDNq RW1+0.5 γBNγ RW2 Effect of Water Table fluctuation :
  • 18. CASE 1: Where, ZW1 is the depth of water table from ground level. CASE 2: Where, ZW2 is the depth of water table from foundation level. 18
  • 19.  General shear failure: qf = c Nc sc dc ic + q (Nq-1) sq dq iq + 0.5γ B Nγ sγ dγ iγ W  Local shear failure: qf = ⅔ c N'c sc dc ic + q (Nq-1) sq dq iq + 0.5γ B N'γ sγ dγ iγ W  Shape factors for different shapes of footings: 19
  • 20. Depth factors: Inclination factor : Values of W: 1. Water table remain at or below a depth of (Df + B), then W= 1. 2. Water table located at depth Df or likely to rise above the base then, W= 0.5 3. If Df < Dw < (Df + B), then Wbe obtained by linear interpolation 20
  • 21. The total settlement of a footing in clay may be considered to three components (Skempton and Bjerrum, 1957)  Immediate Settlement: Values for influence factors, If : 21
  • 22. Primary Consolidation: The primary consolidation settlement Sc is given by the following formula: Sc = Values of for different types of soil : 22
  • 23. Secondary consolidation: Secondary consolidation settlement is more important in the case of organic and highly- compressible inorganic clays which is given by, Ss = Cα = Secondary Compression Index = Fig: void ratio vs. time (log scale) 23
  • 24. 1) Effect of Depth of Foundation: Corrected settlement = Scorrected = Sc x Depth factor Fig: Fox’s correction curves for settlements of flexible Rectangular footings of BxL at depth D 24
  • 25. 2) Effect of the rigidity of foundation:  Rigidity factor = = 0.8  TABLE: Permissible uniform and differential settlement and tilt for footings 25
  • 26.  LOADING SYSTEMS: There are two loading set-up : Fig: set up for gravity loading platform Fig: set up for reaction loading platform  DETERMINATION OF SETTLEMENT: According to Terzaghi and Peck (1948): 26
  • 27.  According to Bond (1961):  Table: Values of index n for different soils:  DETERMINATION OF BEARING CAPACITY:  Bearing capacity can be obtained from the load settlement curve that can be plotted from settlement data. 27
  • 28. Fig : Load- settlement curves o obtained from test From the corrected load settlement curves (given below)the ultimate bearing capacity in case of dense cohesionless soils or cohesive soils can be obtained without difficulty (curves D and B ) as the failure is well defined. 28
  • 29.  Fig : Corrected Load–Settlement curve (in log-log scale) The bearing capacity of sands and gravels increases with the size of footings. 29
  • 30.  The following conclusions can be drawn , they are -  Shallow foundations are used when the soil has sufficient strength within a short depth below the ground level.  Terzaghi’s equation is generally used for computation of bearing capacity of soil.  For design purpose, it is usually necessary to investigate both the bearing capacity of soil and the settlement of a footing.  Plate load test is used to determine the ultimate bearing capacity and settlement of a footing in field.  There are another tests like S.P.T and C.P.T also used to determine ultimate bearing capacity. 30
  • 31. IS 6403: 1981 (Reaffirmed 2002): Code of practice for determination of breaking capacity of shallow foundations IS:1888:1982 (Reaffirmed 1995) : Method of load test on soils IS 1080 - 1985 (Reaffirmed 1997): Code of practice for design and construction of shallow foundations in soils (other than raft, ring and shell). IS 2950 (Part1) -1981 (Reaffirmed 1998): Code of practice for design and construction of raft foundations - part 1 design. IS 8009 (Part 1) - 1976 (Re affirmed 1998): Code of practice for calculation of settlements of foundations part-1(swallow foundations subjected to symmetrical static vertical loads). IS 8009 (Part 2) - 1980 (Re affirmed 1995): Code of practice for calculation of settlements of foundations part-2(deep foundations subjected to symmetrical static vertical loading). IS 9214 - 1979 (Re affirmed 1997): Method of determination of modulus of subgrade reaction (k-value) of soils in field. Soil mechanics and foundation: Punmia, Jain and Jain. NPTEL – Advanced foundation engineering. 31