Chapter 2

W
1
Chapter 2
Introduction to
Signals and systems
2
Outlines
• Classification of signals and systems
• Some useful signal operations
• Some useful signals.
• Frequency domain representation for
periodic signals
• Fourier Series Coefficients
• Power content of a periodic signal and
Parseval’ s theorem for the Fourier series
3
Classification of Signals
• Continuous-time and discrete-time signals
• Analog and digital signals
• Deterministic and random signals
• Periodic and aperiodic signals
• Power and energy signals
• Causal and non-causal.
• Time-limited and band-limited.
• Base-band and band-pass.
• Wide-band and narrow-band.
4
Continuous-time and discrete-time
periodic signals
5
Continuous-time and discrete-time
aperiodic signals
6
Analog & digital signals
• If a continuous-time signal can take on
any values in a continuous time interval, then
is called an analog signal.
• If a discrete-time signal can take on only a finite
number of distinct values, { }then the signal
is called a digital signal.
)(tg
)(tg
( )g n
7
Analog and Digital Signals
0 1 1 1 1 0 1
8
Deterministic signal
• A Deterministic signal is uniquely
described by a mathematical expression.
• They are reproducible, predictable and
well-behaved mathematically.
• Thus, everything is known about the signal
for all time.
9
A deterministic signal
10
Deterministic signal
11
Random signal
• Random signals are unpredictable.
• They are generated by systems that
contain randomness.
• At any particular time, the signal is a
random variable, which may have well
defined average and variance, but is not
completely defined in value.
12
A random signal
13
Periodic and aperiodic Signals
• A signal is a periodic signal if
• Otherwise, it is aperiodic signal.
0( ) ( ), , is integer.x t x t nT t n= + ∀
( )x t
0
0
0
: period(second)
1
( ),fundamental frequency
2 (rad/sec), angulr(radian) frequency
T
f Hz
T
fω π
=
=
14-2 0 2
-3
-2
-1
0
1
2
3
Time (s)
Square signal
15
-1 0 1
-2
-1
0
1
2
Time (s)
Square signal
16-1 0 1
-2
-1
0
1
2
Time (s)
Sawtooth signal
17
• A simple harmonic oscillation is mathematically
described by
x(t)= A cos (ω t+ θ), for - ∞ < t < ∞
• This signal is completely characterized by three
parameters:
A: is the amplitude (peak value) of x(t).
ω: is the radial frequency in (rad/s),
θ: is the phase in radians (rad)
18
Example:
Determine whether the following signals are
periodic. In case a signal is periodic,
specify its fundamental period.
a) x1(t)= 3 cos(3π t+π/6),
b) x2(t)= 2 sin(100π t),
c) x3(t)= x1(t)+ x2(t)
d) x4(t)= 3 cos(3π t+π/6) + 2 sin(30π t),
e) x5(t)= 2 exp(-j 20 π t)
19
Power and Energy signals
• A signal with finite energy is an energy signal
• A signal with finite power is a power signal
∞<= ∫
+∞
∞−
dttgEg
2
)(
∞<= ∫
+
−
∞→
2/
2/
2
)(
1
lim
T
T
T
g dttg
T
P
20
Power of a Periodic Signal
• The power of a periodic signal x(t) with period
T0 is defined as the mean- square value over
a period
0
0
/2
2
0 /2
1
( )
T
x
T
P x t dt
T
+
−
= ∫
21
Example
• Determine whether the signal g(t) is power or
energy signals or neither
0 2 4 6 8
0
1
2
g(t)
2 exp(-t/2)
22
Exercise
• Determine whether the signals are power or
energy signals or neither
1) x(t)= u(t)
2) y(t)= A sin t
3) s(t)= t u(t)
4)z(t)=
5)
6)
)(tδ
( ) cos(10 ) ( )v t t u tπ=
( ) sin 2 [ ( ) ( 2 )]w t t u t u tπ π= − −
23
Exercise
• Determine whether the signals are power or energy
signals or neither
1)
2)
3)
1 1 2 2( ) cos( ) cos( )x t a t b tω θ ω θ= + + +
1 1 1 2( ) cos( ) cos( )x t a t b tω θ ω θ= + + +
1
( ) cos( )n n n
n
y t c tω θ
∞
=
= +∑
24-1 0 1
-2
-1
0
1
2
Time (s)
Sawtooth signal
Determine the suitable measures for the signal x(t)
25
Some Useful Functions
• Unit impulse function
• Unit step function
• Rectangular function
• Triangular function
• Sampling function
• Sinc function
• Sinusoidal, exponential and logarithmic
functions
26
Unit impulse function
• The unit impulse function, also known as the
dirac delta function, δ(t), is defined by



≠
=∞
=
0,0
0,
)(
t
t
tδ 1)( =∫
+∞
∞−
dttand δ
27
∆0
28
• Multiplication of a function by δ(t)
• We can also prove that
)0()()( sdttts =∫
+∞
∞−
δ
)()0()()( tgttg δδ =
)()()()( τδττδ −=− tgttg
)()()( ττδ sdttts =−∫
+∞
∞−
29
Unit step function
• The unit step function u(t) is
• u(t) is related to δ(t) by



<
≥
=
0,0
0,1
)(
t
t
tu
∫∞−
=
t
dtu ττδ )()( )(t
dt
du
δ=
30
Unit step
31
Rectangular function
• A single rectangular pulse is denoted by





>
=
<
=





2/,0
2/,5.0
2/,1
τ
τ
τ
τ
t
t
t
t
rect
32-3 -2 -1 0 1 2 3
0
0.5
1
1.5
2
2.5
3
Time (s)
Rectangular signal
33
Triangular function
• A triangular function is denoted by







>
<−
=





∆
2
1
,0
2
1
,21
τ
ττ
τ t
tt
t
34
• Sinc function
• Sampling function
sin( )
sinc( )
x
x
x
π
π
=
( ) ( ), :samplig intervalsT s s
n
t t nT Tδ δ
∞
=−∞
= −∑
35
-5 0 5
-0.5
0
0.5
1
1.5
2
2.5
3
Time (s)
Sinc signal
36
Some Useful Signal Operations
• Time shifting
(shift right or delay)
(shift left or advance)
• Time scaling
( )g t τ−
( )g t τ+
t
a
t
a
( ), 1 is compression
( ), 1 is expansion
g( ), 1 is expansion
g( ), 1 is compression
g at a
g at a
a
a
f
p
f
p
37
Signal operations cont.
• Time inversion
( ) : mirror image of ( ) about Y-axisg t g t−
( ) : shift right of ( )
( ) :shift left of ( )
g t g t
g t g t
τ
τ
− + −
− − −
38-10 -5 0 5
0
1
2
3
Time (s)
g(t)
g(t-5)
g(t)
g(t-5)
g(t)
g(t-5)
39-10 -5 0 5
0
1
2
3
Time (s)
g(t+5)
40
Scaling
-5 0 5
0
2
4
-5 0 5
0
2
4
-5 0 5
0
2
4
g(t)
g(2t)
g(t/2)
41
Time Inversion
-5 -4 -3 -2 -1 0 1 2 3 4 5
0
0.5
1
1.5
2
-5 -4 -3 -2 -1 0 1 2 3 4 5
0
0.5
1
1.5
2
g(t)
g(-t)
42
Inner product of signals
• Inner product of two complex signals x(t), y(t) over
the interval [t1,t2] is
If inner product=0, x(t), y(t) are orthogonal.
2
1
( ( ), ( )) ( ) ( )
t
t
x t y t x t y t dt∗
= ∫
43
Inner product cont.
• The approximation of x(t) by y(t) over the interval
is given by
• The optimum value of the constant C that minimize
the energy of the error signal
is given by
( ) ( ) ( )e t x t cy t= −
2
1
1
( ) ( )
t
y t
C x t y t dt
E
= ∫
1 2[ , ]t t
( ) ( )x t cy t=
44
Power and energy of orthogonal
signals
• The power/energy of the sum of mutually
orthogonal signals is sum of their individual
powers/energies. i.e if
Such that are mutually orthogonal,
then
1
( ) ( )
n
i
i
x t g t
=
= ∑
( ), 1,....ig t i n=
1
i
n
x g
i
p p
=
= ∑
45
Time and Frequency Domains
representations of signals
• Time domain: an oscilloscope displays the
amplitude versus time
• Frequency domain: a spectrum analyzer
displays the amplitude or power versus
frequency
• Frequency-domain display provides
information on bandwidth and harmonic
components of a signal.
46
Benefit of Frequency Domain
Representation
• Distinguishing a signal from noise
x(t) = sin(2π 50t)+sin(2π 120t);
y(t) = x(t) + noise;
• Selecting frequency bands in
Telecommunication system
470 10 20 30 40 50
-5
0
5
Signal Corrupted with Zero-Mean Random Noise
Time (seconds)
480 200 400 600 800 1000
0
20
40
60
80
Frequency content of y
Frequency (Hz)
49
Fourier Series Coefficients
• The frequency domain representation of a
periodic signal is obtained from the
Fourier series expansion.
• The frequency domain representation of a
non-periodic signal is obtained from the
Fourier transform.
50
• The Fourier series is an effective technique for
describing periodic functions. It provides a
method for expressing a periodic function as a
linear combination of sinusoidal functions.
• Trigonometric Fourier Series
• Compact trigonometric Fourier Series
• Complex Fourier Series
51
Trigonometric Fourier Series
0
0
0
2
( ) cos(2 )n
T
a x t nf t dt
T
π= ∫
( )0 0 0
1
( ) cos2 sin 2n n
n
x t a a nf t b nf tπ π
∞
=
= + +∑
0
0
0
2
( ) sin(2 )n
T
b x t nf t dt
T
π= ∫
52
Trigonometric Fourier Series
cont.
0
0
0
1
( )
T
a x t dt
T
= ∫
53
Compact trigonometric Fourier
series
0 0
1
2 2
0 0
1
( ) cos(2 )
,
tan
n n
k
n n n
n
n
n
x t c c nf t
c a b c a
b
a
π θ
θ
∞
=
−
= + +
= + =
 −
=  ÷
 
∑
54
Complex Fourier Series
• If x(t) is a periodic signal with a
fundamental period T0=1/f0
• are called the Fourier coefficients
2
( ) oj n f t
n
n
x t D e π
∞
=−∞
= ∑
0
0
2
0
1
( ) j n f t
n
T
D x t e dt
T
π−
= ∫
nD
55
Complex Fourier Series cont.
1
2
1
2
n
n
n n
j
n n
j
n n
j j
n n n n
D c e
D c e
D D e and D D e
θ
θ
θ θ
−
−
−
−
=
=
= =
56
Frequency Spectra
• A plot of |Dn| versus the frequency is called the
amplitude spectrum of x(t).
• A plot of the phase versus the frequency is
called the phase spectrum of x(t).
• The frequency spectra of x(t) refers to the
amplitude spectrum and phase spectrum.
nθ
57
Example
• Find the exponential Fourier series and sketch
the corresponding spectra for the sawtooth
signal with period 2 π
-10 -5 0 5 10
0
0.5
1
1.5
2
58
• Dn= j/(π n); for n≠0
• D0= 1;
02
0
1
( )
o
j n f t
n
T
D x t e dt
T
π−
= ∫
( )12
−=∫ ta
a
e
dtet
ta
ta
59
-5 0 5
0
0.5
1
1.5
Amplitude Spectrum
-5 0 5
-100
0
100 Phase spectrum
60
Power Content of a Periodic Signal
• The power content of a periodic signal x(t)
with period T0 is defined as the mean- square
value over a period
∫
+
−
=
2/
2/
2
0
0
0
)(
1
T
T
dttx
T
P
61
Parseval’s Power Theorem
• Parseval’ s power theorem series states that
if x(t) is a periodic signal with period T0, then
0
0
2
/ 2 2
2 2
0
10 / 2
2 2
2
0
1 1
1
( )
2
2 2
n
n
T
n
nT
n n
n n
D
c
x t dt c
T
a b
a
∞
=−∞
+ ∞
=−
∞ ∞
= =




= +


+ +

∑
∑∫
∑ ∑
62
Example 1
• Compute the complex Fourier series coefficients for
the first ten positive harmonic frequencies of the
periodic signal f(t) which has a period of 2π and
defined as
( ) 5 ,0 2t
f t e t π−
= ≤ ≤
63
Example 2
• Plot the spectra of x(t) if T1= T/4
64
Example 3
• Plot the spectra of x(t).
0( ) ( )
n
x t t nTδ
∞
=−∞
= −∑
65
Classification of systems
• Linear and non-linear:
-linear :if system i/o satisfies the superposition
principle. i.e.
1 2 1 2
1 1
2 2
[ ( ) ( )] ( ) ( )
where ( ) [ ( )]
and ( ) [ ( )]
F ax t bx t ay t by t
y t F x t
y t F x t
+ = +
=
=
66
Classification of sys. Cont.
• Time-shift invariant and time varying
-invariant: delay i/p by the o/p delayed by same a
mount. i.e
0 0
if ( ) [ ( )]
then ( ) [ ( )]
y t F x t
y t t F x t t
=
− = −
0t
67
Classification of sys. Cont.
• Causal and non-causal system
-causal: if the o/p at t=t0 only depends on the present
and previous values of the i/p. i.e
LTI system is causal if its impulse response is causal.
i.e.
0 0( ) [ ( ), ]y t F x t t t= ≤
( ) 0, 0h t t= ∀ p
68
Suggested problems
• 2.1.1,2.1.2,2.1.4,2.1.8
• 2.3.1,2.3.3,2.3.4
• 2.4.2,2.4.3
• 2.5.2, 2.5.5
• 2.8.1,2.8.4,2.8.5
• 2.9.2,2.9.3
1 de 68

Recomendados

Signal & system por
Signal & systemSignal & system
Signal & systemGhulam Shabbir
3.8K visualizações163 slides
SDH Frame Structure por
SDH Frame StructureSDH Frame Structure
SDH Frame StructureSamadhan Tambe
35.1K visualizações19 slides
Correlative level coding por
Correlative level codingCorrelative level coding
Correlative level codingsrkrishna341
18.2K visualizações27 slides
DSP_2018_FOEHU - Lec 05 - Digital Filters por
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersAmr E. Mohamed
2K visualizações61 slides
DSP_2018_FOEHU - Lec 06 - FIR Filter Design por
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignAmr E. Mohamed
3.9K visualizações37 slides
Matched filter detection por
Matched filter detectionMatched filter detection
Matched filter detectionSURYA DEEPAK
3K visualizações14 slides

Mais conteúdo relacionado

Mais procurados

Chap13--Digital Modulation Techniques.ppt por
Chap13--Digital Modulation Techniques.pptChap13--Digital Modulation Techniques.ppt
Chap13--Digital Modulation Techniques.pptC1962AnweshaBarua
128 visualizações109 slides
03 time division-multiplexing por
03 time division-multiplexing03 time division-multiplexing
03 time division-multiplexingRafeek Mohamed
14K visualizações43 slides
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN) por
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)mohammedalimahdi
5.3K visualizações68 slides
Introduction to equalization por
Introduction to equalizationIntroduction to equalization
Introduction to equalizationHarshit Srivastava
6K visualizações20 slides
Pcm por
PcmPcm
Pcmsrkrishna341
22.9K visualizações33 slides
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM) por
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)Ravikiran A
28.5K visualizações68 slides

Mais procurados(20)

Chap13--Digital Modulation Techniques.ppt por C1962AnweshaBarua
Chap13--Digital Modulation Techniques.pptChap13--Digital Modulation Techniques.ppt
Chap13--Digital Modulation Techniques.ppt
C1962AnweshaBarua128 visualizações
03 time division-multiplexing por Rafeek Mohamed
03 time division-multiplexing03 time division-multiplexing
03 time division-multiplexing
Rafeek Mohamed14K visualizações
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN) por mohammedalimahdi
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)
mohammedalimahdi5.3K visualizações
Introduction to equalization por Harshit Srivastava
Introduction to equalizationIntroduction to equalization
Introduction to equalization
Harshit Srivastava6K visualizações
Pcm por srkrishna341
PcmPcm
Pcm
srkrishna34122.9K visualizações
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM) por Ravikiran A
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
Ravikiran A28.5K visualizações
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals por Amr E. Mohamed
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
Amr E. Mohamed3.7K visualizações
Decimation in time and frequency por SARITHA REDDY
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequency
SARITHA REDDY85.8K visualizações
Ec8352 signals and systems 2 marks with answers por Gayathri Krishnamoorthy
Ec8352 signals and systems   2 marks with answersEc8352 signals and systems   2 marks with answers
Ec8352 signals and systems 2 marks with answers
Gayathri Krishnamoorthy5K visualizações
DSP_2018_FOEHU - Lec 0 - Course Outlines por Amr E. Mohamed
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course Outlines
Amr E. Mohamed668 visualizações
communication system Chapter 5 por moeen khan afridi
communication system Chapter 5communication system Chapter 5
communication system Chapter 5
moeen khan afridi2.3K visualizações
Differential pulse code modulation por Ramraj Bhadu
Differential pulse code modulationDifferential pulse code modulation
Differential pulse code modulation
Ramraj Bhadu10K visualizações
Circular convolution Using DFT Matlab Code por Bharti Airtel Ltd.
Circular convolution Using DFT Matlab CodeCircular convolution Using DFT Matlab Code
Circular convolution Using DFT Matlab Code
Bharti Airtel Ltd.7.9K visualizações
Strowger Switching System por Gourab Ghosh
Strowger Switching SystemStrowger Switching System
Strowger Switching System
Gourab Ghosh5.7K visualizações
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems por Amr E. Mohamed
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and SystemsDSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems
Amr E. Mohamed817 visualizações
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform por Amr E. Mohamed
DSP_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
Amr E. Mohamed1.5K visualizações
Chapter 4 por wafaa_A7
Chapter 4Chapter 4
Chapter 4
wafaa_A714.8K visualizações
Muestreo por israel.1x
MuestreoMuestreo
Muestreo
israel.1x14.8K visualizações
Dsp U Lec07 Realization Of Discrete Time Systems por taha25
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
taha256.5K visualizações

Destaque

Chapter 2 signals and spectra, por
Chapter 2   signals and spectra,Chapter 2   signals and spectra,
Chapter 2 signals and spectra,nahrain university
27.6K visualizações123 slides
communication system Chapter 2 por
communication system Chapter 2communication system Chapter 2
communication system Chapter 2moeen khan afridi
9.8K visualizações88 slides
Solved problems por
Solved problemsSolved problems
Solved problemsMulugeta Ashango
164K visualizações145 slides
Introduction2 por
Introduction2Introduction2
Introduction2indiacourse1
324 visualizações8 slides
Fourier series and transforms por
Fourier series and transformsFourier series and transforms
Fourier series and transformsPepa Vidosa Serradilla
15.1K visualizações31 slides
Signals and classification por
Signals and classificationSignals and classification
Signals and classificationSuraj Mishra
18.3K visualizações39 slides

Destaque(20)

Chapter 2 signals and spectra, por nahrain university
Chapter 2   signals and spectra,Chapter 2   signals and spectra,
Chapter 2 signals and spectra,
nahrain university27.6K visualizações
communication system Chapter 2 por moeen khan afridi
communication system Chapter 2communication system Chapter 2
communication system Chapter 2
moeen khan afridi9.8K visualizações
Solved problems por Mulugeta Ashango
Solved problemsSolved problems
Solved problems
Mulugeta Ashango164K visualizações
Introduction2 por indiacourse1
Introduction2Introduction2
Introduction2
indiacourse1324 visualizações
Fourier series and transforms por Pepa Vidosa Serradilla
Fourier series and transformsFourier series and transforms
Fourier series and transforms
Pepa Vidosa Serradilla15.1K visualizações
Signals and classification por Suraj Mishra
Signals and classificationSignals and classification
Signals and classification
Suraj Mishra18.3K visualizações
Chapter 5 por wafaa_A7
Chapter 5Chapter 5
Chapter 5
wafaa_A71.9K visualizações
communication system ch1 por moeen khan afridi
communication system ch1communication system ch1
communication system ch1
moeen khan afridi3.1K visualizações
FIR por Umesh Kumar
 FIR FIR
FIR
Umesh Kumar420 visualizações
communication system Chapter 3 por moeen khan afridi
communication system Chapter 3communication system Chapter 3
communication system Chapter 3
moeen khan afridi4K visualizações
The FFT And Spectral Analysis por Athanasios Anastasiou
The FFT And Spectral AnalysisThe FFT And Spectral Analysis
The FFT And Spectral Analysis
Athanasios Anastasiou10.9K visualizações
Seismic data processing lecture 4 por Amin khalil
Seismic data processing lecture 4Seismic data processing lecture 4
Seismic data processing lecture 4
Amin khalil3.5K visualizações
Chap 3 por Tanuj Patel
Chap 3Chap 3
Chap 3
Tanuj Patel52.1K visualizações
Fourier series example por Abi finni
Fourier series exampleFourier series example
Fourier series example
Abi finni17K visualizações
Lti system(akept) por Fariza Zahari
Lti system(akept)Lti system(akept)
Lti system(akept)
Fariza Zahari2.7K visualizações
Z transform por hemakankshini
 Z transform Z transform
Z transform
hemakankshini9.1K visualizações
Chapter 6m por wafaa_A7
Chapter 6mChapter 6m
Chapter 6m
wafaa_A714.8K visualizações
fourier series por 8laddu8
fourier seriesfourier series
fourier series
8laddu813.9K visualizações
Solved numerical problems of fourier series por Mohammad Imran
Solved numerical problems of fourier seriesSolved numerical problems of fourier series
Solved numerical problems of fourier series
Mohammad Imran103.6K visualizações
Chapter 2 (maths 3) por Prathab Harinathan
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
Prathab Harinathan58K visualizações

Similar a Chapter 2

Eeb317 principles of telecoms 2015 por
Eeb317 principles of telecoms 2015Eeb317 principles of telecoms 2015
Eeb317 principles of telecoms 2015Pritchardmabutho
355 visualizações59 slides
Signals and Systems.pptx por
Signals and Systems.pptxSignals and Systems.pptx
Signals and Systems.pptxVairaPrakash2
145 visualizações19 slides
Signals and Systems.pptx por
Signals and Systems.pptxSignals and Systems.pptx
Signals and Systems.pptxVairaPrakash2
55 visualizações19 slides
Basic concepts por
Basic conceptsBasic concepts
Basic conceptsSyed Zaid Irshad
1.1K visualizações27 slides
PPT Chapter-1-V1.pptx__26715_1_1539251776000.pptx.pptx por
PPT Chapter-1-V1.pptx__26715_1_1539251776000.pptx.pptxPPT Chapter-1-V1.pptx__26715_1_1539251776000.pptx.pptx
PPT Chapter-1-V1.pptx__26715_1_1539251776000.pptx.pptxidrissaeed
44 visualizações31 slides
Signals and system por
Signals and systemSignals and system
Signals and systemBilawalBaloch1
529 visualizações51 slides

Similar a Chapter 2(20)

Eeb317 principles of telecoms 2015 por Pritchardmabutho
Eeb317 principles of telecoms 2015Eeb317 principles of telecoms 2015
Eeb317 principles of telecoms 2015
Pritchardmabutho355 visualizações
Signals and Systems.pptx por VairaPrakash2
Signals and Systems.pptxSignals and Systems.pptx
Signals and Systems.pptx
VairaPrakash2145 visualizações
Signals and Systems.pptx por VairaPrakash2
Signals and Systems.pptxSignals and Systems.pptx
Signals and Systems.pptx
VairaPrakash255 visualizações
Basic concepts por Syed Zaid Irshad
Basic conceptsBasic concepts
Basic concepts
Syed Zaid Irshad1.1K visualizações
PPT Chapter-1-V1.pptx__26715_1_1539251776000.pptx.pptx por idrissaeed
PPT Chapter-1-V1.pptx__26715_1_1539251776000.pptx.pptxPPT Chapter-1-V1.pptx__26715_1_1539251776000.pptx.pptx
PPT Chapter-1-V1.pptx__26715_1_1539251776000.pptx.pptx
idrissaeed44 visualizações
Signals and system por BilawalBaloch1
Signals and systemSignals and system
Signals and system
BilawalBaloch1529 visualizações
Lecture 9 por Wael Sharba
Lecture 9Lecture 9
Lecture 9
Wael Sharba623 visualizações
Fourier analysis of signals and systems por Babul Islam
Fourier analysis of signals and systemsFourier analysis of signals and systems
Fourier analysis of signals and systems
Babul Islam233 visualizações
SP_BEE2143_C1.pptx por IffahSkmd
SP_BEE2143_C1.pptxSP_BEE2143_C1.pptx
SP_BEE2143_C1.pptx
IffahSkmd6 visualizações
PAM por ravirec
PAMPAM
PAM
ravirec260 visualizações
2. signal & systems beyonds por skysunilyadav
2. signal & systems  beyonds2. signal & systems  beyonds
2. signal & systems beyonds
skysunilyadav1.3K visualizações
Chapter1 - Signal and System por Attaporn Ninsuwan
Chapter1 - Signal and SystemChapter1 - Signal and System
Chapter1 - Signal and System
Attaporn Ninsuwan1K visualizações
Unit 1 -Introduction to signals and standard signals por Dr.SHANTHI K.G
Unit 1 -Introduction to signals  and standard signalsUnit 1 -Introduction to signals  and standard signals
Unit 1 -Introduction to signals and standard signals
Dr.SHANTHI K.G580 visualizações
Overview of sampling por Sagar Kumar
Overview of samplingOverview of sampling
Overview of sampling
Sagar Kumar7.9K visualizações
Ray : modeling dynamic systems por Houw Liong The
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
Houw Liong The936 visualizações
Signals and systems( chapter 1) por Fariza Zahari
Signals and systems( chapter 1)Signals and systems( chapter 1)
Signals and systems( chapter 1)
Fariza Zahari47.5K visualizações
Lecture13 por INDHULEKSHMI M.C
Lecture13Lecture13
Lecture13
INDHULEKSHMI M.C945 visualizações
Signal & systems por AJAL A J
Signal & systemsSignal & systems
Signal & systems
AJAL A J48.5K visualizações

Chapter 2

  • 2. 2 Outlines • Classification of signals and systems • Some useful signal operations • Some useful signals. • Frequency domain representation for periodic signals • Fourier Series Coefficients • Power content of a periodic signal and Parseval’ s theorem for the Fourier series
  • 3. 3 Classification of Signals • Continuous-time and discrete-time signals • Analog and digital signals • Deterministic and random signals • Periodic and aperiodic signals • Power and energy signals • Causal and non-causal. • Time-limited and band-limited. • Base-band and band-pass. • Wide-band and narrow-band.
  • 6. 6 Analog & digital signals • If a continuous-time signal can take on any values in a continuous time interval, then is called an analog signal. • If a discrete-time signal can take on only a finite number of distinct values, { }then the signal is called a digital signal. )(tg )(tg ( )g n
  • 7. 7 Analog and Digital Signals 0 1 1 1 1 0 1
  • 8. 8 Deterministic signal • A Deterministic signal is uniquely described by a mathematical expression. • They are reproducible, predictable and well-behaved mathematically. • Thus, everything is known about the signal for all time.
  • 11. 11 Random signal • Random signals are unpredictable. • They are generated by systems that contain randomness. • At any particular time, the signal is a random variable, which may have well defined average and variance, but is not completely defined in value.
  • 13. 13 Periodic and aperiodic Signals • A signal is a periodic signal if • Otherwise, it is aperiodic signal. 0( ) ( ), , is integer.x t x t nT t n= + ∀ ( )x t 0 0 0 : period(second) 1 ( ),fundamental frequency 2 (rad/sec), angulr(radian) frequency T f Hz T fω π = =
  • 14. 14-2 0 2 -3 -2 -1 0 1 2 3 Time (s) Square signal
  • 15. 15 -1 0 1 -2 -1 0 1 2 Time (s) Square signal
  • 16. 16-1 0 1 -2 -1 0 1 2 Time (s) Sawtooth signal
  • 17. 17 • A simple harmonic oscillation is mathematically described by x(t)= A cos (ω t+ θ), for - ∞ < t < ∞ • This signal is completely characterized by three parameters: A: is the amplitude (peak value) of x(t). ω: is the radial frequency in (rad/s), θ: is the phase in radians (rad)
  • 18. 18 Example: Determine whether the following signals are periodic. In case a signal is periodic, specify its fundamental period. a) x1(t)= 3 cos(3π t+π/6), b) x2(t)= 2 sin(100π t), c) x3(t)= x1(t)+ x2(t) d) x4(t)= 3 cos(3π t+π/6) + 2 sin(30π t), e) x5(t)= 2 exp(-j 20 π t)
  • 19. 19 Power and Energy signals • A signal with finite energy is an energy signal • A signal with finite power is a power signal ∞<= ∫ +∞ ∞− dttgEg 2 )( ∞<= ∫ + − ∞→ 2/ 2/ 2 )( 1 lim T T T g dttg T P
  • 20. 20 Power of a Periodic Signal • The power of a periodic signal x(t) with period T0 is defined as the mean- square value over a period 0 0 /2 2 0 /2 1 ( ) T x T P x t dt T + − = ∫
  • 21. 21 Example • Determine whether the signal g(t) is power or energy signals or neither 0 2 4 6 8 0 1 2 g(t) 2 exp(-t/2)
  • 22. 22 Exercise • Determine whether the signals are power or energy signals or neither 1) x(t)= u(t) 2) y(t)= A sin t 3) s(t)= t u(t) 4)z(t)= 5) 6) )(tδ ( ) cos(10 ) ( )v t t u tπ= ( ) sin 2 [ ( ) ( 2 )]w t t u t u tπ π= − −
  • 23. 23 Exercise • Determine whether the signals are power or energy signals or neither 1) 2) 3) 1 1 2 2( ) cos( ) cos( )x t a t b tω θ ω θ= + + + 1 1 1 2( ) cos( ) cos( )x t a t b tω θ ω θ= + + + 1 ( ) cos( )n n n n y t c tω θ ∞ = = +∑
  • 24. 24-1 0 1 -2 -1 0 1 2 Time (s) Sawtooth signal Determine the suitable measures for the signal x(t)
  • 25. 25 Some Useful Functions • Unit impulse function • Unit step function • Rectangular function • Triangular function • Sampling function • Sinc function • Sinusoidal, exponential and logarithmic functions
  • 26. 26 Unit impulse function • The unit impulse function, also known as the dirac delta function, δ(t), is defined by    ≠ =∞ = 0,0 0, )( t t tδ 1)( =∫ +∞ ∞− dttand δ
  • 28. 28 • Multiplication of a function by δ(t) • We can also prove that )0()()( sdttts =∫ +∞ ∞− δ )()0()()( tgttg δδ = )()()()( τδττδ −=− tgttg )()()( ττδ sdttts =−∫ +∞ ∞−
  • 29. 29 Unit step function • The unit step function u(t) is • u(t) is related to δ(t) by    < ≥ = 0,0 0,1 )( t t tu ∫∞− = t dtu ττδ )()( )(t dt du δ=
  • 31. 31 Rectangular function • A single rectangular pulse is denoted by      > = < =      2/,0 2/,5.0 2/,1 τ τ τ τ t t t t rect
  • 32. 32-3 -2 -1 0 1 2 3 0 0.5 1 1.5 2 2.5 3 Time (s) Rectangular signal
  • 33. 33 Triangular function • A triangular function is denoted by        > <− =      ∆ 2 1 ,0 2 1 ,21 τ ττ τ t tt t
  • 34. 34 • Sinc function • Sampling function sin( ) sinc( ) x x x π π = ( ) ( ), :samplig intervalsT s s n t t nT Tδ δ ∞ =−∞ = −∑
  • 36. 36 Some Useful Signal Operations • Time shifting (shift right or delay) (shift left or advance) • Time scaling ( )g t τ− ( )g t τ+ t a t a ( ), 1 is compression ( ), 1 is expansion g( ), 1 is expansion g( ), 1 is compression g at a g at a a a f p f p
  • 37. 37 Signal operations cont. • Time inversion ( ) : mirror image of ( ) about Y-axisg t g t− ( ) : shift right of ( ) ( ) :shift left of ( ) g t g t g t g t τ τ − + − − − −
  • 38. 38-10 -5 0 5 0 1 2 3 Time (s) g(t) g(t-5) g(t) g(t-5) g(t) g(t-5)
  • 39. 39-10 -5 0 5 0 1 2 3 Time (s) g(t+5)
  • 40. 40 Scaling -5 0 5 0 2 4 -5 0 5 0 2 4 -5 0 5 0 2 4 g(t) g(2t) g(t/2)
  • 41. 41 Time Inversion -5 -4 -3 -2 -1 0 1 2 3 4 5 0 0.5 1 1.5 2 -5 -4 -3 -2 -1 0 1 2 3 4 5 0 0.5 1 1.5 2 g(t) g(-t)
  • 42. 42 Inner product of signals • Inner product of two complex signals x(t), y(t) over the interval [t1,t2] is If inner product=0, x(t), y(t) are orthogonal. 2 1 ( ( ), ( )) ( ) ( ) t t x t y t x t y t dt∗ = ∫
  • 43. 43 Inner product cont. • The approximation of x(t) by y(t) over the interval is given by • The optimum value of the constant C that minimize the energy of the error signal is given by ( ) ( ) ( )e t x t cy t= − 2 1 1 ( ) ( ) t y t C x t y t dt E = ∫ 1 2[ , ]t t ( ) ( )x t cy t=
  • 44. 44 Power and energy of orthogonal signals • The power/energy of the sum of mutually orthogonal signals is sum of their individual powers/energies. i.e if Such that are mutually orthogonal, then 1 ( ) ( ) n i i x t g t = = ∑ ( ), 1,....ig t i n= 1 i n x g i p p = = ∑
  • 45. 45 Time and Frequency Domains representations of signals • Time domain: an oscilloscope displays the amplitude versus time • Frequency domain: a spectrum analyzer displays the amplitude or power versus frequency • Frequency-domain display provides information on bandwidth and harmonic components of a signal.
  • 46. 46 Benefit of Frequency Domain Representation • Distinguishing a signal from noise x(t) = sin(2π 50t)+sin(2π 120t); y(t) = x(t) + noise; • Selecting frequency bands in Telecommunication system
  • 47. 470 10 20 30 40 50 -5 0 5 Signal Corrupted with Zero-Mean Random Noise Time (seconds)
  • 48. 480 200 400 600 800 1000 0 20 40 60 80 Frequency content of y Frequency (Hz)
  • 49. 49 Fourier Series Coefficients • The frequency domain representation of a periodic signal is obtained from the Fourier series expansion. • The frequency domain representation of a non-periodic signal is obtained from the Fourier transform.
  • 50. 50 • The Fourier series is an effective technique for describing periodic functions. It provides a method for expressing a periodic function as a linear combination of sinusoidal functions. • Trigonometric Fourier Series • Compact trigonometric Fourier Series • Complex Fourier Series
  • 51. 51 Trigonometric Fourier Series 0 0 0 2 ( ) cos(2 )n T a x t nf t dt T π= ∫ ( )0 0 0 1 ( ) cos2 sin 2n n n x t a a nf t b nf tπ π ∞ = = + +∑ 0 0 0 2 ( ) sin(2 )n T b x t nf t dt T π= ∫
  • 53. 53 Compact trigonometric Fourier series 0 0 1 2 2 0 0 1 ( ) cos(2 ) , tan n n k n n n n n n x t c c nf t c a b c a b a π θ θ ∞ = − = + + = + =  − =  ÷   ∑
  • 54. 54 Complex Fourier Series • If x(t) is a periodic signal with a fundamental period T0=1/f0 • are called the Fourier coefficients 2 ( ) oj n f t n n x t D e π ∞ =−∞ = ∑ 0 0 2 0 1 ( ) j n f t n T D x t e dt T π− = ∫ nD
  • 55. 55 Complex Fourier Series cont. 1 2 1 2 n n n n j n n j n n j j n n n n D c e D c e D D e and D D e θ θ θ θ − − − − = = = =
  • 56. 56 Frequency Spectra • A plot of |Dn| versus the frequency is called the amplitude spectrum of x(t). • A plot of the phase versus the frequency is called the phase spectrum of x(t). • The frequency spectra of x(t) refers to the amplitude spectrum and phase spectrum. nθ
  • 57. 57 Example • Find the exponential Fourier series and sketch the corresponding spectra for the sawtooth signal with period 2 π -10 -5 0 5 10 0 0.5 1 1.5 2
  • 58. 58 • Dn= j/(π n); for n≠0 • D0= 1; 02 0 1 ( ) o j n f t n T D x t e dt T π− = ∫ ( )12 −=∫ ta a e dtet ta ta
  • 59. 59 -5 0 5 0 0.5 1 1.5 Amplitude Spectrum -5 0 5 -100 0 100 Phase spectrum
  • 60. 60 Power Content of a Periodic Signal • The power content of a periodic signal x(t) with period T0 is defined as the mean- square value over a period ∫ + − = 2/ 2/ 2 0 0 0 )( 1 T T dttx T P
  • 61. 61 Parseval’s Power Theorem • Parseval’ s power theorem series states that if x(t) is a periodic signal with period T0, then 0 0 2 / 2 2 2 2 0 10 / 2 2 2 2 0 1 1 1 ( ) 2 2 2 n n T n nT n n n n D c x t dt c T a b a ∞ =−∞ + ∞ =− ∞ ∞ = =     = +   + +  ∑ ∑∫ ∑ ∑
  • 62. 62 Example 1 • Compute the complex Fourier series coefficients for the first ten positive harmonic frequencies of the periodic signal f(t) which has a period of 2π and defined as ( ) 5 ,0 2t f t e t π− = ≤ ≤
  • 63. 63 Example 2 • Plot the spectra of x(t) if T1= T/4
  • 64. 64 Example 3 • Plot the spectra of x(t). 0( ) ( ) n x t t nTδ ∞ =−∞ = −∑
  • 65. 65 Classification of systems • Linear and non-linear: -linear :if system i/o satisfies the superposition principle. i.e. 1 2 1 2 1 1 2 2 [ ( ) ( )] ( ) ( ) where ( ) [ ( )] and ( ) [ ( )] F ax t bx t ay t by t y t F x t y t F x t + = + = =
  • 66. 66 Classification of sys. Cont. • Time-shift invariant and time varying -invariant: delay i/p by the o/p delayed by same a mount. i.e 0 0 if ( ) [ ( )] then ( ) [ ( )] y t F x t y t t F x t t = − = − 0t
  • 67. 67 Classification of sys. Cont. • Causal and non-causal system -causal: if the o/p at t=t0 only depends on the present and previous values of the i/p. i.e LTI system is causal if its impulse response is causal. i.e. 0 0( ) [ ( ), ]y t F x t t t= ≤ ( ) 0, 0h t t= ∀ p
  • 68. 68 Suggested problems • 2.1.1,2.1.2,2.1.4,2.1.8 • 2.3.1,2.3.3,2.3.4 • 2.4.2,2.4.3 • 2.5.2, 2.5.5 • 2.8.1,2.8.4,2.8.5 • 2.9.2,2.9.3