SlideShare uma empresa Scribd logo
1 de 49
Beni Asllani University of Tennessee at Chattanooga Statistical Process Control Operations Management - 5 th  Edition Chapter 4 Roberta Russell & Bernard W. Taylor, III
Lecture Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Basics of Statistical Process Control ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],UCL LCL
Variability ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SPC in TQM ,[object Object],[object Object],[object Object]
Quality Measures ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],Applying SPC to Service
Applying SPC to Service (cont.) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Applying SPC to Service (cont.) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Where to Use Control Charts ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Control Charts ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Process Control Chart 1 2 3 4 5 6 7 8 9 10 Sample number Upper control limit Process average Lower control limit Out of control
Normal Distribution  =0 1  2  3  -1  -2  -3  95% 99.74%
A Process Is in Control If … ,[object Object],[object Object],[object Object],[object Object]
Control Charts for Attributes ,[object Object],[object Object],[object Object],[object Object]
p-Chart UCL =  p  +  z  p LCL =  p  -  z  p z = number of standard deviations from process average p = sample proportion defective; an estimate of process average  p =  standard deviation of sample proportion  p  =  p (1 -  p ) n
p-Chart Example 20 samples of 100 pairs of jeans NUMBER OF PROPORTION SAMPLE DEFECTIVES DEFECTIVE 1 6 .06 2 0 .00 3 4 .04 : : : : : : 20 18 .18 200
p-Chart Example (cont.) UCL =  p  +  z   = 0.10 + 3 p (1 -  p ) n 0.10(1 - 0.10) 100 UCL = 0.190 LCL = 0.010 LCL =  p  -  z   = 0.10 - 3 p (1 -  p ) n 0.10(1 - 0.10) 100 = 200 / 20(100) = 0.10 total defectives total sample observations p =
p-Chart Example (cont.) 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 Proportion defective Sample number 2 4 6 8 10 12 14 16 18 20 UCL = 0.190 LCL = 0.010 p  = 0.10
c-Chart UCL =  c  +  z  c LCL =  c  -  z  c where c  = number of defects per sample  c  =  c
c-Chart (cont.) Number of defects in 15 sample rooms 1  12 2  8 3  16 :  : :  : 15  15 190 SAMPLE c  =  = 12.67 190 15 UCL =  c  +  z  c = 12.67 + 3  12.67 = 23.35 LCL =  c  +  z  c = 12.67 - 3  12.67 = 1.99 NUMBER OF DEFECTS
c-Chart (cont.) 3 6 9 12 15 18 21 24 Number of defects Sample number 2 4 6 8 10 12 14 16 UCL = 23.35 LCL = 1.99 c  = 12.67
Control Charts for Variables ,[object Object],[object Object],[object Object],[object Object]
x-bar Chart x  =  x 1  +  x 2  + ...  x k k = UCL =  x  +  A 2 R LCL =  x  -  A 2 R = = where x = average of sample means =
x-bar Chart Example Example 15.4 OBSERVATIONS (SLIP- RING DIAMETER, CM) SAMPLE  k   1 2 3 4 5 x R 1 5.02 5.01 4.94 4.99 4.96 4.98 0.08 2 5.01 5.03 5.07 4.95 4.96 5.00 0.12 3 4.99 5.00 4.93 4.92 4.99 4.97 0.08 4 5.03 4.91 5.01 4.98 4.89 4.96 0.14 5 4.95 4.92 5.03 5.05 5.01 4.99 0.13 6 4.97 5.06 5.06 4.96 5.03 5.01 0.10 7 5.05 5.01 5.10 4.96 4.99 5.02 0.14 8 5.09 5.10 5.00 4.99 5.08 5.05 0.11 9 5.14 5.10 4.99 5.08 5.09 5.08 0.15 10 5.01 4.98 5.08 5.07 4.99 5.03 0.10 50.09 1.15
x- bar Chart Example (cont.) Retrieve Factor Value A 2 UCL =  x  +  A 2 R  = 5.01 + (0.58)(0.115) = 5.08 LCL =  x  -  A 2 R  = 5.01 - (0.58)(0.115) = 4.94 = = x  =  =  = 5.01 cm = ,[object Object],[object Object],50.09 10
x- bar Chart Example (cont.) UCL = 5.08 LCL = 4.94 Mean Sample number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 5.10 – 5.08 – 5.06 – 5.04 – 5.02 – 5.00 – 4.98 – 4.96 – 4.94 – 4.92 – x  = 5.01 =
R- Chart UCL =  D 4 R LCL =  D 3 R R  =  ,[object Object],[object Object],where R = range of each sample k = number of samples
R-Chart Example Example 15.3 OBSERVATIONS (SLIP-RING DIAMETER, CM) SAMPLE  k   1 2 3 4 5 x R 1 5.02 5.01 4.94 4.99 4.96 4.98 0.08 2 5.01 5.03 5.07 4.95 4.96 5.00 0.12 3 4.99 5.00 4.93 4.92 4.99 4.97 0.08 4 5.03 4.91 5.01 4.98 4.89 4.96 0.14 5 4.95 4.92 5.03 5.05 5.01 4.99 0.13 6 4.97 5.06 5.06 4.96 5.03 5.01 0.10 7 5.05 5.01 5.10 4.96 4.99 5.02 0.14 8 5.09 5.10 5.00 4.99 5.08 5.05 0.11 9 5.14 5.10 4.99 5.08 5.09 5.08 0.15 10 5.01 4.98 5.08 5.07 4.99 5.03 0.10 50.09 1.15
R-Chart Example (cont.) Example 15.3 Retrieve Factor Values D 3  and D 4 ,[object Object],[object Object],R  =  =  = 0.115  1.15 10 UCL =  D 4 R  = 2.11(0.115) = 0.243 LCL =  D 3 R  = 0(0.115) = 0
R-Chart Example (cont.) UCL = 0.243 LCL = 0 Range Sample number R  = 0.115 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 0.28 – 0.24 – 0.20 – 0.16 – 0.12 – 0.08 – 0.04 – 0 –
Using x- bar and R-Charts Together ,[object Object],[object Object],[object Object]
Control Chart Patterns UCL LCL Sample observations consistently above the center line LCL UCL Sample observations consistently below the center line
Control Chart Patterns (cont.) LCL UCL Sample observations consistently increasing UCL LCL Sample observations consistently decreasing
Zones for Pattern Tests UCL LCL Zone A Zone B Zone C Zone C Zone B Zone A Process average 3 sigma =  x  +  A 2 R = 3 sigma =  x  -  A 2 R = 2 sigma =  x  +  ( A 2 R ) = 2 3 2 sigma =  x  -  ( A 2 R ) = 2 3 1 sigma =  x  +  ( A 2 R ) = 1 3 1 sigma =  x  -  ( A 2 R ) = 1 3 x = Sample number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Control Chart Patterns ,[object Object],[object Object],[object Object],[object Object],[object Object]
Performing a Pattern Test 1 4.98 B — B 2 5.00 B U C 3 4.95 B D A 4 4.96 B D A 5 4.99 B U C 6 5.01 — U C 7 5.02 A U C 8 5.05 A U B 9 5.08 A U A 10 5.03 A D B SAMPLE x ABOVE/BELOW UP/DOWN ZONE
Sample Size ,[object Object],[object Object],[object Object],[object Object]
SPC with Excel UCL=0.19 LCL=0.01
SPC with Excel: Formulas
Process Capability ,[object Object],[object Object],[object Object],[object Object]
Process Capability (b) Design specifications and natural variation the same; process is capable of meeting specifications most of the time. Design Specifications Process (a) Natural variation exceeds design specifications; process is not capable of meeting specifications all the time. Design Specifications Process
Process Capability (cont.) (c) Design specifications greater than natural variation; process is capable of always conforming to specifications. Design Specifications Process (d) Specifications greater than natural variation, but process off center; capable but some output will not meet upper specification. Design Specifications Process
Process Capability Measures Process Capability Ratio C p = = tolerance range process range upper specification limit -  lower specification limit 6 
Computing C p Net weight specification = 9.0 oz    0.5 oz Process mean = 8.80 oz Process standard deviation = 0.12 oz C p = =  = 1.39 upper specification limit -  lower specification limit 6  9.5 - 8.5 6(0.12)
Process Capability Measures Process Capability Index C pk  = minimum x  - lower specification limit 3  = upper specification limit -  x 3  = ,
Computing C pk Net weight specification = 9.0 oz    0.5 oz Process mean = 8.80 oz Process standard deviation = 0.12 oz C pk = minimum = minimum  ,  = 0.83 x - lower specification limit 3  = upper specification limit - x 3  = , 8.80 - 8.50 3(0.12) 9.50 - 8.80 3(0.12)
Factors Appendix:  Determining Control Limits for  x -bar and  R -Charts Return n A 2 D 3 D 4 SAMPLE SIZE FACTOR FOR  x -CHART FACTORS FOR  R -CHART 2 1.88 0.00 3.27 3 1.02 0.00 2.57 4 0.73 0.00 2.28 5 0.58 0.00 2.11 6 0.48 0.00 2.00 7 0.42 0.08 1.92 8 0.37 0.14 1.86 9 0.44 0.18 1.82 10 0.11 0.22 1.78 11 0.99 0.26 1.74 12 0.77 0.28 1.72 13 0.55 0.31 1.69 14 0.44 0.33 1.67 15 0.22 0.35 1.65 16 0.11 0.36 1.64 17 0.00 0.38 1.62 18 0.99 0.39 1.61 19 0.99 0.40 1.61 20 0.88 0.41 1.59
Copyright 2006 John Wiley & Sons, Inc. All rights reserved.  Reproduction or translation of this work beyond that permitted in section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful.  Request for further information should be addressed to the Permission Department, John Wiley & Sons, Inc.  The purchaser may make back-up copies for his/her own use only and not for distribution or resale.  The Publisher assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information herein.

Mais conteúdo relacionado

Mais procurados

Orifice Calibration
Orifice CalibrationOrifice Calibration
Orifice Calibration
Yen Nguyen
 

Mais procurados (13)

Chapter9[1]
Chapter9[1]Chapter9[1]
Chapter9[1]
 
Facility Location
Facility Location Facility Location
Facility Location
 
Statistical Process Control
Statistical Process ControlStatistical Process Control
Statistical Process Control
 
control charts
control chartscontrol charts
control charts
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Correlation and Reg...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Correlation and Reg...Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Correlation and Reg...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Correlation and Reg...
 
Msa la
Msa laMsa la
Msa la
 
Acceptance sampling
Acceptance samplingAcceptance sampling
Acceptance sampling
 
Acceptance Sampling[1]
Acceptance Sampling[1]Acceptance Sampling[1]
Acceptance Sampling[1]
 
Time Series proj final
Time Series proj finalTime Series proj final
Time Series proj final
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Simple Variance Ana...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Simple Variance Ana...Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Simple Variance Ana...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Simple Variance Ana...
 
Orifice Calibration
Orifice CalibrationOrifice Calibration
Orifice Calibration
 
C chart class material
C chart class materialC chart class material
C chart class material
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Chi Square Test
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Chi Square TestJavier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Chi Square Test
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W2 Chi Square Test
 

Destaque

Efficiency of mobile application testing with effectiveness of tools
Efficiency of mobile application testing with effectiveness of toolsEfficiency of mobile application testing with effectiveness of tools
Efficiency of mobile application testing with effectiveness of tools
Indium Software
 
Software quality requirements and evaluation
Software quality requirements and evaluationSoftware quality requirements and evaluation
Software quality requirements and evaluation
Eric Lai
 
Mobile App Testing Checklist
Mobile App Testing ChecklistMobile App Testing Checklist
Mobile App Testing Checklist
Manoj Lonar
 

Destaque (18)

Efficiency of mobile application testing with effectiveness of tools
Efficiency of mobile application testing with effectiveness of toolsEfficiency of mobile application testing with effectiveness of tools
Efficiency of mobile application testing with effectiveness of tools
 
Mobile Application Testing
Mobile Application Testing Mobile Application Testing
Mobile Application Testing
 
Software Quality Metrics Do's and Don'ts - QAI-Quest 1 Hour Presentation
Software Quality Metrics Do's and Don'ts - QAI-Quest 1 Hour PresentationSoftware Quality Metrics Do's and Don'ts - QAI-Quest 1 Hour Presentation
Software Quality Metrics Do's and Don'ts - QAI-Quest 1 Hour Presentation
 
A suite of rules for developing and evaluating software quality models jean...
A suite of rules for developing and evaluating software quality models   jean...A suite of rules for developing and evaluating software quality models   jean...
A suite of rules for developing and evaluating software quality models jean...
 
The Art and Science of Mobile App Testing
The Art and Science of Mobile App TestingThe Art and Science of Mobile App Testing
The Art and Science of Mobile App Testing
 
Main Challenges of Mobile Testing
Main Challenges of Mobile TestingMain Challenges of Mobile Testing
Main Challenges of Mobile Testing
 
Addressing Mobile App Testing Challenges
Addressing Mobile App Testing ChallengesAddressing Mobile App Testing Challenges
Addressing Mobile App Testing Challenges
 
Techniques, Tips & Tools For Mobile App Testing
Techniques, Tips & Tools For Mobile App TestingTechniques, Tips & Tools For Mobile App Testing
Techniques, Tips & Tools For Mobile App Testing
 
Software Development Life Cycle.
Software Development Life Cycle.Software Development Life Cycle.
Software Development Life Cycle.
 
Software quality requirements and evaluation
Software quality requirements and evaluationSoftware quality requirements and evaluation
Software quality requirements and evaluation
 
Software Quality Metrics for Testers - StarWest 2013
Software Quality Metrics for Testers - StarWest 2013Software Quality Metrics for Testers - StarWest 2013
Software Quality Metrics for Testers - StarWest 2013
 
Android & iPhone App Testing
 Android & iPhone App Testing Android & iPhone App Testing
Android & iPhone App Testing
 
Testing Checklist for Mobile Applications-By Anurag Khode
Testing Checklist for Mobile Applications-By Anurag KhodeTesting Checklist for Mobile Applications-By Anurag Khode
Testing Checklist for Mobile Applications-By Anurag Khode
 
Testing & Quality Assurance
Testing & Quality AssuranceTesting & Quality Assurance
Testing & Quality Assurance
 
Mobile Application Testing
Mobile Application TestingMobile Application Testing
Mobile Application Testing
 
Mobile App Testing Checklist
Mobile App Testing ChecklistMobile App Testing Checklist
Mobile App Testing Checklist
 
Testing Techniques for Mobile Applications
Testing Techniques for Mobile ApplicationsTesting Techniques for Mobile Applications
Testing Techniques for Mobile Applications
 
Test cases for testing mobile phone
Test cases for testing mobile phoneTest cases for testing mobile phone
Test cases for testing mobile phone
 

Semelhante a Ch04

Ppt On S.Q.C.
Ppt On S.Q.C.Ppt On S.Q.C.
Ppt On S.Q.C.
dvietians
 
Statistic process control
Statistic process controlStatistic process control
Statistic process control
arif silaban
 
Chap 9 A Process Capability & Spc Hk
Chap 9 A Process Capability & Spc HkChap 9 A Process Capability & Spc Hk
Chap 9 A Process Capability & Spc Hk
ajithsrc
 
Stochastic Process
Stochastic ProcessStochastic Process
Stochastic Process
knksmart
 
Control chart qm
Control chart qmControl chart qm
Control chart qm
Ashu0711
 

Semelhante a Ch04 (20)

Statistical Process Control in Detail
Statistical Process Control in Detail Statistical Process Control in Detail
Statistical Process Control in Detail
 
Quality Control Chart
 Quality Control Chart Quality Control Chart
Quality Control Chart
 
ch04 (1).ppt
ch04 (1).pptch04 (1).ppt
ch04 (1).ppt
 
14. Statistical Process Control.pptx
14. Statistical Process Control.pptx14. Statistical Process Control.pptx
14. Statistical Process Control.pptx
 
Ppt On S.Q.C.
Ppt On S.Q.C.Ppt On S.Q.C.
Ppt On S.Q.C.
 
Statistical process control ppt @ bec doms
Statistical process control ppt @ bec domsStatistical process control ppt @ bec doms
Statistical process control ppt @ bec doms
 
control charts to enhance your problem solving abilities
control charts to enhance your problem solving abilitiescontrol charts to enhance your problem solving abilities
control charts to enhance your problem solving abilities
 
Statistic process control
Statistic process controlStatistic process control
Statistic process control
 
Chap 9 A Process Capability & Spc Hk
Chap 9 A Process Capability & Spc HkChap 9 A Process Capability & Spc Hk
Chap 9 A Process Capability & Spc Hk
 
Statisticalqualitycontrol
StatisticalqualitycontrolStatisticalqualitycontrol
Statisticalqualitycontrol
 
Stochastic Process
Stochastic ProcessStochastic Process
Stochastic Process
 
Production & Operation Management Chapter9[1]
Production & Operation Management Chapter9[1]Production & Operation Management Chapter9[1]
Production & Operation Management Chapter9[1]
 
Statistical process control (spc)
Statistical process control (spc)Statistical process control (spc)
Statistical process control (spc)
 
Tools of the Trade
Tools of the TradeTools of the Trade
Tools of the Trade
 
Control chart qm
Control chart qmControl chart qm
Control chart qm
 
6 statistical quality control
6   statistical quality control6   statistical quality control
6 statistical quality control
 
Qa.spc
Qa.spcQa.spc
Qa.spc
 
Om presentation
Om presentationOm presentation
Om presentation
 
Final notes on s1 qc
Final notes on s1 qcFinal notes on s1 qc
Final notes on s1 qc
 
Final notes on s1 qc
Final notes on s1 qcFinal notes on s1 qc
Final notes on s1 qc
 

Mais de ajithsrc

New Ethics 5
New Ethics 5New Ethics 5
New Ethics 5
ajithsrc
 
New Ethics 4
New Ethics 4New Ethics 4
New Ethics 4
ajithsrc
 
Valuation Of S Ecurities
Valuation Of S EcuritiesValuation Of S Ecurities
Valuation Of S Ecurities
ajithsrc
 
Ajith Resume
Ajith ResumeAjith Resume
Ajith Resume
ajithsrc
 
Operations Research
Operations ResearchOperations Research
Operations Research
ajithsrc
 
Evolution Of Operations Management
Evolution Of Operations ManagementEvolution Of Operations Management
Evolution Of Operations Management
ajithsrc
 
Textile Industry
Textile IndustryTextile Industry
Textile Industry
ajithsrc
 
Syndicate 1 Tqm
Syndicate 1 TqmSyndicate 1 Tqm
Syndicate 1 Tqm
ajithsrc
 
Supply Chain Mgmt Jit
Supply Chain Mgmt JitSupply Chain Mgmt Jit
Supply Chain Mgmt Jit
ajithsrc
 
Stevenson9e Ch04
Stevenson9e Ch04Stevenson9e Ch04
Stevenson9e Ch04
ajithsrc
 

Mais de ajithsrc (20)

Business Plan On Retail Mall
Business Plan On Retail MallBusiness Plan On Retail Mall
Business Plan On Retail Mall
 
Ethics
EthicsEthics
Ethics
 
Ethics
EthicsEthics
Ethics
 
Ethics
EthicsEthics
Ethics
 
New Ethics 5
New Ethics 5New Ethics 5
New Ethics 5
 
New Ethics 4
New Ethics 4New Ethics 4
New Ethics 4
 
Valuation Of S Ecurities
Valuation Of S EcuritiesValuation Of S Ecurities
Valuation Of S Ecurities
 
Transport
TransportTransport
Transport
 
Inflation
InflationInflation
Inflation
 
Auto
AutoAuto
Auto
 
Ajith Resume
Ajith ResumeAjith Resume
Ajith Resume
 
Ksrtc
KsrtcKsrtc
Ksrtc
 
Operations Research
Operations ResearchOperations Research
Operations Research
 
Evolution Of Operations Management
Evolution Of Operations ManagementEvolution Of Operations Management
Evolution Of Operations Management
 
Tqm Tool2
Tqm Tool2Tqm Tool2
Tqm Tool2
 
Tqm Tool1
Tqm Tool1Tqm Tool1
Tqm Tool1
 
Textile Industry
Textile IndustryTextile Industry
Textile Industry
 
Syndicate 1 Tqm
Syndicate 1 TqmSyndicate 1 Tqm
Syndicate 1 Tqm
 
Supply Chain Mgmt Jit
Supply Chain Mgmt JitSupply Chain Mgmt Jit
Supply Chain Mgmt Jit
 
Stevenson9e Ch04
Stevenson9e Ch04Stevenson9e Ch04
Stevenson9e Ch04
 

Ch04

  • 1. Beni Asllani University of Tennessee at Chattanooga Statistical Process Control Operations Management - 5 th Edition Chapter 4 Roberta Russell & Bernard W. Taylor, III
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12. Process Control Chart 1 2 3 4 5 6 7 8 9 10 Sample number Upper control limit Process average Lower control limit Out of control
  • 13. Normal Distribution  =0 1  2  3  -1  -2  -3  95% 99.74%
  • 14.
  • 15.
  • 16. p-Chart UCL = p + z  p LCL = p - z  p z = number of standard deviations from process average p = sample proportion defective; an estimate of process average  p = standard deviation of sample proportion  p = p (1 - p ) n
  • 17. p-Chart Example 20 samples of 100 pairs of jeans NUMBER OF PROPORTION SAMPLE DEFECTIVES DEFECTIVE 1 6 .06 2 0 .00 3 4 .04 : : : : : : 20 18 .18 200
  • 18. p-Chart Example (cont.) UCL = p + z = 0.10 + 3 p (1 - p ) n 0.10(1 - 0.10) 100 UCL = 0.190 LCL = 0.010 LCL = p - z = 0.10 - 3 p (1 - p ) n 0.10(1 - 0.10) 100 = 200 / 20(100) = 0.10 total defectives total sample observations p =
  • 19. p-Chart Example (cont.) 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 Proportion defective Sample number 2 4 6 8 10 12 14 16 18 20 UCL = 0.190 LCL = 0.010 p = 0.10
  • 20. c-Chart UCL = c + z  c LCL = c - z  c where c = number of defects per sample  c = c
  • 21. c-Chart (cont.) Number of defects in 15 sample rooms 1 12 2 8 3 16 : : : : 15 15 190 SAMPLE c = = 12.67 190 15 UCL = c + z  c = 12.67 + 3 12.67 = 23.35 LCL = c + z  c = 12.67 - 3 12.67 = 1.99 NUMBER OF DEFECTS
  • 22. c-Chart (cont.) 3 6 9 12 15 18 21 24 Number of defects Sample number 2 4 6 8 10 12 14 16 UCL = 23.35 LCL = 1.99 c = 12.67
  • 23.
  • 24. x-bar Chart x = x 1 + x 2 + ... x k k = UCL = x + A 2 R LCL = x - A 2 R = = where x = average of sample means =
  • 25. x-bar Chart Example Example 15.4 OBSERVATIONS (SLIP- RING DIAMETER, CM) SAMPLE k 1 2 3 4 5 x R 1 5.02 5.01 4.94 4.99 4.96 4.98 0.08 2 5.01 5.03 5.07 4.95 4.96 5.00 0.12 3 4.99 5.00 4.93 4.92 4.99 4.97 0.08 4 5.03 4.91 5.01 4.98 4.89 4.96 0.14 5 4.95 4.92 5.03 5.05 5.01 4.99 0.13 6 4.97 5.06 5.06 4.96 5.03 5.01 0.10 7 5.05 5.01 5.10 4.96 4.99 5.02 0.14 8 5.09 5.10 5.00 4.99 5.08 5.05 0.11 9 5.14 5.10 4.99 5.08 5.09 5.08 0.15 10 5.01 4.98 5.08 5.07 4.99 5.03 0.10 50.09 1.15
  • 26.
  • 27. x- bar Chart Example (cont.) UCL = 5.08 LCL = 4.94 Mean Sample number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 5.10 – 5.08 – 5.06 – 5.04 – 5.02 – 5.00 – 4.98 – 4.96 – 4.94 – 4.92 – x = 5.01 =
  • 28.
  • 29. R-Chart Example Example 15.3 OBSERVATIONS (SLIP-RING DIAMETER, CM) SAMPLE k 1 2 3 4 5 x R 1 5.02 5.01 4.94 4.99 4.96 4.98 0.08 2 5.01 5.03 5.07 4.95 4.96 5.00 0.12 3 4.99 5.00 4.93 4.92 4.99 4.97 0.08 4 5.03 4.91 5.01 4.98 4.89 4.96 0.14 5 4.95 4.92 5.03 5.05 5.01 4.99 0.13 6 4.97 5.06 5.06 4.96 5.03 5.01 0.10 7 5.05 5.01 5.10 4.96 4.99 5.02 0.14 8 5.09 5.10 5.00 4.99 5.08 5.05 0.11 9 5.14 5.10 4.99 5.08 5.09 5.08 0.15 10 5.01 4.98 5.08 5.07 4.99 5.03 0.10 50.09 1.15
  • 30.
  • 31. R-Chart Example (cont.) UCL = 0.243 LCL = 0 Range Sample number R = 0.115 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 0.28 – 0.24 – 0.20 – 0.16 – 0.12 – 0.08 – 0.04 – 0 –
  • 32.
  • 33. Control Chart Patterns UCL LCL Sample observations consistently above the center line LCL UCL Sample observations consistently below the center line
  • 34. Control Chart Patterns (cont.) LCL UCL Sample observations consistently increasing UCL LCL Sample observations consistently decreasing
  • 35. Zones for Pattern Tests UCL LCL Zone A Zone B Zone C Zone C Zone B Zone A Process average 3 sigma = x + A 2 R = 3 sigma = x - A 2 R = 2 sigma = x + ( A 2 R ) = 2 3 2 sigma = x - ( A 2 R ) = 2 3 1 sigma = x + ( A 2 R ) = 1 3 1 sigma = x - ( A 2 R ) = 1 3 x = Sample number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
  • 36.
  • 37. Performing a Pattern Test 1 4.98 B — B 2 5.00 B U C 3 4.95 B D A 4 4.96 B D A 5 4.99 B U C 6 5.01 — U C 7 5.02 A U C 8 5.05 A U B 9 5.08 A U A 10 5.03 A D B SAMPLE x ABOVE/BELOW UP/DOWN ZONE
  • 38.
  • 39. SPC with Excel UCL=0.19 LCL=0.01
  • 40. SPC with Excel: Formulas
  • 41.
  • 42. Process Capability (b) Design specifications and natural variation the same; process is capable of meeting specifications most of the time. Design Specifications Process (a) Natural variation exceeds design specifications; process is not capable of meeting specifications all the time. Design Specifications Process
  • 43. Process Capability (cont.) (c) Design specifications greater than natural variation; process is capable of always conforming to specifications. Design Specifications Process (d) Specifications greater than natural variation, but process off center; capable but some output will not meet upper specification. Design Specifications Process
  • 44. Process Capability Measures Process Capability Ratio C p = = tolerance range process range upper specification limit - lower specification limit 6 
  • 45. Computing C p Net weight specification = 9.0 oz  0.5 oz Process mean = 8.80 oz Process standard deviation = 0.12 oz C p = = = 1.39 upper specification limit - lower specification limit 6  9.5 - 8.5 6(0.12)
  • 46. Process Capability Measures Process Capability Index C pk = minimum x - lower specification limit 3  = upper specification limit - x 3  = ,
  • 47. Computing C pk Net weight specification = 9.0 oz  0.5 oz Process mean = 8.80 oz Process standard deviation = 0.12 oz C pk = minimum = minimum , = 0.83 x - lower specification limit 3  = upper specification limit - x 3  = , 8.80 - 8.50 3(0.12) 9.50 - 8.80 3(0.12)
  • 48. Factors Appendix: Determining Control Limits for x -bar and R -Charts Return n A 2 D 3 D 4 SAMPLE SIZE FACTOR FOR x -CHART FACTORS FOR R -CHART 2 1.88 0.00 3.27 3 1.02 0.00 2.57 4 0.73 0.00 2.28 5 0.58 0.00 2.11 6 0.48 0.00 2.00 7 0.42 0.08 1.92 8 0.37 0.14 1.86 9 0.44 0.18 1.82 10 0.11 0.22 1.78 11 0.99 0.26 1.74 12 0.77 0.28 1.72 13 0.55 0.31 1.69 14 0.44 0.33 1.67 15 0.22 0.35 1.65 16 0.11 0.36 1.64 17 0.00 0.38 1.62 18 0.99 0.39 1.61 19 0.99 0.40 1.61 20 0.88 0.41 1.59
  • 49. Copyright 2006 John Wiley & Sons, Inc. All rights reserved. Reproduction or translation of this work beyond that permitted in section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful. Request for further information should be addressed to the Permission Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information herein.