HR.pptx

vishal laddha
vishal laddhaManager,C&I,Jindal Power Limited em Jindal Power Limited
Heat Rate
Heat rate is the pulse rate of a power plant to
know the health of the plant.
Net heat rate is the single parameter that
encompasses total performance indices of a
power plant.
Efficiency % = Output Energy X 100
Input Energy
Heat rate = Input Energy
Output Energy
Heat rate = 1
Efficiency %
1 kwh = 860 kcal
Some Basics to understand Heat Rate
Boiler
G
Turbine GT
UT-A
UT- B
Heat
Energy of
Coal
Heat
Energy of
Steam Gross
Elect.
Energy
Net
Elect.
Energy
Gross Unit Heat Rate
A “unit” heat rate includes all heat input to the boiler. The heat input to the boiler
should include all forms of chemical energy supplied and the “gross” electrical
generation
Net Unit Heat Rate
A “unit” heat rate includes all heat input to the boiler. The heat input to the boiler
should include all forms of chemical energy supplied and the “net” electrical
generation i.e., auxiliary power is to be subtracted from gross electrical energy
Gross Turbine Cycle Heat Rate (GTCHR)
A “Gross Turbine Cycle” heat rate includes only heat input to the turbine cycle. GTCHR
is the ratio of total heat input to the turbine cycle and the gross generator output
Design Unit Heat Rate
Design heat rate is anticipated heat rate at design parameters at specific load
condition like different MCR, VWO by manufacturer
Boiler
G
Turbine GT
UT-A
UT- B
Heat
Energy of
Coal
Heat
Energy of
Steam Gross
Elect.
Energy
Net
Elect.
Energy
Heat
Energy of
Coal
Gross Unit Heat Rate =
Gross
Elect.
Energy
Boiler
G
Turbine GT
UT-A
UT- B
Heat
Energy of
Coal
Heat
Energy of
Steam Gross
Elect.
Energy
Net
Elect.
Energy
Gross Turbine Cycle Heat Rate =
Gross
Elect.
Energy
Heat
Energy of
Steam
Boiler
G
Turbine GT
UT-A
UT- B
Heat
Energy of
Coal
Heat
Energy of
Steam Gross
Elect.
Energy
Net
Elect.
Energy
Heat
Energy of
Coal
Net Unit Heat Rate =
Net
Elect.
Energy
Boiler G
Turbine
2236 kcal
1944 kcal
1kwh
(860kacl)
Boiler G
Turbine
2248 kcal
1951 kcal
1kwh
(860kacl)
DESIGN HEAT RATE
600 MW
250 MW
Heat Rate Calculation
Heat Rate can be calculated as
1)Direct Method
2)Indirect Method
Direct Method
• Direct Method of Heat Rate Assessment is suitable for
long duration in which averaging gives almost actual Heat
Rate because Coal consumption measurement is fairly
accurate if taken over a month/Year.
• Therefore, this method is employed at almost all stations
as per the standard practice.
• The methodology adopted by CEA for assessment of
station heat rate is based on Direct Method
Gross Heat rate = Heat Energy of Coal (Kcal)
Gross Electrical Energy Generated(Kwh)
Gross Heat rate = Coal Consumption(kg) x GCV(Kcal/kg)
Gross Electrical Energy Generated(kwh)
Gross Heat rate = Specific Coal Consumption(kg/kWh) x GCV(Kcal/kg)
Direct Method
Gross Heat rate = Heat Energy of Coal (Kcal)
Electrical Energy Generated(Kwh)
Gross Heat rate = Heat Energy of Coal (Kcal) x Heat Energy of Steam(Kcal)
Electrical Energy Generated(Kwh) x Heat Energy of Steam(Kcal)
Gross Heat rate = Heat Energy of Coal (Kcal) x Heat Energy of Steam
Heat Energy of Steam x Electrical Energy Generated(Kwh)
Gross Turbine Heat rate = Heat Energy of Steam(Kcal)
Electrical Energy Generated(Kwh)
Boiler Efficiency % = Heat Energy of Steam(Kcal)
Heat Energy of Coal (Kcal)
Gross Heat rate = Gross Turbine Heat Rate
Boiler Efficiency %
Net Heat rate
Net Heat rate = Heat Energy of Coal (Kcal)
Net Electrical Energy (Kwh)
Net Heat rate = . Heat Energy of Coal (Kcal) .
{Gross Electrical Energy (Kwh)- Aux Power (kwh)} x Gross Electrical Energy(kwh)
Gross Electrical Energy(kwh)
Net Heat rate = Heat Energy of Coal (Kcal)
{Gross Electrical Energy (Kwh)- Aux Power(kwh)}
Net Heat rate = . Gross Unit Heat Rate(kcal/kwh)
{1 - Aux Power (kwh)}
Gross Elect. Generation(kwh)
Net Heat rate = . Gross Unit Heat Rate
{1 - Aux Power%}
Indirect Method
• Indirect method of Heat Rate Measurement is
an instantaneous method which is used for
short duration and not possible throughout
the year.
• It is a very complex method and basically a
loss based method of measurement of Heat
Rate.
• This method is generally adopted during the
Energy Audit Studies.
Indirect Method
• Gross Heat Rate = Design Heat rate + Heat rate losses(
Accountable + Unaccountable)
• Accountable Parameters – Parameters deviated from the
design values. Correction factors and general thumb
rules are applied to calculate.
• Accountable parameters are required to be operated
closest to design value to optimize heat rate.
• Unaccountable deviations are due to drain valve passing,
Instrument measurement errors, radiation losses etc.
Unit # : Date 12-Jul-15
Sl. No. Parameter Unit
Parameters
Heat Rate Deviation
Design Actual Deviation
Kcal/kwh
1 Load MW 600 409.6 -190.4 66.979
Accountable HR Deviation
2 Main Steam Press before ESV Kg/cm2 170 126.9 -43.1
3 Main Steam Temp before ESV o
C 537 537.8 0.8 -0.5
4 Hot Reheat Temp before IV o
C 537 525.4 -11.6 6.4
5 Reheat Attemperation TPH 0 2.33 2.3 1
6 Condenser back pressure mmhg 75.9 71.4 9.2 18.4
7 CW Inlet Tempertaure o
C 33 30.5 2.53 -15.2
8 Makeup Water % %MCR 0 0.084 0.08 0.5
9 FW Temperature at Eco I/L o
C 253.7 222.4 13.7 12.3
10
Dry Flue Gas Loss(DFG) % 4.5 5.6 1.1 27.9
Effect of Coal on DFG % 0.8
a) Oxygen at APH inlet % 3.6 4.1
b) APH Exit Temperature(Corrected) o
C 140 128.2
c) APH Leakage % 11.6
11
Wet flue Gas loss % 6.36 6.9 0.5 12.5
a) Moisture in coal % 2.33 2.4
b) % Hydrogen in coal % 3.85 4.4
12 Combustible in Fly ash % 0.21 -0.1 -3.3
13 Combustible in Bottom ash % 2.20 1.5 6.3
14 Startup oil consumption % 0 0 0.0
15 HP Turbine Cylinder Efficiency(VWO) % 92.36 90.98 1.38 6.1
16 IP Turbine Cylinder Efficiency % 93.16 91.62 1.54 6.8
17 Total Accountable HR deviation(A) Kcal/kwh 146
18 Unaccountable HR Deviation (B) Kcal/kwh 22
19 Total Heat Rate Deviation (A+B) Kcal/kwh 168
20
Expected Design HEAT RATE at Full
Load and Rated condition(C)
Kcal/kwh 2236
21 Goss Heat Rate (A+B+C) Kcal/kwh 2404
Aux Power consumption 6.5%
22 Net Heat Rate on the basis of coal Kcal/kwh 2572
Design Heat Rate for 600MW at various load
PLF Load Gross HR Aux Power Net HR Efficiency %
100.00% 600 2236 6 2379 36.15
95.00% 570 2244 6.25 2394 35.92
90.00% 540 2254 6.5 2411 35.67
85.00% 510 2266 6.75 2430 35.39
80.00% 480 2282 7 2454 35.04
75.00% 450 2300 7.25 2480 34.68
70.00% 420 2321 7.5 2509 34.28
65.00% 390 2346 7.75 2543 33.82
60.00% 360 2373 8 2579 33.35
55.00% 330 2403 8.25 2619 32.84
50.00% 300 2435 8.5 2661 32.32
y = 0.0016x2 - 2.0858x + 2918.7
2200
2250
2300
2350
2400
2450
0 100 200 300 400 500 600 700
Heat
Rate
(in
Kcal/Kwh)
Load in MW
LOAD VS GROSS HEAT RATE
Impact of Performance Parameters Deviations on
Heat Rate for 4 x 600 MW
Sl.No. Parameters Units Deviations
Average HR loss
kcal/kwh
1 HP Turbine Efficiency % 1 4.01
2 IP Turbine Efficiency % 1 3.78
3 LP Turbine Efficiency % 1 10.35
3 Main Steam Pressure Kg/cm2
(a) 1 1.33
4 Main Steam Temperature o
C 1 0.67
5 Reheat Temperature o
C 1 0.56
6 Reheat Spray TPH 10 2.23
7 Excess Air ( O2) % 1 6.64
8 Flue gas exit temperature o
C 1 1.2
9 Condenser pressure mmHg (a) 1 2
10 Unburned Carbon % 1 8.5
11 Coal Moisture % 1 4.4
12 DM Makeup % 1 7.76
13 FW Temperature o
C 1 0.8
15 HPH Out - - 79
16 Startup oil for 8 Mu gen in a day KL 20 25
Assumptions: Coal Cost = 3000 Rs / Tonne
GCV = 3100 kcal / kg
PLF = 90 % = 4730.4 MU (Yearly)
1 kcal / kWh Saving = 4730.4 x 106 x1 kcal Yearly Saving
Coal Saved = 4730.4 x 106 / 3100 kg
= 1525935.5 kg
= 1526 Tons
1 Kg coal releases 1.25 kg CO2
Hence, CO2 Emission Reduced = 1908 MT CO2
Revenue Saved = 45.78 Lakhs
1 Kcal/KWh
Heat Rate
improvement
1526 MT
Coal (Yearly)
1908 MT CO2
(Yearly)
45.78 Lakhs
(Yearly)
2042
1951 1948 1944
1860
1778 1757
1598
2469
2248 2244 2236
2126
1993
1873
1792
2744
2470
2387 2378
2261
2166
1951 1906
0
500
1000
1500
2000
2500
3000
JSPL - DCPP
Sub-Critical
(135 MW)
JPL - Tamnar
Sub-Critical
(250 MW)
NTPC - Korba
Sub-Critical
(500 MW)
JPL - Tamnar
Sub-Critical
(600 MW)
Adani Power
Mundra
Low Super-Critical
(660 MW)
Tata Mundra
High Super-Critical
(800 MW)
Shandong Zoxian
China
Ultra Super- Critical
(1 0 0 0 M W)
On going research
Advance Ultra
Super-Critical
(800 MW)
Turbine Heat Rate Gross Unit Heat rate Net Heat Rate
Pr – 133 bar
Temp- 540 oC /
540 oC Pr – 147 bar
Temp- 540 oC /
540 oC Pr – 170 bar
Temp- 540 oC /
540 oC Pr – 181 bar
Temp- 540 oC /
540 oC Pr – 247 bar
Temp- 540 oC /
566 oC Pr – 280 bar
Temp- 565 oC /
593 oC Pr – 252 bar
Temp- 605 oC /
605 oC Pr – 310 bar
Temp- 705 oC /
705 oC
Heat Rate of Various Power Stations
31.35
34.81
36.03 36.16
38.03
39.71
44.08
45.12
0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
JSPL - DCPP
Sub-Critical
(135 MW)
JPL - Tamnar
Sub-Critical
(250 MW)
NTPC - Korba
Sub-Critical
(500 MW)
JPL - Tamnar
Sub-Critical
(600 MW)
Adani Power
Mundra
Low Super-Critical
(660 MW)
Tata Mundra
High Super-
Critical
(800 MW)
Shandong Zoxian
China
Ultra Super-
Critical
(1 0 0 0 M W)
On going research
Advance Ultra
Super-Critical
(800 MW)
Pr – 133 bar
Temp- 540 oC /
540 oC
Pr – 147 bar
Temp- 540 oC /
540 oC
Pr – 170 bar
Temp- 540 oC /
540 oC
Pr – 181 bar
Temp- 540 oC /
540 oC
Pr – 247 bar
Temp- 540 oC /
566 oC
Pr – 280 bar
Temp- 565 oC /
593 oC
Pr – 252 bar
Temp- 605 oC /
605 oC
Pr – 310 bar
Temp- 705 oC /
705 oC
Efficiency of Various Power Plants
Thanks
1 de 26

Mais conteúdo relacionado

Similar a HR.pptx(20)

2016.12.14 DryFining Coal Gen presentation FINAL2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL
Sandra Broekema303 visualizações
Ic engine ies gate ias 20 years question and answersIc engine ies gate ias 20 years question and answers
Ic engine ies gate ias 20 years question and answers
Ramnarayan Meena9.3K visualizações
Thermal Power PlantsThermal Power Plants
Thermal Power Plants
peeyush959.9K visualizações
One-day workshop on Industrial HeatingOne-day workshop on Industrial Heating
One-day workshop on Industrial Heating
Aspiration Energy Pvt Ltd385 visualizações
integrated brayton and rankine cycle integrated brayton and rankine cycle
integrated brayton and rankine cycle
UPENDRA YADAV394 visualizações
Basics of Thermal Energy management.pptBasics of Thermal Energy management.ppt
Basics of Thermal Energy management.ppt
ssuser2023f041 visualizações
Tss dm0632-05-gs-epg-7155423Tss dm0632-05-gs-epg-7155423
Tss dm0632-05-gs-epg-7155423
PILARMARTINEZ56912535 visualizações
27. COGENERATION.ppt27. COGENERATION.ppt
27. COGENERATION.ppt
RENERGISTICS115 visualizações
353685130-CCGT-Combined-Cycle-Gas-Turbine.ppt353685130-CCGT-Combined-Cycle-Gas-Turbine.ppt
353685130-CCGT-Combined-Cycle-Gas-Turbine.ppt
Jiji1180545 visualizações
CESC SGS project reportCESC SGS project report
CESC SGS project report
SayanSarkar55596 visualizações
Efficiency and Heat Rate in cogenerative power systemEfficiency and Heat Rate in cogenerative power system
Efficiency and Heat Rate in cogenerative power system
Hashim Hasnain Hadi70 visualizações
Industrial_Gas_Turbines_ENIndustrial_Gas_Turbines_EN
Industrial_Gas_Turbines_EN
Fran Dubois280 visualizações
Boilers Classifications and Cost per kWh Boilers Classifications and Cost per kWh
Boilers Classifications and Cost per kWh
salehkhan4.5K visualizações

Mais de vishal laddha

Case study on EHTC.pdfCase study on EHTC.pdf
Case study on EHTC.pdfvishal laddha
2 visualizações2 slides
CMC.pptxCMC.pptx
CMC.pptxvishal laddha
7 visualizações35 slides
Gun Kaizen.pptxGun Kaizen.pptx
Gun Kaizen.pptxvishal laddha
10 visualizações3 slides
MAR,23.pptxMAR,23.pptx
MAR,23.pptxvishal laddha
7 visualizações36 slides
Real Python 🐍👨_💻-1.pdfReal Python 🐍👨_💻-1.pdf
Real Python 🐍👨_💻-1.pdfvishal laddha
94 visualizações214 slides

Mais de vishal laddha(20)

Case study on EHTC.pdfCase study on EHTC.pdf
Case study on EHTC.pdf
vishal laddha2 visualizações
CMC.pptxCMC.pptx
CMC.pptx
vishal laddha7 visualizações
Gun Kaizen.pptxGun Kaizen.pptx
Gun Kaizen.pptx
vishal laddha10 visualizações
MAR,23.pptxMAR,23.pptx
MAR,23.pptx
vishal laddha7 visualizações
Real Python 🐍👨_💻-1.pdfReal Python 🐍👨_💻-1.pdf
Real Python 🐍👨_💻-1.pdf
vishal laddha94 visualizações
Brief Writeup on BCVMS.pdfBrief Writeup on BCVMS.pdf
Brief Writeup on BCVMS.pdf
vishal laddha14 visualizações
BASICS OF VIBRATION.pptBASICS OF VIBRATION.ppt
BASICS OF VIBRATION.ppt
vishal laddha319 visualizações
Flame Scanner.pptFlame Scanner.ppt
Flame Scanner.ppt
vishal laddha402 visualizações
EXCITATION SYSTEM.pptEXCITATION SYSTEM.ppt
EXCITATION SYSTEM.ppt
vishal laddha285 visualizações
battery.pptbattery.ppt
battery.ppt
vishal laddha46 visualizações
December'2022 Maintenance review1.pptxDecember'2022 Maintenance review1.pptx
December'2022 Maintenance review1.pptx
vishal laddha5 visualizações
Case Studies on Vibrations.pptCase Studies on Vibrations.ppt
Case Studies on Vibrations.ppt
vishal laddha103 visualizações
Assignment business commAssignment business comm
Assignment business comm
vishal laddha1K visualizações
Assignment  accountsAssignment  accounts
Assignment accounts
vishal laddha131 visualizações
Assignment hrmAssignment hrm
Assignment hrm
vishal laddha59 visualizações
Plant operation manualPlant operation manual
Plant operation manual
vishal laddha24 visualizações
HplpbpHplpbp
Hplpbp
vishal laddha267 visualizações
Cable fault-finding-guideCable fault-finding-guide
Cable fault-finding-guide
vishal laddha73 visualizações
Cable constructionCable construction
Cable construction
vishal laddha118 visualizações

Último(20)

Material del tarjetero LEES Travesías.docxMaterial del tarjetero LEES Travesías.docx
Material del tarjetero LEES Travesías.docx
Norberto Millán Muñoz60 visualizações
Ch. 7 Political Participation and Elections.pptxCh. 7 Political Participation and Elections.pptx
Ch. 7 Political Participation and Elections.pptx
Rommel Regala56 visualizações
GSoC 2024GSoC 2024
GSoC 2024
DeveloperStudentClub1056 visualizações
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan256 visualizações
CWP_23995_2013_17_11_2023_FINAL_ORDER.pdfCWP_23995_2013_17_11_2023_FINAL_ORDER.pdf
CWP_23995_2013_17_11_2023_FINAL_ORDER.pdf
SukhwinderSingh895865480 visualizações
Classification of crude drugs.pptxClassification of crude drugs.pptx
Classification of crude drugs.pptx
GayatriPatra1460 visualizações
discussion post.pdfdiscussion post.pdf
discussion post.pdf
jessemercerail85 visualizações
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptx
DrHafizKosar87 visualizações
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and Startups
Svetlin Nakov74 visualizações
7 NOVEL DRUG DELIVERY SYSTEM.pptx7 NOVEL DRUG DELIVERY SYSTEM.pptx
7 NOVEL DRUG DELIVERY SYSTEM.pptx
Sachin Nitave56 visualizações
Narration  ppt.pptxNarration  ppt.pptx
Narration ppt.pptx
TARIQ KHAN76 visualizações
Narration lesson plan.docxNarration lesson plan.docx
Narration lesson plan.docx
TARIQ KHAN92 visualizações
STERILITY TEST.pptxSTERILITY TEST.pptx
STERILITY TEST.pptx
Anupkumar Sharma107 visualizações
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL72 visualizações
NS3 Unit 2 Life processes of animals.pptxNS3 Unit 2 Life processes of animals.pptx
NS3 Unit 2 Life processes of animals.pptx
manuelaromero201394 visualizações
STYP infopack.pdfSTYP infopack.pdf
STYP infopack.pdf
Fundacja Rozwoju Społeczeństwa Przedsiębiorczego159 visualizações

HR.pptx

  • 2. Heat rate is the pulse rate of a power plant to know the health of the plant. Net heat rate is the single parameter that encompasses total performance indices of a power plant.
  • 3. Efficiency % = Output Energy X 100 Input Energy Heat rate = Input Energy Output Energy Heat rate = 1 Efficiency % 1 kwh = 860 kcal Some Basics to understand Heat Rate
  • 4. Boiler G Turbine GT UT-A UT- B Heat Energy of Coal Heat Energy of Steam Gross Elect. Energy Net Elect. Energy
  • 5. Gross Unit Heat Rate A “unit” heat rate includes all heat input to the boiler. The heat input to the boiler should include all forms of chemical energy supplied and the “gross” electrical generation Net Unit Heat Rate A “unit” heat rate includes all heat input to the boiler. The heat input to the boiler should include all forms of chemical energy supplied and the “net” electrical generation i.e., auxiliary power is to be subtracted from gross electrical energy Gross Turbine Cycle Heat Rate (GTCHR) A “Gross Turbine Cycle” heat rate includes only heat input to the turbine cycle. GTCHR is the ratio of total heat input to the turbine cycle and the gross generator output Design Unit Heat Rate Design heat rate is anticipated heat rate at design parameters at specific load condition like different MCR, VWO by manufacturer
  • 6. Boiler G Turbine GT UT-A UT- B Heat Energy of Coal Heat Energy of Steam Gross Elect. Energy Net Elect. Energy Heat Energy of Coal Gross Unit Heat Rate = Gross Elect. Energy
  • 7. Boiler G Turbine GT UT-A UT- B Heat Energy of Coal Heat Energy of Steam Gross Elect. Energy Net Elect. Energy Gross Turbine Cycle Heat Rate = Gross Elect. Energy Heat Energy of Steam
  • 8. Boiler G Turbine GT UT-A UT- B Heat Energy of Coal Heat Energy of Steam Gross Elect. Energy Net Elect. Energy Heat Energy of Coal Net Unit Heat Rate = Net Elect. Energy
  • 9. Boiler G Turbine 2236 kcal 1944 kcal 1kwh (860kacl) Boiler G Turbine 2248 kcal 1951 kcal 1kwh (860kacl) DESIGN HEAT RATE 600 MW 250 MW
  • 10. Heat Rate Calculation Heat Rate can be calculated as 1)Direct Method 2)Indirect Method
  • 11. Direct Method • Direct Method of Heat Rate Assessment is suitable for long duration in which averaging gives almost actual Heat Rate because Coal consumption measurement is fairly accurate if taken over a month/Year. • Therefore, this method is employed at almost all stations as per the standard practice. • The methodology adopted by CEA for assessment of station heat rate is based on Direct Method
  • 12. Gross Heat rate = Heat Energy of Coal (Kcal) Gross Electrical Energy Generated(Kwh) Gross Heat rate = Coal Consumption(kg) x GCV(Kcal/kg) Gross Electrical Energy Generated(kwh) Gross Heat rate = Specific Coal Consumption(kg/kWh) x GCV(Kcal/kg) Direct Method
  • 13. Gross Heat rate = Heat Energy of Coal (Kcal) Electrical Energy Generated(Kwh) Gross Heat rate = Heat Energy of Coal (Kcal) x Heat Energy of Steam(Kcal) Electrical Energy Generated(Kwh) x Heat Energy of Steam(Kcal)
  • 14. Gross Heat rate = Heat Energy of Coal (Kcal) x Heat Energy of Steam Heat Energy of Steam x Electrical Energy Generated(Kwh) Gross Turbine Heat rate = Heat Energy of Steam(Kcal) Electrical Energy Generated(Kwh) Boiler Efficiency % = Heat Energy of Steam(Kcal) Heat Energy of Coal (Kcal) Gross Heat rate = Gross Turbine Heat Rate Boiler Efficiency %
  • 15. Net Heat rate Net Heat rate = Heat Energy of Coal (Kcal) Net Electrical Energy (Kwh) Net Heat rate = . Heat Energy of Coal (Kcal) . {Gross Electrical Energy (Kwh)- Aux Power (kwh)} x Gross Electrical Energy(kwh) Gross Electrical Energy(kwh) Net Heat rate = Heat Energy of Coal (Kcal) {Gross Electrical Energy (Kwh)- Aux Power(kwh)} Net Heat rate = . Gross Unit Heat Rate(kcal/kwh) {1 - Aux Power (kwh)} Gross Elect. Generation(kwh)
  • 16. Net Heat rate = . Gross Unit Heat Rate {1 - Aux Power%}
  • 17. Indirect Method • Indirect method of Heat Rate Measurement is an instantaneous method which is used for short duration and not possible throughout the year. • It is a very complex method and basically a loss based method of measurement of Heat Rate. • This method is generally adopted during the Energy Audit Studies.
  • 18. Indirect Method • Gross Heat Rate = Design Heat rate + Heat rate losses( Accountable + Unaccountable) • Accountable Parameters – Parameters deviated from the design values. Correction factors and general thumb rules are applied to calculate. • Accountable parameters are required to be operated closest to design value to optimize heat rate. • Unaccountable deviations are due to drain valve passing, Instrument measurement errors, radiation losses etc.
  • 19. Unit # : Date 12-Jul-15 Sl. No. Parameter Unit Parameters Heat Rate Deviation Design Actual Deviation Kcal/kwh 1 Load MW 600 409.6 -190.4 66.979 Accountable HR Deviation 2 Main Steam Press before ESV Kg/cm2 170 126.9 -43.1 3 Main Steam Temp before ESV o C 537 537.8 0.8 -0.5 4 Hot Reheat Temp before IV o C 537 525.4 -11.6 6.4 5 Reheat Attemperation TPH 0 2.33 2.3 1 6 Condenser back pressure mmhg 75.9 71.4 9.2 18.4 7 CW Inlet Tempertaure o C 33 30.5 2.53 -15.2 8 Makeup Water % %MCR 0 0.084 0.08 0.5 9 FW Temperature at Eco I/L o C 253.7 222.4 13.7 12.3 10 Dry Flue Gas Loss(DFG) % 4.5 5.6 1.1 27.9 Effect of Coal on DFG % 0.8 a) Oxygen at APH inlet % 3.6 4.1 b) APH Exit Temperature(Corrected) o C 140 128.2 c) APH Leakage % 11.6 11 Wet flue Gas loss % 6.36 6.9 0.5 12.5 a) Moisture in coal % 2.33 2.4 b) % Hydrogen in coal % 3.85 4.4 12 Combustible in Fly ash % 0.21 -0.1 -3.3 13 Combustible in Bottom ash % 2.20 1.5 6.3 14 Startup oil consumption % 0 0 0.0 15 HP Turbine Cylinder Efficiency(VWO) % 92.36 90.98 1.38 6.1 16 IP Turbine Cylinder Efficiency % 93.16 91.62 1.54 6.8 17 Total Accountable HR deviation(A) Kcal/kwh 146 18 Unaccountable HR Deviation (B) Kcal/kwh 22 19 Total Heat Rate Deviation (A+B) Kcal/kwh 168 20 Expected Design HEAT RATE at Full Load and Rated condition(C) Kcal/kwh 2236 21 Goss Heat Rate (A+B+C) Kcal/kwh 2404 Aux Power consumption 6.5% 22 Net Heat Rate on the basis of coal Kcal/kwh 2572
  • 20. Design Heat Rate for 600MW at various load PLF Load Gross HR Aux Power Net HR Efficiency % 100.00% 600 2236 6 2379 36.15 95.00% 570 2244 6.25 2394 35.92 90.00% 540 2254 6.5 2411 35.67 85.00% 510 2266 6.75 2430 35.39 80.00% 480 2282 7 2454 35.04 75.00% 450 2300 7.25 2480 34.68 70.00% 420 2321 7.5 2509 34.28 65.00% 390 2346 7.75 2543 33.82 60.00% 360 2373 8 2579 33.35 55.00% 330 2403 8.25 2619 32.84 50.00% 300 2435 8.5 2661 32.32
  • 21. y = 0.0016x2 - 2.0858x + 2918.7 2200 2250 2300 2350 2400 2450 0 100 200 300 400 500 600 700 Heat Rate (in Kcal/Kwh) Load in MW LOAD VS GROSS HEAT RATE
  • 22. Impact of Performance Parameters Deviations on Heat Rate for 4 x 600 MW Sl.No. Parameters Units Deviations Average HR loss kcal/kwh 1 HP Turbine Efficiency % 1 4.01 2 IP Turbine Efficiency % 1 3.78 3 LP Turbine Efficiency % 1 10.35 3 Main Steam Pressure Kg/cm2 (a) 1 1.33 4 Main Steam Temperature o C 1 0.67 5 Reheat Temperature o C 1 0.56 6 Reheat Spray TPH 10 2.23 7 Excess Air ( O2) % 1 6.64 8 Flue gas exit temperature o C 1 1.2 9 Condenser pressure mmHg (a) 1 2 10 Unburned Carbon % 1 8.5 11 Coal Moisture % 1 4.4 12 DM Makeup % 1 7.76 13 FW Temperature o C 1 0.8 15 HPH Out - - 79 16 Startup oil for 8 Mu gen in a day KL 20 25
  • 23. Assumptions: Coal Cost = 3000 Rs / Tonne GCV = 3100 kcal / kg PLF = 90 % = 4730.4 MU (Yearly) 1 kcal / kWh Saving = 4730.4 x 106 x1 kcal Yearly Saving Coal Saved = 4730.4 x 106 / 3100 kg = 1525935.5 kg = 1526 Tons 1 Kg coal releases 1.25 kg CO2 Hence, CO2 Emission Reduced = 1908 MT CO2 Revenue Saved = 45.78 Lakhs 1 Kcal/KWh Heat Rate improvement 1526 MT Coal (Yearly) 1908 MT CO2 (Yearly) 45.78 Lakhs (Yearly)
  • 24. 2042 1951 1948 1944 1860 1778 1757 1598 2469 2248 2244 2236 2126 1993 1873 1792 2744 2470 2387 2378 2261 2166 1951 1906 0 500 1000 1500 2000 2500 3000 JSPL - DCPP Sub-Critical (135 MW) JPL - Tamnar Sub-Critical (250 MW) NTPC - Korba Sub-Critical (500 MW) JPL - Tamnar Sub-Critical (600 MW) Adani Power Mundra Low Super-Critical (660 MW) Tata Mundra High Super-Critical (800 MW) Shandong Zoxian China Ultra Super- Critical (1 0 0 0 M W) On going research Advance Ultra Super-Critical (800 MW) Turbine Heat Rate Gross Unit Heat rate Net Heat Rate Pr – 133 bar Temp- 540 oC / 540 oC Pr – 147 bar Temp- 540 oC / 540 oC Pr – 170 bar Temp- 540 oC / 540 oC Pr – 181 bar Temp- 540 oC / 540 oC Pr – 247 bar Temp- 540 oC / 566 oC Pr – 280 bar Temp- 565 oC / 593 oC Pr – 252 bar Temp- 605 oC / 605 oC Pr – 310 bar Temp- 705 oC / 705 oC Heat Rate of Various Power Stations
  • 25. 31.35 34.81 36.03 36.16 38.03 39.71 44.08 45.12 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 JSPL - DCPP Sub-Critical (135 MW) JPL - Tamnar Sub-Critical (250 MW) NTPC - Korba Sub-Critical (500 MW) JPL - Tamnar Sub-Critical (600 MW) Adani Power Mundra Low Super-Critical (660 MW) Tata Mundra High Super- Critical (800 MW) Shandong Zoxian China Ultra Super- Critical (1 0 0 0 M W) On going research Advance Ultra Super-Critical (800 MW) Pr – 133 bar Temp- 540 oC / 540 oC Pr – 147 bar Temp- 540 oC / 540 oC Pr – 170 bar Temp- 540 oC / 540 oC Pr – 181 bar Temp- 540 oC / 540 oC Pr – 247 bar Temp- 540 oC / 566 oC Pr – 280 bar Temp- 565 oC / 593 oC Pr – 252 bar Temp- 605 oC / 605 oC Pr – 310 bar Temp- 705 oC / 705 oC Efficiency of Various Power Plants