SlideShare uma empresa Scribd logo
1 de 6
Baixar para ler offline
Solid-State Electronics 49 (2005) 802–807
                                                                                                                  www.elsevier.com/locate/sse




AlGaN/GaN field effect transistors with C-doped GaN buffer layer
as an electrical isolation template grown by molecular beam epitaxy
                 S. Haffouz *, H. Tang, J.A. Bardwell, E.M. Hsu, J.B. Webb, S. Rolfe
              Institute for Microstructural Sciences, National Research Council Canada, Montreal Rd. M-50, Ottawa, Canada K1A 0R6

                                        Received 5 March 2004; received in revised form 23 November 2004


                                       The review of this paper was arranged by Prof. C. Hunt



Abstract

   The effectiveness of Ammonia Molecular Beam Epitaxy (MBE) grown carbon-doped GaN buffer layer as an electrical isolation
template was investigated. AlGaN/GaN field effect transistor structures with a product of sheet electron density and mobility (nsl),
linearly increasing from 1.5 · 1016 VÀ1 sÀ1 to 2 · 1016 VÀ1 sÀ1 with ns, were grown on 2-lm-thick carbon-doped GaN buffer layer
over sapphire substrates. The measurement of the gate-to-source voltage (VGS) dependent drain current (ID) demonstrated excellent
dc pinch-off characteristics as revealed by an on-to-off ratio of 107 for a drain–source voltage (VDS) up to 15 V. The gate leakage
current was less than 1 lA/mm at the subthreshold voltage (Vth = À5.2 V). Inter-devices isolation current (IISO) measurements
demonstrated IISO values in the low pico-amperes ranges indicating a complete suppression of the parallel conduction paths.
Small-signal rf measurements demonstrated a fmax/ft ratio as high as 2.9 attesting the absence of charge coupling effects.
Ó 2005 Elsevier Ltd. All rights reserved.

PACS: 85.30.Tv; 81.15.Hi; 73.61.Ey

Keywords: GaN; FET; MBE; Carbon doping; Heterostructure




1. Introduction                                                              sity and electron mobility (nsl) is of great importance
                                                                             for fabrication of high performance field effect transis-
   With improved growth material quality and fabrica-                        tors. In literature, considerable studies have addressed
tion technologies, AlGaN/GaN heterostructure field                            the electron mobility (l) dependence carrier densities
effect transistors (HFET) have reached nowadays a very                        (ns) [7–15]. However, there have been only few data on
advanced position and have clearly demonstrated their                        the growth of 2DEG structures with high nsl values
capability for high-power and high frequency applica-                        (>1016 VÀ1 sÀ1). Achievement of these latter values
tions [1–6]. Molecular Beam Epitaxy (MBE) and                                requires growth of AlGaN/GaN heterostructures with
Metal-Organic Chemical Vapor Deposition (MOCVD)                              high 2DEG mobility (P103 cm2/V s) at ns values in the
techniques have been successfully used for growth of                         few 1013 cmÀ2 ranges. Strong decrease of the 2DEG
AlGaN/GaN two-dimensional electron gas (2DEG)                                mobility with increasing the sheet carrier density in the
structures on various types of substrates. Growth of                         1–2 · 1013 cmÀ2 ranges has been observed in AlGaN/
2DEG structures with high product of sheet carrier den-                      GaN structures grown by MOCVD technique [13].
                                                                                On another hand, achievement of highly insulating
 *
     Corresponding author. Tel.: +1 613 991 0761; fax: +1 613 990 0202.      GaN buffer prior to deposition of AlGaN/GaN struc-
     E-mail address: soufien.haffouz@nrc-cnrc.gc.ca (S. Haffouz).               tures has not been an easy task. A conductive buffer

0038-1101/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.sse.2005.01.012
S. Haffouz et al. / Solid-State Electronics 49 (2005) 802–807                                803

layer will not only lead to high leakage currents and                    The growth of nitride material in our MBE/MSE dual
therefore a poor pinch-off characteristics but also will              mode system was performed following the established 2-
degrade the rf performances of the HFETs at high fre-                step deposition procedure that consists of a low-tempera-
quencies. To resolve this problem, a few approaches                  ture nucleation layer (in our case is AlN deposited by
have been proposed. Increasing the N flux during                      MSE [23]) followed by high-temperature nitride epilayers.
MBE grown GaN layers changes the profile of the                       For the present study, 20-nm-thick AlN nucleation layer
structural defects and residual impurities in this layer             was deposited at 885 °C by dc reactive sputter mode using
and leads to highly resistive buffer layers [16]. By                  high purity Al target, 25 sccm NH3 flow, 100 sccm Ar flow
adjusting the recrystallisation time of the nucleation               and 60 W power. The growth rate was about 1 nm/min.
layer, Bougrioua et al. [17] have demonstrated the                   Achievement of high quality overgrown layer, as well as
growth of highly resistive GaN layers in a MOCVD                     insulating template was accomplished by depositing
reactor. Using Fe [18], Be [19] and Zn [20] as accep-                2-lm-thick C-doped GaN layer at 930 °C using 1 sccm
tor-like point defects, semi-insulating GaN films were                methane (CH4) flow and low-energy saddle field ion
also successfully grown by respectively MOCVD,                       source for cracking the CH4 [21]. The growth rate of this
MBE and Hydride Vapor Phase Epitaxy (HVPE) tech-                     layer was about 0.80 lm/h with Ga cell temperature of
nique. Within our group, we have previously demon-                   1000 °C and NH3 flow of 100 sccm. X-ray measurements
strated the growth of semi-insulating C-doped GaN                    showed that the full width at half maximum (FWHM) of
buffer layer with good structural properties and excel-               the (0 0 0 2) peak in x-scan was about 57000 . Resistivity of a
lent reproducibility and reliability [21,22]. This layer             few MX cm was reproducibly achieved. Secondary ion
was systematically used as a template prior to growth                mass spectroscopy analysis of the C-doped GaN template
of AlGaN/GaN structures. Though up to now, a few                     using a methane flow rate as low as 1 sccm revealed car-
reports have demonstrated the growth of insulating                   bon concentration in the range of 2–8 · 1018 cmÀ3.
GaN buffer layer, only one study [19] has so far inves-               Achieving higher carbon concentration was found to be
tigated the effectiveness of an insulating GaN buffer                  relatively straightforward by simply increasing the meth-
layer as an electrical isolation template in field effect              ane flux, however, the crystal quality gets worse and there-
transistors.                                                         fore the quality of the overgrown layers (2DEG structure)
   In this article, we first report on the growth of                  will be affected as well.
AlGaN/GaN field effect transistor structures with high                     The growth procedure is completed by depositing a
nsl product values. Excellent electronic properties have             two-dimensional electron gas structure that consists of
been achieved as revealed by an nsl product linearly                 200-nm-thick undoped GaN channel layer followed by
increasing from 1.5 · 1016 VÀ1 sÀ1 to 2 · 1016 VÀ1 sÀ1               undoped AlGaN barrier. During AlGaN/GaN deposi-
with ns from 1.2 to 2 · 1013 cmÀ2. Further, we investi-              tion, the substrate temperature was kept unchanged at
gate the effectiveness of the C-doped GaN buffer layer                 930 °C.
as an electrical isolation template. A detailed picture                  Field effect transistors have been fabricated using
of the pinch-off characteristic is demonstrated by                    0.75 lm optical-gate-length. The mesa isolation was
measuring the dependence of the logarithm of the drain               accomplished using chemically assisted ion beam etching
current on the gate-to-source voltage for various drain–             (CAIBE) technique [24]. The Ohmic contacts were
source voltages. The absence of any parallel conduction              achieved by evaporating a thin Ti/Al/Ti/Au layers (20/
path is also evidenced by inter-devices isolation current            100/45/55 nm) followed by rapid thermal annealing at
(IISO) measurements. Finally, small-signal rf measure-               800 °C for 120 s in N2 atmosphere [25]. Low contact
ments shows an fmax/ft ratio as high as 2.9 attesting to             resistance with value in the range of 0.5–0.7 X mm was
the absence of charge coupling effects.                               obtained, based on circular transmission line measure-
                                                                     ments. The sheet resistance, which was also measured,
                                                                     was consistent with the results on the unpatterned wafer.
2. Experimental details                                              It should be noted that the ohmic metal probe pads were
                                                                     located on the mesa floor, with ohmic metal wrapping
   The growth of AlGaN/GaN structures for field effect                 up the sloping sidewalls of the mesa. This results in a
transistors fabrication has been carried out using                   thinner metal layer on the mesa sidewalls and an addi-
Ammonia Molecular Beam Epitaxy (MBE) technique                       tional series resistance in the device. Thus, the dc perfor-
(SVT Associates) that is also equipped by a magnetron                mance, and specifically the drain current density, is
sputter epitaxy (MSE) facility. Prior to growth, 2 0 0 basal         lower than would be expected from the values expected
plane sapphire substrates were first back-coated with                 based on the sheet carrier density. Finally, the gate
molybdenum to facilitate radiation heating. Further,                 Schottky contacts were achieved by sputtering 30-nm-
they were vapor-cleaned in chloroform, dipped in 10%                 thick Pt film (to improve the adhesion) capped by
HF for 1 min, rinsed in deionized water and dried with               e-beam evaporated Pt/Au layers (100/200 nm). The
nitrogen flow.                                                        devices have not been passivated.
804                                    S. Haffouz et al. / Solid-State Electronics 49 (2005) 802–807

3. AlGaN/GaN field effect transistor structures                                                       2000
                                                                                                                                                          2.4
                                                                                                              T=300K
                                                                                                    1750                                                  2.2




                                                                         2DEG mobility, µ(cm2/Vs)
   It is well established that the electrical properties                                                                                                  2.0
of wurtzite structure of III-Nitrides in [0 0 0 1] direc-                                           1500
                                                                                                                                                          1.8




                                                                                                                                                                 nsµ (1016V-1S-1)
tion results from a combination effect of spontaneous                                                1250                                                  1.6
and piezoelectric polarization fields. The polarization-                                                                                                   1.4
                                                                                                    1000
induced electrostatic charge densities were reported to                                                                                                   1.2
be as high as few 1013e/cm2 at the heterojunction inter-                                             750                                                  1.0
                                                                                                                                                          0.8
face [26,27]. Particularly, due to the large band offset
                                                                                                     500                                                  0.6
and strong piezoelectric effect, AlGaN/GaN hetero-
                                                                                                                                                          0.4
structure forms two-dimensional electron gas (2DEG)                                                  250
                                                                                                                                                          0.2
with very high electron densities (few 1013 cmÀ2) even                                                 0                                                   0.0
without intentional doping [28]. The sheet carrier con-                                                 1.0       1.2     1.4    1.6     1.8     2.0    2.2
centration of the 2DEG located at the AlGaN/GaN                                                                  Sheet electron density, ns(1013cm-2)
interface of nominally undoped structures can be writ-
ten as [29]                                                             Fig. 1. Room-temperature two-dimensional electron mobility vs sheet
                                                                        carrier density. The resulting product of the sheet carrier density and
                                                                        mobility (nsl) is also plotted.
           rðxÞ e0 eðxÞ
ns ðxÞ ¼       À        ½e/B ðxÞ þ EF ðxÞ À DEc ðxÞŠ;
            e    de2

where r(x) is the total (spontaneous and piezoelectric)                 tures and/or SiC substrate, have been used to achieve
polarization-induced charge density at the AlGaN/                       such a high value. Because the sheet resistivity (Rsh)
GaN interface, e(x) is the dielectric constant, d is the                is inversely proportional to the ns product, the mea-
AlGaN barrier thickness, e/B(x) is the surface barrier                  sured Rsh (not shown here) has continuously decreased
height, EF is the Fermi-level position with respect to                  from 401 X/sq down to 323 X/sq when the nsl product
the conduction band edge and DEc is the conduction                      increased from 1.5 · 1016 VÀ1 sÀ1 to $2 · 1016 VÀ1 sÀ1.
band offset between AlGaN and GaN.                                       The small scattering of the data within the eye-guiding
   Above a critical value [27], the increase of the AlGaN               line (solid line shown in Fig. 1) is indicative of the
thickness (d) would lead to an enhancement of the elec-                 excellent reproducibility and yield of growing such het-
tron transfer from the surface or bulk states to the het-               erostructures by our MBE system. The use of high
erointerface states and therefore increases the 2DEG                    growth temperature (930 °C) and the good control of
carrier density. Meanwhile, a larger band discontinuity                 the Al flux that is improved by the specially designed
introduced by higher Al composition of the barrier layer                cell with water cooled cold lip to avoid creeping of
leads to a better carrier confinement, stronger spontane-                Al from the crucible, had provided better uniformity
ous and piezoelectric fields and therefore higher carrier                over the 2 0 0 wafers and excellent reproducibility and
density. Within this methodology, and in order to                       yield. Detailed study on the uniformity over hall wafer
achieve high ns values, we grow pseudomorphic Alx-                      will be reported elsewhere [31].
Ga1ÀxN/GaN structures by increasing the AlGaN bar-                         The measured electron mobility of 103 cm2/V s at sheet
rier thickness and Al content in the range of 18–24 nm                  carrier density of $2 · 1013 cmÀ2 in our 2DEG structure
and 29–43%, respectively.                                               is consistent with the theoretically predicted value
   Fig. 1 depicts the room temperature evolution of the                 (l $ 1.1 · 103 cm2/V s at ns $ 2 · 1013 cmÀ2) calculated
2DEG mobility as the function of the carrier density                    by Farvacque and Bougrioua [32] by taking into account
for the complete set of experiments. The Hall measure-                  the scattering mechanisms associated with phonons,
ment results clearly showed that the carrier density had                carrier–carrier interactions, dislocations and ionized
covered the $1.2–2 · 1013 cmÀ2 range. Their corre-                      impurities. However, in LP-MOCVD grown AlGaN/
sponding room temperature electron mobility was at                      GaN structures [13], strong decrease of the 2DEG
least 1000 cm2/V s and reached a maximum of                             mobility from about 1250 to 200 cm2/V s was observed
1250 cm2/V s for ns value of 1.25 · 1013 cmÀ2. The nsl                  when the sheet carrier density increases from 1.2 to
product value, which is an important parameter for                      2 · 1013 cmÀ2. This pronounced decrease of the mobility
achievement of high performance HFET, has linearly                      with carrier density was mainly attributed to the scatter-
increased from 1.5 to $2 · 1016 VÀ1 sÀ1 when the car-                   ing mechanisms associated with strain-relaxation induced
rier density increased from 1.2 to $2 · 1013 cmÀ2 (see                  defects [32]. Using our MBE system, we have been able to
Fig. 1). According to our knowledge, only a few                         grow pseudomorphically AlGaN barrier layers on GaN
reports [6–8,30] have so far demonstrated nsl product                   epilayer with high aluminum content and therefore
value higher than 2 · 1016 VÀ1 sÀ1. In all these reports,               keeping the mobility remarkably high (P103 cm2/V s)
doped AlGaN barrier, AlGaN/AlN/GaN heterostruc-                         for sheet carrier density up $2 · 1013 cmÀ2.
S. Haffouz et al. / Solid-State Electronics 49 (2005) 802–807                                                                                                                                         805

4. C-doped GaN buffer layer as an electrical isolation                                                                                             10
                                                                                                                                                       3

template                                                                                                                                                                         T=300K




                                                                                                                      Drain Current, ID (mA/mm)
                                                                                                                                                       2
                                                                                                                                                  10
    Devices were fabricated on a wafer with a 2DEG                                                                                                     1
                                                                                                                                                  10
structure with ns and l of 1.7 · 1013 cmÀ2 and
                                                                                                                                                                                                    V DS=15V
1120 cm2/V s, respectively. The measured sheet resistiv-                                                                                          10
                                                                                                                                                       0
                                                                                                                                                                                                    VDS=10V                         On-to-Off ratio
ity and aluminum content in the barrier layer were                                                                                                                                                  VDS=5V                                   ~10
                                                                                                                                                                                                                                                  7
                                                                                                                                                   -1
328 X/sq and 36%, respectively. Fig. 2 displays the typ-                                                                                          10
ical room temperature drain current–voltage (I–V) char-                                                                                            -2
                                                                                                                                                  10
acteristics. The fabricated HFET exhibited maximum
current densities as high as 900 mA/mm and transcon-                                                                                               -3
                                                                                                                                                  10                                                                Pinch-off voltage
ductance peak value of about 180 mS/mm. By sweeping
                                                                                                                                                   -4
the gate–source voltage from 3 V down to around À5 V,                                                                                             10
                                                                                                                                                       -10                                      -8         -6       -4         -2        0        2        4        6
we have been able to turn off the devices without
any problem. However, using undoped GaN template,                                                                                                                                               Gate-to-Source Voltage, VGS (V)
which usually relatively highly conductive (electron con-                                           Fig. 3. VGS-dependent drain current (ID) at different source-to-drain
centration in the range of 1017 cmÀ3), we found that is                                             voltages (VDS) in the AlGaN/GaN field effect transistor with nsl
not possible to pinch-off the device completely and we                                               product value of 1.9 · 1016 VÀ1 sÀ1.
have not able to obtain a properly working devices.
    In order to check carefully the pinching-off character-
istics of the devices grown on highly insulating C-doped
                                                                                                                                           10-2
template and to obtain more information on the leakage                                                  Gate Leakage Current, IG (mA/mm)
                                                                                                                                                                                                                                                  T=300K
currents, we have carried out measurements of the gate-                                                                                    10-3
to-source voltage (VGS) dependent drain current (ID)
                                                                                                                                                           Gate Leakage Current,IG (mA/mm)   10-1
and gate leakage current (IG). The results are depicted                                                                                    10-4                                                          VGS= Vth= -5.2V
in Figs. 3 and 4, respectively. Two important pieces of
information can be deduced from the ID–VGS curves.                                                                                         10-5                                              10-2
The first one is the steepness of the slope in the ON–
                                                                                                                                           10-6
OFF transition region (À5.3 V < VGS < À3 V). In fact,
                                                                                                                                                                                             10-3
the rapid decrease of the drain current with decreasing                                                                                    10-7
the gate-to-source voltage indicates the sharp pinching-
off of our devices. By extrapolation, we deduced a                                                                                          10-8                                              10-4
                                                                                                                                                                                                    0           5         10        15             20
precise value of pinch-off voltage (also known as sub-                                                                                                                                                   Drain-to-Source Voltage,VDS (V)
threshold voltage) that is equal to À5.2 V for a VDS of                                                                                    10-9
                                                                                                                                                  -20                            -18                -16     -14     -12    -10      -8       -6       -4       -2       0
5 V and 10 V. We note also a small increase of the
pinch-off voltage (Vth = À5.3 V) by increasing the                                                                                                                                                       Gate-to-Source Voltage, VGS (V)

                                                                                                    Fig. 4. VGS-dependent gate leakage current (IG). The insert depicts the
                                                                                                    IG vs VDS at the subthreshold voltage (VGS = Vth = À5.2 V).
                           1000
                                         T=300K                                 VGS =3V
                                                                                Step= -1V           drain–source voltage (VDS = 15 V). The second impor-
   Drain Current, ID (mA/mm)




                               800
                                                                                                    tant information is the amount of the drain current that
                                                                                                    is still flowing in the OFF state, which is possibly origi-
                               600                                                                  nating from the GaN buffer layer and/or from the GaN/
                                                                                                    AlN/sapphire interfaces. The measured ON-to-OFF cur-
                                                                                                    rent ratio was as high as $107 attesting the very low
                               400                                                                  leakage current. This clearly indicates that there is no
                                                                                                    parallel conduction paths through the C-doped GaN
                               200                                                                  layer and it is also isolating properly the channel layer
                                                                                                    from the underneath structure. The gate leakage current
                                                                                                    has been also measured for a VGS up to À20 V as shown
                                 0                                                                  in Fig. 4. The value of IG was only 0.4 lA/mm at the
                                     0                5              10                   15
                                             Drain-to-Source Voltage, VDS (V)
                                                                                                    subthreshold voltage and increases only to 1 lA/mm at
                                                                                                    VGS of À20 V. The insert of Fig. 4 shows the dependence
Fig. 2. Typical IDS–VDS characteristics of the AlGaN/GaN field effect                                 of gate leakage current on drain–source voltage at the
transistor structure with nsl product value of 1.9 · 1016 VÀ1 sÀ1.                                  pinch-off voltage (VGS = À5.2 V). An increase of the
806                                 S. Haffouz et al. / Solid-State Electronics 49 (2005) 802–807

gate leakage with increasing drain–source voltage is ob-             plate. Excellent dc pinch-off characteristics, very low
served and is in agreement with the results obtained by              leakage currents and good rf performances were
Arulkumaran et al. [33]. It should be pointed out that               demonstrated.
the value of the gate leakage current measured on our
HFET devices is reasonably low compared to the values
reported in the literature [15,34–36]. However, a closer             Acknowledgement
look reveals not only that the leakage current is still
larger than the expected reverse saturation current value               We gratefully acknowledge the assistance of C.
given by the thermionic emission (TE) transport model,               Storey and D. Kuan with the rf measurements, the
but also, reveals strong dependence of gate leakage                  assistance of R. Wang with X-ray diffraction measure-
current on the reverse voltage (at least up to À10 V).               ments and the helpful discussions with S. McAlister.
Recently, some effort has been made in order to under-
stand the mechanism of gate leakage current in AlGaN/
GaN HFETs. A possible mechanism, using thin surface                  References
barrier (TSB) model, was recently proposed by Hase-
gawa et al. [37]. This model assumes the presence of high             [1] Shealy JR, Kaper V, Tilak V, Prunty T, Smart JA, Green B, et al.
density of deep donor defects (at EC-0.37 eV) near                        J Phys Condens Matter 2002;14:3499.
AlGaN surface, causing a narrowing of the Schottky                    [2] Chini A, Coffie R, Meneghesso G, Zanoni E, Buttari B, Heikman
                                                                          S, et al. Electron Lett 2003;39:625.
barrier in such a way that electrons can tunnel through               [3] Bardwell JA, Liu Y, Tang H, Webb JB, Rolfe SJ, Lapointe L.
this barrier in both forward and reverse direction by                     Electron Lett 2003;39:654.
means of the thermionic field-emission (TFE) or the                    [4] Kumar V, Lu W, Schwindt R, Kuliev A, Simin G, Yang J, et al.
field-emission (FE) mechanism, depending on the tem-                       IEEE Electron Dev Lett 2002;23:455.
perature. The density of these deep donor defects, which              [5] Wu Y-F, Kapolnek D, Ibbetson JP, Parikh P, Keller BP, Mishra
                                                                          UK. IEEE Trans Electron Dev 2001;48:586.
have been attributed to N vacancies, is strongly                      [6] Chen Q, Yang JW, Kahn MA, Ping AT, Adesida I. Electron Lett
dependent on the surface processing (plasma treatment,                    1997;23:1413.
wet etching, passivation, metal deposition, etc.). There-             [7] Gaska R, Shur MS, Bykhovski AD, Orlov AO, Snider GL. Appl
fore, applying an adequate surface processing should                      Phys Lett 1999;74:287.
reduce further the gate leakage current in GaN-based                  [8] Smart JA, Schremer AT, Weimann NG, Ambacher O, Eastman
                                                                          LF, Shealy JR. Appl Phys Lett 1999;75:388.
FETs.                                                                 [9] Tang H, Webb JB, Bardwell JA, Rolfe S, MacElwee TW. Solid-
    The effectiveness of the C-doped GaN buffer layer as                    State Electron 2000;44:2177.
an isolation template is also checked by measuring the               [10] Antoszewski J, Gracey M, Dell JM, Faraone L, Fisher TA, Parish
amount of leakage current between two mesas separated                     G, et al. J Appl Phys 2000;87:3900.
by 40 lm. Excellent isolation was achieved as revealed               [11] Keller S, Wu Y-F, Parish G, Ziang N, Xu JJ, Keller BP, et al.
                                                                          IEEE Trans Electron Dev 2001;48:552.
by an isolation current as low as 0.1 pA for voltages                [12] Cordier Y et al. J Crystal Growth 2003;251:811.
up to 10 V. This current is three orders of magnitude                [13] Bougrioua et al. Phys Stat Sol (a) 2003;195:93.
lower than the lowest leakage current measured in heav-              [14] Chen CQ, Zhang JP, Adivaharan V, Koudymov A, Fatami H,
ily Be-doped GaN buffer layer [19].                                        Simin G, et al. Appl Phys Lett 2003;82:4593.
    A conductive buffer layer would introduce parasitic               [15] Arulkumaran S, Egawa T, Ishikawa H, Jimbo T. J Vac Sci
                                                                          Technol B 2003;21:888.
capacitances (extrinsic capacitances), which lower the                                                                  ¨
                                                                     [16] Look DC, Reynolds DC, Kim W, Aktas O, Botchkarev A,
available power gains of the HFET at high frequencies                     Salvador A, et al. J Appl Phys 1996;80:2960.
[38]. Small-signal rf measurements on our devices                    [17] Bougrioua Z et al. J Crystal Growth 2001;230:573.
yielded current-gain and power-gain cut off frequencies               [18] Heikman S, Keller S, DenBaars SP, Mishra UK. Appl Phys Lett
(ft and fmax, respectively) of 13.2 and 38.2 GHz with                     2002;81:439.
                                                                     [19] Storm DF, Katzer DS, Binari SC, Glaser ER, Shanabrok BN,
0.75 lm gate length. The fmax/ft ratio is therefore as high               Roussos JA. Appl Phys Lett 2002;81:3819.
as 2.9 attesting the absence of charge coupling effects.              [20] Kuznetsov NI, Nikolaev AE, Zubrilov AS, Melnik YV, Dmitriev
                                                                          VA. Appl Phys Lett 1999;75:3138.
                                                                     [21] Webb JB, Tang H, Rolfe S, Bardwell JA. Appl Phys Lett
5. Conclusion                                                             1999;75:953.
                                                                     [22] Tang H, Webb JB, Bardwell JA, Raymond S, Salzman J, Uzan-
                                                                          Saguy C. Appl Phys Lett 2001;78:757.
   In conclusion, AlGaN/GaN field effect transistor                    [23] Tang H, Webb JB, Moisa S, Bardwell JA, Rolfe S. J Crystal
structures with high sheet electron density and mobility                  Growth 2002;244:1.
were grown on sapphire substrates by ammonia-MBE.                    [24] Bardwell JA, Foulds I, Lamontagne B, Tang H, Webb JB,
The nsl product in these 2DEG structures has linearly                     Marshal P, et al. J Vac Sci Technol A 2000;18:750.
                                                                     [25] Bardwell JA, Spoule GI, Liu Y, Tang H, Webb JB, Fraser F,
increasing from 1.5 · 1016 VÀ1 sÀ1 to 2 · 1016 VÀ1 sÀ1.                   et al. J Vac Sci Technol B 2002;20:1444.
Further, we have investigated the effectiveness of the                [26] Bernardini F, Fiorentini V, Vanderbilt D. Phys Rev B 1997;
C-doped GaN buffer layer as an electrical isolation tem-                   56:R10024.
S. Haffouz et al. / Solid-State Electronics 49 (2005) 802–807                                 807

[27] Ibbetson JP, Fini PT, Ness D, DenBaars SP, Speck JP, Mishra         [33] Arulkumaran S, Egawa T, Ishikawa H, Jimbo T. Appl Phys Lett
     UK. Appl Phys Lett 2000;77:250.                                          2003;82:3110.
[28] Khan MA, Kuznia JN, Van Hove JM, Pan N, Carter J. Appl Phys         [34] Khan MA, Hu X, Sumin G, Lunev A, Yang J, Gaska R, et al.
     Lett 1992;60:3027.                                                       IEEE Electron Dev Lett 2000;21:63.
[29] Asbeck PM, Yu ET, Lau SS, Sullivan GJ, Van Hove J, Redwing J.       [35] Khan MA et al. Appl Phys Lett 2000;76:3807.
     Electron Lett 1997;33:12307.                                        [36] Ao J-P, Kikuta D, Kubota N, Naoi Y, Ohno Y. IEEE Electron
[30] Shen L et al. IEEE Trans Electron Dev 2001;22:457.                       Dev Lett 2003;24:500.
[31] Hsu EM, Bardwell JA, Haffouz S, Tang H, Storey C, Chyurlia P.        [37] Hasegawa H, Inagaki T, Ootomo S, Hashizume T. J Vac Sci
     J Electrochem Soc, submitted for publication.                            Technol B 2003;21:1844.
[32] Farvacque J-L, Bougrioua Z. Phys Rev B 2003;68:035335.              [38] Hughes B, Tasker PJ. IEEE Trans Electron Dev 1989;36:2267.

Mais conteúdo relacionado

Mais procurados

Red–green–blue light emitting diodes and distributed Bragg reflectors based o...
Red–green–blue light emitting diodes and distributed Bragg reflectors based o...Red–green–blue light emitting diodes and distributed Bragg reflectors based o...
Red–green–blue light emitting diodes and distributed Bragg reflectors based o...Oleg Maksimov
 
Effect of nitridation on crystallinity of GaN grown on GaAs by MBE
Effect of nitridation on crystallinity of GaN grown on GaAs by MBEEffect of nitridation on crystallinity of GaN grown on GaAs by MBE
Effect of nitridation on crystallinity of GaN grown on GaAs by MBEOleg Maksimov
 
Breakdown characteristics of polyethylene/silicon nitride nanocomposites
Breakdown characteristics of polyethylene/silicon nitride nanocompositesBreakdown characteristics of polyethylene/silicon nitride nanocomposites
Breakdown characteristics of polyethylene/silicon nitride nanocompositesTELKOMNIKA JOURNAL
 
Double layer energy storage in graphene a study
Double layer energy storage in graphene   a studyDouble layer energy storage in graphene   a study
Double layer energy storage in graphene a studysudesh789
 
The Evolution Of An Electronic Material
The Evolution Of An Electronic MaterialThe Evolution Of An Electronic Material
The Evolution Of An Electronic Materialdavekellerman
 
The Evolution Of An Electronic Material
The Evolution Of An Electronic MaterialThe Evolution Of An Electronic Material
The Evolution Of An Electronic Materialgueste2531
 
Poster Pisaroni
Poster PisaroniPoster Pisaroni
Poster Pisaronipisa88sp
 
Thesis_Defense_FinalDraft_RG copy
Thesis_Defense_FinalDraft_RG copyThesis_Defense_FinalDraft_RG copy
Thesis_Defense_FinalDraft_RG copyRoberto Gavuglio
 
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...Kal Tar
 
High crystalline quality ZnBeSe grown by molecular beam epitaxy with Be}Zn co...
High crystalline quality ZnBeSe grown by molecular beam epitaxy with Be}Zn co...High crystalline quality ZnBeSe grown by molecular beam epitaxy with Be}Zn co...
High crystalline quality ZnBeSe grown by molecular beam epitaxy with Be}Zn co...Oleg Maksimov
 
S160016 anushri surbhi_iitk
S160016 anushri surbhi_iitkS160016 anushri surbhi_iitk
S160016 anushri surbhi_iitkAnushri Surbhi
 
An integrated approach to realizing high performance liquid-junction quantum ...
An integrated approach to realizing high performance liquid-junction quantum ...An integrated approach to realizing high performance liquid-junction quantum ...
An integrated approach to realizing high performance liquid-junction quantum ...Emerson Kohlrausch
 
Energy Management in wet processing of greige fabrics
Energy Management in wet processing of greige fabricsEnergy Management in wet processing of greige fabrics
Energy Management in wet processing of greige fabricsDebashish Banerjee
 
CVDLabReport
CVDLabReportCVDLabReport
CVDLabReportJanet Mok
 
Epoxy composites thermal conductivity enhancement
Epoxy composites thermal conductivity enhancementEpoxy composites thermal conductivity enhancement
Epoxy composites thermal conductivity enhancementrajesh kumar
 

Mais procurados (19)

20320140501011
2032014050101120320140501011
20320140501011
 
Red–green–blue light emitting diodes and distributed Bragg reflectors based o...
Red–green–blue light emitting diodes and distributed Bragg reflectors based o...Red–green–blue light emitting diodes and distributed Bragg reflectors based o...
Red–green–blue light emitting diodes and distributed Bragg reflectors based o...
 
Effect of nitridation on crystallinity of GaN grown on GaAs by MBE
Effect of nitridation on crystallinity of GaN grown on GaAs by MBEEffect of nitridation on crystallinity of GaN grown on GaAs by MBE
Effect of nitridation on crystallinity of GaN grown on GaAs by MBE
 
AIChE 2012 Presentation
AIChE 2012 PresentationAIChE 2012 Presentation
AIChE 2012 Presentation
 
Mh2420342042
Mh2420342042Mh2420342042
Mh2420342042
 
Breakdown characteristics of polyethylene/silicon nitride nanocomposites
Breakdown characteristics of polyethylene/silicon nitride nanocompositesBreakdown characteristics of polyethylene/silicon nitride nanocomposites
Breakdown characteristics of polyethylene/silicon nitride nanocomposites
 
Double layer energy storage in graphene a study
Double layer energy storage in graphene   a studyDouble layer energy storage in graphene   a study
Double layer energy storage in graphene a study
 
The Evolution Of An Electronic Material
The Evolution Of An Electronic MaterialThe Evolution Of An Electronic Material
The Evolution Of An Electronic Material
 
The Evolution Of An Electronic Material
The Evolution Of An Electronic MaterialThe Evolution Of An Electronic Material
The Evolution Of An Electronic Material
 
Esinpaper
EsinpaperEsinpaper
Esinpaper
 
Poster Pisaroni
Poster PisaroniPoster Pisaroni
Poster Pisaroni
 
Thesis_Defense_FinalDraft_RG copy
Thesis_Defense_FinalDraft_RG copyThesis_Defense_FinalDraft_RG copy
Thesis_Defense_FinalDraft_RG copy
 
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...
 
High crystalline quality ZnBeSe grown by molecular beam epitaxy with Be}Zn co...
High crystalline quality ZnBeSe grown by molecular beam epitaxy with Be}Zn co...High crystalline quality ZnBeSe grown by molecular beam epitaxy with Be}Zn co...
High crystalline quality ZnBeSe grown by molecular beam epitaxy with Be}Zn co...
 
S160016 anushri surbhi_iitk
S160016 anushri surbhi_iitkS160016 anushri surbhi_iitk
S160016 anushri surbhi_iitk
 
An integrated approach to realizing high performance liquid-junction quantum ...
An integrated approach to realizing high performance liquid-junction quantum ...An integrated approach to realizing high performance liquid-junction quantum ...
An integrated approach to realizing high performance liquid-junction quantum ...
 
Energy Management in wet processing of greige fabrics
Energy Management in wet processing of greige fabricsEnergy Management in wet processing of greige fabrics
Energy Management in wet processing of greige fabrics
 
CVDLabReport
CVDLabReportCVDLabReport
CVDLabReport
 
Epoxy composites thermal conductivity enhancement
Epoxy composites thermal conductivity enhancementEpoxy composites thermal conductivity enhancement
Epoxy composites thermal conductivity enhancement
 

Destaque

III-Nitrides 2012 2013 Patent Landscape
III-Nitrides 2012 2013 Patent LandscapeIII-Nitrides 2012 2013 Patent Landscape
III-Nitrides 2012 2013 Patent LandscapeKnowmade
 
346 nm emission from al gan multi quantum-well light emitting diode
346 nm emission from al gan multi quantum-well light emitting diode346 nm emission from al gan multi quantum-well light emitting diode
346 nm emission from al gan multi quantum-well light emitting diodeKal Tar
 
Senscient ELDS Laser Gas Detection System
Senscient ELDS Laser Gas Detection SystemSenscient ELDS Laser Gas Detection System
Senscient ELDS Laser Gas Detection Systemianmackay100
 
Blu ray Disc and its technology
Blu ray Disc and its technologyBlu ray Disc and its technology
Blu ray Disc and its technologyManash Deka
 
Projector Training - Solid State Light Source Technology
Projector Training - Solid State Light Source TechnologyProjector Training - Solid State Light Source Technology
Projector Training - Solid State Light Source TechnologyrAVe [PUBS]
 
Optical source LED by sufiyan a khan
Optical source LED by sufiyan a khanOptical source LED by sufiyan a khan
Optical source LED by sufiyan a khanSufiyan Khan
 
Solid state lighting, GaN LEDs and lasers
Solid state lighting, GaN LEDs and lasersSolid state lighting, GaN LEDs and lasers
Solid state lighting, GaN LEDs and lasersGerhard Fasol
 
Constancia De No Adeudo Claudia
Constancia De No Adeudo ClaudiaConstancia De No Adeudo Claudia
Constancia De No Adeudo Claudiaalmafelisa
 
Optical Source - Light Emitting Diodes
Optical Source - Light Emitting DiodesOptical Source - Light Emitting Diodes
Optical Source - Light Emitting DiodesFatiha Akma
 
Special purpose Diodes
Special purpose DiodesSpecial purpose Diodes
Special purpose DiodesPrerak Trivedi
 
Opto electronics devices
Opto electronics devicesOpto electronics devices
Opto electronics devicesSiddharth Panda
 
Laser diode fabrication
Laser diode fabricationLaser diode fabrication
Laser diode fabricationuttam999
 
Optical Fiber Sources And Detectors
Optical Fiber Sources And DetectorsOptical Fiber Sources And Detectors
Optical Fiber Sources And DetectorsAziz Zoaib
 
Formato de constancia de estudio
Formato de constancia de estudioFormato de constancia de estudio
Formato de constancia de estudioDiego Terán
 
Bulk GaN Substrate Market 2017 Report by Yole Developpement
Bulk GaN Substrate Market 2017 Report by Yole DeveloppementBulk GaN Substrate Market 2017 Report by Yole Developpement
Bulk GaN Substrate Market 2017 Report by Yole DeveloppementYole Developpement
 

Destaque (20)

RASC January 2010
RASC January 2010RASC January 2010
RASC January 2010
 
III-Nitrides 2012 2013 Patent Landscape
III-Nitrides 2012 2013 Patent LandscapeIII-Nitrides 2012 2013 Patent Landscape
III-Nitrides 2012 2013 Patent Landscape
 
346 nm emission from al gan multi quantum-well light emitting diode
346 nm emission from al gan multi quantum-well light emitting diode346 nm emission from al gan multi quantum-well light emitting diode
346 nm emission from al gan multi quantum-well light emitting diode
 
Senscient ELDS Laser Gas Detection System
Senscient ELDS Laser Gas Detection SystemSenscient ELDS Laser Gas Detection System
Senscient ELDS Laser Gas Detection System
 
Blu ray Disc and its technology
Blu ray Disc and its technologyBlu ray Disc and its technology
Blu ray Disc and its technology
 
Projector Training - Solid State Light Source Technology
Projector Training - Solid State Light Source TechnologyProjector Training - Solid State Light Source Technology
Projector Training - Solid State Light Source Technology
 
320 lecture7
320 lecture7320 lecture7
320 lecture7
 
blue laser
blue laserblue laser
blue laser
 
Optical source LED by sufiyan a khan
Optical source LED by sufiyan a khanOptical source LED by sufiyan a khan
Optical source LED by sufiyan a khan
 
Solid state lighting, GaN LEDs and lasers
Solid state lighting, GaN LEDs and lasersSolid state lighting, GaN LEDs and lasers
Solid state lighting, GaN LEDs and lasers
 
LED
LEDLED
LED
 
Constancia De No Adeudo Claudia
Constancia De No Adeudo ClaudiaConstancia De No Adeudo Claudia
Constancia De No Adeudo Claudia
 
Optical Source - Light Emitting Diodes
Optical Source - Light Emitting DiodesOptical Source - Light Emitting Diodes
Optical Source - Light Emitting Diodes
 
Special purpose Diodes
Special purpose DiodesSpecial purpose Diodes
Special purpose Diodes
 
Opto electronics devices
Opto electronics devicesOpto electronics devices
Opto electronics devices
 
Special purpose diode
Special purpose diodeSpecial purpose diode
Special purpose diode
 
Laser diode fabrication
Laser diode fabricationLaser diode fabrication
Laser diode fabrication
 
Optical Fiber Sources And Detectors
Optical Fiber Sources And DetectorsOptical Fiber Sources And Detectors
Optical Fiber Sources And Detectors
 
Formato de constancia de estudio
Formato de constancia de estudioFormato de constancia de estudio
Formato de constancia de estudio
 
Bulk GaN Substrate Market 2017 Report by Yole Developpement
Bulk GaN Substrate Market 2017 Report by Yole DeveloppementBulk GaN Substrate Market 2017 Report by Yole Developpement
Bulk GaN Substrate Market 2017 Report by Yole Developpement
 

Semelhante a Al gan gan field effect transistors with c-doped gan buffer layer as an electrical isolation template grown by molecular beam epitaxy

An analytical model for the current voltage characteristics of GaN-capped AlG...
An analytical model for the current voltage characteristics of GaN-capped AlG...An analytical model for the current voltage characteristics of GaN-capped AlG...
An analytical model for the current voltage characteristics of GaN-capped AlG...IJECEIAES
 
Analog/RF Performance of Dielectric Pocket Double Gate (DP-DG) AlGaN/GaN MOSHEMT
Analog/RF Performance of Dielectric Pocket Double Gate (DP-DG) AlGaN/GaN MOSHEMTAnalog/RF Performance of Dielectric Pocket Double Gate (DP-DG) AlGaN/GaN MOSHEMT
Analog/RF Performance of Dielectric Pocket Double Gate (DP-DG) AlGaN/GaN MOSHEMTIRJET Journal
 
Analytic Estimation of Two-Dimensional Electron Gas Density and Current-Volta...
Analytic Estimation of Two-Dimensional Electron Gas Density and Current-Volta...Analytic Estimation of Two-Dimensional Electron Gas Density and Current-Volta...
Analytic Estimation of Two-Dimensional Electron Gas Density and Current-Volta...IJECEIAES
 
Numerical investigation of the performance of AlGaN/GaN/BGaN double-gate dou...
Numerical investigation of the performance of  AlGaN/GaN/BGaN double-gate dou...Numerical investigation of the performance of  AlGaN/GaN/BGaN double-gate dou...
Numerical investigation of the performance of AlGaN/GaN/BGaN double-gate dou...IJECEIAES
 
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...Mahdi Robat Sarpoushi
 
10.1016-j.mssp.2015.01.037-Electrochemical investigation of graphene_nanoporo...
10.1016-j.mssp.2015.01.037-Electrochemical investigation of graphene_nanoporo...10.1016-j.mssp.2015.01.037-Electrochemical investigation of graphene_nanoporo...
10.1016-j.mssp.2015.01.037-Electrochemical investigation of graphene_nanoporo...Mahdi Robat Sarpoushi
 
The International Journal of Engineering and Science
The International Journal of Engineering and ScienceThe International Journal of Engineering and Science
The International Journal of Engineering and Sciencetheijes
 
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021Rajmohan Muthaiah
 
Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...researchinventy
 
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...Kal Tar
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...IAEME Publication
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...iaemedu
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...IAEME Publication
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...iaemedu
 

Semelhante a Al gan gan field effect transistors with c-doped gan buffer layer as an electrical isolation template grown by molecular beam epitaxy (20)

An analytical model for the current voltage characteristics of GaN-capped AlG...
An analytical model for the current voltage characteristics of GaN-capped AlG...An analytical model for the current voltage characteristics of GaN-capped AlG...
An analytical model for the current voltage characteristics of GaN-capped AlG...
 
Analog/RF Performance of Dielectric Pocket Double Gate (DP-DG) AlGaN/GaN MOSHEMT
Analog/RF Performance of Dielectric Pocket Double Gate (DP-DG) AlGaN/GaN MOSHEMTAnalog/RF Performance of Dielectric Pocket Double Gate (DP-DG) AlGaN/GaN MOSHEMT
Analog/RF Performance of Dielectric Pocket Double Gate (DP-DG) AlGaN/GaN MOSHEMT
 
Analytic Estimation of Two-Dimensional Electron Gas Density and Current-Volta...
Analytic Estimation of Two-Dimensional Electron Gas Density and Current-Volta...Analytic Estimation of Two-Dimensional Electron Gas Density and Current-Volta...
Analytic Estimation of Two-Dimensional Electron Gas Density and Current-Volta...
 
D010323137
D010323137D010323137
D010323137
 
Numerical investigation of the performance of AlGaN/GaN/BGaN double-gate dou...
Numerical investigation of the performance of  AlGaN/GaN/BGaN double-gate dou...Numerical investigation of the performance of  AlGaN/GaN/BGaN double-gate dou...
Numerical investigation of the performance of AlGaN/GaN/BGaN double-gate dou...
 
High electron mobility transistor
High electron mobility transistorHigh electron mobility transistor
High electron mobility transistor
 
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...
 
10.1016-j.mssp.2015.01.037-Electrochemical investigation of graphene_nanoporo...
10.1016-j.mssp.2015.01.037-Electrochemical investigation of graphene_nanoporo...10.1016-j.mssp.2015.01.037-Electrochemical investigation of graphene_nanoporo...
10.1016-j.mssp.2015.01.037-Electrochemical investigation of graphene_nanoporo...
 
The International Journal of Engineering and Science
The International Journal of Engineering and ScienceThe International Journal of Engineering and Science
The International Journal of Engineering and Science
 
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021
 
el_paper
el_paperel_paper
el_paper
 
Presentation B Engproject
Presentation B EngprojectPresentation B Engproject
Presentation B Engproject
 
B05421417
B05421417B05421417
B05421417
 
Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...
 
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...
 
1-s2.0-S1369800114002303-main
1-s2.0-S1369800114002303-main1-s2.0-S1369800114002303-main
1-s2.0-S1369800114002303-main
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...
 

Último

Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 

Último (20)

Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 

Al gan gan field effect transistors with c-doped gan buffer layer as an electrical isolation template grown by molecular beam epitaxy

  • 1. Solid-State Electronics 49 (2005) 802–807 www.elsevier.com/locate/sse AlGaN/GaN field effect transistors with C-doped GaN buffer layer as an electrical isolation template grown by molecular beam epitaxy S. Haffouz *, H. Tang, J.A. Bardwell, E.M. Hsu, J.B. Webb, S. Rolfe Institute for Microstructural Sciences, National Research Council Canada, Montreal Rd. M-50, Ottawa, Canada K1A 0R6 Received 5 March 2004; received in revised form 23 November 2004 The review of this paper was arranged by Prof. C. Hunt Abstract The effectiveness of Ammonia Molecular Beam Epitaxy (MBE) grown carbon-doped GaN buffer layer as an electrical isolation template was investigated. AlGaN/GaN field effect transistor structures with a product of sheet electron density and mobility (nsl), linearly increasing from 1.5 · 1016 VÀ1 sÀ1 to 2 · 1016 VÀ1 sÀ1 with ns, were grown on 2-lm-thick carbon-doped GaN buffer layer over sapphire substrates. The measurement of the gate-to-source voltage (VGS) dependent drain current (ID) demonstrated excellent dc pinch-off characteristics as revealed by an on-to-off ratio of 107 for a drain–source voltage (VDS) up to 15 V. The gate leakage current was less than 1 lA/mm at the subthreshold voltage (Vth = À5.2 V). Inter-devices isolation current (IISO) measurements demonstrated IISO values in the low pico-amperes ranges indicating a complete suppression of the parallel conduction paths. Small-signal rf measurements demonstrated a fmax/ft ratio as high as 2.9 attesting the absence of charge coupling effects. Ó 2005 Elsevier Ltd. All rights reserved. PACS: 85.30.Tv; 81.15.Hi; 73.61.Ey Keywords: GaN; FET; MBE; Carbon doping; Heterostructure 1. Introduction sity and electron mobility (nsl) is of great importance for fabrication of high performance field effect transis- With improved growth material quality and fabrica- tors. In literature, considerable studies have addressed tion technologies, AlGaN/GaN heterostructure field the electron mobility (l) dependence carrier densities effect transistors (HFET) have reached nowadays a very (ns) [7–15]. However, there have been only few data on advanced position and have clearly demonstrated their the growth of 2DEG structures with high nsl values capability for high-power and high frequency applica- (>1016 VÀ1 sÀ1). Achievement of these latter values tions [1–6]. Molecular Beam Epitaxy (MBE) and requires growth of AlGaN/GaN heterostructures with Metal-Organic Chemical Vapor Deposition (MOCVD) high 2DEG mobility (P103 cm2/V s) at ns values in the techniques have been successfully used for growth of few 1013 cmÀ2 ranges. Strong decrease of the 2DEG AlGaN/GaN two-dimensional electron gas (2DEG) mobility with increasing the sheet carrier density in the structures on various types of substrates. Growth of 1–2 · 1013 cmÀ2 ranges has been observed in AlGaN/ 2DEG structures with high product of sheet carrier den- GaN structures grown by MOCVD technique [13]. On another hand, achievement of highly insulating * Corresponding author. Tel.: +1 613 991 0761; fax: +1 613 990 0202. GaN buffer prior to deposition of AlGaN/GaN struc- E-mail address: soufien.haffouz@nrc-cnrc.gc.ca (S. Haffouz). tures has not been an easy task. A conductive buffer 0038-1101/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.sse.2005.01.012
  • 2. S. Haffouz et al. / Solid-State Electronics 49 (2005) 802–807 803 layer will not only lead to high leakage currents and The growth of nitride material in our MBE/MSE dual therefore a poor pinch-off characteristics but also will mode system was performed following the established 2- degrade the rf performances of the HFETs at high fre- step deposition procedure that consists of a low-tempera- quencies. To resolve this problem, a few approaches ture nucleation layer (in our case is AlN deposited by have been proposed. Increasing the N flux during MSE [23]) followed by high-temperature nitride epilayers. MBE grown GaN layers changes the profile of the For the present study, 20-nm-thick AlN nucleation layer structural defects and residual impurities in this layer was deposited at 885 °C by dc reactive sputter mode using and leads to highly resistive buffer layers [16]. By high purity Al target, 25 sccm NH3 flow, 100 sccm Ar flow adjusting the recrystallisation time of the nucleation and 60 W power. The growth rate was about 1 nm/min. layer, Bougrioua et al. [17] have demonstrated the Achievement of high quality overgrown layer, as well as growth of highly resistive GaN layers in a MOCVD insulating template was accomplished by depositing reactor. Using Fe [18], Be [19] and Zn [20] as accep- 2-lm-thick C-doped GaN layer at 930 °C using 1 sccm tor-like point defects, semi-insulating GaN films were methane (CH4) flow and low-energy saddle field ion also successfully grown by respectively MOCVD, source for cracking the CH4 [21]. The growth rate of this MBE and Hydride Vapor Phase Epitaxy (HVPE) tech- layer was about 0.80 lm/h with Ga cell temperature of nique. Within our group, we have previously demon- 1000 °C and NH3 flow of 100 sccm. X-ray measurements strated the growth of semi-insulating C-doped GaN showed that the full width at half maximum (FWHM) of buffer layer with good structural properties and excel- the (0 0 0 2) peak in x-scan was about 57000 . Resistivity of a lent reproducibility and reliability [21,22]. This layer few MX cm was reproducibly achieved. Secondary ion was systematically used as a template prior to growth mass spectroscopy analysis of the C-doped GaN template of AlGaN/GaN structures. Though up to now, a few using a methane flow rate as low as 1 sccm revealed car- reports have demonstrated the growth of insulating bon concentration in the range of 2–8 · 1018 cmÀ3. GaN buffer layer, only one study [19] has so far inves- Achieving higher carbon concentration was found to be tigated the effectiveness of an insulating GaN buffer relatively straightforward by simply increasing the meth- layer as an electrical isolation template in field effect ane flux, however, the crystal quality gets worse and there- transistors. fore the quality of the overgrown layers (2DEG structure) In this article, we first report on the growth of will be affected as well. AlGaN/GaN field effect transistor structures with high The growth procedure is completed by depositing a nsl product values. Excellent electronic properties have two-dimensional electron gas structure that consists of been achieved as revealed by an nsl product linearly 200-nm-thick undoped GaN channel layer followed by increasing from 1.5 · 1016 VÀ1 sÀ1 to 2 · 1016 VÀ1 sÀ1 undoped AlGaN barrier. During AlGaN/GaN deposi- with ns from 1.2 to 2 · 1013 cmÀ2. Further, we investi- tion, the substrate temperature was kept unchanged at gate the effectiveness of the C-doped GaN buffer layer 930 °C. as an electrical isolation template. A detailed picture Field effect transistors have been fabricated using of the pinch-off characteristic is demonstrated by 0.75 lm optical-gate-length. The mesa isolation was measuring the dependence of the logarithm of the drain accomplished using chemically assisted ion beam etching current on the gate-to-source voltage for various drain– (CAIBE) technique [24]. The Ohmic contacts were source voltages. The absence of any parallel conduction achieved by evaporating a thin Ti/Al/Ti/Au layers (20/ path is also evidenced by inter-devices isolation current 100/45/55 nm) followed by rapid thermal annealing at (IISO) measurements. Finally, small-signal rf measure- 800 °C for 120 s in N2 atmosphere [25]. Low contact ments shows an fmax/ft ratio as high as 2.9 attesting to resistance with value in the range of 0.5–0.7 X mm was the absence of charge coupling effects. obtained, based on circular transmission line measure- ments. The sheet resistance, which was also measured, was consistent with the results on the unpatterned wafer. 2. Experimental details It should be noted that the ohmic metal probe pads were located on the mesa floor, with ohmic metal wrapping The growth of AlGaN/GaN structures for field effect up the sloping sidewalls of the mesa. This results in a transistors fabrication has been carried out using thinner metal layer on the mesa sidewalls and an addi- Ammonia Molecular Beam Epitaxy (MBE) technique tional series resistance in the device. Thus, the dc perfor- (SVT Associates) that is also equipped by a magnetron mance, and specifically the drain current density, is sputter epitaxy (MSE) facility. Prior to growth, 2 0 0 basal lower than would be expected from the values expected plane sapphire substrates were first back-coated with based on the sheet carrier density. Finally, the gate molybdenum to facilitate radiation heating. Further, Schottky contacts were achieved by sputtering 30-nm- they were vapor-cleaned in chloroform, dipped in 10% thick Pt film (to improve the adhesion) capped by HF for 1 min, rinsed in deionized water and dried with e-beam evaporated Pt/Au layers (100/200 nm). The nitrogen flow. devices have not been passivated.
  • 3. 804 S. Haffouz et al. / Solid-State Electronics 49 (2005) 802–807 3. AlGaN/GaN field effect transistor structures 2000 2.4 T=300K 1750 2.2 2DEG mobility, µ(cm2/Vs) It is well established that the electrical properties 2.0 of wurtzite structure of III-Nitrides in [0 0 0 1] direc- 1500 1.8 nsµ (1016V-1S-1) tion results from a combination effect of spontaneous 1250 1.6 and piezoelectric polarization fields. The polarization- 1.4 1000 induced electrostatic charge densities were reported to 1.2 be as high as few 1013e/cm2 at the heterojunction inter- 750 1.0 0.8 face [26,27]. Particularly, due to the large band offset 500 0.6 and strong piezoelectric effect, AlGaN/GaN hetero- 0.4 structure forms two-dimensional electron gas (2DEG) 250 0.2 with very high electron densities (few 1013 cmÀ2) even 0 0.0 without intentional doping [28]. The sheet carrier con- 1.0 1.2 1.4 1.6 1.8 2.0 2.2 centration of the 2DEG located at the AlGaN/GaN Sheet electron density, ns(1013cm-2) interface of nominally undoped structures can be writ- ten as [29] Fig. 1. Room-temperature two-dimensional electron mobility vs sheet carrier density. The resulting product of the sheet carrier density and mobility (nsl) is also plotted. rðxÞ e0 eðxÞ ns ðxÞ ¼ À ½e/B ðxÞ þ EF ðxÞ À DEc ðxÞŠ; e de2 where r(x) is the total (spontaneous and piezoelectric) tures and/or SiC substrate, have been used to achieve polarization-induced charge density at the AlGaN/ such a high value. Because the sheet resistivity (Rsh) GaN interface, e(x) is the dielectric constant, d is the is inversely proportional to the ns product, the mea- AlGaN barrier thickness, e/B(x) is the surface barrier sured Rsh (not shown here) has continuously decreased height, EF is the Fermi-level position with respect to from 401 X/sq down to 323 X/sq when the nsl product the conduction band edge and DEc is the conduction increased from 1.5 · 1016 VÀ1 sÀ1 to $2 · 1016 VÀ1 sÀ1. band offset between AlGaN and GaN. The small scattering of the data within the eye-guiding Above a critical value [27], the increase of the AlGaN line (solid line shown in Fig. 1) is indicative of the thickness (d) would lead to an enhancement of the elec- excellent reproducibility and yield of growing such het- tron transfer from the surface or bulk states to the het- erostructures by our MBE system. The use of high erointerface states and therefore increases the 2DEG growth temperature (930 °C) and the good control of carrier density. Meanwhile, a larger band discontinuity the Al flux that is improved by the specially designed introduced by higher Al composition of the barrier layer cell with water cooled cold lip to avoid creeping of leads to a better carrier confinement, stronger spontane- Al from the crucible, had provided better uniformity ous and piezoelectric fields and therefore higher carrier over the 2 0 0 wafers and excellent reproducibility and density. Within this methodology, and in order to yield. Detailed study on the uniformity over hall wafer achieve high ns values, we grow pseudomorphic Alx- will be reported elsewhere [31]. Ga1ÀxN/GaN structures by increasing the AlGaN bar- The measured electron mobility of 103 cm2/V s at sheet rier thickness and Al content in the range of 18–24 nm carrier density of $2 · 1013 cmÀ2 in our 2DEG structure and 29–43%, respectively. is consistent with the theoretically predicted value Fig. 1 depicts the room temperature evolution of the (l $ 1.1 · 103 cm2/V s at ns $ 2 · 1013 cmÀ2) calculated 2DEG mobility as the function of the carrier density by Farvacque and Bougrioua [32] by taking into account for the complete set of experiments. The Hall measure- the scattering mechanisms associated with phonons, ment results clearly showed that the carrier density had carrier–carrier interactions, dislocations and ionized covered the $1.2–2 · 1013 cmÀ2 range. Their corre- impurities. However, in LP-MOCVD grown AlGaN/ sponding room temperature electron mobility was at GaN structures [13], strong decrease of the 2DEG least 1000 cm2/V s and reached a maximum of mobility from about 1250 to 200 cm2/V s was observed 1250 cm2/V s for ns value of 1.25 · 1013 cmÀ2. The nsl when the sheet carrier density increases from 1.2 to product value, which is an important parameter for 2 · 1013 cmÀ2. This pronounced decrease of the mobility achievement of high performance HFET, has linearly with carrier density was mainly attributed to the scatter- increased from 1.5 to $2 · 1016 VÀ1 sÀ1 when the car- ing mechanisms associated with strain-relaxation induced rier density increased from 1.2 to $2 · 1013 cmÀ2 (see defects [32]. Using our MBE system, we have been able to Fig. 1). According to our knowledge, only a few grow pseudomorphically AlGaN barrier layers on GaN reports [6–8,30] have so far demonstrated nsl product epilayer with high aluminum content and therefore value higher than 2 · 1016 VÀ1 sÀ1. In all these reports, keeping the mobility remarkably high (P103 cm2/V s) doped AlGaN barrier, AlGaN/AlN/GaN heterostruc- for sheet carrier density up $2 · 1013 cmÀ2.
  • 4. S. Haffouz et al. / Solid-State Electronics 49 (2005) 802–807 805 4. C-doped GaN buffer layer as an electrical isolation 10 3 template T=300K Drain Current, ID (mA/mm) 2 10 Devices were fabricated on a wafer with a 2DEG 1 10 structure with ns and l of 1.7 · 1013 cmÀ2 and V DS=15V 1120 cm2/V s, respectively. The measured sheet resistiv- 10 0 VDS=10V On-to-Off ratio ity and aluminum content in the barrier layer were VDS=5V ~10 7 -1 328 X/sq and 36%, respectively. Fig. 2 displays the typ- 10 ical room temperature drain current–voltage (I–V) char- -2 10 acteristics. The fabricated HFET exhibited maximum current densities as high as 900 mA/mm and transcon- -3 10 Pinch-off voltage ductance peak value of about 180 mS/mm. By sweeping -4 the gate–source voltage from 3 V down to around À5 V, 10 -10 -8 -6 -4 -2 0 2 4 6 we have been able to turn off the devices without any problem. However, using undoped GaN template, Gate-to-Source Voltage, VGS (V) which usually relatively highly conductive (electron con- Fig. 3. VGS-dependent drain current (ID) at different source-to-drain centration in the range of 1017 cmÀ3), we found that is voltages (VDS) in the AlGaN/GaN field effect transistor with nsl not possible to pinch-off the device completely and we product value of 1.9 · 1016 VÀ1 sÀ1. have not able to obtain a properly working devices. In order to check carefully the pinching-off character- istics of the devices grown on highly insulating C-doped 10-2 template and to obtain more information on the leakage Gate Leakage Current, IG (mA/mm) T=300K currents, we have carried out measurements of the gate- 10-3 to-source voltage (VGS) dependent drain current (ID) Gate Leakage Current,IG (mA/mm) 10-1 and gate leakage current (IG). The results are depicted 10-4 VGS= Vth= -5.2V in Figs. 3 and 4, respectively. Two important pieces of information can be deduced from the ID–VGS curves. 10-5 10-2 The first one is the steepness of the slope in the ON– 10-6 OFF transition region (À5.3 V < VGS < À3 V). In fact, 10-3 the rapid decrease of the drain current with decreasing 10-7 the gate-to-source voltage indicates the sharp pinching- off of our devices. By extrapolation, we deduced a 10-8 10-4 0 5 10 15 20 precise value of pinch-off voltage (also known as sub- Drain-to-Source Voltage,VDS (V) threshold voltage) that is equal to À5.2 V for a VDS of 10-9 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 5 V and 10 V. We note also a small increase of the pinch-off voltage (Vth = À5.3 V) by increasing the Gate-to-Source Voltage, VGS (V) Fig. 4. VGS-dependent gate leakage current (IG). The insert depicts the IG vs VDS at the subthreshold voltage (VGS = Vth = À5.2 V). 1000 T=300K VGS =3V Step= -1V drain–source voltage (VDS = 15 V). The second impor- Drain Current, ID (mA/mm) 800 tant information is the amount of the drain current that is still flowing in the OFF state, which is possibly origi- 600 nating from the GaN buffer layer and/or from the GaN/ AlN/sapphire interfaces. The measured ON-to-OFF cur- rent ratio was as high as $107 attesting the very low 400 leakage current. This clearly indicates that there is no parallel conduction paths through the C-doped GaN 200 layer and it is also isolating properly the channel layer from the underneath structure. The gate leakage current has been also measured for a VGS up to À20 V as shown 0 in Fig. 4. The value of IG was only 0.4 lA/mm at the 0 5 10 15 Drain-to-Source Voltage, VDS (V) subthreshold voltage and increases only to 1 lA/mm at VGS of À20 V. The insert of Fig. 4 shows the dependence Fig. 2. Typical IDS–VDS characteristics of the AlGaN/GaN field effect of gate leakage current on drain–source voltage at the transistor structure with nsl product value of 1.9 · 1016 VÀ1 sÀ1. pinch-off voltage (VGS = À5.2 V). An increase of the
  • 5. 806 S. Haffouz et al. / Solid-State Electronics 49 (2005) 802–807 gate leakage with increasing drain–source voltage is ob- plate. Excellent dc pinch-off characteristics, very low served and is in agreement with the results obtained by leakage currents and good rf performances were Arulkumaran et al. [33]. It should be pointed out that demonstrated. the value of the gate leakage current measured on our HFET devices is reasonably low compared to the values reported in the literature [15,34–36]. However, a closer Acknowledgement look reveals not only that the leakage current is still larger than the expected reverse saturation current value We gratefully acknowledge the assistance of C. given by the thermionic emission (TE) transport model, Storey and D. Kuan with the rf measurements, the but also, reveals strong dependence of gate leakage assistance of R. Wang with X-ray diffraction measure- current on the reverse voltage (at least up to À10 V). ments and the helpful discussions with S. McAlister. Recently, some effort has been made in order to under- stand the mechanism of gate leakage current in AlGaN/ GaN HFETs. A possible mechanism, using thin surface References barrier (TSB) model, was recently proposed by Hase- gawa et al. [37]. This model assumes the presence of high [1] Shealy JR, Kaper V, Tilak V, Prunty T, Smart JA, Green B, et al. density of deep donor defects (at EC-0.37 eV) near J Phys Condens Matter 2002;14:3499. AlGaN surface, causing a narrowing of the Schottky [2] Chini A, Coffie R, Meneghesso G, Zanoni E, Buttari B, Heikman S, et al. Electron Lett 2003;39:625. barrier in such a way that electrons can tunnel through [3] Bardwell JA, Liu Y, Tang H, Webb JB, Rolfe SJ, Lapointe L. this barrier in both forward and reverse direction by Electron Lett 2003;39:654. means of the thermionic field-emission (TFE) or the [4] Kumar V, Lu W, Schwindt R, Kuliev A, Simin G, Yang J, et al. field-emission (FE) mechanism, depending on the tem- IEEE Electron Dev Lett 2002;23:455. perature. The density of these deep donor defects, which [5] Wu Y-F, Kapolnek D, Ibbetson JP, Parikh P, Keller BP, Mishra UK. IEEE Trans Electron Dev 2001;48:586. have been attributed to N vacancies, is strongly [6] Chen Q, Yang JW, Kahn MA, Ping AT, Adesida I. Electron Lett dependent on the surface processing (plasma treatment, 1997;23:1413. wet etching, passivation, metal deposition, etc.). There- [7] Gaska R, Shur MS, Bykhovski AD, Orlov AO, Snider GL. Appl fore, applying an adequate surface processing should Phys Lett 1999;74:287. reduce further the gate leakage current in GaN-based [8] Smart JA, Schremer AT, Weimann NG, Ambacher O, Eastman LF, Shealy JR. Appl Phys Lett 1999;75:388. FETs. [9] Tang H, Webb JB, Bardwell JA, Rolfe S, MacElwee TW. Solid- The effectiveness of the C-doped GaN buffer layer as State Electron 2000;44:2177. an isolation template is also checked by measuring the [10] Antoszewski J, Gracey M, Dell JM, Faraone L, Fisher TA, Parish amount of leakage current between two mesas separated G, et al. J Appl Phys 2000;87:3900. by 40 lm. Excellent isolation was achieved as revealed [11] Keller S, Wu Y-F, Parish G, Ziang N, Xu JJ, Keller BP, et al. IEEE Trans Electron Dev 2001;48:552. by an isolation current as low as 0.1 pA for voltages [12] Cordier Y et al. J Crystal Growth 2003;251:811. up to 10 V. This current is three orders of magnitude [13] Bougrioua et al. Phys Stat Sol (a) 2003;195:93. lower than the lowest leakage current measured in heav- [14] Chen CQ, Zhang JP, Adivaharan V, Koudymov A, Fatami H, ily Be-doped GaN buffer layer [19]. Simin G, et al. Appl Phys Lett 2003;82:4593. A conductive buffer layer would introduce parasitic [15] Arulkumaran S, Egawa T, Ishikawa H, Jimbo T. J Vac Sci Technol B 2003;21:888. capacitances (extrinsic capacitances), which lower the ¨ [16] Look DC, Reynolds DC, Kim W, Aktas O, Botchkarev A, available power gains of the HFET at high frequencies Salvador A, et al. J Appl Phys 1996;80:2960. [38]. Small-signal rf measurements on our devices [17] Bougrioua Z et al. J Crystal Growth 2001;230:573. yielded current-gain and power-gain cut off frequencies [18] Heikman S, Keller S, DenBaars SP, Mishra UK. Appl Phys Lett (ft and fmax, respectively) of 13.2 and 38.2 GHz with 2002;81:439. [19] Storm DF, Katzer DS, Binari SC, Glaser ER, Shanabrok BN, 0.75 lm gate length. The fmax/ft ratio is therefore as high Roussos JA. Appl Phys Lett 2002;81:3819. as 2.9 attesting the absence of charge coupling effects. [20] Kuznetsov NI, Nikolaev AE, Zubrilov AS, Melnik YV, Dmitriev VA. Appl Phys Lett 1999;75:3138. [21] Webb JB, Tang H, Rolfe S, Bardwell JA. Appl Phys Lett 5. Conclusion 1999;75:953. [22] Tang H, Webb JB, Bardwell JA, Raymond S, Salzman J, Uzan- Saguy C. Appl Phys Lett 2001;78:757. In conclusion, AlGaN/GaN field effect transistor [23] Tang H, Webb JB, Moisa S, Bardwell JA, Rolfe S. J Crystal structures with high sheet electron density and mobility Growth 2002;244:1. were grown on sapphire substrates by ammonia-MBE. [24] Bardwell JA, Foulds I, Lamontagne B, Tang H, Webb JB, The nsl product in these 2DEG structures has linearly Marshal P, et al. J Vac Sci Technol A 2000;18:750. [25] Bardwell JA, Spoule GI, Liu Y, Tang H, Webb JB, Fraser F, increasing from 1.5 · 1016 VÀ1 sÀ1 to 2 · 1016 VÀ1 sÀ1. et al. J Vac Sci Technol B 2002;20:1444. Further, we have investigated the effectiveness of the [26] Bernardini F, Fiorentini V, Vanderbilt D. Phys Rev B 1997; C-doped GaN buffer layer as an electrical isolation tem- 56:R10024.
  • 6. S. Haffouz et al. / Solid-State Electronics 49 (2005) 802–807 807 [27] Ibbetson JP, Fini PT, Ness D, DenBaars SP, Speck JP, Mishra [33] Arulkumaran S, Egawa T, Ishikawa H, Jimbo T. Appl Phys Lett UK. Appl Phys Lett 2000;77:250. 2003;82:3110. [28] Khan MA, Kuznia JN, Van Hove JM, Pan N, Carter J. Appl Phys [34] Khan MA, Hu X, Sumin G, Lunev A, Yang J, Gaska R, et al. Lett 1992;60:3027. IEEE Electron Dev Lett 2000;21:63. [29] Asbeck PM, Yu ET, Lau SS, Sullivan GJ, Van Hove J, Redwing J. [35] Khan MA et al. Appl Phys Lett 2000;76:3807. Electron Lett 1997;33:12307. [36] Ao J-P, Kikuta D, Kubota N, Naoi Y, Ohno Y. IEEE Electron [30] Shen L et al. IEEE Trans Electron Dev 2001;22:457. Dev Lett 2003;24:500. [31] Hsu EM, Bardwell JA, Haffouz S, Tang H, Storey C, Chyurlia P. [37] Hasegawa H, Inagaki T, Ootomo S, Hashizume T. J Vac Sci J Electrochem Soc, submitted for publication. Technol B 2003;21:1844. [32] Farvacque J-L, Bougrioua Z. Phys Rev B 2003;68:035335. [38] Hughes B, Tasker PJ. IEEE Trans Electron Dev 1989;36:2267.