SlideShare uma empresa Scribd logo
1 de 58
The System of Rice Intensification (SRI):   An Opportunity for Raising Productivity in the 21st Century International Year of Rice Conference FAO, Rome, Feb. 12-13, 2004 Norman Uphoff, CIIFAD Cornell University, USA
The System of Rice Intensification  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Fr. Henri de Laulanié, SJ
Sebastien Rafaralahy and Justin Rabenandrasana
SRI In Summary : A set of principles/methods for getting more productive PHENOTYPES   from  existing GENOTYPES  of rice.  SRI  changes the management  of  plants, soil, water, and nutrients  to (a) induce   greater ROOT growth   and (b) nurture  more abundant and diverse   populations of SOIL BIOTA .
Plant Physical Structure and  Light Intensity Distribution  at Heading Stage   (CNRRI Research --Tao et al. 2002)
Single Cambodian rice plant transplanted at 10 days
Starting Points for SRI: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Results from These Practices ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
SRI Results Are Achieved with: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SRI sounds ILLOGICAL ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
How Can LESS Produce MORE? ,[object Object],[object Object],[object Object],[object Object],[object Object]
SRI  Experience Is Spreading ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Most Recent Spread is to Andhra Pradesh, India ,[object Object],[object Object],[object Object],[object Object]
Average SRI Yields Impressive -- But Big  Increases  Are Remarkable   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SRI field in Sri Lanka -- yield of 13 t/ha with panicles having 400+ grains
 
CFA Camilo Cienfuegos, Cuba 14 t/ha -- Variety Los Palacios 9
Two rice fields in Sri Lanka -- same variety, same irrigation system, and  same drought  : conventional methods (left), SRI (right)
SRI Data from Sri Lanka ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SRI Data from Sri Lanka ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
SRI CONCEPTS CAN BE APPLIED TO  UPLAND PRODUCTION Results of trials (N=20) by Philippine NGO, Broader Initiatives for Negros Development,  with  Azucena  local variety (4,000 m 2  area) --  using  mulch  as main innovation, not young plants
Different paradigms of production   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
(1) ROOT SYSTEM PROMOTION  ,[object Object],[object Object],[object Object],[object Object]
A SRI Rice Plant Root at Maruteru Rice Research Station, AP
Cuba -- Variety 2084 (Bollito) -- 52  DAP
Dry Matter Distribution of Roots in SRI and Conventionally-Grown Plants at Heading Stage  (CNRRI research: Tao et al. 2002) Root dry weight (g)
Root Oxygenation Ability with SRI  vs. Conventionally-Grown Rice Research done at Nanjing Agricultural University, Wuxianggeng 9 variety (Wang et al. 2002)
SRI farmer in Cambodia
SRI farmer in Cuba -- 14 t/ha
Root Research Reported by  Dr. Ana Primavesi (1980) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
(2) Contribution of SOIL MICROBIAL PROCESSES ,[object Object],[object Object]
Bacteria, funguses, protozoa, amoeba, actinomycetes, etc. ,[object Object],[object Object],[object Object]
Known Processes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
(3) Impact of Transplanting  YOUNG SEEDLINGS ,[object Object],[object Object],[object Object]
Seeder Developed in Cuba
 
 
What speeds up the biological clock?   (adapted from Nemoto et al. 1995) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Effect of Young Seedlings ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Effects of SRI vs. Conventional Practices Comparing Varietal and Soil Differences
Conclusions ,[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusions  (continued) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusions  (continued) ,[object Object],[object Object],[object Object],[object Object]
Spread of SRI in Asia
Spread of SRI in Africa ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Spread of SRI in Latin America ,[object Object],[object Object],[object Object]
Thank You for Opportunity to Share Ideas With You ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
 
 
 
 
.
 

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

0208 Implications of the System of Rice Intensification for Sustainable Agric...
0208 Implications of the System of Rice Intensification for Sustainable Agric...0208 Implications of the System of Rice Intensification for Sustainable Agric...
0208 Implications of the System of Rice Intensification for Sustainable Agric...
 
0203 The System of Rice Intensification An Opportunity for Improving Food Sec...
0203 The System of Rice Intensification An Opportunity for Improving Food Sec...0203 The System of Rice Intensification An Opportunity for Improving Food Sec...
0203 The System of Rice Intensification An Opportunity for Improving Food Sec...
 
0605 Non-flooding Rice Farming Technology In Irrigated Paddy Field
0605 Non-flooding Rice Farming Technology In Irrigated Paddy Field0605 Non-flooding Rice Farming Technology In Irrigated Paddy Field
0605 Non-flooding Rice Farming Technology In Irrigated Paddy Field
 
0432 The Effect of Seedling Age, Spacing, Yield Season on Phyllochron, Yield ...
0432 The Effect of Seedling Age, Spacing, Yield Season on Phyllochron, Yield ...0432 The Effect of Seedling Age, Spacing, Yield Season on Phyllochron, Yield ...
0432 The Effect of Seedling Age, Spacing, Yield Season on Phyllochron, Yield ...
 
0211 The System of Rice Intensification (SRI): Opportunity for Food Security...
0211 The System of Rice Intensification (SRI):  Opportunity for Food Security...0211 The System of Rice Intensification (SRI):  Opportunity for Food Security...
0211 The System of Rice Intensification (SRI): Opportunity for Food Security...
 
The System of Rice Intensification (SRI)
The System of Rice Intensification (SRI)The System of Rice Intensification (SRI)
The System of Rice Intensification (SRI)
 
0508 Opportunities for Raising Rice Yields and the Productivity of Land, Labo...
0508 Opportunities for Raising Rice Yields and the Productivity of Land, Labo...0508 Opportunities for Raising Rice Yields and the Productivity of Land, Labo...
0508 Opportunities for Raising Rice Yields and the Productivity of Land, Labo...
 
1709 - Opportunities to Raise Agricultural Production with Water-Saving and w...
1709 - Opportunities to Raise Agricultural Production with Water-Saving and w...1709 - Opportunities to Raise Agricultural Production with Water-Saving and w...
1709 - Opportunities to Raise Agricultural Production with Water-Saving and w...
 
0502 The System of Rice Intensification's Potential for Food Security in Camb...
0502 The System of Rice Intensification's Potential for Food Security in Camb...0502 The System of Rice Intensification's Potential for Food Security in Camb...
0502 The System of Rice Intensification's Potential for Food Security in Camb...
 
1449 - Azolla Rice Duck Fish Farming Systems with SRI Methods in the Mekong R...
1449 - Azolla Rice Duck Fish Farming Systems with SRI Methods in the Mekong R...1449 - Azolla Rice Duck Fish Farming Systems with SRI Methods in the Mekong R...
1449 - Azolla Rice Duck Fish Farming Systems with SRI Methods in the Mekong R...
 
0301 Understanding an Opportunity to Raise Rice Sector Productivity
0301 Understanding an Opportunity to Raise Rice Sector Productivity0301 Understanding an Opportunity to Raise Rice Sector Productivity
0301 Understanding an Opportunity to Raise Rice Sector Productivity
 
1175 System of Rice Intensification (SRI) Sistema Intensivo de Cultivo Arroc...
1175 System of Rice Intensification (SRI)Sistema Intensivo de Cultivo Arroc...1175 System of Rice Intensification (SRI)Sistema Intensivo de Cultivo Arroc...
1175 System of Rice Intensification (SRI) Sistema Intensivo de Cultivo Arroc...
 
2001 - System of Rice Intensification SRI in Iraq
2001 - System of Rice Intensification SRI in Iraq2001 - System of Rice Intensification SRI in Iraq
2001 - System of Rice Intensification SRI in Iraq
 
0961 The System of Rice Intensification (SRI): Rethinking Agricultural Parad...
0961 The System of Rice Intensification (SRI):  Rethinking Agricultural Parad...0961 The System of Rice Intensification (SRI):  Rethinking Agricultural Parad...
0961 The System of Rice Intensification (SRI): Rethinking Agricultural Parad...
 
1001 Evaluation of Key Factors of SRI Method
1001 Evaluation of Key Factors  of SRI Method1001 Evaluation of Key Factors  of SRI Method
1001 Evaluation of Key Factors of SRI Method
 
1032 The 21st Century Challenge: A Green Way to Global Food Security. New Lif...
1032 The 21st Century Challenge: A Green Way to Global Food Security. New Lif...1032 The 21st Century Challenge: A Green Way to Global Food Security. New Lif...
1032 The 21st Century Challenge: A Green Way to Global Food Security. New Lif...
 
1707 - Climate Smart agriculture: How modified crop/water management with SRI...
1707 - Climate Smart agriculture: How modified crop/water management with SRI...1707 - Climate Smart agriculture: How modified crop/water management with SRI...
1707 - Climate Smart agriculture: How modified crop/water management with SRI...
 
0422 SRI Trial in the Caraga Region XIII National Irrigation Administration
0422 SRI Trial in the Caraga Region XIII National Irrigation Administration0422 SRI Trial in the Caraga Region XIII National Irrigation Administration
0422 SRI Trial in the Caraga Region XIII National Irrigation Administration
 
Richard Dick- Shrub Resource Islands in the Sahel.ppt
Richard Dick- Shrub Resource Islands in the Sahel.pptRichard Dick- Shrub Resource Islands in the Sahel.ppt
Richard Dick- Shrub Resource Islands in the Sahel.ppt
 
0426 The System of Rice Intensification (SRI): Practices - Part II
0426 The System of Rice Intensification (SRI):   Practices - Part II0426 The System of Rice Intensification (SRI):   Practices - Part II
0426 The System of Rice Intensification (SRI): Practices - Part II
 

Destaque

Destaque (20)

Ebook9
Ebook9Ebook9
Ebook9
 
Feasibility of SRI Application in Korea for Reduction of Irrigation Requireme...
Feasibility of SRI Application in Korea for Reduction of Irrigation Requireme...Feasibility of SRI Application in Korea for Reduction of Irrigation Requireme...
Feasibility of SRI Application in Korea for Reduction of Irrigation Requireme...
 
1430 - Application of SRI Principles in Sustainable Rice Production in Bhutan
1430 - Application of SRI Principles in Sustainable Rice Production in Bhutan1430 - Application of SRI Principles in Sustainable Rice Production in Bhutan
1430 - Application of SRI Principles in Sustainable Rice Production in Bhutan
 
SRI-LMB Newsletter Vol.3 Issue 2, Year 2015
SRI-LMB Newsletter Vol.3 Issue 2, Year 2015SRI-LMB Newsletter Vol.3 Issue 2, Year 2015
SRI-LMB Newsletter Vol.3 Issue 2, Year 2015
 
1009 Learning about positive plant-microbial interactions from the System o...
1009 Learning about positive   plant-microbial interactions from the System o...1009 Learning about positive   plant-microbial interactions from the System o...
1009 Learning about positive plant-microbial interactions from the System o...
 
1403- Experiencias del SRI en RD
1403- Experiencias del SRI en RD1403- Experiencias del SRI en RD
1403- Experiencias del SRI en RD
 
0846 SRI Experiences in Bhutan
0846 SRI Experiences in Bhutan0846 SRI Experiences in Bhutan
0846 SRI Experiences in Bhutan
 
1420 - Innovations in Implements: Processes Followed by WASSAN
1420 - Innovations in Implements: Processes Followed by WASSAN1420 - Innovations in Implements: Processes Followed by WASSAN
1420 - Innovations in Implements: Processes Followed by WASSAN
 
0429 Development of System of Rice Intensification for Rice Production in China
0429 Development of System of Rice Intensification for Rice Production in China0429 Development of System of Rice Intensification for Rice Production in China
0429 Development of System of Rice Intensification for Rice Production in China
 
0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...
0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...
0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...
 
1412 - Performance of the USHA Weeder in Rice and Other in Crops in Nepal
1412 - Performance of the USHA Weeder in Rice and Other in Crops in Nepal1412 - Performance of the USHA Weeder in Rice and Other in Crops in Nepal
1412 - Performance of the USHA Weeder in Rice and Other in Crops in Nepal
 
1510 - Farmer Adaptation of System of Rice Intensification (SRI) Methods in t...
1510 - Farmer Adaptation of System of Rice Intensification (SRI) Methods in t...1510 - Farmer Adaptation of System of Rice Intensification (SRI) Methods in t...
1510 - Farmer Adaptation of System of Rice Intensification (SRI) Methods in t...
 
ERGONOMIC EVALUATION OF LAWN MOWER OPERATION FOR COMFORT IN RIVERS STATE, NIG...
ERGONOMIC EVALUATION OF LAWN MOWER OPERATION FOR COMFORT IN RIVERS STATE, NIG...ERGONOMIC EVALUATION OF LAWN MOWER OPERATION FOR COMFORT IN RIVERS STATE, NIG...
ERGONOMIC EVALUATION OF LAWN MOWER OPERATION FOR COMFORT IN RIVERS STATE, NIG...
 
1501 - System of Rice Intensification Research Perspective in Nepal
1501 -  System of Rice Intensification Research Perspective in Nepal1501 -  System of Rice Intensification Research Perspective in Nepal
1501 - System of Rice Intensification Research Perspective in Nepal
 
1326- SRI and Labouring bodies
1326- SRI and Labouring bodies1326- SRI and Labouring bodies
1326- SRI and Labouring bodies
 
0412 Development of System of Rice Intensification for Rice Production in China
0412 Development of System of Rice Intensification for Rice Production in China0412 Development of System of Rice Intensification for Rice Production in China
0412 Development of System of Rice Intensification for Rice Production in China
 
0923 System of Rice Intensification at the Asian Institute of Technology
0923 System of Rice Intensification at the Asian Institute of Technology0923 System of Rice Intensification at the Asian Institute of Technology
0923 System of Rice Intensification at the Asian Institute of Technology
 
1404 - SRI: Introduction to KGVK and Usha Martin University
1404 - SRI:  Introduction to KGVK and Usha Martin University1404 - SRI:  Introduction to KGVK and Usha Martin University
1404 - SRI: Introduction to KGVK and Usha Martin University
 
1407 - Experience in building inter-row weeders for small-scale farmers
1407 - Experience in building inter-row weeders for small-scale farmers1407 - Experience in building inter-row weeders for small-scale farmers
1407 - Experience in building inter-row weeders for small-scale farmers
 
Sri garuda implements
Sri garuda implementsSri garuda implements
Sri garuda implements
 

Semelhante a 0416 System of Rice Intensification: An Opportunity for Raising Productivity in the 21st Century

Semelhante a 0416 System of Rice Intensification: An Opportunity for Raising Productivity in the 21st Century (20)

0304 SRI/SICA New Opportunities for Organic Rice Production
0304 SRI/SICA New Opportunities for Organic Rice Production0304 SRI/SICA New Opportunities for Organic Rice Production
0304 SRI/SICA New Opportunities for Organic Rice Production
 
0419 The System of Rice Intensification (SRI): An Update on Its Spread and E...
0419 The System of Rice Intensification (SRI):  An Update on Its Spread and E...0419 The System of Rice Intensification (SRI):  An Update on Its Spread and E...
0419 The System of Rice Intensification (SRI): An Update on Its Spread and E...
 
0317 Possible Soil Microbiological Explanations for High Yields with the Syst...
0317 Possible Soil Microbiological Explanations for High Yields with the Syst...0317 Possible Soil Microbiological Explanations for High Yields with the Syst...
0317 Possible Soil Microbiological Explanations for High Yields with the Syst...
 
0428 An Opportunity for Africa: The System of Rice Intensification (SRI) [ l...
0428 An Opportunity for Africa: The System of Rice Intensification (SRI)  [ l...0428 An Opportunity for Africa: The System of Rice Intensification (SRI)  [ l...
0428 An Opportunity for Africa: The System of Rice Intensification (SRI) [ l...
 
0302 A New Paradigm for Rice and Why We Think It Works
0302 A New Paradigm for Rice and Why We Think It Works0302 A New Paradigm for Rice and Why We Think It Works
0302 A New Paradigm for Rice and Why We Think It Works
 
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
 
1170 System of Rice Intensification SRI - A Global Overview
1170 System of Rice Intensification SRI - A Global Overview1170 System of Rice Intensification SRI - A Global Overview
1170 System of Rice Intensification SRI - A Global Overview
 
0328 The System of Rice Intensification (SRI): An Opportunity to Improve Foo...
0328 The System of Rice Intensification (SRI):  An Opportunity to Improve Foo...0328 The System of Rice Intensification (SRI):  An Opportunity to Improve Foo...
0328 The System of Rice Intensification (SRI): An Opportunity to Improve Foo...
 
0207 Potential Contributions of the System of Rice Intensification (SRI) for ...
0207 Potential Contributions of the System of Rice Intensification (SRI) for ...0207 Potential Contributions of the System of Rice Intensification (SRI) for ...
0207 Potential Contributions of the System of Rice Intensification (SRI) for ...
 
SRI An Opportunity for Improving Food Security in Latin America
SRI An Opportunity for Improving Food Security in Latin AmericaSRI An Opportunity for Improving Food Security in Latin America
SRI An Opportunity for Improving Food Security in Latin America
 
0209 Working for Freedom from Hunger in Harmony with Nature
0209 Working for  Freedom from Hunger  in Harmony with Nature0209 Working for  Freedom from Hunger  in Harmony with Nature
0209 Working for Freedom from Hunger in Harmony with Nature
 
0415 Opportunities for Raising Rice Yields and Factor Productivity with the S...
0415 Opportunities for Raising Rice Yields and Factor Productivity with the S...0415 Opportunities for Raising Rice Yields and Factor Productivity with the S...
0415 Opportunities for Raising Rice Yields and Factor Productivity with the S...
 
0501 SRI An Innovative Technology to Produce more Crop per Drop
0501  SRI An Innovative Technology to Produce more Crop per Drop0501  SRI An Innovative Technology to Produce more Crop per Drop
0501 SRI An Innovative Technology to Produce more Crop per Drop
 
0425 The System of Rice Intensification (SRI): An Overview - Part I
0425 The System of Rice Intensification (SRI):   An Overview - Part I0425 The System of Rice Intensification (SRI):   An Overview - Part I
0425 The System of Rice Intensification (SRI): An Overview - Part I
 
0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...
0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...
0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...
 
Uphoff Sri
Uphoff SriUphoff Sri
Uphoff Sri
 
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
 
1603 - Improving Food Production for Health in a Water-constrained World - Ag...
1603 - Improving Food Production for Health in a Water-constrained World - Ag...1603 - Improving Food Production for Health in a Water-constrained World - Ag...
1603 - Improving Food Production for Health in a Water-constrained World - Ag...
 
1019 An Overview of Opportunities with the System of Rice Intensification (SRI)
1019 An Overview of Opportunities with the System of Rice Intensification (SRI)1019 An Overview of Opportunities with the System of Rice Intensification (SRI)
1019 An Overview of Opportunities with the System of Rice Intensification (SRI)
 
0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...
0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...
0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...
 

Mais de SRI-Rice, Dept. of Global Development, CALS, Cornell University

Mais de SRI-Rice, Dept. of Global Development, CALS, Cornell University (20)

2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
 
2204 -System of Rice Intensification - Improving Rice Production and Saving W...
2204 -System of Rice Intensification - Improving Rice Production and Saving W...2204 -System of Rice Intensification - Improving Rice Production and Saving W...
2204 -System of Rice Intensification - Improving Rice Production and Saving W...
 
2203 - Overview of System of Rice Intensification SRI Around the World
2203 - Overview of System of Rice Intensification SRI Around the World2203 - Overview of System of Rice Intensification SRI Around the World
2203 - Overview of System of Rice Intensification SRI Around the World
 
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
 
2201 - El Sistema Intensivo del Cultivo de Arroz
2201 - El Sistema Intensivo del Cultivo de Arroz2201 - El Sistema Intensivo del Cultivo de Arroz
2201 - El Sistema Intensivo del Cultivo de Arroz
 
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
 
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
 
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
 
1615 Ecological Intensification - Lessons from SRI from Green Revolution to...
1615   Ecological Intensification - Lessons from SRI from Green Revolution to...1615   Ecological Intensification - Lessons from SRI from Green Revolution to...
1615 Ecological Intensification - Lessons from SRI from Green Revolution to...
 
2102 - Establishing an equitable SRI value chain in the Philippines
2102 - Establishing an equitable SRI value chain in the Philippines2102 - Establishing an equitable SRI value chain in the Philippines
2102 - Establishing an equitable SRI value chain in the Philippines
 
2101 - Agroecological Opportunities with SRI and SCI
2101 - Agroecological Opportunities with SRI and SCI2101 - Agroecological Opportunities with SRI and SCI
2101 - Agroecological Opportunities with SRI and SCI
 
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
 
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
 
1913 Resuitados SRI MIDA-IICA Panama 2019
1913   Resuitados SRI MIDA-IICA Panama 2019 1913   Resuitados SRI MIDA-IICA Panama 2019
1913 Resuitados SRI MIDA-IICA Panama 2019
 
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
 
1911- Gender Responsive Smallholder Rice Production Practices and equipment
1911- Gender Responsive Smallholder Rice Production Practices and equipment1911- Gender Responsive Smallholder Rice Production Practices and equipment
1911- Gender Responsive Smallholder Rice Production Practices and equipment
 
1908 Rice cultivation in Africa: How traditional practices relate to modern o...
1908 Rice cultivation in Africa: How traditional practices relate to modern o...1908 Rice cultivation in Africa: How traditional practices relate to modern o...
1908 Rice cultivation in Africa: How traditional practices relate to modern o...
 
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
 
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
 
1905 - SRI en Venezuela - Resena Historica de la Parcela 234
1905 - SRI en Venezuela - Resena Historica de la Parcela 2341905 - SRI en Venezuela - Resena Historica de la Parcela 234
1905 - SRI en Venezuela - Resena Historica de la Parcela 234
 

Último

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Último (20)

Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 

0416 System of Rice Intensification: An Opportunity for Raising Productivity in the 21st Century

  • 1. The System of Rice Intensification (SRI): An Opportunity for Raising Productivity in the 21st Century International Year of Rice Conference FAO, Rome, Feb. 12-13, 2004 Norman Uphoff, CIIFAD Cornell University, USA
  • 2.
  • 3. Fr. Henri de Laulanié, SJ
  • 4. Sebastien Rafaralahy and Justin Rabenandrasana
  • 5. SRI In Summary : A set of principles/methods for getting more productive PHENOTYPES from existing GENOTYPES of rice. SRI changes the management of plants, soil, water, and nutrients to (a) induce greater ROOT growth and (b) nurture more abundant and diverse populations of SOIL BIOTA .
  • 6. Plant Physical Structure and Light Intensity Distribution at Heading Stage (CNRRI Research --Tao et al. 2002)
  • 7. Single Cambodian rice plant transplanted at 10 days
  • 8.
  • 9.
  • 10.  
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17. SRI field in Sri Lanka -- yield of 13 t/ha with panicles having 400+ grains
  • 18.  
  • 19. CFA Camilo Cienfuegos, Cuba 14 t/ha -- Variety Los Palacios 9
  • 20. Two rice fields in Sri Lanka -- same variety, same irrigation system, and same drought : conventional methods (left), SRI (right)
  • 21.
  • 22.
  • 23.  
  • 24. SRI CONCEPTS CAN BE APPLIED TO UPLAND PRODUCTION Results of trials (N=20) by Philippine NGO, Broader Initiatives for Negros Development, with Azucena local variety (4,000 m 2 area) -- using mulch as main innovation, not young plants
  • 25.
  • 26.
  • 27. A SRI Rice Plant Root at Maruteru Rice Research Station, AP
  • 28. Cuba -- Variety 2084 (Bollito) -- 52 DAP
  • 29. Dry Matter Distribution of Roots in SRI and Conventionally-Grown Plants at Heading Stage (CNRRI research: Tao et al. 2002) Root dry weight (g)
  • 30. Root Oxygenation Ability with SRI vs. Conventionally-Grown Rice Research done at Nanjing Agricultural University, Wuxianggeng 9 variety (Wang et al. 2002)
  • 31. SRI farmer in Cambodia
  • 32. SRI farmer in Cuba -- 14 t/ha
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.  
  • 38.
  • 40.  
  • 41.  
  • 42.
  • 43.
  • 44. Effects of SRI vs. Conventional Practices Comparing Varietal and Soil Differences
  • 45.
  • 46.
  • 47.
  • 48. Spread of SRI in Asia
  • 49.
  • 50.
  • 51.
  • 52.  
  • 53.  
  • 54.  
  • 55.  
  • 56.  
  • 57. .
  • 58.  

Notas do Editor

  1. Prepared with information available as of February 1, 2003. These slides can be used or adapted, even translated, however SRI colleagues would be useful for explaining this methodology to others.
  2. Prepared with information available as of February 1, 2003. These slides can be used or adapted, even translated, however SRI colleagues would be useful for explaining this methodology to others.
  3. This figure is from research from the China National Rice Research Institute reported at the Sanya conference in April 2002 and published in the Proceedings. Two different rice varieties were used with SRI and conventional (CK) methods. The second responded more positively to the methods in terms of leaf area and dry matter as measured at different elevations, but there was a very obvious difference in the phenotypes produced from the first variety's genome by changing cultivation methods from conventional to SRI.
  4. This picture was contributed from Cambodia by Koma Yang Saing (CEDAC). Viewers should try to imagine the very small single young seedling from which this massive plant grew.
  5. This was one of the first data sets that began laying a scientific foundation for SRI. Data were gathered from 76 farmers around Ambatovaky, a town on the western side of the peripheral zone around Ranomafana National Park in Madagascar, during the 1996-97 season. We had confidence in the field worker who collected the data, Simon Pierre, who had worked with Fr. de Laulanie before his death. The correlation between number of tillers per plant and number of grains per panicle was +.65, rather than the negative one expected from the literature. We have seen this positive relationship many times since this first analysis was done.
  6. This helps to explain our problem of "the agronomists' $100 bill." SRI is quite "counterintuitive." Indeed, it even sounds crazy. But we have experience and evidence that this "less is more" dynamic operates, and subsequent slides provide a number of scientific explanations for why fewer or smaller inpouts produce more in the case of irrigated rice
  7. This helps to explain our problem of "the agronomists' $100 bill." SRI is quite "counterintuitive." Indeed, it even sounds crazy. But we have experience and evidence that this "less is more" dynamic operates, and subsequent slides provide a number of scientific explanations for why fewer or smaller inpouts produce more in the case of irrigated rice
  8. Bruce Ewart, ADRA representative in Indonesia, got 7 farmers in West Timor to try SRI methods in 2002, with the encouragement of Roland Bunch. These are better farmers than their peers, as seen from their yield that season with current methods (4.4 t/ha), more than double the usual yield in the area. Their SRI plots averaged 11.7. Farmers working with ADRA in Lampung, Sumatra, got 8.5 t/ha with SRI methods compared to their usual production of 3 t/ha. Pablo Best reported that when farmers in Pucallpa, a lowland jungle area, tried SRI, they got a yield of 8 t/ha, four times their previous average, and not needing to do 8-10 hours/day of bird scaring at the end of the season because with SRI, the heavy panicles hung downward (but not lodging) so that birds could not get to them. Instead of letting cattle graze on the regrowth after harvest, the rice was allowed to produce a second (ratoon) crop, which was 5.5 t/ha, 70% of the first. Controlled trials in Benin, having read the account of SRI in ECHO Development Notes, found about a 5-fold difference in yield between SRI and conventional practice. The Agricultural Training Institute in the Philippines tried SRI methods with three varieties in Cotabato, Mindanao, and got an average yield of 12 t/ha, three times the usual yield in that area. The economic return averaged 290% as the value of rice produced was almost four times the cost of production.
  9. Bruce Ewart, ADRA representative in Indonesia, got 7 farmers in West Timor to try SRI methods in 2002, with the encouragement of Roland Bunch. These are better farmers than their peers, as seen from their yield that season with current methods (4.4 t/ha), more than double the usual yield in the area. Their SRI plots averaged 11.7. Farmers working with ADRA in Lampung, Sumatra, got 8.5 t/ha with SRI methods compared to their usual production of 3 t/ha. Pablo Best reported that when farmers in Pucallpa, a lowland jungle area, tried SRI, they got a yield of 8 t/ha, four times their previous average, and not needing to do 8-10 hours/day of bird scaring at the end of the season because with SRI, the heavy panicles hung downward (but not lodging) so that birds could not get to them. Instead of letting cattle graze on the regrowth after harvest, the rice was allowed to produce a second (ratoon) crop, which was 5.5 t/ha, 70% of the first. Controlled trials in Benin, having read the account of SRI in ECHO Development Notes, found about a 5-fold difference in yield between SRI and conventional practice. The Agricultural Training Institute in the Philippines tried SRI methods with three varieties in Cotabato, Mindanao, and got an average yield of 12 t/ha, three times the usual yield in that area. The economic return averaged 290% as the value of rice produced was almost four times the cost of production.
  10. Picture provided by Gamini Batuwitage, Sri Lanka, of field that yielded 17 t/ha in 2000.
  11. This picture from Sri Lanka shows two fields having the same soil, climate and irrigation access, during a drought period. On the left, the rice grown with conventional practices, with continuous flooding from the time of transplanting, has a shallower root system that cannot withstand water stress. On the right, SRI rice receiving less water during its growth has deeper rooting, and thus it can continue to thrive during the drought. Farmers in Sri Lanka are coming to accept SRI in part because it reduces their risk of crop failure during drought.
  12. Dr. Janaiah visited Sri Lanka the last week of October, 2002, and talked with 30 farmers in four villages who had been practicing SRI and who could give him detailed data. He had previously done such an evaluation for IRRI of the costs and benefits of adopting hybrid rice, having been on the IRRI staff in Los Banos from 1999 to 2002. He found SRI to be a much more profitable innovation for rice production than adoption of hybrids. We have found that SRI methods give the highest yields with hybrid varieties so there is not necessary contradiction or competition between the two. The SRI results reported from the Philippines, by the Agricultural Training Institute of the Department of Agriculture, from trials with three varieties at its Cotobato center in Mindanao (slide 20), calculated that the cost of production per hectare was 25,000 pesos, while the value of the rice yield with SRI was 96,000 pesos, a return of almost four times. Thus there are other evaluations of net profit from SRI that are even more favorable than Janaiah's calculation.
  13. Dr. Janaiah visited Sri Lanka the last week of October, 2002, and talked with 30 farmers in four villages who had been practicing SRI and who could give him detailed data. He had previously done such an evaluation for IRRI of the costs and benefits of adopting hybrid rice, having been on the IRRI staff in Los Banos from 1999 to 2002. He found SRI to be a much more profitable innovation for rice production than adoption of hybrids. We have found that SRI methods give the highest yields with hybrid varieties so there is not necessary contradiction or competition between the two. The SRI results reported from the Philippines, by the Agricultural Training Institute of the Department of Agriculture, from trials with three varieties at its Cotobato center in Mindanao (slide 20), calculated that the cost of production per hectare was 25,000 pesos, while the value of the rice yield with SRI was 96,000 pesos, a return of almost four times. Thus there are other evaluations of net profit from SRI that are even more favorable than Janaiah's calculation.
  14. The "economist's $100 bill" refers to the joke about an economist and his friend who were walking together down the street one day when the friend saw a $100 bill on the sidewalk. Thinking that his friend, being concerned with money, would surely pick the bill up, he did not reach down himself. But the economist walked right by. The friend asked, didn't you see that $100 bill on the sidewalk? Why didn't you pick it up? The economist replied,It wasn't a real $100 bill. If it had been genuine, since people are rational, someone would have picked it up by now, so I am sure that it was a counterfeit, and I didn't want to waste any effort on it. Agronomists have regarded SRI with similar skepticism, dismissing it by saying if it were indeed as good as reported, it should have been discovered previously, given the many millions of farmers and thousands of scientists who have worked with rice. So, therefore, SRI must not be genuine. SRI contradicts a number of key concepts held by agronomists and economists, giving them reasons to reject it, without giving it an empirical evaluation. However, the evidence in support of SRI is mounting year by year, month by month.
  15. The "economist's $100 bill" refers to the joke about an economist and his friend who were walking together down the street one day when the friend saw a $100 bill on the sidewalk. Thinking that his friend, being concerned with money, would surely pick the bill up, he did not reach down himself. But the economist walked right by. The friend asked, didn't you see that $100 bill on the sidewalk? Why didn't you pick it up? The economist replied,It wasn't a real $100 bill. If it had been genuine, since people are rational, someone would have picked it up by now, so I am sure that it was a counterfeit, and I didn't want to waste any effort on it. Agronomists have regarded SRI with similar skepticism, dismissing it by saying if it were indeed as good as reported, it should have been discovered previously, given the many millions of farmers and thousands of scientists who have worked with rice. So, therefore, SRI must not be genuine. SRI contradicts a number of key concepts held by agronomists and economists, giving them reasons to reject it, without giving it an empirical evaluation. However, the evidence in support of SRI is mounting year by year, month by month.
  16. This is a figure also from research reported by the China National Rice Research Institute to the Sanya conference and published in its proceedings. It shows how the roots of the same variety (two varieties shown) grow deeper into the soil with SRI methods compared to conventional ones (CK).
  17. This figure from report by Nanjing Agricultural University researchers to the Sanya conference, and reproduced from those proceedings, shows that the oxygenation ability of rice roots growing under SRI conditions are about double the ability, throughout the growth cycle, compared to the same variety grown under conventional conditions.
  18. This picture was provided by Koma Yang Saing (CEDAC) of a pleased Cambodian farmer, showing the size of a massive root ball with a SRI rice plant.
  19. These are just the most obvious contributions. Our understanding of this netherworld is limited, though fortunately there are a growing number of microbiologists using very advanced modern techniques, such as DNA analysis, to map and track what is going on in the soil. The discussion that follows is can be viewed as introductory or superficial, or both.
  20. Most people know that leguminous plants "fix" N in their roots through nodules on the roots inhabited by certain bacteria, rhizobia. And by implication, most thinks that non-leguminous plants "do not fix nitrogen." This is correct in terms of locus, but it misleads. All of the gramineae species (rice, wheat, sugar cane, etc.) have free-living bacteria in their root zones (referred to as 'associated' microbes) that fix N. Even in fertilized crops, a majority of the N taken up by the roots is from organic sources. And there is evidence that adding inorganic N to the root zone inhibits or suppresses the roots' and microbes' production of nitrogenase, the enzyme needed to fix N. So there is a tradeoff, in that adding inorganic N fertilizer reduces the N that is produced by natural biological processes. Or most relevance to SRI is research published more than 30 years ago reporting that when aerobic and anaerobic horizons of soil are mixed, BNF increases greatly compared to that originating from either aerobic or anaerobic soil. This suggests that the water management and weeding practices of SRI could be actively promoting N production in the soil. We have no research results to support this inference (though see data in Slide 49), but the yield increases with SRI practices require large amounts of N. BNF is the most plausible explanation.
  21. These data from a study done by Fide Raobelison under the supervision of Prof. Robert Randriamiharisoa at Beforona station in Madagascar, and reported in Prof. Robert's paper in the Sanya conference proceedings, give the first direct evidence to support our thinking about the contribution of soil microbes to the super-yields achieved with SRI methods. The bacterium Azospirillum was studied as an "indicator species" presumably reflecting overall levels of microbial populations and activity in and around the plant roots. Somewhat surprisingly, there was no significant difference in Azospirillum populations in the rhizosphere. But there were huge differences in the counts of Azospirillum in the roots themselves according to soil types (clay vs. loam) and cultivation practices (traditional vs. SRI) and nutrient amendments (none vs. NPK vs. compost). NPK amendments with SRI produce very good results, a yield on clay soil five times higher than traditional methods with no amendments. But compost used with SRI gives a six times higher yield. The NPK increases Azospirillum (and other) populations, but most/much of the N that produced a 9 t/ha yield is coming from inorganic sources compared to the higher 10.5 t/ha yield with compost that depends entirely on organic N. On poorer soil, SRI methods do not have much effect, but when enriched with compost, even this poor soil can give a huge increase in production, attributable to the largest of the increases in microbial activity in the roots. At least, this is how we interpret these findings. Similar research should be repeated many times, with different soils, varieties and climates. We consider these findings significant because they mirror results we have seen in other carefully measured SRI results such as the Anjomakely factorial trials (Slide 24) and the previous season's trials with SRI at Beforona (10.2 t/ha).
  22. Here we look just at the effect of young seedlings, on better and poorer soil, at Anjomakely. The synergistic effect of compost with aerated soil is seen in the bottom three lines. Compost with saturated soil does less well (7.7 t/ha) than NPK with aerated soil (8.77 t/ha), but compost with aerated soil does by far the best (10.35 t/ha) on better soil. The same relationship is seen on poorer soil (right-hand column).
  23. Here we look just at the effect of young seedlings, on better and poorer soil, at Anjomakely. The synergistic effect of compost with aerated soil is seen in the bottom three lines. Compost with saturated soil does less well (7.7 t/ha) than NPK with aerated soil (8.77 t/ha), but compost with aerated soil does by far the best (10.35 t/ha) on better soil. The same relationship is seen on poorer soil (right-hand column).
  24. Summary results from two sets of factorial trials in two different agroecological settings in 2000 and 2001 by honors students in the Faculty of Agriculture at the University of Antananarivo. The first setting was on the west coast of Madagascar, at an agricultural experiment center near Morondava, with a tropical climate, near sea level, and poor sandy soil. (This location was chosen because there are few pest or disease problems during that season which could affect plant performance.) The second was on the high plateau near the village of Anjomakely, 18 km south of Antananarivo, with a temperate climate, about 1200 m elevation, and better soils, comparing results on better clay soil and poorer loam soil. In 2000, Jean de Dieu Rajonarison did trials on 288 plots (2.5x2.5 m) at the Centre de Baobab, with sandy soil [ sable roux], evaluating the effects of five factors: variety – HYV [2798] vs. traditional [riz rouge]; age of seedling [16-day vs. 8-day], seedlings per hill [3 vs. 1], water management [continuous flooding vs. water control, with deliberate aeration of the soil during the vegetative growth period], and nutrient amendments [none vs. NPK vs. compost]. The study was designed with spacing as a sixth factor [25x25 vs. 30x30cm], sok that there were 96 combinations (2x2x2x3x2x2), with three replications. But both spacings were within the SRI range, and the average yield distinguished by spacing [each N = 144] was identical, 3.18 t/ha. So the analysis deals with only five factors, having six replications for each average reported. Plots were randomly distributed according to a modified Fisher bloc design, except for water management, for which the plot with these two different treatments had to be separate to avoid effects of lateral seepage. In 2000, Andry Andriankaja did trials on 240 plots (2.5x2.5m) on a farmer’s fields near Anjomakely, using a traditional rice variety [ riz rouge], evaluating the effects of five factors: soil [clay vs. loam], age of seedling [20-day vs. 8-day – with colder temperatures, the onset of the 4 th phyllochron of growth is later than at Morondava], seedlings per hill [3 vs. 1], water management [continuous flooding vs. water control, with deliberate aeration of the soil during the vegetative growth period], and nutrient amendments [none vs. NPK vs. compost]. The reason why there are only 240 trials rather than 288 is that trials with no amendments were done only on the clay soil plots, not on the poorer loam soil plots, which were known to have low inherent fertility. This made for 40 combinations, with six replications. [The spacing factor as in the Morondava trials was not significant, with a difference of only 80 kg/ha for the two sets, each N = 120.] Again, all yields reported are averages for 6 replicated plots randomly distributed.
  25. This is a SRI rice nursery in Sri Lanka, showing one way (but only one of many ways) to grow young seedlings. The soil in this raised bed was a mixture of one-third soil, one-third compost, and one-third chicken manure. (The flooding around it is because the surrounding field is being readied for transplanting; normally there would not be so much water standing around the nursery.)
  26. Here the seedlings are being removed. We would recommend that they be lifted with a trowel, to have minimum disturbance of the roots, but these seedlings are so vigorous that this manual method is successful. This farmer has found that his seedlings, when transplanted with two leaves at time of transplanting, already put out a third leave the next day after transplanting, indicating that there was no transplant 'shock.'
  27. Here the field is being 'marked' for transplanting with a simple wooden 'rake.' If the soil is too wet, these lines will not remain long enough for transplanting. There are drains within the field to carry excess water away from the root zone.
  28. Here are seedlings being removed from a clump for transplanting. Note that the yellow color comes from the sunlight reflecting off the plant. The plant's color is a rich green, indicating no N deficiency.
  29. Here the seedlings are being set into the soil, very shallow (only 1-2 cm deep). The transplanted seedlings are barely visible at the intersections of the lines. This operation proceeds very quickly once the transplanters have gained some skill and confidence in the method. As noted already, these seedling set out with two leaves can already have a third leaf by the next day.
  30. The SRI field looks rather sparse and unproductive at first. Up to the 5th or 6th week, SRI fields look rather miserable, and farmers can wonder why they ever tried this method and 'wasted' their precious land with such a crazy scheme. But the SRI plot here will yield twice as much rice as the surrounding ones once the rapid tillering (and root growth) begins between 35 and 45 days.
  31. This is one of many happy Sri Lankan farmers with his SRI field nearing harvest time. Some young farmers have taken up growing "eco-rice," i.e., traditional varieties grown organically to be sold for a much higher price than conventional HYV rice, because of better texture, taste, smell and aroma and more assurance of healthy food. SRI in this way is starting to contribute to the preservation of rice biodiversity. As noted above, SRI methods work well with hybrid varieties and HYVs. These give the highest yields with SRI methods. But as SRI methods can double or triple traditional-variety yields, these old varieties become economically more advantageous with SRI. Much more remains to be learned about and from SRI. But we have now enough accumulated evidence, based on experience in farmers' fields, not just on experiment stations, and consistent with what is known in the literature (though often not previously connected up to promote increased rice productivity), to have confidence that this methodology will contribute to greater food security and a better environment. SRI, developed by Fr. de Laulanie and promoted by his friends in Association Tefy Saina, and by a growing number of colleagues in many countries around the world, could help to improve other crop production. The world does not need a doubling of rice production, but it does need increased productivity in the rice sector, as this is the largest single agricultural sector in the world in terms of the resources devoted to it. By raising the productivity of land, labor, water and capital in the rice sector, we should be able to meet our staple food needs with less of these resources, which have significant opportunity costs. We hope that SRI methods will enable farmers to redeploy some of their land, labor, water and capital to producing other, higher-value and more nutritious crops, thereby enhancing the well-being of rural households and urban populations. The urban poor should benefit from lower prices for rice that will follow from higher productivity. SRI is not a labor-intensive method that will 'keep rice production backward,' as was alleged by its critics in Madagascar for many years, but a strategy for achieving diversification and modernization in the agricultural sector.