SlideShare uma empresa Scribd logo
1 de 29
TESTE DE HIPÓTES
Trata-se de uma técnica para se fazer
a inferência estatística sobre uma
população a partir de uma amostra
TEORIA POPPERIANA
• NÃO SE PODE PROVAR NADA, APENAS
“DESPROVAR”.
• SÓ APRENDEMOS QUANDO ERRAMOS.
• É MAIS FACIL REFUTAR DO QUE PROVAR
ALGUMA ASSERTIVA.
• OS ESTATÍSTICOS NÃO PERGUNTAM QUAL
É A PROBABILIDADE DE ESTAREM
CERTOS, MAS A PROBABILIDADE DE
ESTAREM ERRADOS. Para fazerem isso
estabelecem um hipótese nula.
PRINCIPAIS CONCEITOS
HIPÓTESE ESTATÍSTICA
Trata-se de uma suposição quanto ao valor de um
parâmetro populacional, ou quanto à natureza da
distribuição de probabilidade de uma variável
populacional.
TESTE DE HIPÓTESE
É uma regra de decisão para aceitar ou rejeitar uma
hipótese estatística com base nos elementos
amostrais
PRINCIPAIS CONCEITOS
TIPOS DE HIPÓTESES
Designa-se por Ho, chamada hipótese nula, a
hipótese estatística a ser testada, e por H1, a hipótese
alternativa.
A HIPÓTESE NULA É UMA ASSERTIVA DE
COMO O MUNDO DEVERIA SER, SE NOSSA
SUPOSIÇÃO ESTIVESSE ERRADA.
A hipótese nula expressa uma igualdade, enquanto a
hipótese alternativa é dada por uma desigualdade.
Ex: Ho - µ = 1,65 m
H1 - µ 1,65 m≠
TIPOS DE ERRO DE
HIPÓTESE
EXISTEM DOIS TIPOS DE ERRO DE
HIPÓTESE.
Erro tipo 1 - rejeição de uma hipótese verdadeira;
Erro tipo 2 – aceitação de uma hipótese falsa.
As probabilidades desses dois tipos de erros são designadas α
e β.
A probabilidade α do erro tipo I é denominada “nível de
significância” do teste.
LÓGICA DO TESTE DE
SIGNIFICÂNCIA
• ATRIBUEM-SE BAIXOS VALORES PARA α,
GERALMENTE 1-10%;
• FORMULA-SE Ho COM A PRETENSÃO DE REJEITÁ-
LA, DAÍ O NOME DE HIPÓTESE NULA;
• SE O TESTE INDICAR A REJEIÇÃO DE Ho TEM-SE
UM INDICADOR MAIS SEGURO DA DECISÃO;
• CASO O TESTE INDIQUE A ACEITAÇÃO DE Ho,
DIZ-SE QUE, COM O NÍVEL DE SIGNIFICÂNCIA α,
NÃO SE PODE REJEITAR Ho.
ESTATÍSTICA NÃO
PARAMÉTRICA
São extremamente interessantes para
análises de dados qualitativos.
• As técnicas de estatística não paramétrica são
particularmente adaptáveis aos dados das ciências
do comportamento.
• A aplicação dessas técnicas não exige suposições
quanto à distribuição da população da qual se
tenha retirado amostras para análises.
• Podem ser aplicadas a dados que se disponham
simplesmente em ordem, ou mesmo para estudo
de variáveis nominais.Contrariamente à estatística
paramétrica, onde as variáveis são, na maioria das
vezes, intervalares.
• Exigem poucos cálculos e são aplicáveis para
análise de pequenas amostras.
• Independe dos parâmetros populacionais e
amostrais (média, variância, desvio padrão).
TIPOS DE TESTE
• Qui-Quadrado
• Teste dos sinais
• Teste de Wilcoxon
• Teste de Mann-Whitney
• Teste da Mediana
• Teste de Kruskal-Wallis
QUI-QUADRADO (χ2
)
Testes de Adequação de amostras e
Associação entre variáveis
QUI-QUADRADO (χ2
)
• Teste mais popular
• Denominado teste de adequação ou ajustamento.
Usos
1. Adequação ou Aderência dos dados: freqüência
observada adequada a uma freqüência esperada);
2. Independência ou Associação entre duas variáveis
Comportamento de uma variável depende de outra.
χ2
= ∑=
−k
i Fei
FeiFoi
1
2
)(
QUI-QUADRADO (χ2
)
Restrições ao uso:
Se o número de classes é k=2, a freqüência
esperada mínima deve ser ≥5;
Se k >2, o teste não deve ser usado se mais de
20% das freqüências esperadas forem
abaixo de 5 ou se qualquer uma delas for
inferior a 1.
ADEQUAÇÃO DOS DADOS
Exemplos:
1. avaliar se uma moeda ou um dado é
honesto;
2. número de livros emprestados em um
biblioteca durante os dias de uma
determinada semana;
3. Tipo de sangue para uma determinada
raça
ADEQUAÇÃO DOS DADOS
PROCEDIMENTO
1. Enunciar as hipóteses (Ho e H1);
2. Fixar α; escolher a variável χ2
com ϕ = (k-1). k é o
número de eventos;
3. Com auxílio da tabela de χ2
, determinar RA (região de
aceitação de Ho) e RC (região de rejeição de Ho)
χ2
ADEQUAÇÃO DOS DADOS
EXEMPLO
Em 100 lances de moeda, observaram-se 65 coroas e 35 caras. Testar se a
moeda é honesta.
1° Ho- a moeda é honesta;
H1- a moeda não é honesta;
2° α = 5%; escolhe-se um χ2
, pois k = 2 e ϕ 2-1=1;
3° Determinação de RA e RC;
χ2
=
χ2
= (35-50)2
/50 + (65-50)2
/50=9
χ2
tab= 3,84, logo rejeita-se Ho.
A moeda não é honesta.
Eventos Cara Coroa
Freq. observada 35 65
Freq. Esperada 50 50
∑=
−k
i Fei
FeiFoi
1
2
)(
ADEQUAÇÃO DOS DADOS
• 4 ocorrência de 4 tipos de sangue em uma dada raça
K=4, ϕ=3 e α = 2,5%
χ2
=(230-180)2
/180 + (470-480)2
/480 + (170-200)2
/200 + (130-140)2
/140
χ2
calc =16.04
χ2
tab = 9,25
Logo rejeita-se Ho com 2,5% de probabilidade de erro.
Classes A B AB O
Freq. Observada 230 470 170 130
Freq. esperada 180 480 200 140
ADEQUAÇÃO DOS DADOS
• Número de acidentes na rodovia, de acordo com o dia da semana
Freqüência esperada – 1/7 x 175 = 25
χ2
calc =12,0
χ2
tab=12,6
Logo aceita-se Ho com 95% de probabilidade de acerto.
Classes Seg Ter Qua Qui Sex Sab Dom
Número de acidentes 26 21 22 17 20 36 33
Classes Seg Ter Qua Qui Sex Sab Dom
Acidentes Observados 26 21 22 17 20 36 33
Acidentes esperados 25 25 25 25 25 25 25
INDEPENDÊNCIA OU
ASSOCIAÇÃO ENTRE DUAS
VARIÁVEIS
EXEMPLOS
• Dependência entre sabor de pasta de dente e o
bairro;
• Notas dos alunos e nível salarial;
• Efeito da vacinação em animais;
INDEPENDÊNCIA OU
ASSOCIAÇÃO ENTRE DUAS
VARIÁVEIS
A representação das freqüências observadas é dada por uma tabela de
dupla entrada ou tabela de contingência.
PROCEDIMENTO
1. Ho: as variáveis são independentes;
H1: as variáveis são dependentes;
2. Fixar α. Escolher a variável qui-quadrado com ϕ = (L-1) x (C-
1), onde L = número de linhas da tabela de contingência e C+
número de colunas.
3. Com auxílio da tabela calculam-se RA e RC
INDEPENDÊNCIA OU
ASSOCIAÇÃO
EXEMPLO
Dependência entre bairro e escolha do sabor de pasta de dente
Dados:
Ho: a preferencia pelo sabor independe do
bairro;
H1: a preferência pelo sabor depende do
bairro
α = 5%
χ2
tab = ϕ= (4-1) x (3-1) = 6 graus de liberdade
Freqüência esperada = (soma da linha i) x (soma da coluna J)/(total de observações)
χ2
=
Sabor
Bairros
ΣA B C
Limão 70 44 86 200
Chocolate 50 30 45 125
Hortelã 10 6 34 50
Menta 20 20 85 125
Σ 150 100 250 500
∑∑ ==
−C
j
L
i Feij
FeijFoij
1
2
1
)(
INDEPENDÊNCIA OU
ASSOCIAÇÃO
Tabela de freqüências esperadas
Fe11 = 200 x 150/500 = 60
Fe12 = 200 x 100/500 = 40
Fe13 = 200 x 250/500 = 100
Fe21 = 125 x 150/500 = 37.5
Fe22 = 125 x 100/500 = 25
Fe23 = 125 x 250/500 = 62.5
Fe31 = 50 x 150/500 = 15
Fe32 = 50 x 100/500 = 10
Fe33 = 50 x 250/500 = 25
χ2
cal=37.88 Fe41 = 125 x 150/500 = 37.5
χ2
tab=12.6 Fe42 = 125 x 100/500 = 25
Logo rejeita-se Ho Fe43 = 125 x 250/500 = 62,5
SABOR BAIRRO
A B C
(1)Limão 60 40 100
(2)Chocolate 37.5 25 62.5
(3)Hortelã 15 10 25
(4)Menta 37.5 25 62.5
TESTE DOS SINAIS
Análise de dados emparelhados
(O mesmo indivíduo é submetido a
duas medidas)
TESTE DOS SINAIS
• É utilizado na análise de dados emparelhados.
Situações em que o pesquisador deseja determinar se
duas condições são diferentes.
• A variável pode ser intervalar ou ordinal.
• O nome do teste dos sinais se deve ao fato de se
utilizar sinais + e – em lugar do dados numéricos.
• A lógica do teste é que as condições podem ser
consideradas iguais quando as quantidades de + e _
forem aproximadamente iguais. Isto é, a proporção
de + equivale 50%, ou seja: p=0,5.
TESTE DOS SINAIS
PROCEDIMENTO
1. Ho: não há diferença entre os grupos, ou seja: p = 0,5;
H1: há diferença, ou seja: uma das alternativas
a) p ≠ 0,5 -Distribuição “z “bicaudal.
b) p < 0,5 – Distribuição “z” unicaudal a esquerda.
c) p > 0,5 – Distribuição “z” unicaudal a direita.
2. Fixar α. Escolher a distribuição N(0,1) se n>25 ou Binomial se n
≤25.
3. Com auxílio da tabela, determinar-se RA e RC (para n > 25),
caso n <25 utiliza-se distribuição binomial.
4. Cálculo do valor da variável Z
TESTE DOS SINAIS
Exemplo: Sessenta alunos matricularam-se num curso de inglês. Na primeira aula aplica-
se um teste que mede o conhecimento da língua. Após seis meses, aplica-se um segundo
teste. Os resultados mostram que 35 alunos apresentaram melhora (35 +), 20 se conduziram
melhor no primeiro teste (20 -) e 5 não apresentaram modificações (5 “0”).
Ho: O curso não alterou (p=0,50)
H1: O curso melhorou o conhecimento de inglês (p > 0,5).
α= 5% (variável N(0,1).
Cálculo da variável “Z”.
Zcal = , onde:
y - número de sinais positivos (35);
n – tamanho da amostra descontado os empates (60-5=55);
p – 0,5
q – 1-p = 0,5 Zcal = = 2,02
Ztab= 1.64, logo rejeita Ho.
...
.
qpn
pny −
)5,0()5,0(55
5,05535
xx
x−
Teste de Wilcoxon
• É uma extensão do teste de sinais. É mais
interessante pois leva em consideração a
magnitude da diferença para cada par.
• Exemplo: um processo de emagrecimento
em teste. Cada par no caso é o mesmo
indivíduo com peso antes e depois do
processo.
Teste Mann-Whitney
• É usado para testar se das amostras independentes
foram retiradas de populações com média iguais.
• Trata-se de uma interessante alternativa ao teste
paramétrico para igualdade de médias, pois o teste
não exige considerações sobre a distribuição
populacional. Aplicado à variáveis intervalares e
ordinais.
• Exemplo: a média de vendas de dois shoppings
são diferentes?.
Teste da mediana
• Trata-se de uma alternativa ao teste de
Mann-Whitney. Testa as hipótese se dois
grupos independentes possuem mesma
mediana. Dados ordinais e intervalares.
Teste Kruskal-Wallis
• Trata-se de um teste para decidir se K amostras
(K>2) independentes provêm de populações co
médias iguais.
• Exemplo: testar, no nível de 5% de probabilidade,
a hipótese de igualdade das médias para os três
grupos de alunos que foram submetidos a
esquemas diferentes de aulas. Notas para uma
mesma prova. Aulas com recursos audiovisuais,
aulas expositivas e aulas ensino programado.

Mais conteúdo relacionado

Mais procurados

Aula 3 testes de hipóteses e anova
Aula 3   testes de hipóteses e anovaAula 3   testes de hipóteses e anova
Aula 3 testes de hipóteses e anovaRodrigo Rodrigues
 
Probabilidade e estatística - Variáveis Aleatórias
Probabilidade e estatística - Variáveis AleatóriasProbabilidade e estatística - Variáveis Aleatórias
Probabilidade e estatística - Variáveis AleatóriasLucas Vinícius
 
DISTRIBUIÇÃO DE FREQUÊNCIA - ESTATÍSTICA
DISTRIBUIÇÃO DE FREQUÊNCIA - ESTATÍSTICADISTRIBUIÇÃO DE FREQUÊNCIA - ESTATÍSTICA
DISTRIBUIÇÃO DE FREQUÊNCIA - ESTATÍSTICATiago Maboni Derlan
 
Testes De Rastreio para Demência
Testes De Rastreio para DemênciaTestes De Rastreio para Demência
Testes De Rastreio para DemênciaAndrea Dircksen
 
Análise do Comportamento Aplicada: usando avaliação funcional para identifica...
Análise do Comportamento Aplicada: usando avaliação funcional para identifica...Análise do Comportamento Aplicada: usando avaliação funcional para identifica...
Análise do Comportamento Aplicada: usando avaliação funcional para identifica...Ana Arantes
 
Variaveis+aleatorias
Variaveis+aleatoriasVariaveis+aleatorias
Variaveis+aleatoriasFagner Talles
 
Apresentação de relatório de estágio II
Apresentação de relatório de estágio IIApresentação de relatório de estágio II
Apresentação de relatório de estágio IImarcia121007
 
Estudos Observacionais (aula 7)
Estudos Observacionais (aula 7)Estudos Observacionais (aula 7)
Estudos Observacionais (aula 7)Sandra Lago Moraes
 
Aula 01: Conceitos básicos de Estatística
Aula 01: Conceitos básicos de EstatísticaAula 01: Conceitos básicos de Estatística
Aula 01: Conceitos básicos de EstatísticaJosimar M. Rocha
 
Cap4 - Parte 6 - Distribuições Discretas Exercicios Resolvidos
Cap4 - Parte 6 - Distribuições Discretas Exercicios ResolvidosCap4 - Parte 6 - Distribuições Discretas Exercicios Resolvidos
Cap4 - Parte 6 - Distribuições Discretas Exercicios ResolvidosRegis Andrade
 
Exercícios - Distribuições de Probabilidade
Exercícios - Distribuições de ProbabilidadeExercícios - Distribuições de Probabilidade
Exercícios - Distribuições de ProbabilidadeCleibson Almeida
 

Mais procurados (20)

Aula 3 testes de hipóteses e anova
Aula 3   testes de hipóteses e anovaAula 3   testes de hipóteses e anova
Aula 3 testes de hipóteses e anova
 
Probabilidade e estatística - Variáveis Aleatórias
Probabilidade e estatística - Variáveis AleatóriasProbabilidade e estatística - Variáveis Aleatórias
Probabilidade e estatística - Variáveis Aleatórias
 
Aula inferencia
Aula inferenciaAula inferencia
Aula inferencia
 
Exercicio de Regressao Linear Simples
Exercicio de Regressao Linear SimplesExercicio de Regressao Linear Simples
Exercicio de Regressao Linear Simples
 
DISTRIBUIÇÃO DE FREQUÊNCIA - ESTATÍSTICA
DISTRIBUIÇÃO DE FREQUÊNCIA - ESTATÍSTICADISTRIBUIÇÃO DE FREQUÊNCIA - ESTATÍSTICA
DISTRIBUIÇÃO DE FREQUÊNCIA - ESTATÍSTICA
 
Bioestatistica
BioestatisticaBioestatistica
Bioestatistica
 
Testes De Rastreio para Demência
Testes De Rastreio para DemênciaTestes De Rastreio para Demência
Testes De Rastreio para Demência
 
Teste t student
Teste t studentTeste t student
Teste t student
 
Análise do Comportamento Aplicada: usando avaliação funcional para identifica...
Análise do Comportamento Aplicada: usando avaliação funcional para identifica...Análise do Comportamento Aplicada: usando avaliação funcional para identifica...
Análise do Comportamento Aplicada: usando avaliação funcional para identifica...
 
Testes hipoteses introducao
Testes hipoteses introducaoTestes hipoteses introducao
Testes hipoteses introducao
 
Variaveis+aleatorias
Variaveis+aleatoriasVariaveis+aleatorias
Variaveis+aleatorias
 
Apresentação de relatório de estágio II
Apresentação de relatório de estágio IIApresentação de relatório de estágio II
Apresentação de relatório de estágio II
 
Estudos Observacionais (aula 7)
Estudos Observacionais (aula 7)Estudos Observacionais (aula 7)
Estudos Observacionais (aula 7)
 
distribuição-t-student
distribuição-t-studentdistribuição-t-student
distribuição-t-student
 
Correlação Estatística
Correlação EstatísticaCorrelação Estatística
Correlação Estatística
 
Princípios de Estatística Inferencial - I
Princípios de Estatística Inferencial - IPrincípios de Estatística Inferencial - I
Princípios de Estatística Inferencial - I
 
Aula 01: Conceitos básicos de Estatística
Aula 01: Conceitos básicos de EstatísticaAula 01: Conceitos básicos de Estatística
Aula 01: Conceitos básicos de Estatística
 
Cap4 - Parte 6 - Distribuições Discretas Exercicios Resolvidos
Cap4 - Parte 6 - Distribuições Discretas Exercicios ResolvidosCap4 - Parte 6 - Distribuições Discretas Exercicios Resolvidos
Cap4 - Parte 6 - Distribuições Discretas Exercicios Resolvidos
 
Testes de hipóteses
Testes de hipótesesTestes de hipóteses
Testes de hipóteses
 
Exercícios - Distribuições de Probabilidade
Exercícios - Distribuições de ProbabilidadeExercícios - Distribuições de Probabilidade
Exercícios - Distribuições de Probabilidade
 

Destaque

Testes de Hipóteses - Lista de Exercícios Conceituais Resolvidos.
Testes de Hipóteses - Lista de Exercícios Conceituais Resolvidos.Testes de Hipóteses - Lista de Exercícios Conceituais Resolvidos.
Testes de Hipóteses - Lista de Exercícios Conceituais Resolvidos.Wisley Velasco
 
17 hipóteses e variáveis
17 hipóteses e variáveis17 hipóteses e variáveis
17 hipóteses e variáveisJoao Balbi
 
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1Thermatec
 
Testar slides
Testar slidesTestar slides
Testar slidesThermatec
 
Cap7 - Parte 4 - Teste De Duas Média
Cap7 - Parte 4 - Teste De Duas MédiaCap7 - Parte 4 - Teste De Duas Média
Cap7 - Parte 4 - Teste De Duas MédiaRegis Andrade
 
Hipóteses da Psicogêse da Língua Escríta
Hipóteses da Psicogêse da Língua EscrítaHipóteses da Psicogêse da Língua Escríta
Hipóteses da Psicogêse da Língua EscrítaAnne Cunha Silveira
 
Aula 01 - Apresentação da Disciplina - Medidas em Psicologia
Aula 01 - Apresentação da Disciplina - Medidas em PsicologiaAula 01 - Apresentação da Disciplina - Medidas em Psicologia
Aula 01 - Apresentação da Disciplina - Medidas em PsicologiaHenrique Morais
 
O projeto de pesquisa introdução
O projeto de pesquisa  introduçãoO projeto de pesquisa  introdução
O projeto de pesquisa introduçãorosetol
 
Testes PsicolóGicos
Testes PsicolóGicosTestes PsicolóGicos
Testes PsicolóGicosalex
 
Texto 1 -_testes_psicológicos_e_técnicas_projetivas
Texto 1 -_testes_psicológicos_e_técnicas_projetivasTexto 1 -_testes_psicológicos_e_técnicas_projetivas
Texto 1 -_testes_psicológicos_e_técnicas_projetivasMila Rosa
 

Destaque (20)

Aula 30 testes de hipóteses
Aula 30   testes de hipótesesAula 30   testes de hipóteses
Aula 30 testes de hipóteses
 
Testes de Hipóteses - Lista de Exercícios Conceituais Resolvidos.
Testes de Hipóteses - Lista de Exercícios Conceituais Resolvidos.Testes de Hipóteses - Lista de Exercícios Conceituais Resolvidos.
Testes de Hipóteses - Lista de Exercícios Conceituais Resolvidos.
 
6 teste de hipótese
6   teste de hipótese6   teste de hipótese
6 teste de hipótese
 
Aula 13 teste de hipóteses
Aula 13   teste de hipótesesAula 13   teste de hipóteses
Aula 13 teste de hipóteses
 
17 hipóteses e variáveis
17 hipóteses e variáveis17 hipóteses e variáveis
17 hipóteses e variáveis
 
Teste de hipoteses Lean 6 Sigma
Teste de hipoteses Lean 6 SigmaTeste de hipoteses Lean 6 Sigma
Teste de hipoteses Lean 6 Sigma
 
Teste de Wilcoxon
Teste de WilcoxonTeste de Wilcoxon
Teste de Wilcoxon
 
Gerência de dispositivos
Gerência de dispositivosGerência de dispositivos
Gerência de dispositivos
 
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1
 
Testar slides
Testar slidesTestar slides
Testar slides
 
Cap7 - Parte 4 - Teste De Duas Média
Cap7 - Parte 4 - Teste De Duas MédiaCap7 - Parte 4 - Teste De Duas Média
Cap7 - Parte 4 - Teste De Duas Média
 
Teste de hipoteses formulario1
Teste de hipoteses formulario1Teste de hipoteses formulario1
Teste de hipoteses formulario1
 
Constituição da Equipa Lean 6 Sigma
Constituição da Equipa Lean 6 SigmaConstituição da Equipa Lean 6 Sigma
Constituição da Equipa Lean 6 Sigma
 
Hipóteses da Psicogêse da Língua Escríta
Hipóteses da Psicogêse da Língua EscrítaHipóteses da Psicogêse da Língua Escríta
Hipóteses da Psicogêse da Língua Escríta
 
Aula 01 - Apresentação da Disciplina - Medidas em Psicologia
Aula 01 - Apresentação da Disciplina - Medidas em PsicologiaAula 01 - Apresentação da Disciplina - Medidas em Psicologia
Aula 01 - Apresentação da Disciplina - Medidas em Psicologia
 
Hipoteses de escrita
Hipoteses de escritaHipoteses de escrita
Hipoteses de escrita
 
O projeto de pesquisa introdução
O projeto de pesquisa  introduçãoO projeto de pesquisa  introdução
O projeto de pesquisa introdução
 
Epilepsia - Neuropsicologia
Epilepsia - NeuropsicologiaEpilepsia - Neuropsicologia
Epilepsia - Neuropsicologia
 
Testes PsicolóGicos
Testes PsicolóGicosTestes PsicolóGicos
Testes PsicolóGicos
 
Texto 1 -_testes_psicológicos_e_técnicas_projetivas
Texto 1 -_testes_psicológicos_e_técnicas_projetivasTexto 1 -_testes_psicológicos_e_técnicas_projetivas
Texto 1 -_testes_psicológicos_e_técnicas_projetivas
 

Semelhante a Teste de hipótese e estatística não paramétrica

ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdfESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdfssuserac1de6
 
AMD - Aula n.º 2 - testes amostras independentes.pptx
AMD - Aula n.º 2 - testes amostras independentes.pptxAMD - Aula n.º 2 - testes amostras independentes.pptx
AMD - Aula n.º 2 - testes amostras independentes.pptxNunoSilva599593
 
Curso #H4A - Módulo 5
Curso #H4A - Módulo 5Curso #H4A - Módulo 5
Curso #H4A - Módulo 5Mgfamiliar Net
 
Aula 5 - Educação física
Aula 5 - Educação físicaAula 5 - Educação física
Aula 5 - Educação físicaCaroline Godoy
 
Aula6-TestesdeHipoteses2 (1).pptx
Aula6-TestesdeHipoteses2 (1).pptxAula6-TestesdeHipoteses2 (1).pptx
Aula6-TestesdeHipoteses2 (1).pptxDealthCraft
 
Fundamentos da bioestatística
Fundamentos da bioestatísticaFundamentos da bioestatística
Fundamentos da bioestatísticaJuliano van Melis
 
AMD - Aula n.º 4 - Anova e Kruskal Wallis.pptx
AMD - Aula n.º 4 - Anova e Kruskal Wallis.pptxAMD - Aula n.º 4 - Anova e Kruskal Wallis.pptx
AMD - Aula n.º 4 - Anova e Kruskal Wallis.pptxNunoSilva599593
 
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).ppt
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).pptHEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).ppt
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).pptElizeuNetto2
 
estatística é uma disciplina ampla e fundamental
estatística é uma disciplina ampla e fundamentalestatística é uma disciplina ampla e fundamental
estatística é uma disciplina ampla e fundamentalssuser98ac96
 
AMD - Aula n.º 5 - binominal e qui-quadrado.pptx
AMD - Aula n.º 5 - binominal e qui-quadrado.pptxAMD - Aula n.º 5 - binominal e qui-quadrado.pptx
AMD - Aula n.º 5 - binominal e qui-quadrado.pptxNunoSilva599593
 
Hipóteses e Estimativa do tamanho da amostra (aula 6)
Hipóteses e Estimativa do tamanho da amostra (aula 6)Hipóteses e Estimativa do tamanho da amostra (aula 6)
Hipóteses e Estimativa do tamanho da amostra (aula 6)Sandra Lago Moraes
 
Estatistica inferencial
Estatistica inferencial Estatistica inferencial
Estatistica inferencial Caio da Silva
 
AMD - Aula n.º 3 - duas amostras emparelhadas.pptx
AMD - Aula n.º 3 - duas amostras emparelhadas.pptxAMD - Aula n.º 3 - duas amostras emparelhadas.pptx
AMD - Aula n.º 3 - duas amostras emparelhadas.pptxNunoSilva599593
 
Probabilidade - Prof.Dr. Nilo Sampaio
Probabilidade - Prof.Dr. Nilo SampaioProbabilidade - Prof.Dr. Nilo Sampaio
Probabilidade - Prof.Dr. Nilo SampaioNilo Sampaio
 
Outros testes não-paramétricos
Outros testes não-paramétricosOutros testes não-paramétricos
Outros testes não-paramétricosguest422f98
 

Semelhante a Teste de hipótese e estatística não paramétrica (20)

ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdfESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
 
Aula19
Aula19Aula19
Aula19
 
AMD - Aula n.º 2 - testes amostras independentes.pptx
AMD - Aula n.º 2 - testes amostras independentes.pptxAMD - Aula n.º 2 - testes amostras independentes.pptx
AMD - Aula n.º 2 - testes amostras independentes.pptx
 
Princípios de Estatística Inferencial - II
Princípios de Estatística Inferencial - IIPrincípios de Estatística Inferencial - II
Princípios de Estatística Inferencial - II
 
Curso #H4A - Módulo 5
Curso #H4A - Módulo 5Curso #H4A - Módulo 5
Curso #H4A - Módulo 5
 
Aula 5 - Educação física
Aula 5 - Educação físicaAula 5 - Educação física
Aula 5 - Educação física
 
Aula6-TestesdeHipoteses2 (1).pptx
Aula6-TestesdeHipoteses2 (1).pptxAula6-TestesdeHipoteses2 (1).pptx
Aula6-TestesdeHipoteses2 (1).pptx
 
Fundamentos da bioestatística
Fundamentos da bioestatísticaFundamentos da bioestatística
Fundamentos da bioestatística
 
AMD - Aula n.º 4 - Anova e Kruskal Wallis.pptx
AMD - Aula n.º 4 - Anova e Kruskal Wallis.pptxAMD - Aula n.º 4 - Anova e Kruskal Wallis.pptx
AMD - Aula n.º 4 - Anova e Kruskal Wallis.pptx
 
estatisitica basica para saude aula 03
estatisitica basica para saude aula 03 estatisitica basica para saude aula 03
estatisitica basica para saude aula 03
 
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).ppt
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).pptHEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).ppt
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).ppt
 
estatística é uma disciplina ampla e fundamental
estatística é uma disciplina ampla e fundamentalestatística é uma disciplina ampla e fundamental
estatística é uma disciplina ampla e fundamental
 
Teste Friedman
Teste FriedmanTeste Friedman
Teste Friedman
 
AMD - Aula n.º 5 - binominal e qui-quadrado.pptx
AMD - Aula n.º 5 - binominal e qui-quadrado.pptxAMD - Aula n.º 5 - binominal e qui-quadrado.pptx
AMD - Aula n.º 5 - binominal e qui-quadrado.pptx
 
Hipóteses e Estimativa do tamanho da amostra (aula 6)
Hipóteses e Estimativa do tamanho da amostra (aula 6)Hipóteses e Estimativa do tamanho da amostra (aula 6)
Hipóteses e Estimativa do tamanho da amostra (aula 6)
 
Estatistica inferencial
Estatistica inferencial Estatistica inferencial
Estatistica inferencial
 
AMD - Aula n.º 3 - duas amostras emparelhadas.pptx
AMD - Aula n.º 3 - duas amostras emparelhadas.pptxAMD - Aula n.º 3 - duas amostras emparelhadas.pptx
AMD - Aula n.º 3 - duas amostras emparelhadas.pptx
 
Probabilidade - Prof.Dr. Nilo Sampaio
Probabilidade - Prof.Dr. Nilo SampaioProbabilidade - Prof.Dr. Nilo Sampaio
Probabilidade - Prof.Dr. Nilo Sampaio
 
Análise de dados com SciLab
Análise de dados com SciLabAnálise de dados com SciLab
Análise de dados com SciLab
 
Outros testes não-paramétricos
Outros testes não-paramétricosOutros testes não-paramétricos
Outros testes não-paramétricos
 

Teste de hipótese e estatística não paramétrica

  • 1. TESTE DE HIPÓTES Trata-se de uma técnica para se fazer a inferência estatística sobre uma população a partir de uma amostra
  • 2. TEORIA POPPERIANA • NÃO SE PODE PROVAR NADA, APENAS “DESPROVAR”. • SÓ APRENDEMOS QUANDO ERRAMOS. • É MAIS FACIL REFUTAR DO QUE PROVAR ALGUMA ASSERTIVA. • OS ESTATÍSTICOS NÃO PERGUNTAM QUAL É A PROBABILIDADE DE ESTAREM CERTOS, MAS A PROBABILIDADE DE ESTAREM ERRADOS. Para fazerem isso estabelecem um hipótese nula.
  • 3. PRINCIPAIS CONCEITOS HIPÓTESE ESTATÍSTICA Trata-se de uma suposição quanto ao valor de um parâmetro populacional, ou quanto à natureza da distribuição de probabilidade de uma variável populacional. TESTE DE HIPÓTESE É uma regra de decisão para aceitar ou rejeitar uma hipótese estatística com base nos elementos amostrais
  • 4. PRINCIPAIS CONCEITOS TIPOS DE HIPÓTESES Designa-se por Ho, chamada hipótese nula, a hipótese estatística a ser testada, e por H1, a hipótese alternativa. A HIPÓTESE NULA É UMA ASSERTIVA DE COMO O MUNDO DEVERIA SER, SE NOSSA SUPOSIÇÃO ESTIVESSE ERRADA. A hipótese nula expressa uma igualdade, enquanto a hipótese alternativa é dada por uma desigualdade. Ex: Ho - µ = 1,65 m H1 - µ 1,65 m≠
  • 5. TIPOS DE ERRO DE HIPÓTESE EXISTEM DOIS TIPOS DE ERRO DE HIPÓTESE. Erro tipo 1 - rejeição de uma hipótese verdadeira; Erro tipo 2 – aceitação de uma hipótese falsa. As probabilidades desses dois tipos de erros são designadas α e β. A probabilidade α do erro tipo I é denominada “nível de significância” do teste.
  • 6. LÓGICA DO TESTE DE SIGNIFICÂNCIA • ATRIBUEM-SE BAIXOS VALORES PARA α, GERALMENTE 1-10%; • FORMULA-SE Ho COM A PRETENSÃO DE REJEITÁ- LA, DAÍ O NOME DE HIPÓTESE NULA; • SE O TESTE INDICAR A REJEIÇÃO DE Ho TEM-SE UM INDICADOR MAIS SEGURO DA DECISÃO; • CASO O TESTE INDIQUE A ACEITAÇÃO DE Ho, DIZ-SE QUE, COM O NÍVEL DE SIGNIFICÂNCIA α, NÃO SE PODE REJEITAR Ho.
  • 7. ESTATÍSTICA NÃO PARAMÉTRICA São extremamente interessantes para análises de dados qualitativos.
  • 8. • As técnicas de estatística não paramétrica são particularmente adaptáveis aos dados das ciências do comportamento. • A aplicação dessas técnicas não exige suposições quanto à distribuição da população da qual se tenha retirado amostras para análises. • Podem ser aplicadas a dados que se disponham simplesmente em ordem, ou mesmo para estudo de variáveis nominais.Contrariamente à estatística paramétrica, onde as variáveis são, na maioria das vezes, intervalares. • Exigem poucos cálculos e são aplicáveis para análise de pequenas amostras. • Independe dos parâmetros populacionais e amostrais (média, variância, desvio padrão).
  • 9. TIPOS DE TESTE • Qui-Quadrado • Teste dos sinais • Teste de Wilcoxon • Teste de Mann-Whitney • Teste da Mediana • Teste de Kruskal-Wallis
  • 10. QUI-QUADRADO (χ2 ) Testes de Adequação de amostras e Associação entre variáveis
  • 11. QUI-QUADRADO (χ2 ) • Teste mais popular • Denominado teste de adequação ou ajustamento. Usos 1. Adequação ou Aderência dos dados: freqüência observada adequada a uma freqüência esperada); 2. Independência ou Associação entre duas variáveis Comportamento de uma variável depende de outra. χ2 = ∑= −k i Fei FeiFoi 1 2 )(
  • 12. QUI-QUADRADO (χ2 ) Restrições ao uso: Se o número de classes é k=2, a freqüência esperada mínima deve ser ≥5; Se k >2, o teste não deve ser usado se mais de 20% das freqüências esperadas forem abaixo de 5 ou se qualquer uma delas for inferior a 1.
  • 13. ADEQUAÇÃO DOS DADOS Exemplos: 1. avaliar se uma moeda ou um dado é honesto; 2. número de livros emprestados em um biblioteca durante os dias de uma determinada semana; 3. Tipo de sangue para uma determinada raça
  • 14. ADEQUAÇÃO DOS DADOS PROCEDIMENTO 1. Enunciar as hipóteses (Ho e H1); 2. Fixar α; escolher a variável χ2 com ϕ = (k-1). k é o número de eventos; 3. Com auxílio da tabela de χ2 , determinar RA (região de aceitação de Ho) e RC (região de rejeição de Ho) χ2
  • 15. ADEQUAÇÃO DOS DADOS EXEMPLO Em 100 lances de moeda, observaram-se 65 coroas e 35 caras. Testar se a moeda é honesta. 1° Ho- a moeda é honesta; H1- a moeda não é honesta; 2° α = 5%; escolhe-se um χ2 , pois k = 2 e ϕ 2-1=1; 3° Determinação de RA e RC; χ2 = χ2 = (35-50)2 /50 + (65-50)2 /50=9 χ2 tab= 3,84, logo rejeita-se Ho. A moeda não é honesta. Eventos Cara Coroa Freq. observada 35 65 Freq. Esperada 50 50 ∑= −k i Fei FeiFoi 1 2 )(
  • 16. ADEQUAÇÃO DOS DADOS • 4 ocorrência de 4 tipos de sangue em uma dada raça K=4, ϕ=3 e α = 2,5% χ2 =(230-180)2 /180 + (470-480)2 /480 + (170-200)2 /200 + (130-140)2 /140 χ2 calc =16.04 χ2 tab = 9,25 Logo rejeita-se Ho com 2,5% de probabilidade de erro. Classes A B AB O Freq. Observada 230 470 170 130 Freq. esperada 180 480 200 140
  • 17. ADEQUAÇÃO DOS DADOS • Número de acidentes na rodovia, de acordo com o dia da semana Freqüência esperada – 1/7 x 175 = 25 χ2 calc =12,0 χ2 tab=12,6 Logo aceita-se Ho com 95% de probabilidade de acerto. Classes Seg Ter Qua Qui Sex Sab Dom Número de acidentes 26 21 22 17 20 36 33 Classes Seg Ter Qua Qui Sex Sab Dom Acidentes Observados 26 21 22 17 20 36 33 Acidentes esperados 25 25 25 25 25 25 25
  • 18. INDEPENDÊNCIA OU ASSOCIAÇÃO ENTRE DUAS VARIÁVEIS EXEMPLOS • Dependência entre sabor de pasta de dente e o bairro; • Notas dos alunos e nível salarial; • Efeito da vacinação em animais;
  • 19. INDEPENDÊNCIA OU ASSOCIAÇÃO ENTRE DUAS VARIÁVEIS A representação das freqüências observadas é dada por uma tabela de dupla entrada ou tabela de contingência. PROCEDIMENTO 1. Ho: as variáveis são independentes; H1: as variáveis são dependentes; 2. Fixar α. Escolher a variável qui-quadrado com ϕ = (L-1) x (C- 1), onde L = número de linhas da tabela de contingência e C+ número de colunas. 3. Com auxílio da tabela calculam-se RA e RC
  • 20. INDEPENDÊNCIA OU ASSOCIAÇÃO EXEMPLO Dependência entre bairro e escolha do sabor de pasta de dente Dados: Ho: a preferencia pelo sabor independe do bairro; H1: a preferência pelo sabor depende do bairro α = 5% χ2 tab = ϕ= (4-1) x (3-1) = 6 graus de liberdade Freqüência esperada = (soma da linha i) x (soma da coluna J)/(total de observações) χ2 = Sabor Bairros ΣA B C Limão 70 44 86 200 Chocolate 50 30 45 125 Hortelã 10 6 34 50 Menta 20 20 85 125 Σ 150 100 250 500 ∑∑ == −C j L i Feij FeijFoij 1 2 1 )(
  • 21. INDEPENDÊNCIA OU ASSOCIAÇÃO Tabela de freqüências esperadas Fe11 = 200 x 150/500 = 60 Fe12 = 200 x 100/500 = 40 Fe13 = 200 x 250/500 = 100 Fe21 = 125 x 150/500 = 37.5 Fe22 = 125 x 100/500 = 25 Fe23 = 125 x 250/500 = 62.5 Fe31 = 50 x 150/500 = 15 Fe32 = 50 x 100/500 = 10 Fe33 = 50 x 250/500 = 25 χ2 cal=37.88 Fe41 = 125 x 150/500 = 37.5 χ2 tab=12.6 Fe42 = 125 x 100/500 = 25 Logo rejeita-se Ho Fe43 = 125 x 250/500 = 62,5 SABOR BAIRRO A B C (1)Limão 60 40 100 (2)Chocolate 37.5 25 62.5 (3)Hortelã 15 10 25 (4)Menta 37.5 25 62.5
  • 22. TESTE DOS SINAIS Análise de dados emparelhados (O mesmo indivíduo é submetido a duas medidas)
  • 23. TESTE DOS SINAIS • É utilizado na análise de dados emparelhados. Situações em que o pesquisador deseja determinar se duas condições são diferentes. • A variável pode ser intervalar ou ordinal. • O nome do teste dos sinais se deve ao fato de se utilizar sinais + e – em lugar do dados numéricos. • A lógica do teste é que as condições podem ser consideradas iguais quando as quantidades de + e _ forem aproximadamente iguais. Isto é, a proporção de + equivale 50%, ou seja: p=0,5.
  • 24. TESTE DOS SINAIS PROCEDIMENTO 1. Ho: não há diferença entre os grupos, ou seja: p = 0,5; H1: há diferença, ou seja: uma das alternativas a) p ≠ 0,5 -Distribuição “z “bicaudal. b) p < 0,5 – Distribuição “z” unicaudal a esquerda. c) p > 0,5 – Distribuição “z” unicaudal a direita. 2. Fixar α. Escolher a distribuição N(0,1) se n>25 ou Binomial se n ≤25. 3. Com auxílio da tabela, determinar-se RA e RC (para n > 25), caso n <25 utiliza-se distribuição binomial. 4. Cálculo do valor da variável Z
  • 25. TESTE DOS SINAIS Exemplo: Sessenta alunos matricularam-se num curso de inglês. Na primeira aula aplica- se um teste que mede o conhecimento da língua. Após seis meses, aplica-se um segundo teste. Os resultados mostram que 35 alunos apresentaram melhora (35 +), 20 se conduziram melhor no primeiro teste (20 -) e 5 não apresentaram modificações (5 “0”). Ho: O curso não alterou (p=0,50) H1: O curso melhorou o conhecimento de inglês (p > 0,5). α= 5% (variável N(0,1). Cálculo da variável “Z”. Zcal = , onde: y - número de sinais positivos (35); n – tamanho da amostra descontado os empates (60-5=55); p – 0,5 q – 1-p = 0,5 Zcal = = 2,02 Ztab= 1.64, logo rejeita Ho. ... . qpn pny − )5,0()5,0(55 5,05535 xx x−
  • 26. Teste de Wilcoxon • É uma extensão do teste de sinais. É mais interessante pois leva em consideração a magnitude da diferença para cada par. • Exemplo: um processo de emagrecimento em teste. Cada par no caso é o mesmo indivíduo com peso antes e depois do processo.
  • 27. Teste Mann-Whitney • É usado para testar se das amostras independentes foram retiradas de populações com média iguais. • Trata-se de uma interessante alternativa ao teste paramétrico para igualdade de médias, pois o teste não exige considerações sobre a distribuição populacional. Aplicado à variáveis intervalares e ordinais. • Exemplo: a média de vendas de dois shoppings são diferentes?.
  • 28. Teste da mediana • Trata-se de uma alternativa ao teste de Mann-Whitney. Testa as hipótese se dois grupos independentes possuem mesma mediana. Dados ordinais e intervalares.
  • 29. Teste Kruskal-Wallis • Trata-se de um teste para decidir se K amostras (K>2) independentes provêm de populações co médias iguais. • Exemplo: testar, no nível de 5% de probabilidade, a hipótese de igualdade das médias para os três grupos de alunos que foram submetidos a esquemas diferentes de aulas. Notas para uma mesma prova. Aulas com recursos audiovisuais, aulas expositivas e aulas ensino programado.