O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Wilmerperoza.coordenadaspolares

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
REPUBLICA BOLIVARIANA DE VENEZUELA
UNIVERSIDAD FERMIN TORO
FACULTAD DE INGENIERIA
ESCUELA DE TELECOMUNICACIONES
COORDENADA...
LAS COORDENADAS POLARES
Las coordenadas polares o sistemas polares son un sistema de
coordenadas bidimensional en el cual ...
La integral definida es una herramienta útil
en las ciencias físicas y sociales, ya que muchas
cantidades de interés en di...
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Carregando em…3
×

Confira estes a seguir

1 de 26 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Semelhante a Wilmerperoza.coordenadaspolares (20)

Anúncio

Mais recentes (20)

Anúncio

Wilmerperoza.coordenadaspolares

  1. 1. REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD FERMIN TORO FACULTAD DE INGENIERIA ESCUELA DE TELECOMUNICACIONES COORDENADAS POLARES AUTOR: PEROZA N., WILMER E. C.I.V-25.177.702 TUTOR: DOMINGO MENDEZ SAIA A.
  2. 2. LAS COORDENADAS POLARES Las coordenadas polares o sistemas polares son un sistema de coordenadas bidimensional en el cual cada punto del plano se determina por una distancia y un ángulo, ampliamente utilizados en física y trigonometría. De manera más precisa, se toman: un punto O del plano, al que se le llama origen o polo, y una recta dirigida (o rayo, o segmento OL) que pasa por O, llamada eje polar (equivalente al eje x del sistema cartesiano), como sistema de referencia. Con este sistema de referencia y una unidad de medida métrica (para poder asignar distancias entre cada par de puntos del plano), todo punto P del plano corresponde a un par ordenado (r, θ) donde r es la distancia de P al origen y θ es el ángulo formado entre el eje polar y la recta dirigida OP que va de O a P. El valor θ crece en sentido antihorario y decrece en sentido horario. La distancia r (r ≥ 0) se conoce como la «coordenada radial» o «radio vector», mientras que el ángulo es la «coordenada angular» o «ángulo polar». En el caso del origen, O, el valor de r es cero, pero el valor de θ es indefinido. En ocasiones se adopta la convención de representar el origen por (0,0º).
  3. 3. La integral definida es una herramienta útil en las ciencias físicas y sociales, ya que muchas cantidades de interés en dichas ciencias pueden definirse mediante el tipo de suma que se presenta en la integral definida. Antes de estudiar casos específicos en que se utiliza la integral definida, daremos las siguientes definiciones: Definición: Recibe el nombre de partición de un intervalo cerrado [a, b] un conjunto de intervalos cerrados: {[x0, x1], [x1, x2], [x2, x3], . . . , [xn−2, xn−1], [xn−1, xn]} que posee las propiedades: 1. [x0, x1] ∪ [x1, x2] ∪ . . . ∪ [xn−2, xn−1], [xn−1, xn]} = [a, b] 2. [xi−1, xi ] ∩ [xi , xi+1] = xi con i ∈ {1, 2, . . . , n} 3. [xj−1, xj ] ∩ [xk, xk+1] = ∅ a menos que k = j o j − 1 = k + 1.
  4. 4. Integral de Riemann. Vamos a definir la integral de una función cualquiera, f(x), en un intervalo [a, b], con la única condición de que esté acotada. Se toman todas las funciones escalonadas g(x) por defecto, y todas las funciones escalonadas h(x) por exceso, es decir, g(x) ≤ f(x) ≤ h(x) cuando x ∈ [a, b]. En estas condiciones, si existe un único número I que cumpla ∫ 𝑔 𝑏 𝑎 ( 𝑥) 𝑑𝑥 ≤ ḷ ≤ ∫ ℎ( 𝑥) 𝑑𝑥 𝑏 𝑎 este número l se le llama integral de f(x) entre a y b. Se representa: ḷ = ∫ 𝑓( 𝑥) 𝑏 𝑎 𝑑𝑥 , y se lee “integral desde a hasta b, de f(x), diferencial de x”. Teorema: Toda función continua en un intervalo es integrable en dicho intervalo.
  5. 5. Teorema Fundamental del Cálculo Si f(x) es integrable en el intervalo [a, b], su función área, A(t), se define de la siguiente forma: 𝐴( 𝑡) = ∫ 𝑓( 𝑥) 𝑡 𝑎 𝑑𝑥 ∀ 𝑡 ∈ [ 𝑎, 𝑏]. En estas condiciones A(t) f (x)dx ∀t ∈[ ] a,b . En estas condiciones, si f es continua en [a, b], la función A es una primitiva de la función f en [a, b]. Cuando vimos la suma de Riemann, observamos la forma de calcular el área de una región limitada porcontornos incluyendo una función que dijimos que erapositiva. Si la función es negativa, significa que el área se está midiendo hacia abajo y para evitar esto, tomamos la función con su respectivo signo. Esta vez vamos acalcular áreas tambiénlimitadas porcurvas,pero usaremos directamente el límite de la suma de Riemann, es decir la integral definida, ya que ahora conocemos diferentes técnicas para desarrollar estas integrales, el cálculo lo extenderemos a funciones menores que cero y será más fácil cuando aprendamos aaplicarlas.Esto nos permite recordarla interpretación geométrica de la integral, que no es más que un cálculo de área, pues es un producto de dos dimensiones. GRAFICAS DE ECUACION POLAR Las gráficas en coordenadas polares están dadas en la forma En principio entonces paratrazar una curva hay que hacer una tabla dándole valores a y encontrando los valores correspondientes de . Sin embargo al igual que en coordenadas rectangulares hay cosas que permiten hacer la gráfica en una forma más racional evitando hacer tantos puntos. Usted debe ser consciente de que la apariencia de la gráfica en calculadora depende de la ventana de graficación especificada x-y, y también del rango de los valores mostrados de θ. Cuando
  6. 6. se dibujan gráficas en coordenadas polares, debe identificarse algunos valores mostrados de θ correspondientes a r = 0 o donde r alcanza un máximo o un mínimo. Además,debe identificar el rango de valores de θ que producen una copia de la curva polar, cuando ésta es apropiada. Se deduce que muchas curvas familiares tienen ecuaciones polares sencilla Con estos conceptos básicos de localización de puntos en el sistema de coordenadas polares, podemos graficar funciones y no sólo puntos. En este tipo de funciones la variable independiente es θ y la dependiente es r, así que las funciones son del tipo r = r(θ). El método para graficar estas funciones es el siguiente, primero graficamos la función r = r(θ) en coordenadas rectangulares y a partir de esa gráfica trazamos la correspondiente en polares. Guiándonos con la dependencia de r con respecto a θ. Recordemos que θ es la variable independiente y generalmente va de 0 a 2π. INTERSECCIÓN DE LAS GRAFICAS COORDENADAS Ahora que ya conoces las coordenadas polares y observó una variedad de gráficas de las mismas, el próximo paso consiste en extender las técnicas del cálculo al caso de intersección de ecuaciones en dichas coordenadas polares, con el propósito de buscar todos los puntos de dicha intersección. Puesto que un punto puede representarse de formas diferentes en coordenadas polares, debe tenerse especial cuidado al determinar los puntos de intersección de dos gráficas polares, por lo que se sugiere realizar el dibujo de las ecuaciones,inclusive cuando más adelante calculemos el área de una región polar. De igual forma el problema de hallar los puntos de intersección de dos gráficas polares con el de encontrar los puntos de colisión de dos satélites en órbita alrededor de la tierra, dichos satélites no entrarían en colisión en tanto lleguen a los puntos de intersección en tiempos diferentes (valores de q). La colisión se producirá solamente en aquellos puntos de intersección que sean "puntos simultáneos", aquellos a los que se llega en el mismo instante (valor de q).
  7. 7. Las intersecciones con el eje polar, cuando existen, pueden obtenerse resolviendo la ecuaciónpolardadapara r, cuando a LJ se le asignan sucesivamente los valores 0,p,2p,y engeneral np, donde n es un entero cualquiera. Análogamente, si existen algunas intersecciones con el eje normal, puedenobtenerseasignado aLJlos valores de np/2,donde nes un número impar cualquiera. Si existe un valor de LJ para el cual r=0, la gráfica pasa por el polo. 2. Simetría. La simetría de una curva se analiza mediante las siguientes transformaciones.Simetría conrespecto alLa ecuaciónpolar no se altera o se transforma en una ecuación equivalente Eje polar a) se sustituye a LJ por – LJ o b) se sustituye a LJ por p-LJ y r por -r Eje normal a) se sustituye a LJ por p-LJ o b) se sustituye a LJ por -LJ y r por -r Polo a) se sustituye a LJ por p-LJ b) se sustituye a r por -r 3. Extensión del lugar geométrico. Para determinar la extensión de la gráfica de un lugar geométrico dado en coordenadas polares, primero se despeja a r en función de LJ, de modo que tenemos r=fLJ) Si r es finito para todos los valores de LJ, se trata de una curva cerrada. Si r es infinita para ciertos valores de LJ la gráfica no es una curva cerrada. Para valores de LJ que hacen a r compleja no hay curva; tales valores constituyen intervalos excluidos dellugar geométrico. Si la gráfica es una curva cerrada, es útil, determinar los valores máximo y mínimo de r.
  8. 8. Ejemplos:
  9. 9. CALCULO DEL ÁREA DE UNA REGIÓN PLANA EN COORDENADAS El desarrollo de una fórmula para el área de una región polar va paralelo al de zonas en sistema de coordenadas rectangulares, pero con sectores de un círculo en lugar de rectángulos como elementos básicos de dicha área. Consideremos la función dada por r= f(), donde f es continua y no negativa en el intervalo   ,   . La región limitada por la gráfica para hallar el área de esta región, partimos el intervalo   ,   en n subintervalos iguales    <  <  <........<  <  =  A continuación aproximamos el área de la región por la suma de las mismas de los n sectores. Luego de haber notado el teorema anterior, podemos decir que usar la fórmula para hallar el área de una región limitada por la gráfica de una función continua no negativa. Sin embargo, no es necesariamente válida si f toma valores positivos y negativos en el intervalo   ,   . Algunas veces lo más difícil a la hora de hallar el área de una región polar es determinar los límites de integración. Ahora, bien cuando se quiere hallar el área comprendida entre dos gráficas polares, se emplea el procedimiento conocido de sustraer un área de otra. Aunque en el siguiente ejemplo los cálculos no fueron sencillos, con frecuencia, determinar los límites de integración es la parte más desafiante para hallar el área de una región polar. Ejemplo 1.- Hallar el área de la región A comprendida dentro del caracol cos21r y el exterior del circulo 2r Solución: Si observamos la figura se puede apreciar las dos ecuaciones donde el área A entre ellos esta sombreada. Los puntos de intersección del círculo y el caracol están dados por: 2cos21  , igualando 0cos221  021  cos , entonces: 2 cos  = 1, luego 2 1 cos  , por lo que 2 1 cos 1  y además 3/
  10. 10. Estos valores son los límites de integración que se necesitan, luego:       ) 2 (ucuadradasUnidades 3 π3 2 53 π 0 )θsen2θ(4cosθ 3 π 0 Cálculo.dellFundamentaTeoremayLinealidadd12cos2θ4cosθ 3 π 0 dθ3θ 2 4cos4cosθ 3 π 3 π dθ 2 2 2 2cosθ1 2 1 A            EJEMPLO 2. - Hallar el área interior del limacon r = 3 + 2cos  y exterior a la circunferencia 2r  Solución: Primero debe resolverse la ecuación igualando ambas ecuaciones: 2cos23  . Observe que como cos es periódico, existen muchas soluciones para esta ecuación. En consecuencia, es necesario recurrir a la gráfica para determinar en cuales soluciones esta interesado. En este caso, se desea hallar las soluciones menores negativas y las más pequeñas positivas. Observando la figura, cuidadosamente donde solo se ha representado solo aquellas porciones de las gráficas correspondientes a  entre las primeras dos soluciones positivas.
  11. 11. Esta porción de las gráficas corresponde al área exterior a la limacon e interior a la circunferencia.Como se tiene: 2 1 cos   ,lo cual ocurre en 3 2 y 3 2     a partir delteorema mencionado anteriormente, el área encerrada por la porción de la limacon en este intervalo esta dada por:   6 44333 dcos23 2 13 2 3 2 2     . De manera semejante, el área encerrada por la circunferencia en este intervalo esta dado por:   3 38 d2 2 1 3 2 32 2     , el área interior de la limacon y exterior a la circunferencia esta dada por:       3 2π 3 2π 2 3 2π 32π 2 θd2 2 1 θdθ2cos3 2 1 , por lo que 2,24 6 28333 3 8 6 44333       los demás detalles rutinarios se dejan al estudiante.
  12. 12. TIPOS DE GRAFICAS DE COORDENADAS POLARES ROSA DE CUATRO HOJAS/PÉTALOS Este tipo de gráfico se conoce como Rosa de cuatro pétalos. Es fácil ver cómo se forma una figura parecida a una rosa con cuatro pétalos. La función para este gráfico es: ROSA DE TRES HOJAS/PÉTALOS Presentamos ahora el gráfico llamado Rosa de tres pétalos. Analógicamente al gráfico de la rosa de cuatro pétalos, este gráfico es parecido pero tiene sólo tres hojas o pétalos en su forma gráfica. Un ejemplo es el siguiente:
  13. 13. ROSA DE OCHO HOJAS/PÉTALOS El siguiente gráfico es como los dos anteriores, pero ahora con ocho hojas o pétalos, tal como lo vemos en la siguiente función graficada: UNA ROSA DENTRO DE OTRA Un caso interesante y especial que se puede dar es el que se muestra en la gráfica que vemos a continuación, donde se aprecia una rosa de tres pétalos precisamente dentro de otra rosa de tres pétalos u hojas. Veamos:
  14. 14. CARDIOIDES A continuación se presenta el tipo de gráfico que se denomina cardioide. Para este ejemplo se presenta una cardioide simétrica con respecto al eje poplar y que apunta hacia la derecha. Podemos observar que se distingue una figura como de un corazón, razón por la cual se llama este gráfico cardioide. La función que lo ha generado es: Habiendo visto el primer gráfico de una cardiode, se presenta otro gráfico de este tipo pero ahora apunta hacia arriba, tal como lo vemos a en el gráfico de la siguiente función:
  15. 15. LIMACONES O CARACOLES Limaçon viene del latín limax que significa caracol. El caracol de Pascal, lo descubrió Etienne Pascal padre de Blaise Pascal en la primera mitad del siglo XVIIy el nombre se lo dio Roberval en 1650 cuando la usó como ejemplo para mostrar su método para trazar tangentes. Un limaçon o las gráficas polares que generan limaçones son las funciones en coordenadas polares con la forma: r = 1 + b cos Ahora veamos un ejemplo concreto de un gráfico de este tipo,donde se muestra un caracol que apunta hacia la derecha y que tiene un lazo interior. La función para este gráfico es la siguiente: Veamos otro gráfico de una función que tiene como resultado un caracol con un lazo interior pero que a diferencia del gráfico anterior, este apunta hacia abajo. Veamos:
  16. 16. Continuando con la gráfica de caracoles o limacones, hay otro tipo que es el caracol con hendidura o caracol con concavidad. Como podremos observar, este no tiene lazo, y está dirigido hacia la izquierda. Veamos a continuación el gráfico que resulta, el cual apunta hacia la izquierda: Ahora se muestra un gráfico igual al anterior con la diferencia que ahora está dirigido hacia la derecha, de modo que tenemos un limaçon o caracol con hendidura o concavidad que está dirigido hacia la derecha: Antes de terminar el tema de los limacoides o caracoles, veamos otro gráfico diferente a los otros, que es conocido como caracol convexo o caracol ovalado, el cual está apuntando hacia arriba, como lo vemos en el gráfico siguiente:
  17. 17. CIRCUNFERENCIA Esta nueva función nos presenta una forma conocida por todos y es precisamente la circunferencia, la cual será formada en el gráfico polar mediante la siguiente función: Ahora veamos una nueva gráfica que resulta en una circunferencia, con la única diferencia que ahora aparece arriba del rayo inicial (o del eje x que todos conocemos), a diferencia del gráfico anterior, que la circunferencia aparecía abajo del radio inicial. La función con su gráfico es esta:
  18. 18. LEMNISCATA En matemáticas, una leminscata es un tipo de curva descrita por la siguiente ecuación en coordenadas polares: La representación gráfica de esta ecuación genera una curva similar a . La curva se ha convertido en el símbolo delinfinito y es ampliamente utilizada en matemáticas. El símbolo en sí mismo es, a veces,llamado lemniscata. Un ejemplo de esta función con su respectivo gráfico lo apreciamos a continuación:
  19. 19. Tenemos otro ejemplo de lemniscata, pero ahora aparece a lo largo del eje x o en sentido horizontal:
  20. 20. Finalmente se muestra un gráfico como los dos anteriores, donde aparece una lemniscata, con la única diferencia que ahora se muestra en sentido vertical. Veamos: LA NEFROIDE DE FREETH Esta es una curva muy reciente si hablamos relativamente a las demás. Hay curvas polares que tienen varios siglos de existir, mientras que esta que trataremos en este momento es bastante reciente, pues fue desarrollada por el matemático inglés T.J. Freeth, quien descubrió esta curva en 1879. Un ejemplo se aprecia en este gráfico:
  21. 21. CONCOIDES DE NICÓMENES Nicómenes nació sobre el año 280 antes de Cristo en Grecia y murió en el año 210 a.C. Se sabe muy poco de su vida pero es famoso por su "Las líneas de la Concoide". Veamos un gráfico en coordenadas polares de la concoide de Nicómenes: Veamos un nuevo ejemplo de una concoide de Nicómenes. La gráfica anterior está hacia la derecha, mientras que la que se presenta a continuación tiene una dirección hacia arriba. Veamos:
  22. 22. Un tercer ejemplo de Concoide de Nocómenes lo tenemos en el gráfico que se muestra a continuación, donde su forma se ve diferente a los dos gráficos anteriores de este mismo tipo debido a que se le está restando un número uno a la función. El mismo gráfico veríamos si se le estuviera sumando uno a la función. El gráfico quedará así:
  23. 23. CISOIDE DE DIOCLES Esta es una curva muy famosa y útil en el cálculo. Fue utilizada por un griego llamado Diocles para resolver el problema de la duplicación del cubo.El gráfico aparece de esta forma: PARÁBOLA Esta figura es muy conocida en el mundo del Cálculo. Tal como podemos generar funciones de parábolas en coordenadas cartesianas, lo podemos hacer también en coordenadas polares.Veamos el ejemplo:
  24. 24. ESPIRAL Este gráfico tiene la forma de una espiral, tal como su nombre lo indica. La espiral más simple la podemos encontrar al mirar una cuerda enrollada sobre símisma. La forma de una espiral la vemos en una serpiente enrollada por ejemplo. El gráfico que se presenta a continuación es también conocido como Espiral de Arquímedes, precisamente en honor Arquímedes,quien fue un notable físico y matemático griego que al ser fascinado por la belleza de esta curva, realizó un estudio profundo sobre sus propiedades matemáticas en su escrito titulado Sobre las espirales, escrito en el siglo III antes de Cristo. Para mostrar el gráfico que se forma, presentamos la siguiente función en coordenadas polares que formará la espiral polar siguiente:
  25. 25. Veamos ahora otra gráfica espiral conocida como espiral de Fermat, pues fue examinada por Fermat en 1936. Su ecuación es r² = a² + . En el siguiente ejemplo se muestra una función y su respectiva gráfica que nos permiten conocer la espiral de Fertat:
  26. 26. Un segundo gráfico espiral lo tenemos en la función que veremos ahora, que podríamos encontrarla con dos nombres refiriéndose al mismo gráfico. Ambos nombres equivalen a lo mismo como podremos apreciar . Dichos nombres con los que se conoce a esta espiral son: espiral recíproca o espiral hiperbolica. Tendremos entonces: Otro caso que se puede dar es la espiral logarítmica, que se ilustra mediante la siguiente función y su respectivo gráfico:

×