SlideShare uma empresa Scribd logo
1 de 9
Baixar para ler offline
UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL
PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014

INFORME DE TRABAJO FINAL
I.

DATOS INFORMATIVOS

Carrera:
Modulo:
Área Académica:
Línea de Investigación:
Ciclo Académico:
Paralelo:4° “B”
Alumnos participantes:

Docente:
II.

Ingeniería Electrónica y Comunicaciones
Calculo Vectorial
Matemáticas
Electrónica y Comunicaciones
Septiembre 2013- febrero 2014
Yumizaca José
Cushpa Paulo
Manobanda Wilson
Cálculo Vectorial - Ing. Freddy Robalino

Tema:

Gradiente. Definición y propiedades, teoremas, ejercicios.
1.
2.

III.

PP
YY

Objetivos
General:

Conocer la definición de gradiente sus propiedades y teoremas en un campo vectorial.
Específicos:




IV.

Analizar cada propiedad y teorema presentados en el siguiente informe.
Denotar una dirección en el espacio según la cual se apreciara una variación de
una determinada propiedad.

MARCO TEÓRICO

Gradiente
UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL
PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014

Las magnitudes como el peso y la temperatura consisten en un número, como 15 grados o
1.000 kilogramos. Los científicos llaman a estas magnitudes escalares. Las medidas como la
velocidad y la fuerza, por otra parte, son vectores, y tienen dos datos: una magnitud y una
dirección. Por ejemplo, el reporte del clima dice que el viento sopla del este a siete kilómetros
por hora. Los científicos indican a los vectores con flechas, ya que las flechas tienen una
longitud (que indica la magnitud o intensidad de la medida) y apuntan en una dirección
específica. El gradiente es un vector que resulta de una operación delta en una superficie. Si la
superficie es plana, el gradiente es cero, su forma no cambia. Si la superficie tiene una colina,
el gradiente apunta hacia arriba. Cuando la superficie tiene depresiones y valles, el gradiente
apunta hacia abajo. Cuanto más grande sean las elevaciones o depresiones, mayor será la
magnitud del gradiente.

Definición
El gradiente normalmente denota una dirección en el espacio según la cual se aprecia una
variación de una determinada propiedad o magnitud física.
En otros contextos se usa informalmente gradiente, para indicar la existencia de gradualidad o
variación gradual en determinado aspecto, no necesariamente relacionado con la distribución
física de una determinada magnitud o propiedad.

En esta imagen, el campo escalar se aprecia en blanco y negro, representando valores bajos o
altos respectivamente, y el gradiente correspondiente se aprecia por flechas azules.
El gradiente de un campo escalar, que sea diferenciable en el entorno de un punto, es un vector
definido como el único que permite hallar la derivada direccional en cualquier dirección como:

siendo un vector unitario y
la derivada direccional de en la dirección de , que
informa de la tasa de variación del campo escalar al desplazarnos según esta dirección:
UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL
PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014

Una forma equivalente de definir el gradiente es como el único vector que, multiplicado por
cualquier desplazamiento infinitesimal, da el diferencial del campo escalar:

Con la definición anterior, el gradiente está caracterizado de forma unívoca. El gradiente se
expresa alternativamente mediante el uso del operador nabla:

Interpretación del gradiente
De forma geométrica el gradiente es un vector que se encuentra normal (perpendicular) a la
curva de nivel en el punto que se está estudiando, llámese (x,y), (x,y,z), (tiempo, temperatura),
etcétera. Algunos ejemplos son:




Considere una habitación en la cual la temperatura se define a través de un campo
escalar, de tal manera que en cualquier punto
, la temperatura es
. Asumiremos que la temperatura no varía con respecto al tiempo. Siendo esto así, para
cada punto de la habitación, el gradiente en ese punto nos dará la dirección en la cual la
temperatura aumenta más rápido. La magnitud del gradiente nos dirá cuán rápido
aumenta la temperatura en esa dirección.
Considere una montaña en la cual su altura en el punto (x,y) se define como H(x, y). El
gradiente de H en ese punto estará en la dirección para la que hay un mayor grado de
inclinación. La magnitud del gradiente nos mostrará cuán empinada se encuentra la
pendiente.

Aproximación lineal de una función
El gradiente de una función f definida de Rn a R caracteriza la mejor aproximación lineal de la
función en un punto particular x0 en Rn. Se expresa así:

Donde

es el gradiente evaluado en x0.

Propiedades


El gradiente verifica que:







Es ortogonal a las superficies equiescalares, definidas por =cte.
Apunta en la dirección en que la derivada direccional es máxima.
Su módulo es igual a esta derivada direccional máxima.
Se anula en los puntos estacionarios (máximos, mínimos y puntos de silla)
El campo formado el gradiente en cada punto es siempre irrotacional, esto es,
UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL
PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014

Expresión en diferentes sistemas de coordenadas
A partir de su definición puede hallarse su expresión en diferentes sistemas de coordenadas.
En coordenadas cartesianas, su expresión es simplemente

En un sistema de coordenadas ortogonales, el gradiente requiere los factores de escala, mediante
la expresión

Para coordenadas cilíndricas (hρ = hz = 1,

y para coordenadas esféricas (hr = 1, hθ = r,

) resulta

)

Gradiente de un campo vectorial
En un espacio euclídeo, el concepto de gradiente también puede extenderse al caso de un campo
vectorial, siendo el gradiente de
desplazamiento

un tensor que da el diferencial del campo al realizar un

Este tensor podrá representarse por una matriz (3x3), que en coordenadas cartesianas está
formada por las tres derivadas parciales de las tres componentes del campo vectorial.
UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL
PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014

V.

Desarrollo de ejercicios
 Ejemplo 1
Calcular el gradiente de la función:
UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL
PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014

 Ejemplo 2
Calcular el gradiente de la función:
UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL
PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014
UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL
PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014

 Ejemplo 3
Calcular, por medio del gradiente, el plano tangente a la superficie:
2.X.Z² – 3.X.Y – 4.X = 7
En el punto P0(1, -1, 2)
solución:
Sabemos que el gradiente de una función de superficie es perpendicular a dicha superficie en
todo punto de ella. Por lo tanto, si consideramos un plano tangente a la superficie en el punto P0,
todo vector de dicho plano será perpendicular al gradiente de la función en el punto P0; de ahí
que podamos hacer:
V→⋅(∇→ϕ)=0
Siendo V un vector cualquiera del plano buscado. Tomando un punto genérico P, podemos
considerar el vector :
P0P−→−=(x−1)⋅iˆ+(y+1)⋅jˆ+(z−2)⋅kˆ
Por otro lado, el gradiente de la función considerada vale en el punto (1, -1, 2):
∂ϕ∂x=2⋅Z2−3⋅Y−4 ⇒ (∂ϕ∂x)P0=7
∂ϕ∂y=−3⋅X ⇒ (∂ϕ∂y)P0=−3
∂ϕ∂z=4⋅X⋅Z ⇒ (∂ϕ∂z)P0=8
De donde se tiene:
(∇→ϕ)P0=7⋅iˆ−3⋅jˆ+8⋅kˆ
Con lo que podemos poner
P0P−→−(∇→ϕ)P0=(X−1)⋅7+(Y+1)⋅(−3)+(Z−2)⋅8
Haciendo operaciones y simplificando nos queda:
7.X – 3.Y + 8.Z – 26 = 0
Que es la ecuación del plano pedido.
UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL
PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014

 Ejemplo 4
Calcular el vector unitario perpendicular al plano:
A.x + B.y + C.z
Por consideraciones del gradiente.
Solución:
Este problema podríamos resolverlo sin tener en cuenta las propiedades del gradiente de una
función y considerar sólo el vector director del plano, que sabemos que es perpendicular a él,
pero como sabemos que un plano es una superficie, vamos a determinar su gradiente:

Este resultado coincide con el valor del vector director del plano dado por los coeficientes de las
variables.
Según las propiedades del gradiente, sabemos que el vector obtenido es perpendicular al plano,
por lo tanto, multiplicando dicho vector por un escalar que valga igual que el inverso de su
módulo, tendremos un vector unitario perpendicular al plano:

VI.

Conclusiones:





VII.

El gradiente normalmente denota una dirección en el espacio según la cual
se aprecia una variación de una determinada propiedad o magnitud física.
Observamos como el vector gradiente de un punto genérico del espacio
indica la dirección en la cual la presión cambia más rápidamente.
Nótese que el vector gradiente será perpendicular a las líneas de contorno
(líneas "equiescalares") .
El gradiente se define como el campo vectorial cuyas funciones
coordenadas son las derivadas parciales del campo escalar, esto se basa en
que el gradiente permite calcular fácilmente las derivadas direccionales.
Definiendo en primer lugar la derivada direccional según un vector.

Referencias bibliográficas
 Calculo multivariable: STEWART JAMES 4 edición
 Calculo ll: LARSSON ROM
 Teoría de campos escalares y campos vectoriales: Miguel Ángel Pascual
Iglesias

Mais conteúdo relacionado

Mais procurados

DERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIORDERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIOREthel Sullcaray
 
Calculo de centroides
Calculo de centroidesCalculo de centroides
Calculo de centroidesAbraham Aj
 
VECTOR TANGENTE NORMAL Y BINORMAL
VECTOR TANGENTE NORMAL Y BINORMALVECTOR TANGENTE NORMAL Y BINORMAL
VECTOR TANGENTE NORMAL Y BINORMALMario Muruato
 
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILLSOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILLJuan Manuel Garcia Ayala
 
Estatica ejerciciosresueltos 25 de febrero
Estatica ejerciciosresueltos 25 de febreroEstatica ejerciciosresueltos 25 de febrero
Estatica ejerciciosresueltos 25 de febreroJosue Echenagucia
 
Derivadas direccionales williana
Derivadas direccionales willianaDerivadas direccionales williana
Derivadas direccionales willianaPSM san cristobal
 
ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011Carlos Farley Zamudio Melo
 
Trabajo ecuaciones
Trabajo ecuacionesTrabajo ecuaciones
Trabajo ecuacionesMiguel Doria
 
Problemas sobre vaciado de tanques
Problemas sobre vaciado de tanquesProblemas sobre vaciado de tanques
Problemas sobre vaciado de tanquesNedzon Pinto Catalan
 
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)Yerikson Huz
 
Ejercicios resueltos edo homogéneas
Ejercicios resueltos edo homogéneasEjercicios resueltos edo homogéneas
Ejercicios resueltos edo homogéneasYerikson Huz
 
Area en-coordenadas-polares3
Area en-coordenadas-polares3Area en-coordenadas-polares3
Area en-coordenadas-polares3joselucho2805
 
Integrales de superficie
Integrales de superficieIntegrales de superficie
Integrales de superficieNobu Dragon
 
Solucionario ecuaciones diferenciales
Solucionario ecuaciones diferencialesSolucionario ecuaciones diferenciales
Solucionario ecuaciones diferencialesDaniel Mg
 

Mais procurados (20)

DERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIORDERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIOR
 
Calculo de centroides
Calculo de centroidesCalculo de centroides
Calculo de centroides
 
Centroides integracion
Centroides integracionCentroides integracion
Centroides integracion
 
VECTOR TANGENTE NORMAL Y BINORMAL
VECTOR TANGENTE NORMAL Y BINORMALVECTOR TANGENTE NORMAL Y BINORMAL
VECTOR TANGENTE NORMAL Y BINORMAL
 
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILLSOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
 
Ejercicios campo electrico y carga puntual
Ejercicios campo electrico y carga puntualEjercicios campo electrico y carga puntual
Ejercicios campo electrico y carga puntual
 
Ejercicios cap 25 y 26
Ejercicios cap 25 y 26Ejercicios cap 25 y 26
Ejercicios cap 25 y 26
 
Estatica ejerciciosresueltos 25 de febrero
Estatica ejerciciosresueltos 25 de febreroEstatica ejerciciosresueltos 25 de febrero
Estatica ejerciciosresueltos 25 de febrero
 
Derivadas direccionales williana
Derivadas direccionales willianaDerivadas direccionales williana
Derivadas direccionales williana
 
ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011
 
Trabajo ecuaciones
Trabajo ecuacionesTrabajo ecuaciones
Trabajo ecuaciones
 
Problemas sobre vaciado de tanques
Problemas sobre vaciado de tanquesProblemas sobre vaciado de tanques
Problemas sobre vaciado de tanques
 
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
 
Ejercicios resueltos edo homogéneas
Ejercicios resueltos edo homogéneasEjercicios resueltos edo homogéneas
Ejercicios resueltos edo homogéneas
 
Ejercicios Desarrollados - DINÁMICA
Ejercicios Desarrollados - DINÁMICAEjercicios Desarrollados - DINÁMICA
Ejercicios Desarrollados - DINÁMICA
 
Area en-coordenadas-polares3
Area en-coordenadas-polares3Area en-coordenadas-polares3
Area en-coordenadas-polares3
 
Formulario de calculo vectorial
Formulario de calculo vectorialFormulario de calculo vectorial
Formulario de calculo vectorial
 
Integrales de superficie
Integrales de superficieIntegrales de superficie
Integrales de superficie
 
Solucionario ecuaciones diferenciales
Solucionario ecuaciones diferencialesSolucionario ecuaciones diferenciales
Solucionario ecuaciones diferenciales
 
Derivadas Parciales
Derivadas ParcialesDerivadas Parciales
Derivadas Parciales
 

Semelhante a Gradiente vectorial

Informedetrabajofinal 140106131233-phpapp01
Informedetrabajofinal 140106131233-phpapp01Informedetrabajofinal 140106131233-phpapp01
Informedetrabajofinal 140106131233-phpapp01Ernesto Palacios
 
PPT TCEM UTP PG 2022 (3).pdf
PPT TCEM UTP PG 2022 (3).pdfPPT TCEM UTP PG 2022 (3).pdf
PPT TCEM UTP PG 2022 (3).pdfElgarFloresH
 
Ayuda con la Clase Math. en JAVA (Eclipse)
Ayuda con la Clase Math. en JAVA (Eclipse)Ayuda con la Clase Math. en JAVA (Eclipse)
Ayuda con la Clase Math. en JAVA (Eclipse)MrJonath4n
 
Ecuaciones parametricas
Ecuaciones parametricasEcuaciones parametricas
Ecuaciones parametricasJessLugo6
 
algerbra lineal. seccion 4N
algerbra lineal. seccion 4Nalgerbra lineal. seccion 4N
algerbra lineal. seccion 4Njoseffg
 
Unidad IV
Unidad IVUnidad IV
Unidad IVjoseffg
 
Unidad 1 algebra de vectores
Unidad 1 algebra de vectoresUnidad 1 algebra de vectores
Unidad 1 algebra de vectoresTezca8723
 
Monografia estatica gamboa-pomalazo-alexander_paredes-tarazona-adan_parte-i-1
Monografia estatica gamboa-pomalazo-alexander_paredes-tarazona-adan_parte-i-1Monografia estatica gamboa-pomalazo-alexander_paredes-tarazona-adan_parte-i-1
Monografia estatica gamboa-pomalazo-alexander_paredes-tarazona-adan_parte-i-1Adan Paredes Tarazona
 
Clase 1. Vectores.pptx
Clase 1. Vectores.pptxClase 1. Vectores.pptx
Clase 1. Vectores.pptxJuanUgas2
 
Derivadas Direccionales
Derivadas DireccionalesDerivadas Direccionales
Derivadas DireccionalesEmily Dugarte
 
Trabajofinalcalculovectorial 141201165340 conversion gate02
Trabajofinalcalculovectorial 141201165340 conversion gate02Trabajofinalcalculovectorial 141201165340 conversion gate02
Trabajofinalcalculovectorial 141201165340 conversion gate02Luiz Casanova
 
Calculo vectorial final mate 3
Calculo vectorial final mate 3Calculo vectorial final mate 3
Calculo vectorial final mate 3Luiz Casanova
 
INVESTIGACIÓN CALCULO VECTORIAL.docx
INVESTIGACIÓN CALCULO VECTORIAL.docxINVESTIGACIÓN CALCULO VECTORIAL.docx
INVESTIGACIÓN CALCULO VECTORIAL.docxToño Hernandez
 
matemática
matemática matemática
matemática kati_2504
 
210313140445-Tema1_CalculoyALgebraCGN_2021defsp (1).pptx
210313140445-Tema1_CalculoyALgebraCGN_2021defsp (1).pptx210313140445-Tema1_CalculoyALgebraCGN_2021defsp (1).pptx
210313140445-Tema1_CalculoyALgebraCGN_2021defsp (1).pptxyair799351
 
DERIVACIÓN E INTEGRACIÓN DE FUNCIONES DE VARIAS VARIABLES
DERIVACIÓN E INTEGRACIÓN DE FUNCIONES DE VARIAS VARIABLESDERIVACIÓN E INTEGRACIÓN DE FUNCIONES DE VARIAS VARIABLES
DERIVACIÓN E INTEGRACIÓN DE FUNCIONES DE VARIAS VARIABLESjosegonzalez1606
 

Semelhante a Gradiente vectorial (20)

Informedetrabajofinal 140106131233-phpapp01
Informedetrabajofinal 140106131233-phpapp01Informedetrabajofinal 140106131233-phpapp01
Informedetrabajofinal 140106131233-phpapp01
 
PPT TCEM UTP PG 2022 (3).pdf
PPT TCEM UTP PG 2022 (3).pdfPPT TCEM UTP PG 2022 (3).pdf
PPT TCEM UTP PG 2022 (3).pdf
 
Vectores en el espacio
Vectores en el espacioVectores en el espacio
Vectores en el espacio
 
recurso 3-Vectores.pdf
recurso 3-Vectores.pdfrecurso 3-Vectores.pdf
recurso 3-Vectores.pdf
 
Ayuda con la Clase Math. en JAVA (Eclipse)
Ayuda con la Clase Math. en JAVA (Eclipse)Ayuda con la Clase Math. en JAVA (Eclipse)
Ayuda con la Clase Math. en JAVA (Eclipse)
 
Ecuaciones parametricas
Ecuaciones parametricasEcuaciones parametricas
Ecuaciones parametricas
 
algerbra lineal. seccion 4N
algerbra lineal. seccion 4Nalgerbra lineal. seccion 4N
algerbra lineal. seccion 4N
 
Unidad IV
Unidad IVUnidad IV
Unidad IV
 
Unidad 1 algebra de vectores
Unidad 1 algebra de vectoresUnidad 1 algebra de vectores
Unidad 1 algebra de vectores
 
Monografia estatica gamboa-pomalazo-alexander_paredes-tarazona-adan_parte-i-1
Monografia estatica gamboa-pomalazo-alexander_paredes-tarazona-adan_parte-i-1Monografia estatica gamboa-pomalazo-alexander_paredes-tarazona-adan_parte-i-1
Monografia estatica gamboa-pomalazo-alexander_paredes-tarazona-adan_parte-i-1
 
Clase 1. Vectores.pptx
Clase 1. Vectores.pptxClase 1. Vectores.pptx
Clase 1. Vectores.pptx
 
Derivadas Direccionales
Derivadas DireccionalesDerivadas Direccionales
Derivadas Direccionales
 
Trabajofinalcalculovectorial 141201165340 conversion gate02
Trabajofinalcalculovectorial 141201165340 conversion gate02Trabajofinalcalculovectorial 141201165340 conversion gate02
Trabajofinalcalculovectorial 141201165340 conversion gate02
 
Calculo vectorial final mate 3
Calculo vectorial final mate 3Calculo vectorial final mate 3
Calculo vectorial final mate 3
 
INVESTIGACIÓN CALCULO VECTORIAL.docx
INVESTIGACIÓN CALCULO VECTORIAL.docxINVESTIGACIÓN CALCULO VECTORIAL.docx
INVESTIGACIÓN CALCULO VECTORIAL.docx
 
Calculo vectorial
Calculo vectorialCalculo vectorial
Calculo vectorial
 
matemática
matemática matemática
matemática
 
Proyecto de-algebra-alineal
Proyecto de-algebra-alinealProyecto de-algebra-alineal
Proyecto de-algebra-alineal
 
210313140445-Tema1_CalculoyALgebraCGN_2021defsp (1).pptx
210313140445-Tema1_CalculoyALgebraCGN_2021defsp (1).pptx210313140445-Tema1_CalculoyALgebraCGN_2021defsp (1).pptx
210313140445-Tema1_CalculoyALgebraCGN_2021defsp (1).pptx
 
DERIVACIÓN E INTEGRACIÓN DE FUNCIONES DE VARIAS VARIABLES
DERIVACIÓN E INTEGRACIÓN DE FUNCIONES DE VARIAS VARIABLESDERIVACIÓN E INTEGRACIÓN DE FUNCIONES DE VARIAS VARIABLES
DERIVACIÓN E INTEGRACIÓN DE FUNCIONES DE VARIAS VARIABLES
 

Último

Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxPROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxEribertoPerezRamirez
 
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfBIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfCESARMALAGA4
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicialLorenaSanchez350426
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORGonella
 
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)veganet
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadJonathanCovena1
 
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfLA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfNataliaMalky1
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 

Último (20)

Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxPROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
 
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfBIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicial
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIOR
 
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la Sostenibilidad
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfLA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 

Gradiente vectorial

  • 1. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014 INFORME DE TRABAJO FINAL I. DATOS INFORMATIVOS Carrera: Modulo: Área Académica: Línea de Investigación: Ciclo Académico: Paralelo:4° “B” Alumnos participantes: Docente: II. Ingeniería Electrónica y Comunicaciones Calculo Vectorial Matemáticas Electrónica y Comunicaciones Septiembre 2013- febrero 2014 Yumizaca José Cushpa Paulo Manobanda Wilson Cálculo Vectorial - Ing. Freddy Robalino Tema: Gradiente. Definición y propiedades, teoremas, ejercicios. 1. 2. III. PP YY Objetivos General: Conocer la definición de gradiente sus propiedades y teoremas en un campo vectorial. Específicos:   IV. Analizar cada propiedad y teorema presentados en el siguiente informe. Denotar una dirección en el espacio según la cual se apreciara una variación de una determinada propiedad. MARCO TEÓRICO Gradiente
  • 2. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014 Las magnitudes como el peso y la temperatura consisten en un número, como 15 grados o 1.000 kilogramos. Los científicos llaman a estas magnitudes escalares. Las medidas como la velocidad y la fuerza, por otra parte, son vectores, y tienen dos datos: una magnitud y una dirección. Por ejemplo, el reporte del clima dice que el viento sopla del este a siete kilómetros por hora. Los científicos indican a los vectores con flechas, ya que las flechas tienen una longitud (que indica la magnitud o intensidad de la medida) y apuntan en una dirección específica. El gradiente es un vector que resulta de una operación delta en una superficie. Si la superficie es plana, el gradiente es cero, su forma no cambia. Si la superficie tiene una colina, el gradiente apunta hacia arriba. Cuando la superficie tiene depresiones y valles, el gradiente apunta hacia abajo. Cuanto más grande sean las elevaciones o depresiones, mayor será la magnitud del gradiente. Definición El gradiente normalmente denota una dirección en el espacio según la cual se aprecia una variación de una determinada propiedad o magnitud física. En otros contextos se usa informalmente gradiente, para indicar la existencia de gradualidad o variación gradual en determinado aspecto, no necesariamente relacionado con la distribución física de una determinada magnitud o propiedad. En esta imagen, el campo escalar se aprecia en blanco y negro, representando valores bajos o altos respectivamente, y el gradiente correspondiente se aprecia por flechas azules. El gradiente de un campo escalar, que sea diferenciable en el entorno de un punto, es un vector definido como el único que permite hallar la derivada direccional en cualquier dirección como: siendo un vector unitario y la derivada direccional de en la dirección de , que informa de la tasa de variación del campo escalar al desplazarnos según esta dirección:
  • 3. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014 Una forma equivalente de definir el gradiente es como el único vector que, multiplicado por cualquier desplazamiento infinitesimal, da el diferencial del campo escalar: Con la definición anterior, el gradiente está caracterizado de forma unívoca. El gradiente se expresa alternativamente mediante el uso del operador nabla: Interpretación del gradiente De forma geométrica el gradiente es un vector que se encuentra normal (perpendicular) a la curva de nivel en el punto que se está estudiando, llámese (x,y), (x,y,z), (tiempo, temperatura), etcétera. Algunos ejemplos son:   Considere una habitación en la cual la temperatura se define a través de un campo escalar, de tal manera que en cualquier punto , la temperatura es . Asumiremos que la temperatura no varía con respecto al tiempo. Siendo esto así, para cada punto de la habitación, el gradiente en ese punto nos dará la dirección en la cual la temperatura aumenta más rápido. La magnitud del gradiente nos dirá cuán rápido aumenta la temperatura en esa dirección. Considere una montaña en la cual su altura en el punto (x,y) se define como H(x, y). El gradiente de H en ese punto estará en la dirección para la que hay un mayor grado de inclinación. La magnitud del gradiente nos mostrará cuán empinada se encuentra la pendiente. Aproximación lineal de una función El gradiente de una función f definida de Rn a R caracteriza la mejor aproximación lineal de la función en un punto particular x0 en Rn. Se expresa así: Donde es el gradiente evaluado en x0. Propiedades  El gradiente verifica que:      Es ortogonal a las superficies equiescalares, definidas por =cte. Apunta en la dirección en que la derivada direccional es máxima. Su módulo es igual a esta derivada direccional máxima. Se anula en los puntos estacionarios (máximos, mínimos y puntos de silla) El campo formado el gradiente en cada punto es siempre irrotacional, esto es,
  • 4. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014 Expresión en diferentes sistemas de coordenadas A partir de su definición puede hallarse su expresión en diferentes sistemas de coordenadas. En coordenadas cartesianas, su expresión es simplemente En un sistema de coordenadas ortogonales, el gradiente requiere los factores de escala, mediante la expresión Para coordenadas cilíndricas (hρ = hz = 1, y para coordenadas esféricas (hr = 1, hθ = r, ) resulta ) Gradiente de un campo vectorial En un espacio euclídeo, el concepto de gradiente también puede extenderse al caso de un campo vectorial, siendo el gradiente de desplazamiento un tensor que da el diferencial del campo al realizar un Este tensor podrá representarse por una matriz (3x3), que en coordenadas cartesianas está formada por las tres derivadas parciales de las tres componentes del campo vectorial.
  • 5. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014 V. Desarrollo de ejercicios  Ejemplo 1 Calcular el gradiente de la función:
  • 6. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014  Ejemplo 2 Calcular el gradiente de la función:
  • 7. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014
  • 8. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014  Ejemplo 3 Calcular, por medio del gradiente, el plano tangente a la superficie: 2.X.Z² – 3.X.Y – 4.X = 7 En el punto P0(1, -1, 2) solución: Sabemos que el gradiente de una función de superficie es perpendicular a dicha superficie en todo punto de ella. Por lo tanto, si consideramos un plano tangente a la superficie en el punto P0, todo vector de dicho plano será perpendicular al gradiente de la función en el punto P0; de ahí que podamos hacer: V→⋅(∇→ϕ)=0 Siendo V un vector cualquiera del plano buscado. Tomando un punto genérico P, podemos considerar el vector : P0P−→−=(x−1)⋅iˆ+(y+1)⋅jˆ+(z−2)⋅kˆ Por otro lado, el gradiente de la función considerada vale en el punto (1, -1, 2): ∂ϕ∂x=2⋅Z2−3⋅Y−4 ⇒ (∂ϕ∂x)P0=7 ∂ϕ∂y=−3⋅X ⇒ (∂ϕ∂y)P0=−3 ∂ϕ∂z=4⋅X⋅Z ⇒ (∂ϕ∂z)P0=8 De donde se tiene: (∇→ϕ)P0=7⋅iˆ−3⋅jˆ+8⋅kˆ Con lo que podemos poner P0P−→−(∇→ϕ)P0=(X−1)⋅7+(Y+1)⋅(−3)+(Z−2)⋅8 Haciendo operaciones y simplificando nos queda: 7.X – 3.Y + 8.Z – 26 = 0 Que es la ecuación del plano pedido.
  • 9. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL PERÍODO ACADÉMICO: SEPTIEMBRE/2013 – FEBRERO/2014  Ejemplo 4 Calcular el vector unitario perpendicular al plano: A.x + B.y + C.z Por consideraciones del gradiente. Solución: Este problema podríamos resolverlo sin tener en cuenta las propiedades del gradiente de una función y considerar sólo el vector director del plano, que sabemos que es perpendicular a él, pero como sabemos que un plano es una superficie, vamos a determinar su gradiente: Este resultado coincide con el valor del vector director del plano dado por los coeficientes de las variables. Según las propiedades del gradiente, sabemos que el vector obtenido es perpendicular al plano, por lo tanto, multiplicando dicho vector por un escalar que valga igual que el inverso de su módulo, tendremos un vector unitario perpendicular al plano: VI. Conclusiones:     VII. El gradiente normalmente denota una dirección en el espacio según la cual se aprecia una variación de una determinada propiedad o magnitud física. Observamos como el vector gradiente de un punto genérico del espacio indica la dirección en la cual la presión cambia más rápidamente. Nótese que el vector gradiente será perpendicular a las líneas de contorno (líneas "equiescalares") . El gradiente se define como el campo vectorial cuyas funciones coordenadas son las derivadas parciales del campo escalar, esto se basa en que el gradiente permite calcular fácilmente las derivadas direccionales. Definiendo en primer lugar la derivada direccional según un vector. Referencias bibliográficas  Calculo multivariable: STEWART JAMES 4 edición  Calculo ll: LARSSON ROM  Teoría de campos escalares y campos vectoriales: Miguel Ángel Pascual Iglesias