O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.

IB Chemistry Order Reaction, Rate Law and Half life

1.488 visualizações

Publicada em

IB Chemistry Order Reaction, Rate Law and Half life

Publicada em: Educação
  • Seja o primeiro a comentar

IB Chemistry Order Reaction, Rate Law and Half life

  1. 1. http://lawrencekok.blogspot.com Prepared by Lawrence Kok Tutorial on Rate Law, Rate Expression, Order of Reaction, Initial Rate and Half Life .
  2. 2. Reaction Rates / Kinetics • Chemical rxn, reactant consumed, product formed • Amt reactant decrease ↓ , Amt product increase ↑ • Rate follow stoichiometric principles A → B • For every ONE A breakdown = ONE B will form • Rate decomposition A = Rate formation of B dt Bd dt Ad ][][    2NO2 → N2O4 • Two mole NO2 decompose = One mole N2O4 form • NO2 used up is twice as fast as N2O4 produced dt ONd dt NOd ][1 2 ][1 422    dt HId dt Id dt Hd 2 ][][1][1 22      H2 + I2 → 2HI • One mole H2 decompose = TWO mole HI form • Rate H2 and I2 decomposition the same but only half the rate HI formation Amt/Conc Amt/Conc Time Time Reactants Product (Reactants) • X decrease/consume ↓ over time (Products) • Y increase/form ↑over time Rate of Decrease of X • Decrease ↓ Conc X /time • Decrease ↓ Vol X /Time • Decrease ↓ Abs X /Time Rate of Increase of Y • Increase ↑ Conc Y /time • Increase ↑ Vol Y /Time • Increase ↑ Abs Y /Time Amt/Conc/Vol/Abs X Time Amt/Conc/Vol/Abs Y X Y Time Gradient= rate change at time,t Gradient= rate change at time,t Instantaneous rate time, t1 Initial rate, t = 0 Initial rate, t = 0 Instantaneous rate time, t1 X → Y Click here notes
  3. 3. Graphical Representation of Order :ZERO, FIRST and SECOND order ZERO ORDER FIRST ORDER SECOND ORDER Rate – 2nd order respect to [A] Conc x2 – Rate x 4 Unit for k Rate = k[A]2 Rate = kA2 k = M-1s-1 Rate Conc reactant Rate Conc reactant Conc reactant Conc Conc Conc Time Time Time Time Conc reactant Rate Time ln At Time 1/At ktAA ot  ][][ Rate = k[A]0 Rate independent of [A] Unit for k Rate = k[A]0 Rate = k k = Ms-1 Rate vs Conc – Constant Conc vs Time – Linear Rate = k[A]1 Rate - 1st order respect to [A] Unit for k Rate = k[A]1 Rate = kA k = s-1 Rate vs Conc - proportional Conc vs Time ktAA eAA ot kt ot    ]ln[]ln[ ][][ [A]t [A]o kt AA ot  ][ 1 ][ 1 ln Ao 1/Ao Conc at time t Conc at time t
  4. 4. Order of rxn found using THREE mtds Initial Rate mtd (Multiple Single Runs) Conc Vs Time Mtd (Half Life) Conc Vs Time Mtd (Whole Curve/Tangent) Multiple Single Runs Vary/Keep certain conc fixed Wasteful as multiple runs needed Monitor decrease in conc reactant Using Half Life to determine order Monitor decrease conc of single reactant Using gradient/ tangent at diff conc Conc x2 – rate x2 - 1st order Conc x2 – rate x4 – 2nd order Conc x2 – rate 0 – zero order Convert Conc Vs Time to Rate vs Conc Rate Vs Conc – Linear – 1st Order Initial Rate taken, time 0 Draw tangent at time 0 Half Life directly prop to Conc Half Life inversely prop to Conc Expt Conc A Conc B Initial rate 1 0.01 0.02 2 2 0.01 0.04 4 3 0.02 0.02 4 Conc Time Expt 2 Expt 1 Conc reactant Time Zero order Conc reactant Time Half Life constant 1st order 2nd order Conc reactant Time Gradient at diff conc Conc Rate
  5. 5. Rxn : A + B → AB Find order A (fix conc B ) Let Rate = k[A]x[B] y Rate = k[A]2 [B]1 2nd order respect to A 1st order respect to B Using Initial rate for order of rxn Find order B (fix conc A) Let Rate = k[A]x[B] y 2 806.0log652.0lg 806.0652.0 0713.0 0575.0 1026.1 1021.8 2. 1. 2. 1. 2 3                      x x Conc Conc Rate Rate x x x 1 649.0log652.0lg 649.0652.0 0333.0 0216.0 1026.1 1021.8 3. 1. 3. 1. 2 3                      y y Conc Conc Rate Rate y y y Expt Conc A Conc B Initial rate 1 0.0575 0.0216 8.21 x 10-3 2 0.0713 0.0216 1.26 x 10-2 3 0.0575 0.0333 1.26 x 10-2 Expt Conc F2 Conc CIO2 Initial rate 1 0.10 0.01 1.2 x 10-3 2 0.10 0.04 4.8 x 10-3 3 0.20 0.01 2.4 x 10-3 Rxn : F2 + 2CIO2 → 2FCIO2 Find order CIO2 (fix conc F2 ) Let Rate = k[F2]x [CIO2] y Find order F2 (fix conc CIO2) Let Rate = k[F2]x [CIO2] y 1st order respect to CIO2 1st order respect to F2 Rate = k [CIO2]1 [F2]1 1 44 01.0 04.0 102.1 108.4 1. 2. 1. 2. 3 3                     y Conc Conc Rate Rate y y y 1 22 10.0 20.0 102.1 104.2 1. 3. 1. 3. 3 3                     x Conc Conc Rate Rate x x x To calculate k Expt 1 : Ini rate = 1.2 x 10-3, [F2] = 0.10M, [CIO2] = 0.01M Rate = k[F2]1[CIO2]1 1.2 x 10-3 = k[0.10]1[0.01]1, k = 1.2 M-1s-1 To calculate k Expt 1 : Ini rate = 8.21 x 10-3, [A] = 0.0575, [B] = 0.0216 Rate = k[A]2[B]1 8.21 x 10-3 = k[0.0575]2[0.0216]1, k = 115
  6. 6. Rxn : 2CIO2 + 2OH- → CIO3 - + CIO2 - + H2O Find order CIO2 (fix conc OH- ) Let Rate = k[CIO2]x[OH- ]y Expt 1 : Ini rate = 8 x 10-3 , [CIO2] = 0.025M, [OH- ] = 0.046M Rate = k[CIO2]2[OH- ] 1 8 x 10-3 = k[0.025]1[0.046]1, k = 278.3M-1s-1 Find order OH- (fix conc CIO2 ) Let Rate = k[CIO2]x[OH- ]y 2nd order respect to CIO2 1st order respect to OH- Rate = k[CIO2]2[OH- ]1 Using Initial rate for order of rxn To calculate k 2 4.1log96.1lg 4.196.1 025.0 035.0 1000.8 1057.1 1. 2. 1. 2. 3 2                      x x Conc Conc Rate Rate x x x 1 22 046.0 092.0 1057.1 1014.3 2. 3. 2. 3. 2 2                     y Conc Conc Rate Rate y y y Expt Conc OH Conc CIO2 Initial rate 1 0.046 0.025 8 x 10-3 2 0.046 0.035 1.57 x 10-3 3 0.096 0.035 3.14 x 10-3 Rxn : Br2 + 2NO → 2NOBr Find order Br2 (fix conc NO ) Let Rate = k[Br2]x[NO]y Find order NO (fix conc Br2 ) Let Rate = k[Br2]x[NO]y Expt Conc Br2 Conc NO Initial rate 1 0.1 0.1 12 2 0.2 0.1 24 3 0.1 0.2 48 1 2 1 2 1 2.0 1.0 24 12 2. 1. 2. 1.                       x Conc Conc Rate Rate x x x 2 2 1 4 1 2.0 1.0 48 12 3. 1. 3. 1.                       y Conc Conc Rate Rate y y y 2nd order respect to NO1st order respect to Br2 Rate = k[Br2]1[NO]2 Expt 1 : Ini rate = 12Ms-1 , [Br2] = 0.1M, [NO] = 0.1M Rate = k[Br2]1[NO]2 12 = k[0.1]1[0.1]2 , k = 12,000 M-1min-1 To calculate k
  7. 7. Conc Vs Time / Conc Vs Rate for Order Rxn: 2A → B + C Plot Conc A vs Time for order, initial rate and rate constant, k Rxn: 2N205 → 4N02 + 02 Plot Rate vs Conc for order and rate constant, k Conc vs Time Mtd • Half Life A -constant = 80s • 1st order respect to [A] • Formula for 1st order half life Conc vs Rate Mtd • Straight Line – 1st order respect to [N205] • Rate = k[N205 ], k = gradient = 7.86 x 10-6 s-1 Time 0 40 80 120 160 200 240 Conc 0.8 0.58 0.40 0.28 0.20 0.14 0.10 Conc Time 80s 80s 80s 13 2/1 1066.8 80 693.0 693.0    sk k t Conc Rate /10-5 0.94 1.26 1.40 1.52 1.79 1.93 2.00 2.10 2.21 2.26 Conc Rate rate constant Rate Law / Rate Expression Rxn: aA + bB → cC + dD • Stoichiometry eqn : Show mole ratio of reactant/product • Rate eqn : Eqn relate rate with conc of reactant : How conc reactant affect rate Rxn eqn = k[A]x [B]y x = order respect to [A] y = order respect to [B] (x +y) = overall order k = rate constant Order must be determined experimentally , NOT derived from stoichiometry coefficients Gradient = k
  8. 8. Using Initial rate and Half Life for order Hydrolysis of ester by OH- : Ester + OH- → X + Y Rxn done using two diff OH- conc. Run 1 – [OH- ] – 0.20M Run 2 – [OH-] – 0.40M Plot Conc ester vs Time. Find order and initial rate Find order for OH- (fix conc ester) Let Rate = k[OH-]x [ester] y Find order for ester (Using Half Life ) Using expt 2 : Conc ester vs time Half Life Ester t1/2 = 12 m(constant) 1st order respect to ester Rate = k[OH-]1 [ester]1 For EXPT 2 : • Ini rate = 8.00, [OH-]= 0.4M, [ester] = 100M • Rate = k[OH-]1 [ester]1 • 8.00 = k[0.4]1[100]1 • k = 0.2M-1min-1 Half life : 100 → 50→ 25 (12 min) • Ini Rate expt 1 – Gradient time 0 = 4.00 • Ini Rate expt 2 – Gradient time 0 = 8.00 1st order respect to OH - Conc ester Time Expt 2- [OH] = 0.40M Expt 1 - [OH] = 0.20M Compare Expt 1 and 2 1 2 1 2 1 40.0 20.0 00.8 00.4 2. 1. 2. 1.                       x Conc Conc Rate Rate x x x Conc ester Time Expt 1 - [OH] = 0.20M Expt 2- [OH] = 0.40M Gradient, rate = 4.00 Gradient, rate = 8.00 12 m 12 m
  9. 9. RBr + OH- → ROH + Br- Rxn done using TWO diff conc OH- Expt 1 – [OH- ] – 0.10M Run 2 – [OH- ] – 0.15M Plot Conc RBr vs time. Find order and initial rate Determine order for OH- (fix conc RBr) Let Rate = k[OH-]x [RBr] y Find order RBr (using half life) Using expt 2 : Conc vs time Half Life RBr t1/2 = 78 m Rate = k[OH-]1 [RBr]1 • For expt 1 Initial rate = 5.25, [OH-] = 0.10M, [RBr] = 0.01M • Rate = k[OH-]1 [RBr]1 • 5.25 = k[0.10]1[0.01]1 • k = 5250 M-1min-1 Half life : 0.01 → 0.005 → 0.0025 = 78 m Ini Rate expt 1 – Gradient time 0 = 5.25 Ini Rate expt 2 – Gradient time 0 = 8.00 1st order with respect to OH - Rate = k[OH-]1 [RBr]1 Using Initial rate and Half Life for order 1 65.065.0 15.0 10.0 00.8 25.5 2. 1. 2. 1.                 x Conc Conc Rate Rate x x x Expt 1 Expt 2 Time/m [RBr]/M in [OH] = 0.10 [RBr]/M in [OH] = 0.15 0 0.0100 0.0100 40 0.0079 0.0070 80 0.0062 0.0049 120 0.0049 0.0034 160 0.0038 0.0024 200 0.0030 0.0017 240 0.0024 0.0012 Expt 1 - [OH] = 0.20M Expt 2- [OH] = 0.15M Time Conc RBr 78s 78s Gradient, rate = 8.00 Gradient, rate = 5.25 1st order with respect to RBr
  10. 10. Ester + H2O → CH3CO2H + C2H5OH Rxn done using TWO diff HCI conc Expt 1 : [HCI] – 0.10M Expt 2 :[HCI] – 0.20M Plot Conc Estervs time. Find order and rate of rxn Find order HCI (fix conc Ester) Rate = k[HCI]1[Ester]1 1st order respect to HCI Using Initial rate and Half Life for order Expt 1 Expt 2 Time/m [Ester]/M in [HCI] = 0.1 [Ester]/M in [HCI] = 0.2 0 0.200 0.200 25 0.152 0.115 50 0.115 0.067 75 0.088 0.038 100 0.067 0.022 120 0.051 0.013 Time Conc Ester Gradient, rate = 1.9 Conc Ester Time Gradient, rate = 3.8 Find order Ester (use half life) Half life Ester -> 0.200 → 0.100 → 0.050 = 31 m 31 m 31 m 1st order respect to Ester 1 5.05.0 2.0 1.0 8.3 9.1 2. 1. 2. 1.                 x Conc Conc Rate Rate x x x Ini rate Expt 1 – Gradient time 0 = 1.90 Ini rate Expt 2 – Gradient time 0 = 3.80 Expt 1 Expt 2 Half life is 31 min (constant) Ini rate Expt 1 – Gradient time 0 = 1.90 Ini rate Expt 2 – Gradient time 0 = 3.80
  11. 11. C3H8 + 5O2 → 3CO2 + 4H2O2H2 + O2 → 2H2O Rate O2 decrease ↓ is 0.23Ms-1 , what is rate of H2O formation/increases ↑ Rate C3H8 decrease ↓ is 0.30Ms-1 , what is the rate of 02 decrease ↓ Rxn Rates / Kinetics 122 22 2 46.0)23.0(2 ][ 2 ][ 2 ][1 1 ][1 2 ][ 1 ][1 2 ][1 22     Ms dt Od dt OHd dt OHd dt Od dt OHd dt Od dt Hd 1832 832 283 5.1)30.0(5 ][ 5 ][ 1 ][1 5 ][1 3 ][1 5 ][1 1 ][1 2     Ms dt HCd dt Od dt HCd dt Od dt COd dt Od dt HCd Benzenediazonium chloride, unstable, decomposes to produce N2 gas shown below C6H5N2 +CI- + H2O → C6H5OH + N2 + HCI Vol of N2 was collected over time Vol of gas produced N2 in time t is proportional to amt C6H5N2 +CI- used up V∞ α [C6H5N2 +CI- ] at start (V∞ - Vt ) α [C6H5N2 +CI- ] remaining at time t Plot of (V∞ - Vt ) vs time = Plot of conc vs time Time/t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ∞ Vt = Vol N2 0 14 28 41 54 65 76 87 96 104 112 120 127 133 139 219 (V∞ – Vt)/ cm3 219 205 191 178 165 154 143 132 123 115 107 99 92 86 139 0 Find rate at diff conc Time Plot of (V∞ - Vt ) vs time = Conc vs time(V∞ - Vt ) Time Conc V∞ - Vt Rate/ Slope 0 219 16.5 4 165 12.1 7 132 10.0 14 80 6.22 21 47 3.84 (V∞ - Vt ) Rate Plot Rate vs Concslope = rate
  12. 12. Acknowledgements Thanks to source of pictures and video used in this presentation Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com

×