SlideShare uma empresa Scribd logo
1 de 21
Baixar para ler offline
A Machine Learning Approach for Real-Time
Reachability Analysis
Ross E. Allen, Ashley A. Clark, Joseph A. Starek, and Marco
Pavone
Autonomous Systems Laboratory
Department of Aeronautics & Astronautics
Stanford University
IROS 2014
September 16th, 2014
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Problem Description
Figure: Simplified, 2D illustration of a cost-limited
reachable set for an initial state of a dynamical system.
Green endpoints are reachable and red endpoints are
non-reachable for the given threshold Jth.
R(x0, U, Jth) = xf ∈ X | ∃tf and ∃u(τ) ∈ U, τ ∈ [t0, tf ]
s.t. x(t0) = x0, ˙x(τ) = f (x(τ), u(τ)),
1 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Motivation Slide
• Reachability analysis central to motion planning,
collision avoidance, differential games, etc.
• Simple for geometric systems; difficult/costly for
kinodynamic systems
• Analytical results available for few problems;
numerical solutions necessary for most
2 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Approach
3 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Approach
Cost Function Regression
4 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Approach
Cost Function Regression
4 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Approach
Cost Function Regression
4 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Approach
Cost Function Regression
4 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Approach
Cost Function Regression
4 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Approach
Classification into Reachable and Non-Reachable Sets
5 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Approach
Classification into Reachable and Non-Reachable Sets
5 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Approach
Classification into Reachable and Non-Reachable Sets
5 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Approach
Classification into Reachable and Non-Reachable Sets
5 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Simulations
Dubins Car
Figure: Predicted reachability set plotted with true cost for
the Dubins Car with 3 different cost thresholds (black
lines). Blue circles = SVM predicted reachable, red
diamonds = SVM predicted non-reachable, blue dot =
linear regression predicted reachable, red cross = linear
regression predicted non-reachable.
6 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Simulations
Deep-Space Spacecraft
Figure: Predicted reachability set plotted with true cost for
the deep-space spacecraft with 3 different cost thresholds
(black lines). Blue circles = SVM predicted reachable, red
diamonds = SVM predicted non-reachable, blue dot =
linear regression predicted reachable, red cross = linear
regression predicted non-reachable
6 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Simulations
Execution Time vs. Accuracy
Table: Average computation time and percent of
misclassification for the two-point boundary value problem
solver, the linear regression cost estimation (best fit model
using all features), and SVM classification (average over all
3 cost thresholds).
System 2PBVP Solve Lin. Reg. SVM
Time % Err Time % Err Time % Err
Dubins 1.23 s 0.0 9.4 ms 3.8 0.44 ms 4.9
Spacecraft 10.3 s 0.0 9.0 ms 5.8 0.40 ms 8.8
• Orders of magnitude decrease in computation time
if you are willing to accept some level of error
• Linear Regression slower than SVM but provides
more information, i.e. approximate cost of query
6 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Thank you!
Ross E. Allen, Ashley A. Clark, Joseph A.
Starek, and Marco Pavone
Stanford University
Aeronautics & Astronautics
6 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
Literature Review
A direct approach requires the numerical solution to a
2PBVP. An alternative, indirect method relies on the
numerical computation of the zero-level set of the
viscosity solution of the Hamilton-Jacobi-Bellman
equations, though with exponential time complexity
[1]. Modern research on reachability analysis has
therefore focused on producing efficient over- or
under-approximations of reachable sets for various
systems:
• discrete linear case [2]
• continuous-time linear case [3]
• general nonlinear dynamics [4, 5]
• nonlinear differential-algebraic dynamics [6]
• hybrid systems [7]
Drawbacks of traditional techniques:
• Computationally intensive
• Do not appear amenable to real-time implementation for
all but the simplest cases.
7 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
References I
Duˇsan M. Stipanovi´c, Inseok Hwang, and Claire J. Tomlin.
Computation of an Over-Approximation of the Backward Reachable Set using
Subsystem Level Set Functions.
In Dyn. of Cont., Discrete and Impulsive Systems, volume 11 of A: Mathematical
Analysis, pages 397–411. Watam Press, 2004.
Francesco Borrelli, A. Bemporad, and M. Morari.
Predictive Control, 2014.
In Preparation.
Antoine Girard and Colas Le Guernic.
Efficient Reachability Analysis for Linear Systems Using Support Functions.
In Myung Jin Chung and Pradeep Misra, editors, IFAC World Congress, volume 17,
pages 8966–8971, Gangnam-gu Seoul, South Korea, July 2008. Int. Fed. of Automatic
Control, IFAC PapersOnLine.
Eugene Asarin, Thao Dang, and Antoine Girard.
Reachability Analysis of Nonlinear Systems Using Conservative Approximation.
In Oded Maler and Amir Pnueli, editors, Hybrid Systems: Comp. and Control, volume
2623 of Lecture Notes in Comp. Science, pages 20–35. Springer, Prague, Czech
Republic, April 2003.
Romain Testylier and Thao Dang.
NLTOOLBOX: A Library for Reachability Computation of Nonlinear Dynamical
Systems.
In Dang Van Hung and Mizuhito Ogawa, editors, Autom. Tech. for Verif. and Analysis,
volume 8172 of Lecture Notes in Comp. Science, pages 469–473. Springer, Hanoi,
Vietnam, Oct 2013.
7 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Introduction
Motivation
Approach
Results
Literature
References II
Matthias Althoff and Bruce H. Krogh.
Reachability Analysis of Nonlinear Differential-Algebraic Systems.
IEEE Trans. on Automatic Control, 59(2):371–383, Feb 2014.
Herv´e Gu´eguen, Marie-Anne Lefebvre, Janan Zaytoon, and Othman Nasri.
Safety Verification and Reachability Analysis for Hybrid Systems.
Annual Reviews in Control, 33(1):25–36, April 2009.
8 / 8
IROS 2014
R. Allen, A. Clark,
J. Starek, M.
Pavone
Backup Slide #1
1 / 1

Mais conteúdo relacionado

Destaque

인공지능 특허전략 :: 1. 인공지능 특허 개론 v1.0
인공지능 특허전략 :: 1. 인공지능 특허 개론 v1.0인공지능 특허전략 :: 1. 인공지능 특허 개론 v1.0
인공지능 특허전략 :: 1. 인공지능 특허 개론 v1.0INMO SHIN
 
Tutorial - Eddy Current Testing
Tutorial - Eddy Current TestingTutorial - Eddy Current Testing
Tutorial - Eddy Current TestingEthan Gros
 
Learning to use Desmos KS3
Learning to use Desmos KS3Learning to use Desmos KS3
Learning to use Desmos KS3Colleen Young
 
Роман Постников – OneFactor – ICBDA2016
Роман Постников – OneFactor  – ICBDA2016Роман Постников – OneFactor  – ICBDA2016
Роман Постников – OneFactor – ICBDA2016rusbase
 
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기NAVER D2
 
[216]딥러닝예제로보는개발자를위한통계 최재걸
[216]딥러닝예제로보는개발자를위한통계 최재걸[216]딥러닝예제로보는개발자를위한통계 최재걸
[216]딥러닝예제로보는개발자를위한통계 최재걸NAVER D2
 
Insects of aquatic ecosystem
Insects of aquatic ecosystemInsects of aquatic ecosystem
Insects of aquatic ecosystemSuprabha Sanil
 
Are you ready for the 4th industrial revolution?
Are you ready for the 4th industrial revolution?Are you ready for the 4th industrial revolution?
Are you ready for the 4th industrial revolution?Sylvain Kalache
 
챗봇 개발을 위한 네이버 랩스 api
챗봇 개발을 위한 네이버 랩스 api챗봇 개발을 위한 네이버 랩스 api
챗봇 개발을 위한 네이버 랩스 apiNAVER D2
 

Destaque (9)

인공지능 특허전략 :: 1. 인공지능 특허 개론 v1.0
인공지능 특허전략 :: 1. 인공지능 특허 개론 v1.0인공지능 특허전략 :: 1. 인공지능 특허 개론 v1.0
인공지능 특허전략 :: 1. 인공지능 특허 개론 v1.0
 
Tutorial - Eddy Current Testing
Tutorial - Eddy Current TestingTutorial - Eddy Current Testing
Tutorial - Eddy Current Testing
 
Learning to use Desmos KS3
Learning to use Desmos KS3Learning to use Desmos KS3
Learning to use Desmos KS3
 
Роман Постников – OneFactor – ICBDA2016
Роман Постников – OneFactor  – ICBDA2016Роман Постников – OneFactor  – ICBDA2016
Роман Постников – OneFactor – ICBDA2016
 
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기
 
[216]딥러닝예제로보는개발자를위한통계 최재걸
[216]딥러닝예제로보는개발자를위한통계 최재걸[216]딥러닝예제로보는개발자를위한통계 최재걸
[216]딥러닝예제로보는개발자를위한통계 최재걸
 
Insects of aquatic ecosystem
Insects of aquatic ecosystemInsects of aquatic ecosystem
Insects of aquatic ecosystem
 
Are you ready for the 4th industrial revolution?
Are you ready for the 4th industrial revolution?Are you ready for the 4th industrial revolution?
Are you ready for the 4th industrial revolution?
 
챗봇 개발을 위한 네이버 랩스 api
챗봇 개발을 위한 네이버 랩스 api챗봇 개발을 위한 네이버 랩스 api
챗봇 개발을 위한 네이버 랩스 api
 

Semelhante a AllenClarkStarek.eaIROS2014.Presentation

Escobar-thesis-presentation-2
Escobar-thesis-presentation-2Escobar-thesis-presentation-2
Escobar-thesis-presentation-2Ivana Escobar
 
A time study in numerical methods programming
A time study in numerical methods programmingA time study in numerical methods programming
A time study in numerical methods programmingGlen Alleman
 
A time study in numerical methods programming
A time study in numerical methods programmingA time study in numerical methods programming
A time study in numerical methods programmingGlen Alleman
 
Spatial analysis and Analysis Tools
Spatial analysis and Analysis ToolsSpatial analysis and Analysis Tools
Spatial analysis and Analysis ToolsSwapnil Shrivastav
 
A Non Parametric Estimation Based Underwater Target Classifier
A Non Parametric Estimation Based Underwater Target ClassifierA Non Parametric Estimation Based Underwater Target Classifier
A Non Parametric Estimation Based Underwater Target ClassifierCSCJournals
 
Going Smart and Deep on Materials at ALCF
Going Smart and Deep on Materials at ALCFGoing Smart and Deep on Materials at ALCF
Going Smart and Deep on Materials at ALCFIan Foster
 
Fast and backward stable computation of roots of polynomials
Fast and backward stable computation of roots of polynomialsFast and backward stable computation of roots of polynomials
Fast and backward stable computation of roots of polynomialsThomas Mach
 
Understanding R for Epidemiologists
Understanding R for EpidemiologistsUnderstanding R for Epidemiologists
Understanding R for EpidemiologistsTomas J. Aragon
 
Recursive Autoencoders for Paraphrase Detection (Socher et al)
Recursive Autoencoders for Paraphrase Detection (Socher et al)Recursive Autoencoders for Paraphrase Detection (Socher et al)
Recursive Autoencoders for Paraphrase Detection (Socher et al)Feynman Liang
 
Calculation of solar radiation by using regression methods
Calculation of solar radiation by using regression methodsCalculation of solar radiation by using regression methods
Calculation of solar radiation by using regression methodsmehmet şahin
 
Diagnosis of Faulty Elements in Array Antenna using Nature Inspired Cuckoo Se...
Diagnosis of Faulty Elements in Array Antenna using Nature Inspired Cuckoo Se...Diagnosis of Faulty Elements in Array Antenna using Nature Inspired Cuckoo Se...
Diagnosis of Faulty Elements in Array Antenna using Nature Inspired Cuckoo Se...IJECEIAES
 
Ali asgher slides copy
Ali asgher slides   copyAli asgher slides   copy
Ali asgher slides copyAli Asgher
 
Joint DoA and Offset Frequency estimator
Joint DoA and Offset Frequency estimatorJoint DoA and Offset Frequency estimator
Joint DoA and Offset Frequency estimatorJason Fernandes
 
Investigation of Parameter Behaviors in Stationarity of Autoregressive and Mo...
Investigation of Parameter Behaviors in Stationarity of Autoregressive and Mo...Investigation of Parameter Behaviors in Stationarity of Autoregressive and Mo...
Investigation of Parameter Behaviors in Stationarity of Autoregressive and Mo...BRNSS Publication Hub
 
Inter-site autism biomarkers from resting state fMRI
Inter-site autism biomarkers from resting state fMRIInter-site autism biomarkers from resting state fMRI
Inter-site autism biomarkers from resting state fMRIGael Varoquaux
 

Semelhante a AllenClarkStarek.eaIROS2014.Presentation (20)

Escobar-thesis-presentation-2
Escobar-thesis-presentation-2Escobar-thesis-presentation-2
Escobar-thesis-presentation-2
 
A time study in numerical methods programming
A time study in numerical methods programmingA time study in numerical methods programming
A time study in numerical methods programming
 
A time study in numerical methods programming
A time study in numerical methods programmingA time study in numerical methods programming
A time study in numerical methods programming
 
Spatial analysis and Analysis Tools
Spatial analysis and Analysis ToolsSpatial analysis and Analysis Tools
Spatial analysis and Analysis Tools
 
A Non Parametric Estimation Based Underwater Target Classifier
A Non Parametric Estimation Based Underwater Target ClassifierA Non Parametric Estimation Based Underwater Target Classifier
A Non Parametric Estimation Based Underwater Target Classifier
 
Going Smart and Deep on Materials at ALCF
Going Smart and Deep on Materials at ALCFGoing Smart and Deep on Materials at ALCF
Going Smart and Deep on Materials at ALCF
 
Fast and backward stable computation of roots of polynomials
Fast and backward stable computation of roots of polynomialsFast and backward stable computation of roots of polynomials
Fast and backward stable computation of roots of polynomials
 
Understanding R for Epidemiologists
Understanding R for EpidemiologistsUnderstanding R for Epidemiologists
Understanding R for Epidemiologists
 
PhD Thesis E Abramova
PhD Thesis E AbramovaPhD Thesis E Abramova
PhD Thesis E Abramova
 
Recursive Autoencoders for Paraphrase Detection (Socher et al)
Recursive Autoencoders for Paraphrase Detection (Socher et al)Recursive Autoencoders for Paraphrase Detection (Socher et al)
Recursive Autoencoders for Paraphrase Detection (Socher et al)
 
Calculation of solar radiation by using regression methods
Calculation of solar radiation by using regression methodsCalculation of solar radiation by using regression methods
Calculation of solar radiation by using regression methods
 
H046014853
H046014853H046014853
H046014853
 
Event 32
Event 32Event 32
Event 32
 
Diagnosis of Faulty Elements in Array Antenna using Nature Inspired Cuckoo Se...
Diagnosis of Faulty Elements in Array Antenna using Nature Inspired Cuckoo Se...Diagnosis of Faulty Elements in Array Antenna using Nature Inspired Cuckoo Se...
Diagnosis of Faulty Elements in Array Antenna using Nature Inspired Cuckoo Se...
 
20320140501002
2032014050100220320140501002
20320140501002
 
Avinash_CV_long
Avinash_CV_longAvinash_CV_long
Avinash_CV_long
 
Ali asgher slides copy
Ali asgher slides   copyAli asgher slides   copy
Ali asgher slides copy
 
Joint DoA and Offset Frequency estimator
Joint DoA and Offset Frequency estimatorJoint DoA and Offset Frequency estimator
Joint DoA and Offset Frequency estimator
 
Investigation of Parameter Behaviors in Stationarity of Autoregressive and Mo...
Investigation of Parameter Behaviors in Stationarity of Autoregressive and Mo...Investigation of Parameter Behaviors in Stationarity of Autoregressive and Mo...
Investigation of Parameter Behaviors in Stationarity of Autoregressive and Mo...
 
Inter-site autism biomarkers from resting state fMRI
Inter-site autism biomarkers from resting state fMRIInter-site autism biomarkers from resting state fMRI
Inter-site autism biomarkers from resting state fMRI
 

AllenClarkStarek.eaIROS2014.Presentation

  • 1. A Machine Learning Approach for Real-Time Reachability Analysis Ross E. Allen, Ashley A. Clark, Joseph A. Starek, and Marco Pavone Autonomous Systems Laboratory Department of Aeronautics & Astronautics Stanford University IROS 2014 September 16th, 2014
  • 2. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Problem Description Figure: Simplified, 2D illustration of a cost-limited reachable set for an initial state of a dynamical system. Green endpoints are reachable and red endpoints are non-reachable for the given threshold Jth. R(x0, U, Jth) = xf ∈ X | ∃tf and ∃u(τ) ∈ U, τ ∈ [t0, tf ] s.t. x(t0) = x0, ˙x(τ) = f (x(τ), u(τ)), 1 / 8
  • 3. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Motivation Slide • Reachability analysis central to motion planning, collision avoidance, differential games, etc. • Simple for geometric systems; difficult/costly for kinodynamic systems • Analytical results available for few problems; numerical solutions necessary for most 2 / 8
  • 4. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Approach 3 / 8
  • 5. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Approach Cost Function Regression 4 / 8
  • 6. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Approach Cost Function Regression 4 / 8
  • 7. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Approach Cost Function Regression 4 / 8
  • 8. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Approach Cost Function Regression 4 / 8
  • 9. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Approach Cost Function Regression 4 / 8
  • 10. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Approach Classification into Reachable and Non-Reachable Sets 5 / 8
  • 11. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Approach Classification into Reachable and Non-Reachable Sets 5 / 8
  • 12. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Approach Classification into Reachable and Non-Reachable Sets 5 / 8
  • 13. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Approach Classification into Reachable and Non-Reachable Sets 5 / 8
  • 14. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Simulations Dubins Car Figure: Predicted reachability set plotted with true cost for the Dubins Car with 3 different cost thresholds (black lines). Blue circles = SVM predicted reachable, red diamonds = SVM predicted non-reachable, blue dot = linear regression predicted reachable, red cross = linear regression predicted non-reachable. 6 / 8
  • 15. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Simulations Deep-Space Spacecraft Figure: Predicted reachability set plotted with true cost for the deep-space spacecraft with 3 different cost thresholds (black lines). Blue circles = SVM predicted reachable, red diamonds = SVM predicted non-reachable, blue dot = linear regression predicted reachable, red cross = linear regression predicted non-reachable 6 / 8
  • 16. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Simulations Execution Time vs. Accuracy Table: Average computation time and percent of misclassification for the two-point boundary value problem solver, the linear regression cost estimation (best fit model using all features), and SVM classification (average over all 3 cost thresholds). System 2PBVP Solve Lin. Reg. SVM Time % Err Time % Err Time % Err Dubins 1.23 s 0.0 9.4 ms 3.8 0.44 ms 4.9 Spacecraft 10.3 s 0.0 9.0 ms 5.8 0.40 ms 8.8 • Orders of magnitude decrease in computation time if you are willing to accept some level of error • Linear Regression slower than SVM but provides more information, i.e. approximate cost of query 6 / 8
  • 17. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Thank you! Ross E. Allen, Ashley A. Clark, Joseph A. Starek, and Marco Pavone Stanford University Aeronautics & Astronautics 6 / 8
  • 18. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature Literature Review A direct approach requires the numerical solution to a 2PBVP. An alternative, indirect method relies on the numerical computation of the zero-level set of the viscosity solution of the Hamilton-Jacobi-Bellman equations, though with exponential time complexity [1]. Modern research on reachability analysis has therefore focused on producing efficient over- or under-approximations of reachable sets for various systems: • discrete linear case [2] • continuous-time linear case [3] • general nonlinear dynamics [4, 5] • nonlinear differential-algebraic dynamics [6] • hybrid systems [7] Drawbacks of traditional techniques: • Computationally intensive • Do not appear amenable to real-time implementation for all but the simplest cases. 7 / 8
  • 19. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature References I Duˇsan M. Stipanovi´c, Inseok Hwang, and Claire J. Tomlin. Computation of an Over-Approximation of the Backward Reachable Set using Subsystem Level Set Functions. In Dyn. of Cont., Discrete and Impulsive Systems, volume 11 of A: Mathematical Analysis, pages 397–411. Watam Press, 2004. Francesco Borrelli, A. Bemporad, and M. Morari. Predictive Control, 2014. In Preparation. Antoine Girard and Colas Le Guernic. Efficient Reachability Analysis for Linear Systems Using Support Functions. In Myung Jin Chung and Pradeep Misra, editors, IFAC World Congress, volume 17, pages 8966–8971, Gangnam-gu Seoul, South Korea, July 2008. Int. Fed. of Automatic Control, IFAC PapersOnLine. Eugene Asarin, Thao Dang, and Antoine Girard. Reachability Analysis of Nonlinear Systems Using Conservative Approximation. In Oded Maler and Amir Pnueli, editors, Hybrid Systems: Comp. and Control, volume 2623 of Lecture Notes in Comp. Science, pages 20–35. Springer, Prague, Czech Republic, April 2003. Romain Testylier and Thao Dang. NLTOOLBOX: A Library for Reachability Computation of Nonlinear Dynamical Systems. In Dang Van Hung and Mizuhito Ogawa, editors, Autom. Tech. for Verif. and Analysis, volume 8172 of Lecture Notes in Comp. Science, pages 469–473. Springer, Hanoi, Vietnam, Oct 2013. 7 / 8
  • 20. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Introduction Motivation Approach Results Literature References II Matthias Althoff and Bruce H. Krogh. Reachability Analysis of Nonlinear Differential-Algebraic Systems. IEEE Trans. on Automatic Control, 59(2):371–383, Feb 2014. Herv´e Gu´eguen, Marie-Anne Lefebvre, Janan Zaytoon, and Othman Nasri. Safety Verification and Reachability Analysis for Hybrid Systems. Annual Reviews in Control, 33(1):25–36, April 2009. 8 / 8
  • 21. IROS 2014 R. Allen, A. Clark, J. Starek, M. Pavone Backup Slide #1 1 / 1