REVISÃO DE MECÂNICA DOS FLUIDOS
Grupo
• Douglas de Paula Ferreira
• Lucas Carvalho
• Willian Cruz
Objetivos
Esta apresentação tem como objetivos apresentar:
• Correlações utilizadas para obtenção das propriedades relativ...
Propriedades do ar
• Inicialmente serão apresentadas as correlações e equações mais
utilizadas na prática de engenharia de...
Revisão de nomenclatura
• Viscosidade: É a medida da resistência interna de um fluido
(gás ou líquido) ao fluxo, ou seja, ...
Viscosidade cinemática do ar (ν)
• O nome viscosidade cinemática deve-se ao fato de essa grandeza
não envolver força, mas ...
Volume específico e massa específica do ar
• O volume (∀) ocupado por uma massa (m) de ar pode ser
estimado pela equação d...
• Dividindo a equação anterior pela massa, m, obtém-se o volume
específico, ν. O inverso do volume específico é a massa es...
Viscosidade absoluta
• O coeficiente de viscosidade absoluta pode ser obtida a partir da
equação de definição da viscosida...
Condição padrão do ar
• Devido ao fato de o desempenho dos equipamentos utilizados na
ventilação industrial ser função do ...
Escoamento do ar
• Pode ser confinado, escoamento em dutos, ou não confinado,
escoamento em grandes espaços.
• O escoament...
Escoamento do ar
• Para cálculo desta classificação utilizamos o número de Reynolds
(Re) definido por:
Re=
𝑽∗𝑳
𝒗
onde:
V -...
Escoamento do ar
• Para casos de escoamento no interior de dutos, a dimensão
característica para o cálculo do número de Re...
Escoamento do ar
• Para os casos de escoamentos externos, na maioria das vezes leva-
se em consideração a dimensão e a geo...
Equação da Continuidade
• Na ventilação industrial a quantidade volumétrica de ar a ser
movimentada é frequentemente condu...
• Se ρ for constante, usando-se a definição de velocidade média, a
equação anterior se reduz a:
ṁ = ρ*V*A = constante
• Es...
Equação da continuidade aplicada a dutos
Conceito de Pressão em um fluido (Pa)
• Um corpo pode estar sujeito a três tipos de esforços: tração,
compressão e cizalha...
Tipos de pressão de escoamento
• Um fluindo em movimento associado a uma força de inércia, e
esta força é dividida por uma...
Tipos de pressão de escoamento
• Pressão estática (Pe): é uma função do estado termodinâmico do
escoamento de ar e é exerc...
Tipos de pressão de escoamento
• Na ventilação industrial, e são normalmente medidas em relação
à pressão atmosférica.
Equação de Bernoulli modificada
• Aplicando-se a equação da energia referenciada a uma
determinada linha de corrente e int...
Equação de Bernoulli modificada
Equação de Bernoulli modificada
• Como o escoamento no interior do duto é de ar e supondo que o
mesmo esteja à mesma tempe...
Avaliação das perdas no escoamento
• As perdas nos escoamentos na ventilação industrial trazem como
resultado uma diminuiç...
Perda de carga em dutos de seção circular
• A queda de pressão associada com a perda de energia devido ao
atrito é calcula...
Perda de carga em dutos de seção circular
• No escoamento laminar, o coeficiente de atrito tem determinação
analítica e de...
Perda de carga em dutos de seção circular
• No escoamento turbulento, o coeficiente de atrito tem
determinação experimenta...
Diâmetros equivalentes
• A determinação da perda de carga em duto de seção não circular é
realizada usando-se o conceito d...
Diâmetros equivalentes
• Diâmetro equivalente para uma mesma velocidade do escoamento
(diâmetro hidráulico).
• Diâmetro eq...
Perda de carga nos acessórios
• Sempre que um escoamento muda de direção, passa através de
expansões ou contrações de seçã...
Perda de carga nos acessórios
• Assim:
∆𝑃 = 𝐾
𝑉2
2
𝜌
• Igualando a perda de carga de um acessório com aquela
apresentada a...
Perda de carga nos acessórios
• Podemos, assim determinar qual o comprimento equivalente de
duto reto que apresenta a mesm...
Ventiladores
• Na ventilação industrial, o fornecimento de energia necessário para
manter o escoamento do ar, frequentemen...
Tipos de pressão
• Pressão estática (Pe): decresce ao longo de um duto de seção
constante e cresce no aumento de seção (re...
Sugestão de organização dos dados
Exemplo 1
Exemplo 2
Referências
• CLEZAR, Carlos Alfredo; NOGUEIRA, Antônio Carlos Ribeiro. Ventilação
industrial. 2. ed. Florianópolis: Ed da...
18 03 revisão-de-mecânica-dos-fluidos-todas-as-partes (1)
18 03 revisão-de-mecânica-dos-fluidos-todas-as-partes (1)
18 03 revisão-de-mecânica-dos-fluidos-todas-as-partes (1)
18 03 revisão-de-mecânica-dos-fluidos-todas-as-partes (1)
18 03 revisão-de-mecânica-dos-fluidos-todas-as-partes (1)
Próximos SlideShares
Carregando em…5
×

18 03 revisão-de-mecânica-dos-fluidos-todas-as-partes (1)

247 visualizações

Publicada em

Metodos engenharia de controle

Publicada em: Engenharia
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
247
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
6
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

18 03 revisão-de-mecânica-dos-fluidos-todas-as-partes (1)

  1. 1. REVISÃO DE MECÂNICA DOS FLUIDOS
  2. 2. Grupo • Douglas de Paula Ferreira • Lucas Carvalho • Willian Cruz
  3. 3. Objetivos Esta apresentação tem como objetivos apresentar: • Correlações utilizadas para obtenção das propriedades relativas do ar; • Revisão de alguns conceitos de mecânica dos fluidos, aplicados a escoamento do ar;
  4. 4. Propriedades do ar • Inicialmente serão apresentadas as correlações e equações mais utilizadas na prática de engenharia de ventilação industrial para o cálculo das propriedades do ar.
  5. 5. Revisão de nomenclatura • Viscosidade: É a medida da resistência interna de um fluido (gás ou líquido) ao fluxo, ou seja, é a resistência oferecida pelo líquido quando uma camada se move em relação a uma camada subjascente. Quanto maior a viscosidade, maior é a resistência ao movimento e menor é sua capacidade de escoar (fluir). Em outras palavras, a viscosidade de um fluido é a propriedade que determina o valor de sua resistência ao cisalhamento;
  6. 6. Viscosidade cinemática do ar (ν) • O nome viscosidade cinemática deve-se ao fato de essa grandeza não envolver força, mas somente comprimento e tempo, as quais são grandezas fundamentais da cinemática. • Pelo fato de na ventilação industrial os níveis de pressão de escoamento do ar se situarem muito próximos da pressão atmosférica, a dependência da viscosidade com as variações de pressão pode ser desprezada, ficando em função somente da temperatura. 𝝂 = 𝟏𝟑 + 𝟎, 𝟏 ∗ 𝑻 ∗ 𝟏𝟎−𝟔
  7. 7. Volume específico e massa específica do ar • O volume (∀) ocupado por uma massa (m) de ar pode ser estimado pela equação dos gases perfeitos: ∀= 𝒎∗𝑹𝒂𝒓 ∗𝑻 𝑷
  8. 8. • Dividindo a equação anterior pela massa, m, obtém-se o volume específico, ν. O inverso do volume específico é a massa específica expressa por: ρ = 𝑷 𝑹𝒂𝒓∗𝑻 Onde: ρ -> massa específica (Kg/𝑚3 ); P -> Pressão absoluta do ar (Pa); Rar -> Constante do ar = 287 ( 𝐽 𝐾𝑔∗𝐾 ); T -> Temperatura absoluta do ar (K);
  9. 9. Viscosidade absoluta • O coeficiente de viscosidade absoluta pode ser obtida a partir da equação de definição da viscosidade cinemática, utilizando-se os valores estimados relacionando com a equação da viscosidade cinemática do ar (ν). μ = ρ*ν Onde: μ -> Coeficiente de viscosidade absoluta (Kg/m*s);
  10. 10. Condição padrão do ar • Devido ao fato de o desempenho dos equipamentos utilizados na ventilação industrial ser função do estado termodinâmico do ar, apresentam-se como condições padrão: • Temperatura: 20°C • Pressão atmosférica: 101,3 KPa (nível do mar)
  11. 11. Escoamento do ar • Pode ser confinado, escoamento em dutos, ou não confinado, escoamento em grandes espaços. • O escoamento ainda pode ser caracterizado por apresentar um comportamento em forma laminas paralelas - escoamento laminar (a) - ou um comportamento desordenado - escoamento turbulento(b).
  12. 12. Escoamento do ar • Para cálculo desta classificação utilizamos o número de Reynolds (Re) definido por: Re= 𝑽∗𝑳 𝒗 onde: V -> Velocidade média do escoamento; L -> Uma dimensão característica da dinâmica de escoamento; 𝑣 -> Viscosidade cinemática do ar;
  13. 13. Escoamento do ar • Para casos de escoamento no interior de dutos, a dimensão característica para o cálculo do número de Reynolds é o diâmetro interno do duto. • Se Re for menor que 2.300 o escoamento será laminar; • Se Re for maior que 4.000 o escoamento será turbulento; • Se 2.500 < Re < 4.000, o escoamento pode se comportar de maneira bastante instável.
  14. 14. Escoamento do ar • Para os casos de escoamentos externos, na maioria das vezes leva- se em consideração a dimensão e a geometria do corpo imerso no escoamento, para que com isso sejam delimitadas as faixas de escoamento laminar, turbulento e em transição. • Os escoamentos de ventilação industrial são em sua maioria turbulentos.
  15. 15. Equação da Continuidade • Na ventilação industrial a quantidade volumétrica de ar a ser movimentada é frequentemente conduzida através de um sistema de dutos e aberturas, cujas dimensões são obtidas com o auxílio da equação da conservação de massa. Por esse motivo, o fluxo de massa que escoa ao longo de um sistema de dutos sem ramais é constante e pode ser apresentado por: 𝐴 ρ ∗ 𝑉𝑖 ∗ 𝑑𝐴 = ṁ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 Onde: Vi-> Módulo da velocidade axial na posição i numa seção transversal do escoamento (m/s); A -> Área onde ocorre a velocidade Vi (𝑚2); ṁ -> Fluxo de massa (Kg/s)
  16. 16. • Se ρ for constante, usando-se a definição de velocidade média, a equação anterior se reduz a: ṁ = ρ*V*A = constante • Esta equação ainda pode ser modificada para se obter a vazão volumétrica (Q), dada em 𝑚3/s. Q = V*A = ṁ ρ = constante • Ou ainda considerando-se duas posições ao longo do escoamento: 𝑄1 = 𝑉1*𝐴1 = 𝑉2*𝐴2 = 𝑄2
  17. 17. Equação da continuidade aplicada a dutos
  18. 18. Conceito de Pressão em um fluido (Pa) • Um corpo pode estar sujeito a três tipos de esforços: tração, compressão e cizalhamento. • Os fluidos não são capazes de resistir a esforços de tração, portanto eles apenas podem estar susceptíveis aos esforços de compressão e cizalhamento. • Os esforços de cizalhamento são responsáveis pela taxa de deformação no fluido, enquanto os esforços de compressão são responsáveis pelo aumento ou diminuição do volume ocupado pelo fluido, permitindo caracterizá-lo como compressível ou incompressível.
  19. 19. Tipos de pressão de escoamento • Um fluindo em movimento associado a uma força de inércia, e esta força é dividida por uma área unitária normal à direção do escoamento, representa também uma pressão. • Quando o escoamento é desacelerado, aparece um esforço adicional, permitindo descobrir três tipos de pressão no escoamento: Pressão estática, pressão de velocidade e pressão total.
  20. 20. Tipos de pressão de escoamento • Pressão estática (Pe): é uma função do estado termodinâmico do escoamento de ar e é exercida igualmente em todas as direções. • Pressão de velocidade (Pv): é associada com a energia cinética do escoamento de ar. Pv= ½ ρV2 • Pressão total (Pt): é a soma algébrica das pressões estática e de velocidade. Pt = Pe + Pv
  21. 21. Tipos de pressão de escoamento • Na ventilação industrial, e são normalmente medidas em relação à pressão atmosférica.
  22. 22. Equação de Bernoulli modificada • Aplicando-se a equação da energia referenciada a uma determinada linha de corrente e introduzindo-se as simplificações inerentes a um volume de controle caracterizado pelo escoamento em um duto sem ramificações, obtemos a equação de Bernoulli modificada:
  23. 23. Equação de Bernoulli modificada
  24. 24. Equação de Bernoulli modificada • Como o escoamento no interior do duto é de ar e supondo que o mesmo esteja à mesma temperatura do ar externo: • Onde reduzindo conseguimos as seguintes expressões:
  25. 25. Avaliação das perdas no escoamento • As perdas nos escoamentos na ventilação industrial trazem como resultado uma diminuição no nível total de pressão, quando expressa em altura equivalente de fluido, esta diminuição de pressão representa uma diminuição da altura de carga de escoamento. • Com isso, utiliza a expressão perda de carga para a diminuição da pressão correspondente às perdas.
  26. 26. Perda de carga em dutos de seção circular • A queda de pressão associada com a perda de energia devido ao atrito é calculada com o auxílio da equação de Darcy-Weisbach, podendo ser aplicada para os escoamentos laminares e turbulentos:
  27. 27. Perda de carga em dutos de seção circular • No escoamento laminar, o coeficiente de atrito tem determinação analítica e depende do número de Reynolds:
  28. 28. Perda de carga em dutos de seção circular • No escoamento turbulento, o coeficiente de atrito tem determinação experimental e depende do número de Reynolds e da rugosidade relativa da superfície interna das paredes do duto:
  29. 29. Diâmetros equivalentes • A determinação da perda de carga em duto de seção não circular é realizada usando-se o conceito de diâmetro equivalente. • Este conceito se baseia na determinação do diâmetro de um duto circular que apresente uma força média resistente ao escoamento. • Como um duto circular com diâmetro equivalente a uma seção retangular, terá a mesma perda de carga que um duto retangular.
  30. 30. Diâmetros equivalentes • Diâmetro equivalente para uma mesma velocidade do escoamento (diâmetro hidráulico). • Diâmetro equivalente para uma mesma vazão do escoamento.
  31. 31. Perda de carga nos acessórios • Sempre que um escoamento muda de direção, passa através de expansões ou contrações de seção, sempre que houver deslocamento da camada limite, ocorrerão perdas de energia e, consequentemente diminuição nas colunas de escoamento, produzindo assim a perda de carga nos acessórios. • Essas perdas podem ser calculadas a partir da energia cinética do escoamento, a jusante ou a montante do acessório, multiplicando- a por um coeficiente obtido experimentalmente (K).
  32. 32. Perda de carga nos acessórios • Assim: ∆𝑃 = 𝐾 𝑉2 2 𝜌 • Igualando a perda de carga de um acessório com aquela apresentada a um trecho reto de duto de comprimento Leq, obtém- se: ∆𝑃 = 𝐾 𝑉2 2 𝜌 = 𝑓 𝐿𝑒𝑞 𝐷 𝑉2 2 𝜌
  33. 33. Perda de carga nos acessórios • Podemos, assim determinar qual o comprimento equivalente de duto reto que apresenta a mesma perda de carga em um acessório: 𝐿𝑒𝑞 = 𝐾 𝑓 𝐷 • O comprimento assim definido toma nome de comprimento equivalente do acessório.
  34. 34. Ventiladores • Na ventilação industrial, o fornecimento de energia necessário para manter o escoamento do ar, frequentemente é feito através de ventiladores. ▫ Vazão do ventilador (Q): Volume de ar que passa pela saída do ventilador, por unidade de tempo ▫ Pressão total do ventilador (PTV): Diferença entre a pressão total do ar na saída e entrada do ventilador. ▫ Pressão estática do ventilador (PEV): Diferença entre a PTV e a pressão de velocidade na saída do ventilador. • A soma de todas as perdas de cargas de um sistema de dutos em série deve ser igual a pressão total do ventilador (PTV).
  35. 35. Tipos de pressão • Pressão estática (Pe): decresce ao longo de um duto de seção constante e cresce no aumento de seção (recuperação de pressão). • Pressão de velocidade (Pv): mantém-se constante em dutos de seção transversal constantes. • Pressão total (Pt): decresce sempre ao longo do sistema de dutos, podendo aumentar somente quando houver suprimento de energia ao escoamento (através do ventilador)
  36. 36. Sugestão de organização dos dados
  37. 37. Exemplo 1
  38. 38. Exemplo 2
  39. 39. Referências • CLEZAR, Carlos Alfredo; NOGUEIRA, Antônio Carlos Ribeiro. Ventilação industrial. 2. ed. Florianópolis: Ed da UFSC, 2009. • BRUNETTI, Franco. Mecânica dos fluidos. São Paulo: Pearson, 2005. • CIMM – Centro de Informação Metal Mecânica. Disponível em <http://www.cimm.com.br/portal/verbetes/exibir/496-viscosidade>; Acesso em: 15 de março de 2015; • Associação de Combate aos POPs – ANVISA. Disponível em <http://www.acpo.org.br/biblioteca/02_substancias_quimicas/Percloroetile no/01_10_anvisa.pdf>; Acesso em 15 de março de 2015;

×