SlideShare uma empresa Scribd logo
1 de 54
UNIVERSITY OF
TECHNOLOGY
A thesis submitted By
Khaled Z.Yahya
PLD: Pulsed Laser Deposition
The interaction of the laser beam with
the target resulting in evaporation of the
surface layers.
The interaction of the laser beam with the
evaporation materials causing the formation of
isothermal expanding plasma.
The expansion of the laser induced plasma
with a rapid transfer of thermal energy of the
species in plasma into kinetic energy.
Thin film growth.
Rotating target
Laser
Pulsed
Substrate
heater
Ejected Plume
Deposited
film
Why TiO2 ?
Titanium dioxide (TiO2) is a wide band gap ( ) eV for anatase and 3 eV
for rutile .
Titanium dioxide have high refractive index - up to 2.7 (at wavelength of
600nm)
Titanium dioxide good chemical resistance and high chemical stability.
Titanium dioxide good sensitivity to poison gases.
Titanium dioxide good photocatalysts.
TiO2 structure
Anatase Rutile Brockets
TiO2 gas sensor
• TiO2 based sensor are predominant solid-state
gas sensors for domestic, commercial and
industrial application.
• •Low cost
• •Easy production
• •Rigid construction
• •Compact size
• •Simple measuring electronics
Aim of the work
The aim of this work is to reveal specific properties of TiO2
nanostructure prepared by pulsed laser deposition technique
TiO2 samples have been prepared at different dopant noble
metal such as (Pd ,Pt, Ni, Ag,…) The main objective of this
work are :
• 1. Characteristics of structural , microstructural and
photoluminescence properties of thin films .
• 2. Studying the sensitivity and selectivity of these films doped
with different noble metal deposited by PLD to CO gas.
Prepared TiO2
Picture for TiO2 ceramic
Plasma plume
TiO2 thin film
Characterization Measurements of
prepare films
Films thickness measurement
XRD Study
TCO film Morphology SEM ,AFM
Optical properties
photoluminescence properties
Gas sensor measurement
a)SEM b)AFM c)PL d)Gas sensing
c d
a ba b
•Substrate Temperatures effect (Ts )
c
b
a
2θ (degree)
A :anatase
Figure (1) XRD spectra of TiO2/glass at different temperature
a) 200ºC b) 300ºC, c)400ºC
Intensity
(a.u)
laser fluence 0.8 J/cm2 oxygen
pressure 5 *10-1 Torr
TiO2 /Si
FWHM and Main grain size
0
10
20
30
40
50
250 300 350 400 450 500 550
Temperature °C
Maingrainsize(nm)
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.5
0.51
250 300 350 400 450 500 550
Temperature °C
FWHM°
a b
Figure (3) TiO2 A(101) thin films grown
on Si (111) at different substrate temperature for (a) main grain size (b)FWHM
Oxygen pressure effect
Fig (4) XRD patterns of TiO2 films grown on Si
at various oxygen pressures a) 5×10-2 Torr b) 5×10-1 Torr c) 10 Torr
Intens
ity
(a.u)
2θ (degree)
Laser Fluence effect
Fig (5) XRD patterns of TiO2 films grown on Si
at various laser fluence a) 1.2 b) 0.8 c) 1.8 J/cm2
Doping effect of noble metal
(Ag, Pt, Pd and Ni).
X - ray Florescence
Fig (7) X-ray florescence pattern for a) TiO2 pure b) TiO2 3% Ag c) TiO2 3% Pt d) TiO2 3% Pd e) TiO2 3% Ni .
a
b
SEM
Substrate Temperatures effect (Ts )
Figure (8) SEM image of the TiO2/Si thin films deposited at various temperature of
a) 300°C, b) 400°C, c) 500°C, and laser fluence 1.2 J/cm2 ,O2 pressure=
10-1 mbar
Oxygen pressure effect
c
ba
Figure (9) SEM image of the TiO2/Si thin films deposited at various
oxygen pressure a ) 5×10-2 mbar, b) 5×10-1 mbar and c) 10 mbar at
substrate temperature 500 °C
and laser fluence 1.2 J/cm2
Doping effect of noble metal (Ag, Pt, Pd and
Ni).
a
c
b
d
Figure (10) SEM image of the TiO2/Si thin films doping 3% with different noble
metal a) Ag b) Pt c) Pd and d) Ni
SEM of plane grain size (nm)X-ray of plane grain size (nm)sample
2931TiO2 Pure 300°C
3536.3TiO2 Pure 400°C
4041.28TiO2 Pure 500°C
Table (1). The grain size of the TiO2 films
SEM of plane grain size (nm)X-ray of plane grain size (nm)O2 Pressure (mbar)sample
33345×10-2TiO2/Si
39415×10-1TiO2/Si
343610TiO2/Si
SEM of plane grain size (nm)X-ray of plane grain size
(nm)
Dopants atom Radii
(pm)
sample
1515.7126TiO23Ag
1111.6130TiO23Pt
2021.572TiO2Pd 3
181969TiO2Ni 3
Atomic Force Microscopy (AFM)
Substrate
Temperatures effe
(TS)
Figure (11) AFM image of the TiO2/Si thin films deposited at various substrate temperature of
a) 300 C, b) 400 C, c) 500 C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
Oxygen Pressure effect
Figure (12) AFM image of the TiO2/Si thin
films deposited at various oxygen pressure
a ) 5×10-2 mbar, b ) 5×10-1 mbar and c) 10
mbar at substrate temperature 500 °C
and laser fluence 1.2 J/cm2
doping effect of noble metal (Ag ,Pt
,Pd ,and Ni)
b
c
d
a
Figure (13) AFM image of the TiO2/Si thin
films doping 3% with different noble metal a)
Ag b) Pt c) Pd and d) Ni substrate
temperature 500 °C
and laser fluence 1.2 J/cm2 with O2
pressure=10-1 mbar.
Table (2). The RMS and roughness of TiO2 films
from AFM
RMS roughness(nm)AFM of plane grain size (nm)X-ray of plane grain size(nm)sample
2.13031TiO2 Pure 300°C
434.436.3TiO2 Pure 400°C
11.24241.28TiO2 Pure 500°C
RMS
roughness
AFM of plane grain size (nm)X-ray of plane grain size (nm)(O2) Pressure mbarsample
4 (nm)32345×10-2TiO2/Si
6 nm40415×10-1TiO2/Si
16.7nm333610TiO2/Si
RMS roughnessAFM of plane grain size (nm)X-ray of plane grain size (nm)sample
26 nm1615.7TiO2 :3% Ag
28 nm12.411.6TiO2 :3% Pt
23 nm2321.5TiO2 :3% Pd
24 nm20.519TiO2 :3% Ni
Optical Properties
Transmission
0
10
20
30
40
50
60
70
80
90
100
0 200 400 600 800 1000
Wave length (nm)
T(%)
TiO2 400 C
TiO2 300 C
TiO2 200 C
Substrate Temperatures effect (TS)
0
10
20
30
40
50
60
70
80
90
100
0 200 400 600 800 1000
Wave length (nm)
T(%)
10 mbar
10 -2 mbar
10 -1 mbar
Oxygen Pressure effect
0
10
20
30
40
50
60
70
80
90
0 200 400 600 800 1000
Wave length (nm)
T(%)
0.8 J/cm2
1.8 J/cm2
1.2 J/cm2
Laser Fluence effect
0
10
20
30
40
50
60
70
80
90
100
0 200 400 600 800 1000
Wave length (nm)
Transmtance%
TiO2 :3% Ag
TiO2 :3% Pd
TiO2 :3%Ni
TiO2 :3% Pt
TiO2 Pure
Doping effect of noble metal (Ag, Pt, Pd and Ni).
Optical Energy Gap Eg
°
Substrate Temperatures effect (Ts )
doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
direct Eg
doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
Indirect Eg
Table (3) Physical and optical measurements for pure
and doped TiO2 films
Optical energy gab E°g (eV)
(indirect)
Optical energy gab E°g (eV)
(direct)
Samples
3.033.4TiO2 Pure at 200 °C
3.13.5TiO2 Pure at 300 °C
3.23.6TiO2 Pure at 400 °C
3.123.42TiO2:1%Ag at 200 °C
3.203.5TiO2 :2%Ag at 200 °C
3.283.67TiO2 :3%Ag at 200 °C
3.113.41TiO2 :1%Pt at 200 °C
3.193.52TiO2 :2%Pt at 200 °C
3.253.58TiO2 :3%Pt at 200 °C
2.933.42TiO2:1%Pd at 200 °C
2.93.37TiO2 :2%Pd at 200 °C
2.883.32TiO2 :3%Pd at 200 °C
2.943.42TiO2:1%Ni at 200 °C
2.93.38TiO2 :2%Ni at 200 °C
2.83.35TiO2 :3%Ni at 200 °C
Refractive index (n)
0
0.5
1
1.5
2
2.5
3
3.5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
hv (eV)
Refractiveindex(n)
TiO2 400 C
TiO2 300 C
TiO2 200 C
Substrate Temperatures effect (TS)
doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
0
0.5
1
1.5
2
2.5
3
3.5
0 1 2 3 4 5
hv (eV)
Refractiveindex(n)
TiO2 Pure
TiO2 :1%Ag
TiO2 :2% Ag
TiO2 :3%Ag
0
0.5
1
1.5
2
2.5
3
3.5
0 1 2 3 4 5
hv (eV)
Refractiveindex(n)
TiO2 Pure
TiO2 :1% Pt
TiO2 :2% Pt
TiO2 :3%Pt
0
0.5
1
1.5
2
2.5
3
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
hv (eV)
Refractiveindex(n)
TiO2 Pure
TiO2 :3% Pd
TiO2 :2% Pd
TiO2 :1% Pd
0
0.5
1
1.5
2
2.5
3
3.5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
hv (eV)
Refractiveindex(n)
TiO2 Pure
TiO2 :3% Ni
TiO2 :2%Ni
TiO2 :1% Ni
0
0.05
0.1
0.15
0.2
0.25
0.3
0 1 2 3 4 5
hv (eV)
extinctioncoefficient(K)
TiO2 :3% Ag
TiO2 :2% Ag
TiO2 :1% Ag
TiO2 Pure
0
0.05
0.1
0.15
0.2
0.25
0.3
0 1 2 3 4 5
hv (eV)extinctioncoefficient(K)
TiO2 :3%Pt
TiO2 :2%Pt
TiO2 :1%Pt
TiO2 pure
0
0.05
0.1
0.15
0.2
0.25
0.3
0 1 2 3 4 5
hv (eV)
extinctioncoefficient(K)
TiO2 Pure
TiO2 :1%Pd
TiO2 :2%Pd
TiO2 :3%Pd
0
0.05
0.1
0.15
0.2
0.25
0.3
0 1 2 3 4 5
hv (eV)
extinctioncoefficient(K)
TiO2 Pure
TiO2 :1%Ni
TiO2 :2%Ni
TiO2 :3%Ni
Extinction Coefficient
0
0.05
0.1
0.15
0.2
0.25
0.3
0 1 2 3 4 5
hv (eV)
extinctioncoefficient(K)
TiO2 200 C
TiO2 300 C
TiO2 400 C
Substrate Temperatures effect (TS)
doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
Photoluminescence (PL)
Substrate Temperature effect (Ts)
c
a b
Figure (23) Photoluminescence spectrum of pure TiO2/glass thin films deposited at various substrate temperature of
a) 300°C, b) 350 °C, c) 400°C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
The doping effect of noble metals (Ag ,Pt ,Pd ,and Ni)
a b
c d
Figure (24) Photoluminescence spectrum of the TiO2/glass thin films doping 3% with different noble metal a) Ag b) Pt c) Pd
and d) Ni ,at substrate temperature 400 °C
and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar.
Table (4) Energy values and Intensity of PL Peaks
Samples Energy of Peak
A (eV)
Intensity (a.u) Energy of Peak B (eV) Intensity (a.u) Optical energy
gap (eV) E°
g
TiO2 at 300°C 3.06 840 2.39 365 3.03
TiO2 at 350°C 3.12 900 2.4 390 3.1
TiO2 at 400°C 3.22 1000 2.43 415 3.2
TiO2 :3% Ag at
400°C
3.24 280 2.45 150 3.28
TiO2 :3% Pt at
400°C
3.25 540 2.5 380 3.25
TiO2 :3% Pd at
400°C
2.93 810 2.33 350 2.88
TiO2 :3% Ni at
400°C
2.85 820 2.3 400 2.8
Sensing properties
Room Temperature
0
0.02
0.04
0.06
0.08
0.1
0.12
0 200 400 600 800 1000
Time (sec)
Sensetivity
TiO2 Pure
TiO2:3%Pt
TiO2:3%Ag
TiO2:3%Pd
TiO2:3%Ni
Figure (24) Sensitivity for TiO2/glass pure and doping with a )Ag b)Pt c) Pd
d) Ni as a function of operation time for CO gas at Room temperature and
laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
Operation time Effect on sensing properties
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 100 200 300 400 500 600 700 800 900
Time (sec)
Sensitivity
TiO2 Pure
TiO2 :1% Ag
TiO2 :2% Ag
TiO2 :3% Ag
0
0.5
1
1.5
2
2.5
3
3.5
0 100 200 300 400 500 600 700 800 900
Time (sec)
Sensitivity
TiO2 Pure
TiO2 :1% Pt
TiO2 :2% Pt
TiO2 :3% Pt
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0 100 200 300 400 500 600 700 800 900
Time (sec)
Sensitivity
TiO2 Pure
TiO2 :1% Pd
TiO2 :2% Pd
TiO2 :3% Pd
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0 100 200 300 400 500 600 700 800 900
Time (sec)
Sensitivity
TiO2 Pure
TiO2 :1% Ni
TiO2 :2%Ni
TiO2 :3% Ni
a b
d
c
Figure (25) Sensitivity for TiO2/glass pure and doping with a )Ag b)Pt c) Pd d)
Ni as a function of operation time for CO gas at operation temperature 250 C and
laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
Operation time Effect on resistance properties
0
2
4
6
8
10
12
0 200 400 600 800 1000
Time (sec)
Resistance(ohm)*10^9
TiO2 Pure
TiO2 :1% Ag
TiO2 :2% Ag
TiO2 :3% Ag
0
2
4
6
8
10
12
0 200 400 600 800 1000
Time (sec)
Resistance(ohm)*10^9
TiO2 Pure
TiO2 :1% Pt
TiO2 :2% Pt
TiO2 :3% Pt
0
2
4
6
8
10
12
0 200 400 600 800 1000
Time (sec)
Resistance(ohm)*10^9
TiO2 Pure
TiO2 :1% Pd
TiO2 :2% Pd
TiO2 :3% Pd
0
2
4
6
8
10
12
0 200 400 600 800 1000
Time (sec)
Resistance(ohm)*10^9
TiO2 Pure
TiO2 :1% Ni
TiO2 :2% Ni
TiO2 :3% Ni
Figure (26) resistance for TiO2/glass pure and doping with a )Ag b)Pt c)
Pd d) Ni as a function of operation time for CO gas at operation
temperature 250 C and laser fluence 1.2 J/cm2 with O2 pressure=10-1
mbar
a b
c
d
Operation time Effect on current properties
0
1
2
3
4
5
6
7
8
0 200 400 600 800 1000
Time (Sec)
current(nA)
TiO2 pure
TiO2 1% Ag
TiO2 2% Ag
TiO2 3% Ag
0
1
2
3
4
5
6
7
8
9
10
0 200 400 600 800 1000
Time (Sec)
current(nA)
TiO2 pure
TiO2 1%Pt
TiO2 2%Pt
TiO2 3%Pt
0
1
2
3
4
5
6
7
0 200 400 600 800 1000
Time (Sec)
current(nA)
TiO2 pure
TiO2 1% Pd
TiO2 2% Pd
TiO2 3%Pd
0
1
2
3
4
5
6
0 200 400 600 800 1000
Time (Sec)
current(nA)
TiO2 pure
TiO2 1% Ni
TiO2 2% Ni
TiO2 3% Ni
a
d
c
b
Figure (27) current for TiO2 /glass pure and doping with a )Ag
b)Pt c) Pd d) Ni as a function of operation time for CO gas at
operation temperature 250 C and laser fluence 1.2 J/cm2 with O2
pressure=10-1 mbar
Operation temperature Effect on sensing properties
0
0.5
1
1.5
2
2.5
3
0 50 100 150 200 250 300 350 400 450
T(C)
Sensitivity
TiO2 Pure
TiO2 :2% Ag
TiO2 :3% Ag
TiO2 :1% Ag
0
0.5
1
1.5
2
2.5
3
3.5
4
0 50 100 150 200 250 300 350 400 450
T(C)
Sensitivity
TiO2 Pure
TiO2 :2% Pt
TiO2 :3% Pt
TiO2 :1% Pt
0
0.5
1
1.5
2
2.5
0 50 100 150 200 250 300 350 400 450
T(C)
Sensitivity
TiO2 Pure
TiO2 :2% Pd
TiO2 :3% Pd
TiO2 :1% Pd
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0 50 100 150 200 250 300 350 400 450
T(C)
Sensitivity
TiO2 Pure
TiO2 :2% Ni
TiO2 :3%Ni
TiO2 :1% Ni
Figure (28) Sensitivity for TiO2/glass pure and doping with 1% ,2%
and 3% (Ag ,Pt ,Pd ,and Ni) films for CO gas at different operation
temperature and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
a b
c d
Sensitivity of TiO2 /Si
0
5
10
15
20
25
0 100 200 300 400 500
T (C)
Sensitivity
TiO2 Pure
TiO2:3% NI
TiO2:3% Pd
TiO2:3% Ag
TiO2:3%Pt
Figure (29) Sensitivity for TiO2/Si pure and doping with 3% (Ag ,Pt ,Pd ,and Ni) films for
CO gas at different operation temperature at laser fluence 1.2 J/cm2 with O2 pressure=10-
1 mbar
Table (5) Sensitivity values of TiO2 pure and doping with different
noble metal concentration at operation temperature T= 250 °C.
Samples Sensitivity
TiO2 pure/glass 0.5
TiO2 :1% Ag /glass 1.7
TiO2 :2% Ag/glass 2.3
TiO2 :3% Ag/glass 2.7
TiO2 :1% Pt/glass 2.2
TiO2 :2% Pt/glass 3
TiO2 :3% Pt/glass 3.3
TiO2 :1% Pd/glass 1.5
TiO2 :2% Pd/glass 1.9
TiO2 :3% Pd/glass 2.2
TiO2 :1% Ni/glass 0.85
TiO2 :2% Ni/glass 1.2
TiO2 :3% Ni/glass 1.5
TiO2 pure/Si 7.5
TiO2 :3% Ag/ Si 17
TiO2 :3% Pt/ Si 23
TiO2 :3% Pd/ Si 15
TiO2 :3% Ni/ Si 12.5
The results in this work agreement with
other results as shown in table below :
References Metal dopantTiO2 Selectivity Sensitivity
[46] - CO 2
[136] - CO 4
[45] - Ethanol and methanol vapor 5
[30] Pt CO 20
[39] Pd CO , H2 4 , 2.5
[81] Nb CO 14
[this work] Pt CO 23
Ag CO 17
Pd CO 14
Ni CO 11
- CO 7.5
Conclusion
Pure TiO2 showed poor response to CO gas.
3 % wt Ag ,Pt ,Pd and Ni doped TiO2 thin film was the
most sensitive element to CO gas .
The optimum operating temperature for CO gas
sensing was (250) °C .
 Ag ,Pt ,Pd and Ni doped TiO2 thin film would be
suitable for fabricating the CO gas sensors.
The sensor TiO2 doping with Pt showed good
selectivity to CO gas.
TiO2 deposited on silicon has sensitivity to CO gas
higher than TiO2 deposited on glass
Future Work
• 1- Studying (TiO2) films as
antireflection coating on (p-n)
junction solar cells and as a
photocatalyst .
• 2- Using a mixing of background gas
N2 + O2 with high vacuum to
enhancement the quality of the films.
• 3- Studying (TiO2) films as a gas
sensor for NO2 and H2 gas .
Paper accepted
1- “Structural and optical properties of TiO 2 photocatalyst thin
film produced by PLD”.
Iraqi Journal science 3rd Scientific conference Baghdad University.
2- "Investigation of structural and Morphology properties of
Nanocrystalline thin films prepared by PLD ".
Journal of the collage education in the 6th conference on physics .
Paper submitted
3-" Structure and Morphology properties of nanocrystalline
noble metal doped films for gas sensing properties "
-2nd conference of nano technology and advance material and their
application .
4-" Nanostructure dopants TiO2 films for gas sensing".
Iraqi Journal of applied physics .
UNIVERSITY OF
TECHNOLOGY

Mais conteúdo relacionado

Mais procurados

Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]
Milan Van Bree
 
Photoelectrochemical Water Splitting
Photoelectrochemical Water SplittingPhotoelectrochemical Water Splitting
Photoelectrochemical Water Splitting
chkxu
 
Optical properties of nanomaterials
Optical properties of nanomaterialsOptical properties of nanomaterials
Optical properties of nanomaterials
udhay roopavath
 

Mais procurados (20)

Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]
 
Magnetron sputtering
Magnetron sputteringMagnetron sputtering
Magnetron sputtering
 
why and how thin films
why and how thin filmswhy and how thin films
why and how thin films
 
chapter1.pptx
chapter1.pptxchapter1.pptx
chapter1.pptx
 
Ferrites
Ferrites Ferrites
Ferrites
 
Crystal growth
Crystal growthCrystal growth
Crystal growth
 
Pulsed Laser Ablation
Pulsed Laser AblationPulsed Laser Ablation
Pulsed Laser Ablation
 
Photoelectrochemical Water Splitting
Photoelectrochemical Water SplittingPhotoelectrochemical Water Splitting
Photoelectrochemical Water Splitting
 
New Material:Perovskites presentation
New Material:Perovskites presentationNew Material:Perovskites presentation
New Material:Perovskites presentation
 
CVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUESCVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUES
 
Optical properties of nanomaterials
Optical properties of nanomaterialsOptical properties of nanomaterials
Optical properties of nanomaterials
 
Synthesis of graphene
Synthesis of grapheneSynthesis of graphene
Synthesis of graphene
 
Chemical Vaour Deposition & Physical Vapour Deposition techniques.
Chemical Vaour Deposition & Physical Vapour Deposition techniques.Chemical Vaour Deposition & Physical Vapour Deposition techniques.
Chemical Vaour Deposition & Physical Vapour Deposition techniques.
 
6.a.preparation of thin films
6.a.preparation of thin films6.a.preparation of thin films
6.a.preparation of thin films
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin film
 
degradation of pollution and photocatalysis
degradation of pollution and photocatalysisdegradation of pollution and photocatalysis
degradation of pollution and photocatalysis
 
Synthesis and characterization of nano tio2 via different methods
Synthesis and characterization of nano tio2 via different methodsSynthesis and characterization of nano tio2 via different methods
Synthesis and characterization of nano tio2 via different methods
 
Electron beam lithography
Electron beam lithographyElectron beam lithography
Electron beam lithography
 
Vapour Solid Liquid Growth
Vapour Solid Liquid GrowthVapour Solid Liquid Growth
Vapour Solid Liquid Growth
 
Hydrothermal &solvothermal methods jeyakiruba
Hydrothermal &solvothermal methods jeyakirubaHydrothermal &solvothermal methods jeyakiruba
Hydrothermal &solvothermal methods jeyakiruba
 

Destaque

Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) ...
Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) ...Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) ...
Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) ...
sarmad
 
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of  la1 x srxmno3 perovskite nanoparticlesSynthesis and charaterization of  la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Mai Trần
 
Pulsed laser deposition
Pulsed laser depositionPulsed laser deposition
Pulsed laser deposition
Oleg Maksimov
 
Pulsed nd yag laser welding
Pulsed nd yag laser weldingPulsed nd yag laser welding
Pulsed nd yag laser welding
Vardaan Sharma
 
Optical fiber communications
Optical fiber communicationsOptical fiber communications
Optical fiber communications
Raju vaghela
 
Introduction to raman spectroscopy
Introduction to raman spectroscopyIntroduction to raman spectroscopy
Introduction to raman spectroscopy
amirhosein66
 

Destaque (20)

Laser ppt
Laser pptLaser ppt
Laser ppt
 
50W single-mode linearly polarized high peak power pulsed fiber laser
50W single-mode linearly polarized high peak power pulsed fiber laser50W single-mode linearly polarized high peak power pulsed fiber laser
50W single-mode linearly polarized high peak power pulsed fiber laser
 
Chemistry and physics of dssc ppt
Chemistry and physics of dssc pptChemistry and physics of dssc ppt
Chemistry and physics of dssc ppt
 
Synthesis and applications of graphene based ti o2 photocatalysts
Synthesis and applications of graphene based ti o2 photocatalystsSynthesis and applications of graphene based ti o2 photocatalysts
Synthesis and applications of graphene based ti o2 photocatalysts
 
Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) ...
Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) ...Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) ...
Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) ...
 
Optical fibre communication
Optical fibre communicationOptical fibre communication
Optical fibre communication
 
Presentation on optical fiber communication
Presentation on optical fiber communicationPresentation on optical fiber communication
Presentation on optical fiber communication
 
Design and development of solar pumped Nd:YAG Laser
Design and development of solar pumped Nd:YAG LaserDesign and development of solar pumped Nd:YAG Laser
Design and development of solar pumped Nd:YAG Laser
 
Effect of Annealing on the Structural and Optical Properties of Nanostr...
Effect of Annealing on the Structural and       Optical Properties of Nanostr...Effect of Annealing on the Structural and       Optical Properties of Nanostr...
Effect of Annealing on the Structural and Optical Properties of Nanostr...
 
Optical fibre communication basics
Optical fibre communication basicsOptical fibre communication basics
Optical fibre communication basics
 
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of  la1 x srxmno3 perovskite nanoparticlesSynthesis and charaterization of  la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
 
Pulsed laser deposition
Pulsed laser depositionPulsed laser deposition
Pulsed laser deposition
 
Pulsed nd yag laser welding
Pulsed nd yag laser weldingPulsed nd yag laser welding
Pulsed nd yag laser welding
 
Zirconia crowns for primary anterior and posterior teeth
Zirconia crowns for primary anterior and posterior teethZirconia crowns for primary anterior and posterior teeth
Zirconia crowns for primary anterior and posterior teeth
 
Crystal Growth
Crystal GrowthCrystal Growth
Crystal Growth
 
Optical fiber communications
Optical fiber communicationsOptical fiber communications
Optical fiber communications
 
Zirconia all ceramic restorations/ dentistry course in india
Zirconia all ceramic restorations/ dentistry course in indiaZirconia all ceramic restorations/ dentistry course in india
Zirconia all ceramic restorations/ dentistry course in india
 
Thin films
Thin films Thin films
Thin films
 
Introduction to raman spectroscopy
Introduction to raman spectroscopyIntroduction to raman spectroscopy
Introduction to raman spectroscopy
 
ND YAG laser
ND YAG laserND YAG laser
ND YAG laser
 

Semelhante a Characterization of different dopants in TiO2 Structure by Pulsed Laser Deposition

Paper id 21201475
Paper id 21201475Paper id 21201475
Paper id 21201475
IJRAT
 
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Pawan Kumar
 
Presentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptPresentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.ppt
RezaMohammadi90
 
SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016
myrahalimi
 
2012 TPCA presentation _New process
2012 TPCA presentation _New process2012 TPCA presentation _New process
2012 TPCA presentation _New process
? ??
 
Annealing effect on the growth of nanostructured ti o2 thin films by pulsed l...
Annealing effect on the growth of nanostructured ti o2 thin films by pulsed l...Annealing effect on the growth of nanostructured ti o2 thin films by pulsed l...
Annealing effect on the growth of nanostructured ti o2 thin films by pulsed l...
sarmad
 

Semelhante a Characterization of different dopants in TiO2 Structure by Pulsed Laser Deposition (20)

Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...
 
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...
 
10.1007_s12633-015-9356-x
10.1007_s12633-015-9356-x10.1007_s12633-015-9356-x
10.1007_s12633-015-9356-x
 
Paper id 21201475
Paper id 21201475Paper id 21201475
Paper id 21201475
 
Synthesis of Titaniumdioxide (TIO2) Nano Particles
Synthesis of Titaniumdioxide (TIO2) Nano ParticlesSynthesis of Titaniumdioxide (TIO2) Nano Particles
Synthesis of Titaniumdioxide (TIO2) Nano Particles
 
Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...
 
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
 
Ayida8thnov
Ayida8thnovAyida8thnov
Ayida8thnov
 
IRJET- Sonochemical Synthesis of Tio2 and Tio2-Sio2 Nanocomposites and their ...
IRJET- Sonochemical Synthesis of Tio2 and Tio2-Sio2 Nanocomposites and their ...IRJET- Sonochemical Synthesis of Tio2 and Tio2-Sio2 Nanocomposites and their ...
IRJET- Sonochemical Synthesis of Tio2 and Tio2-Sio2 Nanocomposites and their ...
 
Presentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptPresentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.ppt
 
SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016
 
2012 TPCA presentation _New process
2012 TPCA presentation _New process2012 TPCA presentation _New process
2012 TPCA presentation _New process
 
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
 
Km2518391842
Km2518391842Km2518391842
Km2518391842
 
Km2518391842
Km2518391842Km2518391842
Km2518391842
 
10.1007_s11082-015-0120-7
10.1007_s11082-015-0120-710.1007_s11082-015-0120-7
10.1007_s11082-015-0120-7
 
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
 
Annealing effect on the growth of nanostructured ti o2 thin films by pulsed l...
Annealing effect on the growth of nanostructured ti o2 thin films by pulsed l...Annealing effect on the growth of nanostructured ti o2 thin films by pulsed l...
Annealing effect on the growth of nanostructured ti o2 thin films by pulsed l...
 
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
 
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
 

Mais de sarmad

Study of Annealing Effect on the Some Physical Properties of Nanostructured T...
Study of Annealing Effect on the Some Physical Properties of Nanostructured T...Study of Annealing Effect on the Some Physical Properties of Nanostructured T...
Study of Annealing Effect on the Some Physical Properties of Nanostructured T...
sarmad
 
Heterojunction المفرق الهجين
Heterojunction المفرق الهجين Heterojunction المفرق الهجين
Heterojunction المفرق الهجين
sarmad
 

Mais de sarmad (6)

Study of Annealing Effect on the Some Physical Properties of Nanostructured T...
Study of Annealing Effect on the Some Physical Properties of Nanostructured T...Study of Annealing Effect on the Some Physical Properties of Nanostructured T...
Study of Annealing Effect on the Some Physical Properties of Nanostructured T...
 
ZnO:Fe ودراسة بعض الخصائص الفيزيائية وظروف الترسيب للمركب APCVD تصميم وتصني...
ZnO:Fe ودراسة بعض الخصائص الفيزيائية وظروف الترسيب للمركب  APCVD  تصميم وتصني...ZnO:Fe ودراسة بعض الخصائص الفيزيائية وظروف الترسيب للمركب  APCVD  تصميم وتصني...
ZnO:Fe ودراسة بعض الخصائص الفيزيائية وظروف الترسيب للمركب APCVD تصميم وتصني...
 
مقدمة في فيزياء الليزر
مقدمة في فيزياء الليزرمقدمة في فيزياء الليزر
مقدمة في فيزياء الليزر
 
Cd2SnO4 دراسة تأثير التلدين على الخواص التركيبية والبصرية لأغشية
   Cd2SnO4 دراسة تأثير التلدين على الخواص التركيبية والبصرية لأغشية    Cd2SnO4 دراسة تأثير التلدين على الخواص التركيبية والبصرية لأغشية
Cd2SnO4 دراسة تأثير التلدين على الخواص التركيبية والبصرية لأغشية
 
Effect of annealing on the structural and optical properties of nanostructure...
Effect of annealing on the structural and optical properties of nanostructure...Effect of annealing on the structural and optical properties of nanostructure...
Effect of annealing on the structural and optical properties of nanostructure...
 
Heterojunction المفرق الهجين
Heterojunction المفرق الهجين Heterojunction المفرق الهجين
Heterojunction المفرق الهجين
 

Último

Último (20)

Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 

Characterization of different dopants in TiO2 Structure by Pulsed Laser Deposition

  • 1. UNIVERSITY OF TECHNOLOGY A thesis submitted By Khaled Z.Yahya
  • 2.
  • 3. PLD: Pulsed Laser Deposition The interaction of the laser beam with the target resulting in evaporation of the surface layers. The interaction of the laser beam with the evaporation materials causing the formation of isothermal expanding plasma. The expansion of the laser induced plasma with a rapid transfer of thermal energy of the species in plasma into kinetic energy. Thin film growth.
  • 5. Why TiO2 ? Titanium dioxide (TiO2) is a wide band gap ( ) eV for anatase and 3 eV for rutile . Titanium dioxide have high refractive index - up to 2.7 (at wavelength of 600nm) Titanium dioxide good chemical resistance and high chemical stability. Titanium dioxide good sensitivity to poison gases. Titanium dioxide good photocatalysts.
  • 7. TiO2 gas sensor • TiO2 based sensor are predominant solid-state gas sensors for domestic, commercial and industrial application. • •Low cost • •Easy production • •Rigid construction • •Compact size • •Simple measuring electronics
  • 8. Aim of the work The aim of this work is to reveal specific properties of TiO2 nanostructure prepared by pulsed laser deposition technique TiO2 samples have been prepared at different dopant noble metal such as (Pd ,Pt, Ni, Ag,…) The main objective of this work are : • 1. Characteristics of structural , microstructural and photoluminescence properties of thin films . • 2. Studying the sensitivity and selectivity of these films doped with different noble metal deposited by PLD to CO gas.
  • 9.
  • 11.
  • 14. Characterization Measurements of prepare films Films thickness measurement XRD Study TCO film Morphology SEM ,AFM Optical properties photoluminescence properties Gas sensor measurement
  • 15. a)SEM b)AFM c)PL d)Gas sensing c d a ba b
  • 16.
  • 17. •Substrate Temperatures effect (Ts ) c b a 2θ (degree) A :anatase Figure (1) XRD spectra of TiO2/glass at different temperature a) 200ºC b) 300ºC, c)400ºC Intensity (a.u) laser fluence 0.8 J/cm2 oxygen pressure 5 *10-1 Torr
  • 19. FWHM and Main grain size 0 10 20 30 40 50 250 300 350 400 450 500 550 Temperature °C Maingrainsize(nm) 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 250 300 350 400 450 500 550 Temperature °C FWHM° a b Figure (3) TiO2 A(101) thin films grown on Si (111) at different substrate temperature for (a) main grain size (b)FWHM
  • 20. Oxygen pressure effect Fig (4) XRD patterns of TiO2 films grown on Si at various oxygen pressures a) 5×10-2 Torr b) 5×10-1 Torr c) 10 Torr Intens ity (a.u) 2θ (degree)
  • 21. Laser Fluence effect Fig (5) XRD patterns of TiO2 films grown on Si at various laser fluence a) 1.2 b) 0.8 c) 1.8 J/cm2
  • 22. Doping effect of noble metal (Ag, Pt, Pd and Ni).
  • 23. X - ray Florescence Fig (7) X-ray florescence pattern for a) TiO2 pure b) TiO2 3% Ag c) TiO2 3% Pt d) TiO2 3% Pd e) TiO2 3% Ni . a b
  • 24.
  • 25. SEM Substrate Temperatures effect (Ts ) Figure (8) SEM image of the TiO2/Si thin films deposited at various temperature of a) 300°C, b) 400°C, c) 500°C, and laser fluence 1.2 J/cm2 ,O2 pressure= 10-1 mbar
  • 26. Oxygen pressure effect c ba Figure (9) SEM image of the TiO2/Si thin films deposited at various oxygen pressure a ) 5×10-2 mbar, b) 5×10-1 mbar and c) 10 mbar at substrate temperature 500 °C and laser fluence 1.2 J/cm2
  • 27. Doping effect of noble metal (Ag, Pt, Pd and Ni). a c b d Figure (10) SEM image of the TiO2/Si thin films doping 3% with different noble metal a) Ag b) Pt c) Pd and d) Ni
  • 28. SEM of plane grain size (nm)X-ray of plane grain size (nm)sample 2931TiO2 Pure 300°C 3536.3TiO2 Pure 400°C 4041.28TiO2 Pure 500°C Table (1). The grain size of the TiO2 films SEM of plane grain size (nm)X-ray of plane grain size (nm)O2 Pressure (mbar)sample 33345×10-2TiO2/Si 39415×10-1TiO2/Si 343610TiO2/Si SEM of plane grain size (nm)X-ray of plane grain size (nm) Dopants atom Radii (pm) sample 1515.7126TiO23Ag 1111.6130TiO23Pt 2021.572TiO2Pd 3 181969TiO2Ni 3
  • 29. Atomic Force Microscopy (AFM) Substrate Temperatures effe (TS) Figure (11) AFM image of the TiO2/Si thin films deposited at various substrate temperature of a) 300 C, b) 400 C, c) 500 C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
  • 30. Oxygen Pressure effect Figure (12) AFM image of the TiO2/Si thin films deposited at various oxygen pressure a ) 5×10-2 mbar, b ) 5×10-1 mbar and c) 10 mbar at substrate temperature 500 °C and laser fluence 1.2 J/cm2
  • 31. doping effect of noble metal (Ag ,Pt ,Pd ,and Ni) b c d a Figure (13) AFM image of the TiO2/Si thin films doping 3% with different noble metal a) Ag b) Pt c) Pd and d) Ni substrate temperature 500 °C and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar.
  • 32. Table (2). The RMS and roughness of TiO2 films from AFM RMS roughness(nm)AFM of plane grain size (nm)X-ray of plane grain size(nm)sample 2.13031TiO2 Pure 300°C 434.436.3TiO2 Pure 400°C 11.24241.28TiO2 Pure 500°C RMS roughness AFM of plane grain size (nm)X-ray of plane grain size (nm)(O2) Pressure mbarsample 4 (nm)32345×10-2TiO2/Si 6 nm40415×10-1TiO2/Si 16.7nm333610TiO2/Si RMS roughnessAFM of plane grain size (nm)X-ray of plane grain size (nm)sample 26 nm1615.7TiO2 :3% Ag 28 nm12.411.6TiO2 :3% Pt 23 nm2321.5TiO2 :3% Pd 24 nm20.519TiO2 :3% Ni
  • 33. Optical Properties Transmission 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 1000 Wave length (nm) T(%) TiO2 400 C TiO2 300 C TiO2 200 C Substrate Temperatures effect (TS) 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 1000 Wave length (nm) T(%) 10 mbar 10 -2 mbar 10 -1 mbar Oxygen Pressure effect 0 10 20 30 40 50 60 70 80 90 0 200 400 600 800 1000 Wave length (nm) T(%) 0.8 J/cm2 1.8 J/cm2 1.2 J/cm2 Laser Fluence effect 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 1000 Wave length (nm) Transmtance% TiO2 :3% Ag TiO2 :3% Pd TiO2 :3%Ni TiO2 :3% Pt TiO2 Pure Doping effect of noble metal (Ag, Pt, Pd and Ni).
  • 34. Optical Energy Gap Eg ° Substrate Temperatures effect (Ts )
  • 35. doping effect of noble metal (Ag ,Pt ,Pd ,and Ni) direct Eg
  • 36. doping effect of noble metal (Ag ,Pt ,Pd ,and Ni) Indirect Eg
  • 37. Table (3) Physical and optical measurements for pure and doped TiO2 films Optical energy gab E°g (eV) (indirect) Optical energy gab E°g (eV) (direct) Samples 3.033.4TiO2 Pure at 200 °C 3.13.5TiO2 Pure at 300 °C 3.23.6TiO2 Pure at 400 °C 3.123.42TiO2:1%Ag at 200 °C 3.203.5TiO2 :2%Ag at 200 °C 3.283.67TiO2 :3%Ag at 200 °C 3.113.41TiO2 :1%Pt at 200 °C 3.193.52TiO2 :2%Pt at 200 °C 3.253.58TiO2 :3%Pt at 200 °C 2.933.42TiO2:1%Pd at 200 °C 2.93.37TiO2 :2%Pd at 200 °C 2.883.32TiO2 :3%Pd at 200 °C 2.943.42TiO2:1%Ni at 200 °C 2.93.38TiO2 :2%Ni at 200 °C 2.83.35TiO2 :3%Ni at 200 °C
  • 38. Refractive index (n) 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 hv (eV) Refractiveindex(n) TiO2 400 C TiO2 300 C TiO2 200 C Substrate Temperatures effect (TS) doping effect of noble metal (Ag ,Pt ,Pd ,and Ni) 0 0.5 1 1.5 2 2.5 3 3.5 0 1 2 3 4 5 hv (eV) Refractiveindex(n) TiO2 Pure TiO2 :1%Ag TiO2 :2% Ag TiO2 :3%Ag 0 0.5 1 1.5 2 2.5 3 3.5 0 1 2 3 4 5 hv (eV) Refractiveindex(n) TiO2 Pure TiO2 :1% Pt TiO2 :2% Pt TiO2 :3%Pt 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 hv (eV) Refractiveindex(n) TiO2 Pure TiO2 :3% Pd TiO2 :2% Pd TiO2 :1% Pd 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 hv (eV) Refractiveindex(n) TiO2 Pure TiO2 :3% Ni TiO2 :2%Ni TiO2 :1% Ni
  • 39. 0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5 hv (eV) extinctioncoefficient(K) TiO2 :3% Ag TiO2 :2% Ag TiO2 :1% Ag TiO2 Pure 0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5 hv (eV)extinctioncoefficient(K) TiO2 :3%Pt TiO2 :2%Pt TiO2 :1%Pt TiO2 pure 0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5 hv (eV) extinctioncoefficient(K) TiO2 Pure TiO2 :1%Pd TiO2 :2%Pd TiO2 :3%Pd 0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5 hv (eV) extinctioncoefficient(K) TiO2 Pure TiO2 :1%Ni TiO2 :2%Ni TiO2 :3%Ni Extinction Coefficient 0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5 hv (eV) extinctioncoefficient(K) TiO2 200 C TiO2 300 C TiO2 400 C Substrate Temperatures effect (TS) doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
  • 40. Photoluminescence (PL) Substrate Temperature effect (Ts) c a b Figure (23) Photoluminescence spectrum of pure TiO2/glass thin films deposited at various substrate temperature of a) 300°C, b) 350 °C, c) 400°C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
  • 41. The doping effect of noble metals (Ag ,Pt ,Pd ,and Ni) a b c d Figure (24) Photoluminescence spectrum of the TiO2/glass thin films doping 3% with different noble metal a) Ag b) Pt c) Pd and d) Ni ,at substrate temperature 400 °C and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar.
  • 42. Table (4) Energy values and Intensity of PL Peaks Samples Energy of Peak A (eV) Intensity (a.u) Energy of Peak B (eV) Intensity (a.u) Optical energy gap (eV) E° g TiO2 at 300°C 3.06 840 2.39 365 3.03 TiO2 at 350°C 3.12 900 2.4 390 3.1 TiO2 at 400°C 3.22 1000 2.43 415 3.2 TiO2 :3% Ag at 400°C 3.24 280 2.45 150 3.28 TiO2 :3% Pt at 400°C 3.25 540 2.5 380 3.25 TiO2 :3% Pd at 400°C 2.93 810 2.33 350 2.88 TiO2 :3% Ni at 400°C 2.85 820 2.3 400 2.8
  • 43. Sensing properties Room Temperature 0 0.02 0.04 0.06 0.08 0.1 0.12 0 200 400 600 800 1000 Time (sec) Sensetivity TiO2 Pure TiO2:3%Pt TiO2:3%Ag TiO2:3%Pd TiO2:3%Ni Figure (24) Sensitivity for TiO2/glass pure and doping with a )Ag b)Pt c) Pd d) Ni as a function of operation time for CO gas at Room temperature and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
  • 44. Operation time Effect on sensing properties 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 100 200 300 400 500 600 700 800 900 Time (sec) Sensitivity TiO2 Pure TiO2 :1% Ag TiO2 :2% Ag TiO2 :3% Ag 0 0.5 1 1.5 2 2.5 3 3.5 0 100 200 300 400 500 600 700 800 900 Time (sec) Sensitivity TiO2 Pure TiO2 :1% Pt TiO2 :2% Pt TiO2 :3% Pt 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 100 200 300 400 500 600 700 800 900 Time (sec) Sensitivity TiO2 Pure TiO2 :1% Pd TiO2 :2% Pd TiO2 :3% Pd 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 100 200 300 400 500 600 700 800 900 Time (sec) Sensitivity TiO2 Pure TiO2 :1% Ni TiO2 :2%Ni TiO2 :3% Ni a b d c Figure (25) Sensitivity for TiO2/glass pure and doping with a )Ag b)Pt c) Pd d) Ni as a function of operation time for CO gas at operation temperature 250 C and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
  • 45. Operation time Effect on resistance properties 0 2 4 6 8 10 12 0 200 400 600 800 1000 Time (sec) Resistance(ohm)*10^9 TiO2 Pure TiO2 :1% Ag TiO2 :2% Ag TiO2 :3% Ag 0 2 4 6 8 10 12 0 200 400 600 800 1000 Time (sec) Resistance(ohm)*10^9 TiO2 Pure TiO2 :1% Pt TiO2 :2% Pt TiO2 :3% Pt 0 2 4 6 8 10 12 0 200 400 600 800 1000 Time (sec) Resistance(ohm)*10^9 TiO2 Pure TiO2 :1% Pd TiO2 :2% Pd TiO2 :3% Pd 0 2 4 6 8 10 12 0 200 400 600 800 1000 Time (sec) Resistance(ohm)*10^9 TiO2 Pure TiO2 :1% Ni TiO2 :2% Ni TiO2 :3% Ni Figure (26) resistance for TiO2/glass pure and doping with a )Ag b)Pt c) Pd d) Ni as a function of operation time for CO gas at operation temperature 250 C and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar a b c d
  • 46. Operation time Effect on current properties 0 1 2 3 4 5 6 7 8 0 200 400 600 800 1000 Time (Sec) current(nA) TiO2 pure TiO2 1% Ag TiO2 2% Ag TiO2 3% Ag 0 1 2 3 4 5 6 7 8 9 10 0 200 400 600 800 1000 Time (Sec) current(nA) TiO2 pure TiO2 1%Pt TiO2 2%Pt TiO2 3%Pt 0 1 2 3 4 5 6 7 0 200 400 600 800 1000 Time (Sec) current(nA) TiO2 pure TiO2 1% Pd TiO2 2% Pd TiO2 3%Pd 0 1 2 3 4 5 6 0 200 400 600 800 1000 Time (Sec) current(nA) TiO2 pure TiO2 1% Ni TiO2 2% Ni TiO2 3% Ni a d c b Figure (27) current for TiO2 /glass pure and doping with a )Ag b)Pt c) Pd d) Ni as a function of operation time for CO gas at operation temperature 250 C and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
  • 47. Operation temperature Effect on sensing properties 0 0.5 1 1.5 2 2.5 3 0 50 100 150 200 250 300 350 400 450 T(C) Sensitivity TiO2 Pure TiO2 :2% Ag TiO2 :3% Ag TiO2 :1% Ag 0 0.5 1 1.5 2 2.5 3 3.5 4 0 50 100 150 200 250 300 350 400 450 T(C) Sensitivity TiO2 Pure TiO2 :2% Pt TiO2 :3% Pt TiO2 :1% Pt 0 0.5 1 1.5 2 2.5 0 50 100 150 200 250 300 350 400 450 T(C) Sensitivity TiO2 Pure TiO2 :2% Pd TiO2 :3% Pd TiO2 :1% Pd 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 50 100 150 200 250 300 350 400 450 T(C) Sensitivity TiO2 Pure TiO2 :2% Ni TiO2 :3%Ni TiO2 :1% Ni Figure (28) Sensitivity for TiO2/glass pure and doping with 1% ,2% and 3% (Ag ,Pt ,Pd ,and Ni) films for CO gas at different operation temperature and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar a b c d
  • 48. Sensitivity of TiO2 /Si 0 5 10 15 20 25 0 100 200 300 400 500 T (C) Sensitivity TiO2 Pure TiO2:3% NI TiO2:3% Pd TiO2:3% Ag TiO2:3%Pt Figure (29) Sensitivity for TiO2/Si pure and doping with 3% (Ag ,Pt ,Pd ,and Ni) films for CO gas at different operation temperature at laser fluence 1.2 J/cm2 with O2 pressure=10- 1 mbar
  • 49. Table (5) Sensitivity values of TiO2 pure and doping with different noble metal concentration at operation temperature T= 250 °C. Samples Sensitivity TiO2 pure/glass 0.5 TiO2 :1% Ag /glass 1.7 TiO2 :2% Ag/glass 2.3 TiO2 :3% Ag/glass 2.7 TiO2 :1% Pt/glass 2.2 TiO2 :2% Pt/glass 3 TiO2 :3% Pt/glass 3.3 TiO2 :1% Pd/glass 1.5 TiO2 :2% Pd/glass 1.9 TiO2 :3% Pd/glass 2.2 TiO2 :1% Ni/glass 0.85 TiO2 :2% Ni/glass 1.2 TiO2 :3% Ni/glass 1.5 TiO2 pure/Si 7.5 TiO2 :3% Ag/ Si 17 TiO2 :3% Pt/ Si 23 TiO2 :3% Pd/ Si 15 TiO2 :3% Ni/ Si 12.5
  • 50. The results in this work agreement with other results as shown in table below : References Metal dopantTiO2 Selectivity Sensitivity [46] - CO 2 [136] - CO 4 [45] - Ethanol and methanol vapor 5 [30] Pt CO 20 [39] Pd CO , H2 4 , 2.5 [81] Nb CO 14 [this work] Pt CO 23 Ag CO 17 Pd CO 14 Ni CO 11 - CO 7.5
  • 51. Conclusion Pure TiO2 showed poor response to CO gas. 3 % wt Ag ,Pt ,Pd and Ni doped TiO2 thin film was the most sensitive element to CO gas . The optimum operating temperature for CO gas sensing was (250) °C .  Ag ,Pt ,Pd and Ni doped TiO2 thin film would be suitable for fabricating the CO gas sensors. The sensor TiO2 doping with Pt showed good selectivity to CO gas. TiO2 deposited on silicon has sensitivity to CO gas higher than TiO2 deposited on glass
  • 52. Future Work • 1- Studying (TiO2) films as antireflection coating on (p-n) junction solar cells and as a photocatalyst . • 2- Using a mixing of background gas N2 + O2 with high vacuum to enhancement the quality of the films. • 3- Studying (TiO2) films as a gas sensor for NO2 and H2 gas .
  • 53. Paper accepted 1- “Structural and optical properties of TiO 2 photocatalyst thin film produced by PLD”. Iraqi Journal science 3rd Scientific conference Baghdad University. 2- "Investigation of structural and Morphology properties of Nanocrystalline thin films prepared by PLD ". Journal of the collage education in the 6th conference on physics . Paper submitted 3-" Structure and Morphology properties of nanocrystalline noble metal doped films for gas sensing properties " -2nd conference of nano technology and advance material and their application . 4-" Nanostructure dopants TiO2 films for gas sensing". Iraqi Journal of applied physics .