SlideShare uma empresa Scribd logo
1 de 100
Highly Efficient Organic Devices 
Karl Leo* 
Institut für Angewandte Photophysik, 
TU Dresden, 01062 Dresden, Germany, www.iapp.de 
* currently: KAUST, Thuwal, Saudi-Arabia 
XIII Brazilian MRS Meeting 2014 
João Pessoa 
30.9.2014
Acknowledgments 
• Johannes Widmer 
• Christian Körner 
• Chris Elschner 
• Christoph 
Schünemann 
• Wolfgang Tress 
• Martin Hermenau 
• Toni Müller 
• Max Tietze 
• Selina Olthof 
• Malte Gather 
• Simone Hofmann 
• Tobias Schwab 
• Moritz Riede 
Hong-Wei Chang 
Chung-Chih Wu 
Xuanhua Li 
Fengxian Xie 
Wallace Choy 
Martin Pfeiffer 
Karsten Walzer 
Christian Uhrich 
Roland Fitzner 
Egon Reinold 
Peter Bäuerle 
University of Ulm 
Department Organic 
Chemistry II
King Abdullah University of Science and Technology 
- KAUST
King Abdullah University of Science and Technology 
(KAUST) 
Solar and Photovoltaics 
Engineering Research 
Center (SPERC)
Outline 
• Introduction to Organic 
Semiconductors 
• Doping of Organic Semiconductors 
• Organic Light Emitting Diodes (OLED) 
• Organic Solar Cells
Organic Semiconductors 
• Large area & flexible substrates possible 
• Large variety: millions of molecules, mostly carbon 
• Low cost: approx. 1g/m2 active material 
Photovoltaic 
cells 
Organic 
materials 
Transistors 
and memory 
Organic light 
emitting 
diodes
Polymers vs small molecules 
• Polymers: deposition from solution 
• Small molecules (oligomers): vacuum or solution 
• OLED: Polymer lost the race (for the moment…) 
• Solar Cells: Polymer and small molecules on par
Some people drink organic semiconductors….. 
350 400 450 500 550 600 650 700 
3,4 
3,2 
3,0 
2,8 
2,6 
2,4 
2,2 
2,0 
1,8 
1,6 
1,4 
1,2 
1,0 
0,8 
0,6 
0,4 
0,2 
0,0 
Absorption 
Wellenlänge
Carbon: the influence of dimensionality 
Source: Castro Neto, Geim et al. 
Van der Waals-coupling: 
Narrow bands 
104 
m ob ility 
0D 
2D covalent 
broad bands 
2D 
101 
10-2 
1D covalent: 
broad bands 
1D
Mobility in Organic Semiconductors 
Typical OLED 
today! 
Source: IBM J. Res. Dev.
Single crystal electroluminescence 
• Williams&Schadt 1969 
• 100μm Anthracene crystal, 100V voltage
First OLED 
C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
First White OLED 
J. Kido et al, Appl. Phys. Lett. 64, 813 (1993)
Time 
1st wave: small 
OLED Display 
Progression of Organic Products 
3rd wave: OLED 
lighting 
2nd wave: 
OLED TV 
4th wave: OPV 
5th wave: 
Organic 
Electronics
OLED Displays on the Market 
Passive Matrix 
Philips OLED 
Shaver 
• 2013 market: Approx. 10 billion $ (Idtechex) 
• 100% small molecule OLED 
• 99% Asian Manufacturers 
Active Matrix 
Kodak Camera 
Samsung phone 
Nokia phone 
LG OLED TV
iWatch: flexible OLED display 
Oled-display.net 
• OLED: ideal for flexible devices 
• Thin-film encapsulation is 
challenging 
• Usual approach: Plastic film 
coated with multilayer 
encapsulation system 
• Diffusion rates must be 106 
times lower than for food 
encapsulation
Outline 
• Introduction to organic semiconductors 
• Doping of Organic Semiconductors 
• Organic Light Emitting Diodes (OLED) 
• Organic Solar Cells
The pin-OLED structure 
p i n 
p-HTL 
Electron Blocker 
Hole Blocker 
Emitter 
Anode 
Cathode 
n-ETL 
• Device operates in flat-band condition 
• Carriers are injected through thin space-charge layers
AOB 
F F 
F F 
N 
N 
N 
N 
F4-TCNQ 
N 
N 
N 
N 
N 
N 
N 
N Zn 
S 
CN 
CN 
S 
Bu Bu 
S 
C60 
ZnPc 
S 
Bu Bu 
S 
CN 
CN 
DCV5T-Bu 
Cathode 
n-doped ETL 
Photovoltaic 
active Layer 
p-doped HTL 
Anode 
n 
i 
p 
B. Maennig et al., Appl. Phys. A 79, 1 (2004) 
M. Riede et al., Nanotechnology 19, 424001 (2008) 
4P-TPD 
Di-NPD 
2-TNATA 
The p-i-n Concept for 
Organic Solar Cells
Basics of Doping: p-doping 
Inorganic Organic 
· broad bands 
· small correlation energies (e-h » 4meV) 
· hydrogen model works 
· hopping transport 
· large correlation (e-h » 0.5 eV) 
· polaron effects important
Quartz monitors 
Co-evaporation of doped films 
Substrate 
Dopant Matrix 
p » 10-4 Pa 
Tevap= 100..400 oC 
TSubs= -50..150 oC 
d = 25..1000 nm 
rM» 1 Å/s 
Dopant/Matrix ratio of 1:2000 
achieved
UPS/XPS study of doping process 
• MeO-TPD doped with F4-TCNQ 
• Molar doping ratio is varied 
S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
Fermi level shift and conductivity change 
• MeO-TPD doped with F4- 
TCNQ 
• Fermi level shift observed 
in UPS and XPS 
• Fermi level shifts first very 
quickly, slope >>kT 
• Then saturation 
S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
Origin of Saturation: tail states 
• Fermi level shift is caused by 
tail states of Gaussian 
• Distance to HOMO level 
depends on material 
• Distance correlates with 
disorder: smaller in ZnPC, 
larger in amorphous 
materials 
S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
Model assuming deep traps 
• Deep traps with 
concentration Nt 
• Energy Et 
• NA<<Nt: only traps are 
filled 
• NA>>Nt: Normal doping 
M. Tietze et al., Phys. Rev. B86, 025320 (2012)
Trap model and experiment 
• Model describes Fermi 
level shift reasonably well 
• Experiment more “smeared 
out”: broadening of trap 
state 
• Concentration and energy 
of traps can be determined 
precisely 
M. Tietze et al., Phys. Rev. B86, 025320 (2012)
Molecular n-type doping: a challenge 
N 
N 
N 
N 
N 
N 
N 
N Zn 
N N 
3 
3.5 
Electron Affinity [eV] 
4 
4.5 
OLED 
OSC 
C60 
NTCDA 
ZnPc 
BPhen 
TCNQ 
require stronger donors 
air sensitive donors 
air stable donors 
Dopand 
Matrix 
Alternative solution: metallic dopants Li, Cs (Kido et al.): unstable at higher temperature
Air stable n-dopants 
• Usual n-dopant are not 
stable in air 
• Here: Iodine splits off 
when evaporated 
• Strong n-dopant in C60 
P. Wei et al., JACS, dx.doi.org/10.1021/ja211382x
All-organic device: Red pin OLED at 2.4V 
Best devices: 1.89V ≈ thermodynamic limit + 20%
Outline 
• Introduction to organic semiconductors 
• Doping of Organic Semiconductors 
• Organic Light Emitting Diodes 
(OLED) 
• Organic Solar Cells
Highly Efficient OLEDs 
Singlet/Triplet ratio 
Rad. efficiency 
•The quantum efficiency of 
OLEDs is given by 
•The luminous efficacy is 
defined as 
[1] Meerheim, PhD Thesis 2009 
Charge Balance 
Outcoupling 
efficiency 
Driving voltage 
Except for outcoupling, everything is close to optimum!
Spin Statistics: Phosphorescent Emitters are needed 
(Thompson & Forrest) 
hole electron exciton 
+ 
+ 
+ 
+ 
Triplet 
Triplet 
Triplet 
Singlet 
• e-h-recombination: 75% triplet- and 25% singlet-excitons 
• Phosphorescent emitters: triplets are used as well due to spin-orbit 
coupling by heavy metals (Ir, Pt, Cu…) 
• ≈ 100% internal quantum efficiency reached
Outcoupling Efficiency 
•Different index of 
refraction of organic, 
glas and air 
•Total reflection at 
interfaces 
•80% of all light is 
trapped in flat device: 
ξ≈0.2
Distribution of Power in Modes 
3 
•Outcoupled modes 
•Substrate modes (1) 
•Organic modes (2) 
•Plasmonic losses (3)
Substrate Modes: Outcoupling easily achieved 
SSoouurrccee:: TTeemmiiccoonn 
3
Waveguide Modes 
Glass 
ITO 
Organics 
Cathode 
Emitting Center 
M. Furno et al.
Surface Plasmon Modes 
Glass 
ITO 
Organics 
Cathode 
M. Furno et al. 
Emitting Center High Losses due to Coupling to Metal!
Distribution of power into different modes 
• Calculations by Mauro 
Furno (M. Furno et al. 
Proc. SPIE 7617, 
761716 (2010); Phys. 
Rev. B 85, 115205 
(2012)) 
• Model includes Purcell 
effect 
• Model can be tested 
by variation of electron 
transport layer 
thickness 
R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
Ag (100) 
Bphen (x) 
Cs 
BAlq (10) 
NPB:Ir(MDQ)2(20) 
Spiro-TAD (10) 
MeO-TPD (36) 
NDP-2 
ITO (90) 
High-n (HI) glass 
Experiment: High Index Glass 
R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
Ag (100) 
Bphen (x) 
Cs 
BAlq (10) 
NPB:Ir(MDQ)2(20) 
Spiro-TAD (10) 
Up to 54 % EQE (104 lm/W) reached for red OLEDs 
MeO-TPD (36) 
NDP-2 
ITO (90) 
High-n (HI) glass 
Experiment: High Index Glass 
R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
Fabrication of gratings 
Wallace Choy et al., University of Hongkong
OLED on periodically structured substrates 
 1D grating 
 Bottom- and top-emitting OLED 
Tobias 
Schwab
Efficiency Enhancement for 
Bottom-Emitting OLEDs 
 EQE increase: Λ = 0.7μm → 1.26 x EQEplanar 
 increased luminance 
 comparable leakage 
[1] 
Fuchs et al., Optics Express, Vol. 21, Issue 14, pp. 16319-16330 (2013)
Bragg Scattering: Theory 
periodic structure → lattice constant 
additional intensity to air cone: 
→ reciprocal lattice constant 
 high order m 
 large G 
[1] 
[1] Salt et al., PRB (2000) Cornelius Fuchs
Mode analysis for p-polarization
Mode analysis for p-polarization
Mode analysis for p-polarization
Mode analysis for p-polarization
Outcoupling with nanoparticle layers 
• Polymer film with TiO2 scattering 
particles 
• Easy and low-cost preparation 
• Comparatively smooth layers 
(RMS=4.5nm) integrated below 
ITO electrode 
• Reasonable overlap with 
waveguide mode (blue) 
• Small overlap with plasmon mode 
(red) 
Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013)
White translucent OLED with NP scattering 
• White OLED tandem stack 
• Blue-red triplet harvesting unit 
• Combined with green phosphorescent unit 
Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013)
White translucent OLED with NP scattering 
• Outcoupling without NP layer: EQE 22% / 32 lm/W 
• With NP layer: 33% EQE / 46 lm/W 
• With NP and outcoupling sphere: 46% EQE / 62 lm/W 
O with NP & 
sphere 
Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013) 
● with NP 
■ w/o NP
Improved angular dependence 
• OLED with nanoparticles: Emission spectrum virtually angle-independent 
• Emitter power smoothed to Lambertian distribution 
• Nanoparticle layer ideal for white devices! 
Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013) 
● with NP 
■ w/o NP
All-phosphorescent white OLED 
• S. Reineke et al., Nature 459, 234 (2009) 
• Novel emitter layer design 
• High-index substrate and higher-order electron 
transport layer
Ag 
ETL 
HTL 
ITO 
High-n (HI glass) 
Efficacy for white OLED 
S. Reineke et al., Nature 459, 234-238 (2009)
Outline 
• Introduction to organic 
semiconductors 
• Doping of Organic Semiconductors 
• Organic Light Emitting Diodes (OLED) 
• Organic Solar Cells
© Heliatek 
Organic Photovoltaics 
Homogeneous 
Surface
Novel applications possible 
Source: Solartension
Elementary processes in 
organic solar cells 
absorption 
exciton diffusion 
exciton separation 
charge transport 
charge extraction
The organic exciton separation problem 
GaAs exciton 
• Absorption leads to tightly bound 
(0.2 … 0.5 eV) excitons 
• Separation in electric field 
inefficient 
• Usual solar cell structure does 
not work 
Organic exciton 
S. E. Gledhill et al. J. Mat Res. 20, 3167 (2005) 
P. Würfel, CHIMIA 61, 770 (2007)
Exciton separation at a heterojunction 
Flat heterojunction (FHJ) bulk heterojunction (BHJ) 
C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) 
M. Hiramoto et al., Appl. Phys. Lett. 58, 1062 (1991) 
J. J. Hall et al., Nature 376, 498 (1995) 
G. Yu et al. Science 270, 1789 (1995)
Exciton diffusion length 
Exciton diffusion length LD = (10 ±1) nm
Exciton separation at a heterojunction 
Flat heterojunction (FHJ) bulk heterojunction (BHJ) 
C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) 
M. Hiramoto et al., Appl. Phys. Lett. 58, 1062 (1991) 
J. J. Hall et al., Nature 376, 498 (1995) 
G. Yu et al. Science 270, 1789 (1995) 
Energy loss is unavoidable!
Bulk heterojunction: Morphology control 
• Heterojunction is characterized by complex morphology 
• Ideally: columnar structure 
• Reality: disordered mixture with nanodomains
• Multi-scale approach needed for materials development 
• Connection between molecular structure and device 
performance very complex 
D. Andrienko 
How to find the “right” molecule?
The thiophene zoo... 
3T 4T 5T 6T 
University of Ulm 
Department Organic 
Chemistry II
Energy Levels vs. backbone length 
# thiophene 
units 
DCVnT: Fitzner et al., AFM 21, 897 (2011) 
DCVnT-Bu: Schüppel et al., PRB 77, 085311 (2008)
Influence of side chains on energy levels 
- Only weak effects of side chains in solution 
- Significant Energy shifts in thin films
The thiophene zoo... 
3T 4T 5T 6T 
University of Ulm 
Department Organic 
Chemistry II
DCV5T-Me: small differences, big effects 
DCV5T-Me(3,3) [D33] DCV5T-Me(1,1,5,5) [D15] 
6.9% 4.8% 
- almost identical 
molecular structure 
- identical stack 
Chris Elschner
GIWAXS single layers 
glass / DCV5Ts (30 nm) 
[D33] [D15] 
- broadened out of 
plane reflections 
@ RT 
- orientation of 
crystals spreads 
out, crystal size 
grows @ 110°C 
single layer 
pattern very 
similar !
Tsubstrate 
GIWAXS blends 
glass / DCV5Ts : C60 (30 nm, 2:1) 
RT 80°C 110°C 140°C 
[D15] 
[D33] 
D33 (top): best OSC @80°C, crystallization @110°C 
D15 (bottom): best OSC @≈110°C (?), crystallization @140°C
Interpretation 
RT intermediate temp. high temp. 
- nanoscale mixing 
of donor and C60 
- low crystallinity 
- smooth surface 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) R T 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 
5 0 0 
4 0 0 
3 0 0 
2 0 0 
1 0 0 
0 
i n t e n s i t y ( c p s ) 
2 q   ( ° ) 
Tsubstrate
Interpretation 
RT intermediate temp. high temp. 
- nanoscale mixing 
of donor and C60 
- low crystallinity 
- smooth surface 
- morphology changes: 
- crystallinity 
- roughness 
- OSC efficiency 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) R T 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 
5 0 0 
4 0 0 
3 0 0 
2 0 0 
1 0 0 
0 
i n t e n s i t y ( c p s ) 
2 q   ( ° ) 
Tsubstrate
Interpretation 
RT intermediate temp. high temp. 
[D15] > 110°C 
[D33] > 80°C 
- nanoscale mixing 
of donor and C60 
- low crystallinity 
- smooth surface 
- morphology changes: 
- crystallinity 
- roughness 
- OSC efficiency 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) R T 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 
5 0 0 
4 0 0 
3 0 0 
2 0 0 
1 0 0 
0 
i n t e n s i t y ( c p s ) 
2 q   ( ° ) 
- surface segregation of 
DCV → crystallinity 
→ roughness 
- OSC efficiency 
3 5 0 g la s s / D 1 5 : C 6 0 ( 2 : 1 ) 1 4 0 ° C 
q  <  q c r i t i c a l 
5 1 0 1 5 2 0 
3 0 0 
2 5 0 
2 0 0 
1 5 0 
1 0 0 
5 0 
0 
g la s s / D 1 5 : C 6 0 ( 2 : 1 ) 1 1 0 ° C 
i n t e n s i t y ( a r b . u n i t s ) 
2 q ( ° ) 
Tsubstrate
Interpretation 
RT intermediate temp. high temp. 
- nanoscale mixing 
of donor and C60 
- low crystallinity 
- smooth surface 
- morphology changes: 
- crystallinity 
- roughness 
- OSC efficiency 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) R T 
g l a s s  D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 
5 0 0 
4 0 0 
3 0 0 
2 0 0 
1 0 0 
0 
i n t e n s i t y ( c p s ) 
2 q   ( ° ) 
- surface segregation of 
DCV → crystallinity 
→ roughness 
- OSC efficiency 
[D15] > 110°C 
[D33] > 80°C 
Tsubstrate
8.3% certified DCV5T cell 
Rico Meerheim 
Christian Körner 
R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
8.3% certified DCV5T cell 
Rico Meerheim 
Christian Körner 
R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
Efficiency Outlook Single Cells 
T. Mueller et al. 
Main assumptions: 
 EQE 60% 
 FF 60% 
Max efficiency about 15%: 
10-12% in module
Higher Efficiency for Multijunction Cells 
M. Graetzel et al., Nature 488, 304 (2012) 
Shockley-Queisser limit for single 
junction: 31% 
Major gains only for 
Tandem junction: 42% 
Triple junction: 49% 
Lower currents/higher voltages 
reduce electrical losses 42 
31
first cell second cell 
e.gap 1.9eV 1.25eV ~21% 
o.gap ~770nm ~1300nm 
e.gap 2.1eV 1.5eV ~20% 
o.gap ~690nm ~1030nm 
e.gap 2.225eV 1.7eV ~19% 
o.gap ~645nm ~890nm 
T. Mueller et al. 
Efficiency Outlook for Tandem Cells 
Main assumptions: 
 EQE 60% 
 FF 60% 
>20% for tandem possible!
P-i-n tandem cells: 
• Pn-junction is ideal 
recombination 
contact 
• optimizing 
interference pattern 
with conductive 
transparent layers 
=>optical engineering 
on nanometer layer 
thickness scale 
n 
- 
photoactive layer 2 
+ 
- 
p 
n 
photoactive layer 1 
p 
+ 
substrate foil 
Pin-tandem cells: 
doped layers are critical for optical optimization 
J. Drechsel et al., Appl.Phys.Lett. 86, 244102 (2005)
High-efficiency thiophene cells 
Jsc (mA/cm²) 4.80 
Voc (V) 2.79 
FF (%) 72.4 
PCE (%) 9.7 
Triple 
Jsc (mA/cm²) 7.39 
Voc (V) 1.88 
FF (%) 69.0 
PCE (%) 9.6 
Tandem 
Jsc (mA/cm²) 13.20 
Voc (V) 0.96 
FF (%) 65.8 
PCE (%) 8.3 
Single 
R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
EQE of triple cell (9.7%) 
R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
Small-Molecule OPV Record > 1cm²
Development of OPV Efficiencies 
diagram available under www.orgworld.de
Perovskites: the new kid on the block... 
diagram available under www.orgworld.de
Perovskite „record“ cell 
H. Zhou et al., Science 345, 542 (2014)
Strong hysteresis effects 
Forward „efficiency“ : 13.08% 
Reverse „efficiency“: 16.79% 
H. Zhou et al., Science 345, 542 (2014)
Perovskite cells: variation of HTL 
• p-doped HTL with 
different alignment 
• First fully vacuum 
processed cells: no 
hysteresis 
• L. Polander et al., 
Appl. Phys. Lett. 
Mat. 2, 081503 
(2014) 
Lauren Polander
Solar cell parameters 
• Optimum molecule: Spiro-MeO-TPD 
• No hysteresis observed 
• L. Polander et al., Appl. Phys. Lett. Mater. 2, 
081503 (2014)
Lifetime of ZnPc:C60 lab cells 
• Pin structures 
• Glass-glass 
encapsulated 
• Measured unter 2 suns 
(Roughly) extrapolated lifetime: 37 years! 
Christiane Falkenberg, PhD thesis, TU Dresden
• Heliatek’s foil-encapsulated solar 
films withstand lifetime tests well 
above PV industry standard 
• Degradation after damp-heat stress 
(85°C, 85% RH): below 3% 
• Based on commercially available 
barrier foils 
• Heliatek propriety encapsulation and 
sealing process 
• IEC standard damp heat test 
Heliatek reliability lab measurement of BDR-based stack, 80 cm² active area 
Management Presentation 
Lifetime of flexible module
Outdoor test: Singapore 
Courtesy: Heliatek 
Material Efficiency kWh/kWp Ratio to 
CIGS 
Ratio to 
c-Si 
CIGS 9.3% 136 1 
c-Si 15.2% 147 1.20 1 
mc-Si 8.5% 156 1.27 1.06 
Organic 8.6% 187 1.38 1.27 
February to April 2012 
300 tilt, NW orientation 
O-Factor: 27% relative to c-Si
Cost Calculation: Mass Production 
• 60m2/min production: ≈ 3 GW/year 
• P3HT active material, C60 (PCBM) 
• Ag/Pedot anode 
• Al cathode 
• 100% production yield 
C.J. Mulligan et al. / Solar Energy Materials & Solar Cells 120 (2014) 9–17
Cost distribution 
Total cost: 7.80 (±2) US$/m2 ≈ 0.05US$/Wattpeak ≈ 0.02US$/kWh* 
* if system cost can be scaled similarly 
C.J. Mulligan et al. / Solar Energy Materials & Solar Cells 120 (2014) 9–17
Organic Roll-to-Roll Coater 
14 Linear Organic Evaporators 
BL 
DC-Magnetron 
Lineare Ion Source 
2 Metal Evaporators 
Substrate Winder 
Interleaf Winder 
Port for Inert Substrate Load 
Lock 
cathode 
EBL 
HBL 
EML 
red 
EML 
green 
EML 
blue 
HTL 
ETL 
BL 
3-color-white pin OLED
Conclusions 
• Organic semiconductors: low mobility, but excellent optoelectronic 
properties 
• Organic LED have made tremendous progress; established product 
for smartphone displays 
• Remaining challenge for higher efficiency: Optical outcoupling 
• Internal modes can be outcoupled with suitable scattering structures 
• Organic solar cells: Efficiencies have grown dramatically 
• Tandem cells can be easily realized
Acknowledgment 
• L. Burtone, C. Elschner, L. Fang, A. Fischer, J. Fischer, H. Froeb, M. Furno, M. Gather, S. 
Hofmann, F. Holzmüller, D. Kasemann, C. Körner, B. Lüssem, R. Meerheim, J. Meiss, T. 
Menke, T. Meyer, T. Mönch, L. Müller-Meskamp , D. Ray, K. Vandewal, S. Reineke, M.K. 
Riede, C. Sachse , T. Schwab, N. Sergeeva, J. Widmer, S. Ullbrich (IAPP) 
• K. Fehse C. May, C. Kirchhof, M. Toerker, M. Hoffmann, S. Mogck, C. Lehmann, T. 
Wanski (FhG-COMEDD) 
• J. Blochwitz-Nimoth, J. Birnstock, T. Canzler, M. Hummert, S. Murano, M. Vehse, M. 
Hofmann, Q. Huang, G. He, G. Sorin (Novaled) 
• M. Pfeiffer, B. Männig, G. Schwartz, T. Müller, C. Uhrich, K. Walzer (Heliatek) 
• J. Amelung, M. Eritt (Ledon) 
• D. Gronarz (OES) 
• R. Fitzner, E. Brier, E. Reinold, A. Mishra, P. Bäuerle (Ulm) 
• D. Alloway, P.A. Lee, N. Armstrong (Tucson) 
• K. Schmidt-Zojer (Graz), J.-L. Bredas (Atlanta) 
• C. Tang (Rochester) 
• R. Coehoorn, P. Bobbert (Eindhoven) 
• T. Fritz (Jena) 
• P. Wei, B. Naab, Z. Bao (Stanford) 
• D. Wöhrle (Bremen), J. Salbeck (Kassel), H. Hartmann (Merseburg/Dresden) 
• C.J. Bloom, M. K. Elliott (CSU) 
• P. Erk et al. (BASF) 
• BMBF, SMWA, SMWK, DFG, EC, FCI, NEDO
Prof. Dr. Karl Leo 
Institut für Angewandte Photophysik 
Technische Universität Dresden 
01062 Dresden, Germany 
ph: +49-351-463-37533 or mobile: +49-175- 
540-7893 
Fax: +49-351-463-37065 
email: leo@iapp.de 
Web page: http://www.iapp.de

Mais conteúdo relacionado

Mais procurados

Organic Semiconductor Technology
Organic Semiconductor TechnologyOrganic Semiconductor Technology
Organic Semiconductor Technologysamiseecs
 
Organic photovoltaic cells : OPV
Organic photovoltaic cells : OPVOrganic photovoltaic cells : OPV
Organic photovoltaic cells : OPVMalak Talbi
 
Henry J. Snaith at BASF Science Symposium 2015
Henry J. Snaith at BASF Science Symposium 2015Henry J. Snaith at BASF Science Symposium 2015
Henry J. Snaith at BASF Science Symposium 2015BASF
 
Epitaxial Crystal Growth: Methods & Analysis
Epitaxial Crystal Growth: Methods & Analysis Epitaxial Crystal Growth: Methods & Analysis
Epitaxial Crystal Growth: Methods & Analysis KaŃnán RãjËev
 
Piezo Responce Force Microscopy
Piezo Responce Force MicroscopyPiezo Responce Force Microscopy
Piezo Responce Force Microscopynirupam12
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellRajan K. Singh
 
Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)shashank chetty
 
Pulse laser deposition of thin film
Pulse laser deposition of thin filmPulse laser deposition of thin film
Pulse laser deposition of thin filmUOG PHYSICISTS !!!!!
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cellshebabakry7
 
Perovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryPerovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryDawn John Mullassery
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsTuong Do
 

Mais procurados (20)

Organic Semiconductor Technology
Organic Semiconductor TechnologyOrganic Semiconductor Technology
Organic Semiconductor Technology
 
Organic photovoltaic cells : OPV
Organic photovoltaic cells : OPVOrganic photovoltaic cells : OPV
Organic photovoltaic cells : OPV
 
Henry J. Snaith at BASF Science Symposium 2015
Henry J. Snaith at BASF Science Symposium 2015Henry J. Snaith at BASF Science Symposium 2015
Henry J. Snaith at BASF Science Symposium 2015
 
Perovskite Solar cells
Perovskite Solar cells Perovskite Solar cells
Perovskite Solar cells
 
Molecular beam epitaxy
Molecular beam epitaxyMolecular beam epitaxy
Molecular beam epitaxy
 
Hybrid inorganic/organic semiconductor structures for opto-electronics.
Hybrid inorganic/organic semiconductor structures for opto-electronics.Hybrid inorganic/organic semiconductor structures for opto-electronics.
Hybrid inorganic/organic semiconductor structures for opto-electronics.
 
Xps
XpsXps
Xps
 
Epitaxial Crystal Growth: Methods & Analysis
Epitaxial Crystal Growth: Methods & Analysis Epitaxial Crystal Growth: Methods & Analysis
Epitaxial Crystal Growth: Methods & Analysis
 
Piezo Responce Force Microscopy
Piezo Responce Force MicroscopyPiezo Responce Force Microscopy
Piezo Responce Force Microscopy
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar Cell
 
Thermoelectrics
ThermoelectricsThermoelectrics
Thermoelectrics
 
Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)
 
Epitaxy
EpitaxyEpitaxy
Epitaxy
 
Pulse laser deposition of thin film
Pulse laser deposition of thin filmPulse laser deposition of thin film
Pulse laser deposition of thin film
 
Ferroelectrics.pptx
Ferroelectrics.pptxFerroelectrics.pptx
Ferroelectrics.pptx
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
2 d materials
2 d materials2 d materials
2 d materials
 
Perovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryPerovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John Mullassery
 
OFET sensors
OFET sensorsOFET sensors
OFET sensors
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic Photovoltaics
 

Semelhante a Highly efficient organic devices.

Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangorcdtpv
 
nanothiland2016
nanothiland2016nanothiland2016
nanothiland2016KL Woon
 
Dssc (Dye sensitized solar cell)
Dssc (Dye sensitized solar cell)Dssc (Dye sensitized solar cell)
Dssc (Dye sensitized solar cell)Preeti Choudhary
 
Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Philippe Smet
 
Transparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PVTransparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PVcdtpv
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVUniversity of Liverpool
 
Nanotechnology Progess And Pitfalls
Nanotechnology Progess And PitfallsNanotechnology Progess And Pitfalls
Nanotechnology Progess And Pitfallsphackettualberta
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discoveryAnubhav Jain
 
Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)BISWAJIT KUMAR BARMAN
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerationscdtpv
 
Pvd final 17 etmm10 mahfooz
Pvd final 17 etmm10 mahfoozPvd final 17 etmm10 mahfooz
Pvd final 17 etmm10 mahfoozMahfooz Alam
 
Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)cdtpv
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cellsAkinola Oyedele
 
Mid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeChelsey Crosse
 
DSSC characterization using EIS
DSSC characterization using EISDSSC characterization using EIS
DSSC characterization using EISchaudharichetan
 
Suppressing Evanescent Loss in OLEDs Using Low Refractive Index ETL
Suppressing Evanescent Loss in OLEDs Using Low Refractive Index ETLSuppressing Evanescent Loss in OLEDs Using Low Refractive Index ETL
Suppressing Evanescent Loss in OLEDs Using Low Refractive Index ETLAmin Salehi
 

Semelhante a Highly efficient organic devices. (20)

Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
 
nanothiland2016
nanothiland2016nanothiland2016
nanothiland2016
 
Dssc (Dye sensitized solar cell)
Dssc (Dye sensitized solar cell)Dssc (Dye sensitized solar cell)
Dssc (Dye sensitized solar cell)
 
Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019
 
Transparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PVTransparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PV
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PV
 
Nanotechnology Progess And Pitfalls
Nanotechnology Progess And PitfallsNanotechnology Progess And Pitfalls
Nanotechnology Progess And Pitfalls
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
Transparent Electronics
Transparent ElectronicsTransparent Electronics
Transparent Electronics
 
Transparent Electronics
Transparent ElectronicsTransparent Electronics
Transparent Electronics
 
Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
 
Characterization techniques of nanoparticles
Characterization techniques of nanoparticlesCharacterization techniques of nanoparticles
Characterization techniques of nanoparticles
 
Lecture 7 oms
Lecture 7 omsLecture 7 oms
Lecture 7 oms
 
Pvd final 17 etmm10 mahfooz
Pvd final 17 etmm10 mahfoozPvd final 17 etmm10 mahfooz
Pvd final 17 etmm10 mahfooz
 
Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cells
 
Mid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSe
 
DSSC characterization using EIS
DSSC characterization using EISDSSC characterization using EIS
DSSC characterization using EIS
 
Suppressing Evanescent Loss in OLEDs Using Low Refractive Index ETL
Suppressing Evanescent Loss in OLEDs Using Low Refractive Index ETLSuppressing Evanescent Loss in OLEDs Using Low Refractive Index ETL
Suppressing Evanescent Loss in OLEDs Using Low Refractive Index ETL
 

Mais de Sociedade Brasileira de Pesquisa em Materiais

Mais de Sociedade Brasileira de Pesquisa em Materiais (20)

Challenges in Processing of Materials to Reduce Weight of Structural Components.
Challenges in Processing of Materials to Reduce Weight of Structural Components.Challenges in Processing of Materials to Reduce Weight of Structural Components.
Challenges in Processing of Materials to Reduce Weight of Structural Components.
 
Bioinspired strategies for bone regeneration.
Bioinspired strategies for bone regeneration.Bioinspired strategies for bone regeneration.
Bioinspired strategies for bone regeneration.
 
Sirius: The New Brazilian Synchrotron Light Source.
Sirius: The New Brazilian Synchrotron Light Source.Sirius: The New Brazilian Synchrotron Light Source.
Sirius: The New Brazilian Synchrotron Light Source.
 
Tribute to Prof Ivo Alexander Hümmelgen (26 March 1963 – 1 March 2019).
Tribute to Prof Ivo Alexander Hümmelgen  (26 March 1963 – 1 March 2019).Tribute to Prof Ivo Alexander Hümmelgen  (26 March 1963 – 1 March 2019).
Tribute to Prof Ivo Alexander Hümmelgen (26 March 1963 – 1 March 2019).
 
Watching flowers through a silicon glass.
Watching flowers through a silicon glass.Watching flowers through a silicon glass.
Watching flowers through a silicon glass.
 
Crystallography in Brazil: Origin and Current Perspective.
Crystallography in Brazil: Origin and Current Perspective.Crystallography in Brazil: Origin and Current Perspective.
Crystallography in Brazil: Origin and Current Perspective.
 
"XVIII B-MRS Meeting" Closing Ceremony Presentation.
"XVIII B-MRS Meeting" Closing Ceremony Presentation."XVIII B-MRS Meeting" Closing Ceremony Presentation.
"XVIII B-MRS Meeting" Closing Ceremony Presentation.
 
XVIII B-MRS Meeting
XVIII B-MRS MeetingXVIII B-MRS Meeting
XVIII B-MRS Meeting
 
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
 
Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...
Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...
Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...
 
Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.
 
Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...
Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...
Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...
 
Materials for a Better Future.
Materials for a Better Future.Materials for a Better Future.
Materials for a Better Future.
 
Molecular Assembly of Peptide based Materials towards Biomedical Application.
Molecular Assembly of Peptide based Materials towards Biomedical Application.Molecular Assembly of Peptide based Materials towards Biomedical Application.
Molecular Assembly of Peptide based Materials towards Biomedical Application.
 
How to promote your article?
How to promote your article?How to promote your article?
How to promote your article?
 
How can academic publishing increase diversity and inclusion,
How can academic publishing increase diversity and inclusion,How can academic publishing increase diversity and inclusion,
How can academic publishing increase diversity and inclusion,
 
New Perspectives on Materials Science and Innovation in Brazil.
New Perspectives on Materials Science and Innovation in Brazil.New Perspectives on Materials Science and Innovation in Brazil.
New Perspectives on Materials Science and Innovation in Brazil.
 
XVI B-MRS Meeting Closing Ceremony Presentation.
XVI B-MRS Meeting Closing Ceremony Presentation.XVI B-MRS Meeting Closing Ceremony Presentation.
XVI B-MRS Meeting Closing Ceremony Presentation.
 
Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...
Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...
Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...
 
Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.
Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.
Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.
 

Último

Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 

Último (20)

Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 

Highly efficient organic devices.

  • 1. Highly Efficient Organic Devices Karl Leo* Institut für Angewandte Photophysik, TU Dresden, 01062 Dresden, Germany, www.iapp.de * currently: KAUST, Thuwal, Saudi-Arabia XIII Brazilian MRS Meeting 2014 João Pessoa 30.9.2014
  • 2. Acknowledgments • Johannes Widmer • Christian Körner • Chris Elschner • Christoph Schünemann • Wolfgang Tress • Martin Hermenau • Toni Müller • Max Tietze • Selina Olthof • Malte Gather • Simone Hofmann • Tobias Schwab • Moritz Riede Hong-Wei Chang Chung-Chih Wu Xuanhua Li Fengxian Xie Wallace Choy Martin Pfeiffer Karsten Walzer Christian Uhrich Roland Fitzner Egon Reinold Peter Bäuerle University of Ulm Department Organic Chemistry II
  • 3. King Abdullah University of Science and Technology - KAUST
  • 4. King Abdullah University of Science and Technology (KAUST) Solar and Photovoltaics Engineering Research Center (SPERC)
  • 5. Outline • Introduction to Organic Semiconductors • Doping of Organic Semiconductors • Organic Light Emitting Diodes (OLED) • Organic Solar Cells
  • 6. Organic Semiconductors • Large area & flexible substrates possible • Large variety: millions of molecules, mostly carbon • Low cost: approx. 1g/m2 active material Photovoltaic cells Organic materials Transistors and memory Organic light emitting diodes
  • 7. Polymers vs small molecules • Polymers: deposition from solution • Small molecules (oligomers): vacuum or solution • OLED: Polymer lost the race (for the moment…) • Solar Cells: Polymer and small molecules on par
  • 8. Some people drink organic semiconductors….. 350 400 450 500 550 600 650 700 3,4 3,2 3,0 2,8 2,6 2,4 2,2 2,0 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 Absorption Wellenlänge
  • 9. Carbon: the influence of dimensionality Source: Castro Neto, Geim et al. Van der Waals-coupling: Narrow bands 104 m ob ility 0D 2D covalent broad bands 2D 101 10-2 1D covalent: broad bands 1D
  • 10. Mobility in Organic Semiconductors Typical OLED today! Source: IBM J. Res. Dev.
  • 11. Single crystal electroluminescence • Williams&Schadt 1969 • 100μm Anthracene crystal, 100V voltage
  • 12. First OLED C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
  • 13. First White OLED J. Kido et al, Appl. Phys. Lett. 64, 813 (1993)
  • 14. Time 1st wave: small OLED Display Progression of Organic Products 3rd wave: OLED lighting 2nd wave: OLED TV 4th wave: OPV 5th wave: Organic Electronics
  • 15. OLED Displays on the Market Passive Matrix Philips OLED Shaver • 2013 market: Approx. 10 billion $ (Idtechex) • 100% small molecule OLED • 99% Asian Manufacturers Active Matrix Kodak Camera Samsung phone Nokia phone LG OLED TV
  • 16. iWatch: flexible OLED display Oled-display.net • OLED: ideal for flexible devices • Thin-film encapsulation is challenging • Usual approach: Plastic film coated with multilayer encapsulation system • Diffusion rates must be 106 times lower than for food encapsulation
  • 17. Outline • Introduction to organic semiconductors • Doping of Organic Semiconductors • Organic Light Emitting Diodes (OLED) • Organic Solar Cells
  • 18. The pin-OLED structure p i n p-HTL Electron Blocker Hole Blocker Emitter Anode Cathode n-ETL • Device operates in flat-band condition • Carriers are injected through thin space-charge layers
  • 19. AOB F F F F N N N N F4-TCNQ N N N N N N N N Zn S CN CN S Bu Bu S C60 ZnPc S Bu Bu S CN CN DCV5T-Bu Cathode n-doped ETL Photovoltaic active Layer p-doped HTL Anode n i p B. Maennig et al., Appl. Phys. A 79, 1 (2004) M. Riede et al., Nanotechnology 19, 424001 (2008) 4P-TPD Di-NPD 2-TNATA The p-i-n Concept for Organic Solar Cells
  • 20. Basics of Doping: p-doping Inorganic Organic · broad bands · small correlation energies (e-h » 4meV) · hydrogen model works · hopping transport · large correlation (e-h » 0.5 eV) · polaron effects important
  • 21. Quartz monitors Co-evaporation of doped films Substrate Dopant Matrix p » 10-4 Pa Tevap= 100..400 oC TSubs= -50..150 oC d = 25..1000 nm rM» 1 Å/s Dopant/Matrix ratio of 1:2000 achieved
  • 22. UPS/XPS study of doping process • MeO-TPD doped with F4-TCNQ • Molar doping ratio is varied S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
  • 23. Fermi level shift and conductivity change • MeO-TPD doped with F4- TCNQ • Fermi level shift observed in UPS and XPS • Fermi level shifts first very quickly, slope >>kT • Then saturation S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
  • 24. Origin of Saturation: tail states • Fermi level shift is caused by tail states of Gaussian • Distance to HOMO level depends on material • Distance correlates with disorder: smaller in ZnPC, larger in amorphous materials S. Olthof et al. J. Appl. Phys. 106, 103711 (2009)
  • 25. Model assuming deep traps • Deep traps with concentration Nt • Energy Et • NA<<Nt: only traps are filled • NA>>Nt: Normal doping M. Tietze et al., Phys. Rev. B86, 025320 (2012)
  • 26. Trap model and experiment • Model describes Fermi level shift reasonably well • Experiment more “smeared out”: broadening of trap state • Concentration and energy of traps can be determined precisely M. Tietze et al., Phys. Rev. B86, 025320 (2012)
  • 27. Molecular n-type doping: a challenge N N N N N N N N Zn N N 3 3.5 Electron Affinity [eV] 4 4.5 OLED OSC C60 NTCDA ZnPc BPhen TCNQ require stronger donors air sensitive donors air stable donors Dopand Matrix Alternative solution: metallic dopants Li, Cs (Kido et al.): unstable at higher temperature
  • 28. Air stable n-dopants • Usual n-dopant are not stable in air • Here: Iodine splits off when evaporated • Strong n-dopant in C60 P. Wei et al., JACS, dx.doi.org/10.1021/ja211382x
  • 29. All-organic device: Red pin OLED at 2.4V Best devices: 1.89V ≈ thermodynamic limit + 20%
  • 30. Outline • Introduction to organic semiconductors • Doping of Organic Semiconductors • Organic Light Emitting Diodes (OLED) • Organic Solar Cells
  • 31. Highly Efficient OLEDs Singlet/Triplet ratio Rad. efficiency •The quantum efficiency of OLEDs is given by •The luminous efficacy is defined as [1] Meerheim, PhD Thesis 2009 Charge Balance Outcoupling efficiency Driving voltage Except for outcoupling, everything is close to optimum!
  • 32. Spin Statistics: Phosphorescent Emitters are needed (Thompson & Forrest) hole electron exciton + + + + Triplet Triplet Triplet Singlet • e-h-recombination: 75% triplet- and 25% singlet-excitons • Phosphorescent emitters: triplets are used as well due to spin-orbit coupling by heavy metals (Ir, Pt, Cu…) • ≈ 100% internal quantum efficiency reached
  • 33. Outcoupling Efficiency •Different index of refraction of organic, glas and air •Total reflection at interfaces •80% of all light is trapped in flat device: ξ≈0.2
  • 34. Distribution of Power in Modes 3 •Outcoupled modes •Substrate modes (1) •Organic modes (2) •Plasmonic losses (3)
  • 35. Substrate Modes: Outcoupling easily achieved SSoouurrccee:: TTeemmiiccoonn 3
  • 36. Waveguide Modes Glass ITO Organics Cathode Emitting Center M. Furno et al.
  • 37. Surface Plasmon Modes Glass ITO Organics Cathode M. Furno et al. Emitting Center High Losses due to Coupling to Metal!
  • 38. Distribution of power into different modes • Calculations by Mauro Furno (M. Furno et al. Proc. SPIE 7617, 761716 (2010); Phys. Rev. B 85, 115205 (2012)) • Model includes Purcell effect • Model can be tested by variation of electron transport layer thickness R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
  • 39. Ag (100) Bphen (x) Cs BAlq (10) NPB:Ir(MDQ)2(20) Spiro-TAD (10) MeO-TPD (36) NDP-2 ITO (90) High-n (HI) glass Experiment: High Index Glass R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
  • 40. Ag (100) Bphen (x) Cs BAlq (10) NPB:Ir(MDQ)2(20) Spiro-TAD (10) Up to 54 % EQE (104 lm/W) reached for red OLEDs MeO-TPD (36) NDP-2 ITO (90) High-n (HI) glass Experiment: High Index Glass R. Meerheim et al., Appl. Phys. Lett. 97, 253305 (2010)
  • 41. Fabrication of gratings Wallace Choy et al., University of Hongkong
  • 42. OLED on periodically structured substrates  1D grating  Bottom- and top-emitting OLED Tobias Schwab
  • 43. Efficiency Enhancement for Bottom-Emitting OLEDs  EQE increase: Λ = 0.7μm → 1.26 x EQEplanar  increased luminance  comparable leakage [1] Fuchs et al., Optics Express, Vol. 21, Issue 14, pp. 16319-16330 (2013)
  • 44. Bragg Scattering: Theory periodic structure → lattice constant additional intensity to air cone: → reciprocal lattice constant  high order m  large G [1] [1] Salt et al., PRB (2000) Cornelius Fuchs
  • 45. Mode analysis for p-polarization
  • 46. Mode analysis for p-polarization
  • 47. Mode analysis for p-polarization
  • 48. Mode analysis for p-polarization
  • 49. Outcoupling with nanoparticle layers • Polymer film with TiO2 scattering particles • Easy and low-cost preparation • Comparatively smooth layers (RMS=4.5nm) integrated below ITO electrode • Reasonable overlap with waveguide mode (blue) • Small overlap with plasmon mode (red) Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013)
  • 50. White translucent OLED with NP scattering • White OLED tandem stack • Blue-red triplet harvesting unit • Combined with green phosphorescent unit Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013)
  • 51. White translucent OLED with NP scattering • Outcoupling without NP layer: EQE 22% / 32 lm/W • With NP layer: 33% EQE / 46 lm/W • With NP and outcoupling sphere: 46% EQE / 62 lm/W O with NP & sphere Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013) ● with NP ■ w/o NP
  • 52. Improved angular dependence • OLED with nanoparticles: Emission spectrum virtually angle-independent • Emitter power smoothed to Lambertian distribution • Nanoparticle layer ideal for white devices! Hong-Wei Chang et al., J. Appl. Phys. 113, 204502 (2013) ● with NP ■ w/o NP
  • 53. All-phosphorescent white OLED • S. Reineke et al., Nature 459, 234 (2009) • Novel emitter layer design • High-index substrate and higher-order electron transport layer
  • 54. Ag ETL HTL ITO High-n (HI glass) Efficacy for white OLED S. Reineke et al., Nature 459, 234-238 (2009)
  • 55.
  • 56. Outline • Introduction to organic semiconductors • Doping of Organic Semiconductors • Organic Light Emitting Diodes (OLED) • Organic Solar Cells
  • 57. © Heliatek Organic Photovoltaics Homogeneous Surface
  • 58. Novel applications possible Source: Solartension
  • 59. Elementary processes in organic solar cells absorption exciton diffusion exciton separation charge transport charge extraction
  • 60. The organic exciton separation problem GaAs exciton • Absorption leads to tightly bound (0.2 … 0.5 eV) excitons • Separation in electric field inefficient • Usual solar cell structure does not work Organic exciton S. E. Gledhill et al. J. Mat Res. 20, 3167 (2005) P. Würfel, CHIMIA 61, 770 (2007)
  • 61. Exciton separation at a heterojunction Flat heterojunction (FHJ) bulk heterojunction (BHJ) C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) M. Hiramoto et al., Appl. Phys. Lett. 58, 1062 (1991) J. J. Hall et al., Nature 376, 498 (1995) G. Yu et al. Science 270, 1789 (1995)
  • 62. Exciton diffusion length Exciton diffusion length LD = (10 ±1) nm
  • 63. Exciton separation at a heterojunction Flat heterojunction (FHJ) bulk heterojunction (BHJ) C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) M. Hiramoto et al., Appl. Phys. Lett. 58, 1062 (1991) J. J. Hall et al., Nature 376, 498 (1995) G. Yu et al. Science 270, 1789 (1995) Energy loss is unavoidable!
  • 64. Bulk heterojunction: Morphology control • Heterojunction is characterized by complex morphology • Ideally: columnar structure • Reality: disordered mixture with nanodomains
  • 65. • Multi-scale approach needed for materials development • Connection between molecular structure and device performance very complex D. Andrienko How to find the “right” molecule?
  • 66. The thiophene zoo... 3T 4T 5T 6T University of Ulm Department Organic Chemistry II
  • 67. Energy Levels vs. backbone length # thiophene units DCVnT: Fitzner et al., AFM 21, 897 (2011) DCVnT-Bu: Schüppel et al., PRB 77, 085311 (2008)
  • 68. Influence of side chains on energy levels - Only weak effects of side chains in solution - Significant Energy shifts in thin films
  • 69. The thiophene zoo... 3T 4T 5T 6T University of Ulm Department Organic Chemistry II
  • 70. DCV5T-Me: small differences, big effects DCV5T-Me(3,3) [D33] DCV5T-Me(1,1,5,5) [D15] 6.9% 4.8% - almost identical molecular structure - identical stack Chris Elschner
  • 71. GIWAXS single layers glass / DCV5Ts (30 nm) [D33] [D15] - broadened out of plane reflections @ RT - orientation of crystals spreads out, crystal size grows @ 110°C single layer pattern very similar !
  • 72. Tsubstrate GIWAXS blends glass / DCV5Ts : C60 (30 nm, 2:1) RT 80°C 110°C 140°C [D15] [D33] D33 (top): best OSC @80°C, crystallization @110°C D15 (bottom): best OSC @≈110°C (?), crystallization @140°C
  • 73. Interpretation RT intermediate temp. high temp. - nanoscale mixing of donor and C60 - low crystallinity - smooth surface g l a s s D 1 5 : C 6 0 ( 2 : 1 ) R T g l a s s D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0 i n t e n s i t y ( c p s ) 2 q ( ° ) Tsubstrate
  • 74. Interpretation RT intermediate temp. high temp. - nanoscale mixing of donor and C60 - low crystallinity - smooth surface - morphology changes: - crystallinity - roughness - OSC efficiency g l a s s D 1 5 : C 6 0 ( 2 : 1 ) R T g l a s s D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0 i n t e n s i t y ( c p s ) 2 q ( ° ) Tsubstrate
  • 75. Interpretation RT intermediate temp. high temp. [D15] > 110°C [D33] > 80°C - nanoscale mixing of donor and C60 - low crystallinity - smooth surface - morphology changes: - crystallinity - roughness - OSC efficiency g l a s s D 1 5 : C 6 0 ( 2 : 1 ) R T g l a s s D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0 i n t e n s i t y ( c p s ) 2 q ( ° ) - surface segregation of DCV → crystallinity → roughness - OSC efficiency 3 5 0 g la s s / D 1 5 : C 6 0 ( 2 : 1 ) 1 4 0 ° C q < q c r i t i c a l 5 1 0 1 5 2 0 3 0 0 2 5 0 2 0 0 1 5 0 1 0 0 5 0 0 g la s s / D 1 5 : C 6 0 ( 2 : 1 ) 1 1 0 ° C i n t e n s i t y ( a r b . u n i t s ) 2 q ( ° ) Tsubstrate
  • 76. Interpretation RT intermediate temp. high temp. - nanoscale mixing of donor and C60 - low crystallinity - smooth surface - morphology changes: - crystallinity - roughness - OSC efficiency g l a s s D 1 5 : C 6 0 ( 2 : 1 ) R T g l a s s D 1 5 : C 6 0 ( 2 : 1 ) 9 0 ° C 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0 i n t e n s i t y ( c p s ) 2 q ( ° ) - surface segregation of DCV → crystallinity → roughness - OSC efficiency [D15] > 110°C [D33] > 80°C Tsubstrate
  • 77. 8.3% certified DCV5T cell Rico Meerheim Christian Körner R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
  • 78. 8.3% certified DCV5T cell Rico Meerheim Christian Körner R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
  • 79. Efficiency Outlook Single Cells T. Mueller et al. Main assumptions:  EQE 60%  FF 60% Max efficiency about 15%: 10-12% in module
  • 80. Higher Efficiency for Multijunction Cells M. Graetzel et al., Nature 488, 304 (2012) Shockley-Queisser limit for single junction: 31% Major gains only for Tandem junction: 42% Triple junction: 49% Lower currents/higher voltages reduce electrical losses 42 31
  • 81. first cell second cell e.gap 1.9eV 1.25eV ~21% o.gap ~770nm ~1300nm e.gap 2.1eV 1.5eV ~20% o.gap ~690nm ~1030nm e.gap 2.225eV 1.7eV ~19% o.gap ~645nm ~890nm T. Mueller et al. Efficiency Outlook for Tandem Cells Main assumptions:  EQE 60%  FF 60% >20% for tandem possible!
  • 82. P-i-n tandem cells: • Pn-junction is ideal recombination contact • optimizing interference pattern with conductive transparent layers =>optical engineering on nanometer layer thickness scale n - photoactive layer 2 + - p n photoactive layer 1 p + substrate foil Pin-tandem cells: doped layers are critical for optical optimization J. Drechsel et al., Appl.Phys.Lett. 86, 244102 (2005)
  • 83. High-efficiency thiophene cells Jsc (mA/cm²) 4.80 Voc (V) 2.79 FF (%) 72.4 PCE (%) 9.7 Triple Jsc (mA/cm²) 7.39 Voc (V) 1.88 FF (%) 69.0 PCE (%) 9.6 Tandem Jsc (mA/cm²) 13.20 Voc (V) 0.96 FF (%) 65.8 PCE (%) 8.3 Single R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
  • 84. EQE of triple cell (9.7%) R. Meerheim et al., Appl. Phys. Lett. 105, 063306 (2014)
  • 86. Development of OPV Efficiencies diagram available under www.orgworld.de
  • 87. Perovskites: the new kid on the block... diagram available under www.orgworld.de
  • 88. Perovskite „record“ cell H. Zhou et al., Science 345, 542 (2014)
  • 89. Strong hysteresis effects Forward „efficiency“ : 13.08% Reverse „efficiency“: 16.79% H. Zhou et al., Science 345, 542 (2014)
  • 90. Perovskite cells: variation of HTL • p-doped HTL with different alignment • First fully vacuum processed cells: no hysteresis • L. Polander et al., Appl. Phys. Lett. Mat. 2, 081503 (2014) Lauren Polander
  • 91. Solar cell parameters • Optimum molecule: Spiro-MeO-TPD • No hysteresis observed • L. Polander et al., Appl. Phys. Lett. Mater. 2, 081503 (2014)
  • 92. Lifetime of ZnPc:C60 lab cells • Pin structures • Glass-glass encapsulated • Measured unter 2 suns (Roughly) extrapolated lifetime: 37 years! Christiane Falkenberg, PhD thesis, TU Dresden
  • 93. • Heliatek’s foil-encapsulated solar films withstand lifetime tests well above PV industry standard • Degradation after damp-heat stress (85°C, 85% RH): below 3% • Based on commercially available barrier foils • Heliatek propriety encapsulation and sealing process • IEC standard damp heat test Heliatek reliability lab measurement of BDR-based stack, 80 cm² active area Management Presentation Lifetime of flexible module
  • 94. Outdoor test: Singapore Courtesy: Heliatek Material Efficiency kWh/kWp Ratio to CIGS Ratio to c-Si CIGS 9.3% 136 1 c-Si 15.2% 147 1.20 1 mc-Si 8.5% 156 1.27 1.06 Organic 8.6% 187 1.38 1.27 February to April 2012 300 tilt, NW orientation O-Factor: 27% relative to c-Si
  • 95. Cost Calculation: Mass Production • 60m2/min production: ≈ 3 GW/year • P3HT active material, C60 (PCBM) • Ag/Pedot anode • Al cathode • 100% production yield C.J. Mulligan et al. / Solar Energy Materials & Solar Cells 120 (2014) 9–17
  • 96. Cost distribution Total cost: 7.80 (±2) US$/m2 ≈ 0.05US$/Wattpeak ≈ 0.02US$/kWh* * if system cost can be scaled similarly C.J. Mulligan et al. / Solar Energy Materials & Solar Cells 120 (2014) 9–17
  • 97. Organic Roll-to-Roll Coater 14 Linear Organic Evaporators BL DC-Magnetron Lineare Ion Source 2 Metal Evaporators Substrate Winder Interleaf Winder Port for Inert Substrate Load Lock cathode EBL HBL EML red EML green EML blue HTL ETL BL 3-color-white pin OLED
  • 98. Conclusions • Organic semiconductors: low mobility, but excellent optoelectronic properties • Organic LED have made tremendous progress; established product for smartphone displays • Remaining challenge for higher efficiency: Optical outcoupling • Internal modes can be outcoupled with suitable scattering structures • Organic solar cells: Efficiencies have grown dramatically • Tandem cells can be easily realized
  • 99. Acknowledgment • L. Burtone, C. Elschner, L. Fang, A. Fischer, J. Fischer, H. Froeb, M. Furno, M. Gather, S. Hofmann, F. Holzmüller, D. Kasemann, C. Körner, B. Lüssem, R. Meerheim, J. Meiss, T. Menke, T. Meyer, T. Mönch, L. Müller-Meskamp , D. Ray, K. Vandewal, S. Reineke, M.K. Riede, C. Sachse , T. Schwab, N. Sergeeva, J. Widmer, S. Ullbrich (IAPP) • K. Fehse C. May, C. Kirchhof, M. Toerker, M. Hoffmann, S. Mogck, C. Lehmann, T. Wanski (FhG-COMEDD) • J. Blochwitz-Nimoth, J. Birnstock, T. Canzler, M. Hummert, S. Murano, M. Vehse, M. Hofmann, Q. Huang, G. He, G. Sorin (Novaled) • M. Pfeiffer, B. Männig, G. Schwartz, T. Müller, C. Uhrich, K. Walzer (Heliatek) • J. Amelung, M. Eritt (Ledon) • D. Gronarz (OES) • R. Fitzner, E. Brier, E. Reinold, A. Mishra, P. Bäuerle (Ulm) • D. Alloway, P.A. Lee, N. Armstrong (Tucson) • K. Schmidt-Zojer (Graz), J.-L. Bredas (Atlanta) • C. Tang (Rochester) • R. Coehoorn, P. Bobbert (Eindhoven) • T. Fritz (Jena) • P. Wei, B. Naab, Z. Bao (Stanford) • D. Wöhrle (Bremen), J. Salbeck (Kassel), H. Hartmann (Merseburg/Dresden) • C.J. Bloom, M. K. Elliott (CSU) • P. Erk et al. (BASF) • BMBF, SMWA, SMWK, DFG, EC, FCI, NEDO
  • 100. Prof. Dr. Karl Leo Institut für Angewandte Photophysik Technische Universität Dresden 01062 Dresden, Germany ph: +49-351-463-37533 or mobile: +49-175- 540-7893 Fax: +49-351-463-37065 email: leo@iapp.de Web page: http://www.iapp.de