Conjuntos, Números Reales,
Desigualdades, Valor Absoluto,
Desigualdades Con Valor Absoluto
Republica Bolivariana De Venezuela
Ministerio Del Poder Popular Para La Educación Universitaria
Universidad Politécnica Territorial Andrés Eloy Blanco
Barquisimeto Edo – lara
Ramos Yoselin
Sección: AD-0103
PNF en administración
Definición De Conjuntos
Un conjunto o colección lo forman unos elementos de la misma naturaleza, es decir,
elementos diferenciados entre sí pero que poseen en común ciertas propiedades o
características, y que pueden tener entre ellos, o con los elementos de otros conjuntos,
ciertas relaciones.
Un conjunto puede tener un número finito o infinito de elementos, en matemáticas es
común denotar a los elementos mediante letras minúsculas y a los conjuntos por letras
mayúsculas, así por ejemplo:
C = {a, b, c, d, e, f, g, h}
Diversos Conjuntos Numéricos
En Matemáticas empleamos diversos conjuntos de números, los más elementales son:
N = {0, 1, 2, 3, 4, 5, ... } . El conjunto de los números naturales, o números que sirven para contar.
Z = {..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ... } . El conjunto de los números enteros, o números que sirven para designar
cantidades enteras (positivas o negativas).
Q = {...., -7/2,..., -7/3, ..., -5/4,... -5/1, ...0, ..., 2/133, ... 4/7 ... } . El conjunto de los números racionales, o números que
pueden ser expresados como un cociente entre dos enteros, fracción, p/q. Observen que algunos números con infinitos
decimales tal como el 2,33333... pertenece a este conjunto, puesto que: 2,33333... = 7/3.
No obstante, en Q no se hallan algunos números como 1,4142136... (raíz cuadrada de 2) , o el 3,141592... (el número p ) que
poseen infinitos decimales pero no pueden expresarse en la forma p/q. A estos números se les llama "números irracionales".
R = Q U {"números irracionales"} . El conjunto de los números reales, formado por la unión de Q y de todos los números
irracionales. Este conjunto suele denominarse recta real , pues los puntos de una recta pueden ponerse en correspondencia
con los infinitos números de R.
Números Reales
Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en
números naturales, enteros, racionales e irracionales.
En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y podemos
representarlo en la recta real.
Los números reales son todos los números que encontramos más frecuentemente dado que los números complejos no
se encuentran de manera accidental, sino que tienen que buscarse expresamente.
Los números reales se representan mediante la letra R
Clasificación de los números reales
Números Naturales
Los números naturales es el primer conjunto de números que aprendemos de pequeños. Este conjunto no tiene en
cuenta el número cero (0) excepto que se especifique lo contrario (cero neutral).
Números enteros
Los números enteros son todos los números naturales e incluyen el cero (0) y todos los números negativos.
…,-3,-2,-4, -1 0,1,2,3…
Desigualdades
Desigualdad matemática es una proposición de relación de orden existente entre dos expresiones algebraicas
conectadas a través de los signos: desigual que ≠, mayor que >, menor que <, menor o igual que ≤, así como mayor o
igual que ≥, resultando ambas expresiones de valores distintos.
Por tanto, la relación de desigualdad establecida en una expresión de esta índole, se emplea para denotar que dos
objetos matemáticos expresan valores desiguales.
Algo a notar en las expresiones de desigualdad matemática es que, aquellas que emplean:
mayor que >
Menor que <
Menor o igual que ≤
Mayor o igual que ≥
Estas son desigualdades que nos revelan en qué sentido la una desigualdad no es igual.
Ahora bien, los casos de aquellas desigualdades formuladas como:
Menor que <
Mayor que >
Son desigualdades conocidas como desigualdades “estrictas”.
En tanto, que los casos de desigualdades formuladas como:
Menor o igual que ≤
Mayor o igual que ≥
Valor Absoluto
El valor absoluto de un número entero es el número natural que resulta al suprimir su signo.
El valor absoluto lo escribiremos entre barras verticales.
|−5| = 5
|5| = 5
Valor absoluto de un número real
Valor absoluto de un número real a, se escribe |a|, es el mismo número a cuando es positivo o cero, y opuesto de a, si
a es negativo.
Explicaciones y ejemplos de valor absoluto - 1
|5| = 5 |-5 |= 5 |0| = 0
|x| = 2 x = −2 x = 2
|x|< 2 − 2< x < 2 x Explicaciones y ejemplos de valor absoluto - 2 (−2, 2 )
|x|> 2 x< −2 ó x>2 (−∞ , −2) ∪ (2, +∞)
|x −2 |< 5 − 5 < x − 2 < 5
− 5 + 2 < x < 5 + 2 − 3 < x < 7
Propiedades Del Valor Absoluto
* Los números opuestos tienen igual valor absoluto.
|a| = |−a|
|5| = |−5| = 5
* El valor absoluto de un producto es igual al producto de los valores absolutos de los factores.
|a · b| = |a| ·|b|
|5 · (−2)| = |5| · |(−2)| |− 10| = |5| · |2| 10 = 10
* El valor absoluto de una suma es menor o igual que la suma de los valores absolutos de los sumandos.
|a + b| ≤ |a| + |b|
|5 + (−2)| ≤ |5| + |(−2)| |3| ≤ |5| + |2| 3 ≤ 7
Desigualdades Con Valor Absoluto
Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro.
Desigualdades de valor absoluto (<):
La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4.
Así, x > -4 Y x < 4. El conjunto solución es .
Cuando se resuelven desiguales de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
La solución es la intersección de las soluciones de estos dos casos.
En otras palabras, para cualesquiera numéros reales a y b , si | a | < b , entonces a < b Y a > - b .
Desigualdades Con Valor Absoluto
Ejemplo 1 :
Resuelva y grafique.
| x – 7| < 3
Para resolver este tipo de desigualdad, necesitamos descomponerla en una desigualdad compuesta .
x – 7 < 3 Y x – 7 > –3
–3 < x – 7 < 3
Sume 7 en cada expresión.
-3 + 7 < x - 7 + 7 < 3 + 7
4 < x <10
La gráfica se vería así:
Desigualdades Con Valor Absoluto
Desigualdades de valor absoluto (>):
La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4.
Así, x < -4 O x > 4. El conjunto solución es
Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
En otras palabras, para cualesquiera números reales a y b , si | a | > b , entonces a > b O a < - b .