O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Carregando em…3
×

Confira estes a seguir

33 de 48 Anúncio

Baixar para ler offline

Machine Learning Infrastructure: Experimentation & Production
● Option 1:
○ Favor experimentation and only invest in productionizing
once something shows results
○ E.g. Have ML researchers use R and then ask Engineers
to implement things in production when they work
● Option 2:
○ Favor production and have “researchers” struggle to figure
out how to run experiments
○ E.g. Implement highly optimized C++ code and have ML
researchers experiment only through data available in logs/DB

Machine Learning Infrastructure: Experimentation & Production
● Option 1:
○ Favor experimentation and only invest in productionizing
once something shows results
○ E.g. Have ML researchers use R and then ask Engineers
to implement things in production when they work
● Option 2:
○ Favor production and have “researchers” struggle to figure
out how to run experiments
○ E.g. Implement highly optimized C++ code and have ML
researchers experiment only through data available in logs/DB

Anúncio
Anúncio

Mais Conteúdo rRelacionado

Semelhante a 10 more lessons learned from building Machine Learning systems - MLConf (20)

Mais de Xavier Amatriain (20)

Anúncio

Mais recentes (20)

×