SlideShare uma empresa Scribd logo
1 de 24
Baixar para ler offline
Gear Train
Main types:
• Simple gear train: one gear per
shaft
• Compound gear train: two or
more gears per shaft, but for the
first, last
• Reverted gear train: input and
output gears are coaxial.
• Planetary/epicyclic gear train:
one with a relative motion of
the axes.
A combination of gears used to transmit motion from one shaft to another.
Why combination?: to obtain large speed reduction within a small space.
Simple Gear Train
Gear Ratio
+ : Internal gearing
- : External gearing
Simple Gear Train
- -
Intermediate gears
Odd Even
Input :Output motion Alike Opposite
Intermediate gears are called idlers in SGT as they do not affect the speed ratio of the
gear train. They are primarily used to;
(a) Connect gears with large center distance
(b) To obtain the desired direction for the driven
Compound Gear Train
The compound gears are rigidly fixed to the shaft,
hence have the same speed.
- - -
-
(-1)pairs
Reverted Gear Train
Epicyclic Gear Train
The axes of the shafts over which the gears are mounted may
move relative to the fixed axis.
Gear A and the arm C have a common axis at O1 about which
they can rotate.
The gear B meshes with gear A, and has its axis on the arm
at O2 about which it can rotate.
If the arm is fixed: Simple gear train
If the gear A is fixed and the arm is rotated about O1 then the gear B is forced to
rotate upon and around gear A. Such a motion is called epicyclic (epi: upon; cyclic:around)
EGTs are useful for transmitting high speed ratios with gears of moderate size………
….backgear of lathe; Differential gears of automobiles, wrist watches…
Epicyclic Gear Train
Planetory Gear Train
Sun (Center)
Planet (Around Sun
Annulus (Internal T)
Epicyclic Gear Train
Speed ratio: Algebraic method; Tabular method
The motion of each element of the EGT relative to the arm is written in the form of equations
These equations are solved using two conditions:
(i) Some element is fixed, implying zero velocity
(ii) Motion of some other element is specified.
One caution: You’ll need to associate
+/- signs to clockwise and anticlockwise directions
Anticlockwise: +
Clockwise: -
Epicyclic Gear Train: Problem-1
- No. of teeth are as shown in the diagram
-A is fixed
-B and C are carried on an arm which revolves at 100 rpm about the axis of A or D.
# Find the number of teeth of C and the speed & sense of rotation of C?
Epicyclic Gear Train: Problem-1
tA= 150; tB=25; tD=40; NA=0; Narm =100 CL =-100
NC=?
Geometry:
dA/2 = dB + dC + dD/2
tA/2 = tB + tC + tD/2
75=25+tC+20 tC=30
Engagement of AB: Internal implies +
(NB-Narm) / (NA-Narm) = tA/tB
NB- (-100) = (150/25) * (0-(-100)) NB=500
Engagement of BC: External implies -
(NB-Narm) / (NC-Narm) = -tC/tB
NC- (-100) = (-25/30) * (500-(-100)) NC=-600 = 600 rpm clockwise
Epicyclic Gear Train: Problem-2
# Find the speed and direction of wheel D when wheel A is fixed and arm F makes 200rpm
clockwise.
Epicyclic Gear Train: Problem-2
tA= 80; tC=72; tD=48
NA=0; Narm =200 CL =-200
Note: NB=NC due to compound shaft; ND?
Geometry:
rA + rB = rC + rD
tA + tB = tC + tD
tB = 40
Engagement of AB: External implies -
(NB-Narm) / (NA-Narm) = -tA/tB
NB- (-200) = (-80/40) * (0-(-200)) NB=-600 600 rpm CL
Engagement of CD: External implies -
(ND-Narm) / (NC-Narm) = -tC/tD
Note NC= NB
ND = 400 = 400 rpm CCL
Torques in Epicyclic Gear Train
When a geared system transmits power, torques are transmitted from one element
to another.
Torques in Epicyclic Gear Train
When the rotating parts of an epicyclic
gear train have uniform speeds, i.e., zero
angular acceleration, then the gear train
is kept in equilibrium by three externally
applied torques. The net (external)
torque applied must be zero.
There are no losses in power transmission,
i.e., there are no internal friction losses at
the bearings and at the contact surfaces. In
other words, the net energy dissipated by the
gear train is zero.
Torques in Epicyclic Gear Train: Problem 2
Shown is a compound epicyclic
gear train in which two gears S1
and S2 are integral with the
Input shaft B. The arm A2 is
integral with the output shaft, C.
The planet gear P2 revolves on a
pin attached to the arm A2, and
meshes with the Sun gear S2 and
internal gear I2 that is co-axial
with the input shaft.
The planet gear P1 meshes with
the fixed internal gear I1 and sun
gear S1.
The planet gear P1 revolves on a pin fixed to internal gear I2.
Arm
A1
The number of teeth are as stated in the figure.
The input power on the shaft B is 10.47 kW
at 1000 rpm (CCL). Find:
•The speed and torque at the output shaft
•The torque required to hold the internal gear I1.
I1 P1 A1
I2 P2
S1
S2
Torques in Epicyclic Gear Train: Problem 2
Arm
A1
The input power on the shaft B
is 10.47 kW at 1000 rpm (CCL).
Find:
•The speed and torque at the
output shaft
•The torque required to hold the
internal gear I1.
Inp:B S1 P1 I1 A1 I2 P2 S2 A2/C
Teeth
(T)
26 88 83 31
Speed
(N)
1000
CCL
1000
CCL
0 1000
CCL
Inp:B S1 P1 I1 A1 I2 P2 S2 A2/C
Teeth
(T)
26 31 88 83 26 31
Speed
(N)
1000
CCL
1000
CCL
0 1000
CCL
Rad(S1) + Dia (P1) = Rad(I1) Rad(S2) + Dia (P2) = Rad(I2)
(TS1)/2 + TP1 = (TI1)/2 (TS2)/2 + TP2 = (TI2)/2
Torques in Epicyclic Gear Train: Problem 2
The input power on the shaft B is 10.47
kW at 1000 rpm (CCL).
Find:
•The speed and torque at the output
shaft
•The torque required to hold the
internal gear I1.
I1 P1 A1
S1
Torques in Epicyclic Gear Train: Problem 2
The input power on the shaft B is 10.47
kW at 1000 rpm (CCL).
Find:
•The speed and torque at the output
shaft
•The torque required to hold the
internal gear I1.
I2 P2 S2
Torques in Epicyclic Gear Train: Problem 2
The input power on the shaft B is 10.47
kW at 1000 rpm (CCL).
Find:
•The speed and torque at the output
shaft
•The torque required to hold the
internal gear I1.
Epicyclic Gear Train with Bevel Gear
Bevel gears are used for high speed reduction with fewer gears.
The method applicable for EGT with spur gears is also applicable for EGT with bevel gears
with some change:
For those gears whose axes are inclined to the main axis, the terms clockwise and
anticlockwise are not applicable, because direction of rotation for different gears ought to
be with respect to the same axis.
Epicyclic Gear Train with Bevel Gear: Problem 1
The figure shows an epicyclic bevel GT (Humpage’s reduction gear) in which the gear B is
connected to the input shaft, and gear F is connected to the output shaft.
The Arm (A), carrying the compound wheels D & E, turns freely on the output shaft.
If the input speed is 1000 rpm CCL (seen from the right), determine the speed of the
output shaft, when:
I: gear C is fixed
II: gear C is rotated at 10 rpm CCL.
Epicyclic Gear Train with Bevel Gear: Problem 1
NB = 1000 rpm CCL, determine NF, when:
I: gear C is fixed
II: gear C is rotated at 10 rpm CCL.
C D B
F E
3
2 1
To find NF, find NE
to find which, find ND
Epicyclic Gear Train with Bevel Gear: Problem 1
NB = 1000 rpm CCL, determine NF, when:
I: gear C is fixed
II: gear C is rotated at 10 rpm CCL.
C D B
F E
3
2 1
3.share gear-trains

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Elliptical trammel
Elliptical trammelElliptical trammel
Elliptical trammel
 
Types of gears
Types of gearsTypes of gears
Types of gears
 
Kinematics of machine (Tooth Profiles of Gears)
Kinematics of machine (Tooth Profiles of Gears)Kinematics of machine (Tooth Profiles of Gears)
Kinematics of machine (Tooth Profiles of Gears)
 
gear trains ppt
gear trains pptgear trains ppt
gear trains ppt
 
Module 4 gear trains
Module 4 gear trainsModule 4 gear trains
Module 4 gear trains
 
Introduction to Gears
Introduction to GearsIntroduction to Gears
Introduction to Gears
 
Gear and Gear trains ppt
Gear and Gear trains pptGear and Gear trains ppt
Gear and Gear trains ppt
 
Types and application of gears
Types and application of gearsTypes and application of gears
Types and application of gears
 
Gears and Gear Trains
Gears and Gear Trains Gears and Gear Trains
Gears and Gear Trains
 
Four Bar Mechanism
Four Bar MechanismFour Bar Mechanism
Four Bar Mechanism
 
Spur gears
Spur gearsSpur gears
Spur gears
 
Turbo machines basics slideshare
Turbo machines basics slideshareTurbo machines basics slideshare
Turbo machines basics slideshare
 
Governor
GovernorGovernor
Governor
 
Epicyclic gear train
Epicyclic gear train Epicyclic gear train
Epicyclic gear train
 
Turning Moment Diagram and Flywheel
Turning Moment Diagram and FlywheelTurning Moment Diagram and Flywheel
Turning Moment Diagram and Flywheel
 
Spur gear and design of spur gear
Spur gear and design of spur gearSpur gear and design of spur gear
Spur gear and design of spur gear
 
Gears And its types
Gears And its typesGears And its types
Gears And its types
 
Gear and Gear trains
Gear and Gear trainsGear and Gear trains
Gear and Gear trains
 
Bevel gears
Bevel gears Bevel gears
Bevel gears
 
Kinemetic chains, Pairs, Joints, Four bar Mechanisms (KOM)
Kinemetic chains, Pairs, Joints, Four bar Mechanisms (KOM)Kinemetic chains, Pairs, Joints, Four bar Mechanisms (KOM)
Kinemetic chains, Pairs, Joints, Four bar Mechanisms (KOM)
 

Destaque

Study of Gear Technology
Study of Gear TechnologyStudy of Gear Technology
Study of Gear TechnologySarath Chandra
 
J3010 Unit 2
J3010   Unit 2J3010   Unit 2
J3010 Unit 2mechestud
 
Creativity Journey Presentation
Creativity Journey Presentation Creativity Journey Presentation
Creativity Journey Presentation Sam Groves
 
Acrylic gearbox creative journey
Acrylic gearbox creative journeyAcrylic gearbox creative journey
Acrylic gearbox creative journeyRaymond Bell
 
MET 305 tutorial_5-gear_train
MET 305 tutorial_5-gear_trainMET 305 tutorial_5-gear_train
MET 305 tutorial_5-gear_trainhotman1991
 
طريقة التفكير الاقتصادية
طريقة التفكير الاقتصادية طريقة التفكير الاقتصادية
طريقة التفكير الاقتصادية Mohamed Trabelsi
 
تجارة الكترونية : بدون وجع راس
تجارة الكترونية  : بدون وجع راستجارة الكترونية  : بدون وجع راس
تجارة الكترونية : بدون وجع راسMazen AlDarrab
 
أدوات قوقل في التسويق الالكتروني
أدوات قوقل في التسويق الالكترونيأدوات قوقل في التسويق الالكتروني
أدوات قوقل في التسويق الالكترونيMazen AlDarrab
 
التعلم عن بعد Distance learning
التعلم عن بعد Distance learningالتعلم عن بعد Distance learning
التعلم عن بعد Distance learningfoza1
 

Destaque (20)

Gear train
Gear trainGear train
Gear train
 
Study of Gear Technology
Study of Gear TechnologyStudy of Gear Technology
Study of Gear Technology
 
7.velocity analysis
7.velocity analysis7.velocity analysis
7.velocity analysis
 
J3010 Unit 2
J3010   Unit 2J3010   Unit 2
J3010 Unit 2
 
Design coaching22
Design coaching22Design coaching22
Design coaching22
 
Creativity Journey Presentation
Creativity Journey Presentation Creativity Journey Presentation
Creativity Journey Presentation
 
Gear train
Gear trainGear train
Gear train
 
Acrylic gearbox creative journey
Acrylic gearbox creative journeyAcrylic gearbox creative journey
Acrylic gearbox creative journey
 
MET 305 tutorial_5-gear_train
MET 305 tutorial_5-gear_trainMET 305 tutorial_5-gear_train
MET 305 tutorial_5-gear_train
 
Jagtam sharan
Jagtam sharanJagtam sharan
Jagtam sharan
 
طريقة التفكير الاقتصادية
طريقة التفكير الاقتصادية طريقة التفكير الاقتصادية
طريقة التفكير الاقتصادية
 
9 speed gear_box
9 speed gear_box9 speed gear_box
9 speed gear_box
 
تجارة الكترونية : بدون وجع راس
تجارة الكترونية  : بدون وجع راستجارة الكترونية  : بدون وجع راس
تجارة الكترونية : بدون وجع راس
 
أدوات قوقل في التسويق الالكتروني
أدوات قوقل في التسويق الالكترونيأدوات قوقل في التسويق الالكتروني
أدوات قوقل في التسويق الالكتروني
 
Gear Trains
Gear TrainsGear Trains
Gear Trains
 
Gear drives
Gear drivesGear drives
Gear drives
 
Gear Trains
Gear TrainsGear Trains
Gear Trains
 
11 التعليم الالكتروني
11 التعليم الالكتروني11 التعليم الالكتروني
11 التعليم الالكتروني
 
6.position analysis
6.position analysis6.position analysis
6.position analysis
 
التعلم عن بعد Distance learning
التعلم عن بعد Distance learningالتعلم عن بعد Distance learning
التعلم عن بعد Distance learning
 

Semelhante a 3.share gear-trains

A presentation On Epicycle Gear Train
A presentation On Epicycle Gear TrainA presentation On Epicycle Gear Train
A presentation On Epicycle Gear TrainManthan Thakkar
 
Unit 4- Gear and Gear Trains.ppt
Unit 4- Gear and Gear Trains.pptUnit 4- Gear and Gear Trains.ppt
Unit 4- Gear and Gear Trains.pptRameshParasuraman2
 
Compound Gear train
 Compound Gear train Compound Gear train
Compound Gear trainAvinash Navin
 
modeling of system rotational, Basic Elements Modeling-Spring(K), Damper(D), ...
modeling of system rotational, Basic Elements Modeling-Spring(K), Damper(D), ...modeling of system rotational, Basic Elements Modeling-Spring(K), Damper(D), ...
modeling of system rotational, Basic Elements Modeling-Spring(K), Damper(D), ...Waqas Afzal
 
module4geartrains-190118175406.pdf
module4geartrains-190118175406.pdfmodule4geartrains-190118175406.pdf
module4geartrains-190118175406.pdfnath479500
 
modelling_of_mechanical_systems.pptx
modelling_of_mechanical_systems.pptxmodelling_of_mechanical_systems.pptx
modelling_of_mechanical_systems.pptxDummyDummy74
 
Crank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder MechanismCrank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder MechanismDhaval Shukla
 
Selection of gearbox for epicyclic gear box
Selection of gearbox for epicyclic gear boxSelection of gearbox for epicyclic gear box
Selection of gearbox for epicyclic gear boxShekhar Kamthe
 
Gear .pdf
Gear .pdfGear .pdf
Gear .pdfahp2011
 
Modelling_of_Mechanical_Systems1.pptx
Modelling_of_Mechanical_Systems1.pptxModelling_of_Mechanical_Systems1.pptx
Modelling_of_Mechanical_Systems1.pptxOthmanBensaoud
 
lecture-3-intro_to_modelling_mechanical.pdf
lecture-3-intro_to_modelling_mechanical.pdflecture-3-intro_to_modelling_mechanical.pdf
lecture-3-intro_to_modelling_mechanical.pdfel3bdllah
 
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdfVOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdfbin971209zhou
 
Volvo ec460 b lr ec460blr excavator service repair manual
Volvo ec460 b lr ec460blr excavator service repair manualVolvo ec460 b lr ec460blr excavator service repair manual
Volvo ec460 b lr ec460blr excavator service repair manualjfkseksmemqw
 
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdfVOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdfttf99929781
 
GEAR TRAIN.PPT -REV-NKJ_1ee70d8a277ad26b3fa571d55971baff.pptx
GEAR TRAIN.PPT -REV-NKJ_1ee70d8a277ad26b3fa571d55971baff.pptxGEAR TRAIN.PPT -REV-NKJ_1ee70d8a277ad26b3fa571d55971baff.pptx
GEAR TRAIN.PPT -REV-NKJ_1ee70d8a277ad26b3fa571d55971baff.pptx187RanjanKumar
 
4644863.ppt
4644863.ppt4644863.ppt
4644863.pptmhdslmn1
 
4_5958551478569274735.pptx
4_5958551478569274735.pptx4_5958551478569274735.pptx
4_5958551478569274735.pptxLiamsila
 
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdfVOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdfzhi3416
 

Semelhante a 3.share gear-trains (20)

A presentation On Epicycle Gear Train
A presentation On Epicycle Gear TrainA presentation On Epicycle Gear Train
A presentation On Epicycle Gear Train
 
Unit 4- Gear and Gear Trains.ppt
Unit 4- Gear and Gear Trains.pptUnit 4- Gear and Gear Trains.ppt
Unit 4- Gear and Gear Trains.ppt
 
Compound Gear train
 Compound Gear train Compound Gear train
Compound Gear train
 
Automatic transmission
Automatic transmissionAutomatic transmission
Automatic transmission
 
modeling of system rotational, Basic Elements Modeling-Spring(K), Damper(D), ...
modeling of system rotational, Basic Elements Modeling-Spring(K), Damper(D), ...modeling of system rotational, Basic Elements Modeling-Spring(K), Damper(D), ...
modeling of system rotational, Basic Elements Modeling-Spring(K), Damper(D), ...
 
module4geartrains-190118175406.pdf
module4geartrains-190118175406.pdfmodule4geartrains-190118175406.pdf
module4geartrains-190118175406.pdf
 
modelling_of_mechanical_systems.pptx
modelling_of_mechanical_systems.pptxmodelling_of_mechanical_systems.pptx
modelling_of_mechanical_systems.pptx
 
X10698 (me8492)
X10698 (me8492)X10698 (me8492)
X10698 (me8492)
 
Crank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder MechanismCrank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder Mechanism
 
Selection of gearbox for epicyclic gear box
Selection of gearbox for epicyclic gear boxSelection of gearbox for epicyclic gear box
Selection of gearbox for epicyclic gear box
 
Gear .pdf
Gear .pdfGear .pdf
Gear .pdf
 
Modelling_of_Mechanical_Systems1.pptx
Modelling_of_Mechanical_Systems1.pptxModelling_of_Mechanical_Systems1.pptx
Modelling_of_Mechanical_Systems1.pptx
 
lecture-3-intro_to_modelling_mechanical.pdf
lecture-3-intro_to_modelling_mechanical.pdflecture-3-intro_to_modelling_mechanical.pdf
lecture-3-intro_to_modelling_mechanical.pdf
 
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdfVOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
 
Volvo ec460 b lr ec460blr excavator service repair manual
Volvo ec460 b lr ec460blr excavator service repair manualVolvo ec460 b lr ec460blr excavator service repair manual
Volvo ec460 b lr ec460blr excavator service repair manual
 
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdfVOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
 
GEAR TRAIN.PPT -REV-NKJ_1ee70d8a277ad26b3fa571d55971baff.pptx
GEAR TRAIN.PPT -REV-NKJ_1ee70d8a277ad26b3fa571d55971baff.pptxGEAR TRAIN.PPT -REV-NKJ_1ee70d8a277ad26b3fa571d55971baff.pptx
GEAR TRAIN.PPT -REV-NKJ_1ee70d8a277ad26b3fa571d55971baff.pptx
 
4644863.ppt
4644863.ppt4644863.ppt
4644863.ppt
 
4_5958551478569274735.pptx
4_5958551478569274735.pptx4_5958551478569274735.pptx
4_5958551478569274735.pptx
 
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdfVOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
VOLVO EC460B LR EC460BLR EXCAVATOR Service Repair Manual.pdf
 

Mais de varun teja G.V.V

5.flexible connectors-belts
5.flexible connectors-belts5.flexible connectors-belts
5.flexible connectors-beltsvarun teja G.V.V
 
Mi 291 chapter 7 (engineering ethics & team work)(1)
Mi 291 chapter 7 (engineering ethics & team work)(1)Mi 291 chapter 7 (engineering ethics & team work)(1)
Mi 291 chapter 7 (engineering ethics & team work)(1)varun teja G.V.V
 
Mi 291 chapter 6 (aethetics in engineering design)(1)
Mi 291 chapter 6 (aethetics in engineering design)(1)Mi 291 chapter 6 (aethetics in engineering design)(1)
Mi 291 chapter 6 (aethetics in engineering design)(1)varun teja G.V.V
 
Mi 291 chapter 5 (machine elements- shot peening)
Mi 291 chapter 5 (machine elements- shot peening)Mi 291 chapter 5 (machine elements- shot peening)
Mi 291 chapter 5 (machine elements- shot peening)varun teja G.V.V
 
Mi 291 chapter 4 (learning from failure)
Mi 291 chapter 4 (learning from failure)Mi 291 chapter 4 (learning from failure)
Mi 291 chapter 4 (learning from failure)varun teja G.V.V
 
Mi 291 chapter 3 (reverse engineering)(1)
Mi 291 chapter 3 (reverse engineering)(1)Mi 291 chapter 3 (reverse engineering)(1)
Mi 291 chapter 3 (reverse engineering)(1)varun teja G.V.V
 
Mi 291 chapter 2 (engineering analsysis)
Mi 291 chapter 2 (engineering analsysis)Mi 291 chapter 2 (engineering analsysis)
Mi 291 chapter 2 (engineering analsysis)varun teja G.V.V
 
Mi 291 chapter 1 (introduction)
Mi 291 chapter 1 (introduction)Mi 291 chapter 1 (introduction)
Mi 291 chapter 1 (introduction)varun teja G.V.V
 
Chapter 5 (design projects)
Chapter 5 (design projects)Chapter 5 (design projects)
Chapter 5 (design projects)varun teja G.V.V
 

Mais de varun teja G.V.V (12)

kinematic synthesis
kinematic synthesiskinematic synthesis
kinematic synthesis
 
8.acceleration analysis
8.acceleration analysis8.acceleration analysis
8.acceleration analysis
 
5.flexible connectors-belts
5.flexible connectors-belts5.flexible connectors-belts
5.flexible connectors-belts
 
Mi 291 mi291 (syll)
Mi 291 mi291 (syll)Mi 291 mi291 (syll)
Mi 291 mi291 (syll)
 
Mi 291 chapter 7 (engineering ethics & team work)(1)
Mi 291 chapter 7 (engineering ethics & team work)(1)Mi 291 chapter 7 (engineering ethics & team work)(1)
Mi 291 chapter 7 (engineering ethics & team work)(1)
 
Mi 291 chapter 6 (aethetics in engineering design)(1)
Mi 291 chapter 6 (aethetics in engineering design)(1)Mi 291 chapter 6 (aethetics in engineering design)(1)
Mi 291 chapter 6 (aethetics in engineering design)(1)
 
Mi 291 chapter 5 (machine elements- shot peening)
Mi 291 chapter 5 (machine elements- shot peening)Mi 291 chapter 5 (machine elements- shot peening)
Mi 291 chapter 5 (machine elements- shot peening)
 
Mi 291 chapter 4 (learning from failure)
Mi 291 chapter 4 (learning from failure)Mi 291 chapter 4 (learning from failure)
Mi 291 chapter 4 (learning from failure)
 
Mi 291 chapter 3 (reverse engineering)(1)
Mi 291 chapter 3 (reverse engineering)(1)Mi 291 chapter 3 (reverse engineering)(1)
Mi 291 chapter 3 (reverse engineering)(1)
 
Mi 291 chapter 2 (engineering analsysis)
Mi 291 chapter 2 (engineering analsysis)Mi 291 chapter 2 (engineering analsysis)
Mi 291 chapter 2 (engineering analsysis)
 
Mi 291 chapter 1 (introduction)
Mi 291 chapter 1 (introduction)Mi 291 chapter 1 (introduction)
Mi 291 chapter 1 (introduction)
 
Chapter 5 (design projects)
Chapter 5 (design projects)Chapter 5 (design projects)
Chapter 5 (design projects)
 

3.share gear-trains

  • 1. Gear Train Main types: • Simple gear train: one gear per shaft • Compound gear train: two or more gears per shaft, but for the first, last • Reverted gear train: input and output gears are coaxial. • Planetary/epicyclic gear train: one with a relative motion of the axes. A combination of gears used to transmit motion from one shaft to another. Why combination?: to obtain large speed reduction within a small space.
  • 2. Simple Gear Train Gear Ratio + : Internal gearing - : External gearing
  • 3. Simple Gear Train - - Intermediate gears Odd Even Input :Output motion Alike Opposite Intermediate gears are called idlers in SGT as they do not affect the speed ratio of the gear train. They are primarily used to; (a) Connect gears with large center distance (b) To obtain the desired direction for the driven
  • 4. Compound Gear Train The compound gears are rigidly fixed to the shaft, hence have the same speed. - - - - (-1)pairs
  • 6. Epicyclic Gear Train The axes of the shafts over which the gears are mounted may move relative to the fixed axis. Gear A and the arm C have a common axis at O1 about which they can rotate. The gear B meshes with gear A, and has its axis on the arm at O2 about which it can rotate. If the arm is fixed: Simple gear train If the gear A is fixed and the arm is rotated about O1 then the gear B is forced to rotate upon and around gear A. Such a motion is called epicyclic (epi: upon; cyclic:around) EGTs are useful for transmitting high speed ratios with gears of moderate size……… ….backgear of lathe; Differential gears of automobiles, wrist watches…
  • 7. Epicyclic Gear Train Planetory Gear Train Sun (Center) Planet (Around Sun Annulus (Internal T)
  • 8. Epicyclic Gear Train Speed ratio: Algebraic method; Tabular method The motion of each element of the EGT relative to the arm is written in the form of equations These equations are solved using two conditions: (i) Some element is fixed, implying zero velocity (ii) Motion of some other element is specified. One caution: You’ll need to associate +/- signs to clockwise and anticlockwise directions Anticlockwise: + Clockwise: -
  • 9. Epicyclic Gear Train: Problem-1 - No. of teeth are as shown in the diagram -A is fixed -B and C are carried on an arm which revolves at 100 rpm about the axis of A or D. # Find the number of teeth of C and the speed & sense of rotation of C?
  • 10. Epicyclic Gear Train: Problem-1 tA= 150; tB=25; tD=40; NA=0; Narm =100 CL =-100 NC=? Geometry: dA/2 = dB + dC + dD/2 tA/2 = tB + tC + tD/2 75=25+tC+20 tC=30 Engagement of AB: Internal implies + (NB-Narm) / (NA-Narm) = tA/tB NB- (-100) = (150/25) * (0-(-100)) NB=500 Engagement of BC: External implies - (NB-Narm) / (NC-Narm) = -tC/tB NC- (-100) = (-25/30) * (500-(-100)) NC=-600 = 600 rpm clockwise
  • 11. Epicyclic Gear Train: Problem-2 # Find the speed and direction of wheel D when wheel A is fixed and arm F makes 200rpm clockwise.
  • 12. Epicyclic Gear Train: Problem-2 tA= 80; tC=72; tD=48 NA=0; Narm =200 CL =-200 Note: NB=NC due to compound shaft; ND? Geometry: rA + rB = rC + rD tA + tB = tC + tD tB = 40 Engagement of AB: External implies - (NB-Narm) / (NA-Narm) = -tA/tB NB- (-200) = (-80/40) * (0-(-200)) NB=-600 600 rpm CL Engagement of CD: External implies - (ND-Narm) / (NC-Narm) = -tC/tD Note NC= NB ND = 400 = 400 rpm CCL
  • 13. Torques in Epicyclic Gear Train When a geared system transmits power, torques are transmitted from one element to another.
  • 14. Torques in Epicyclic Gear Train When the rotating parts of an epicyclic gear train have uniform speeds, i.e., zero angular acceleration, then the gear train is kept in equilibrium by three externally applied torques. The net (external) torque applied must be zero. There are no losses in power transmission, i.e., there are no internal friction losses at the bearings and at the contact surfaces. In other words, the net energy dissipated by the gear train is zero.
  • 15. Torques in Epicyclic Gear Train: Problem 2 Shown is a compound epicyclic gear train in which two gears S1 and S2 are integral with the Input shaft B. The arm A2 is integral with the output shaft, C. The planet gear P2 revolves on a pin attached to the arm A2, and meshes with the Sun gear S2 and internal gear I2 that is co-axial with the input shaft. The planet gear P1 meshes with the fixed internal gear I1 and sun gear S1. The planet gear P1 revolves on a pin fixed to internal gear I2. Arm A1 The number of teeth are as stated in the figure. The input power on the shaft B is 10.47 kW at 1000 rpm (CCL). Find: •The speed and torque at the output shaft •The torque required to hold the internal gear I1. I1 P1 A1 I2 P2 S1 S2
  • 16. Torques in Epicyclic Gear Train: Problem 2 Arm A1 The input power on the shaft B is 10.47 kW at 1000 rpm (CCL). Find: •The speed and torque at the output shaft •The torque required to hold the internal gear I1. Inp:B S1 P1 I1 A1 I2 P2 S2 A2/C Teeth (T) 26 88 83 31 Speed (N) 1000 CCL 1000 CCL 0 1000 CCL Inp:B S1 P1 I1 A1 I2 P2 S2 A2/C Teeth (T) 26 31 88 83 26 31 Speed (N) 1000 CCL 1000 CCL 0 1000 CCL Rad(S1) + Dia (P1) = Rad(I1) Rad(S2) + Dia (P2) = Rad(I2) (TS1)/2 + TP1 = (TI1)/2 (TS2)/2 + TP2 = (TI2)/2
  • 17. Torques in Epicyclic Gear Train: Problem 2 The input power on the shaft B is 10.47 kW at 1000 rpm (CCL). Find: •The speed and torque at the output shaft •The torque required to hold the internal gear I1. I1 P1 A1 S1
  • 18. Torques in Epicyclic Gear Train: Problem 2 The input power on the shaft B is 10.47 kW at 1000 rpm (CCL). Find: •The speed and torque at the output shaft •The torque required to hold the internal gear I1. I2 P2 S2
  • 19. Torques in Epicyclic Gear Train: Problem 2 The input power on the shaft B is 10.47 kW at 1000 rpm (CCL). Find: •The speed and torque at the output shaft •The torque required to hold the internal gear I1.
  • 20. Epicyclic Gear Train with Bevel Gear Bevel gears are used for high speed reduction with fewer gears. The method applicable for EGT with spur gears is also applicable for EGT with bevel gears with some change: For those gears whose axes are inclined to the main axis, the terms clockwise and anticlockwise are not applicable, because direction of rotation for different gears ought to be with respect to the same axis.
  • 21. Epicyclic Gear Train with Bevel Gear: Problem 1 The figure shows an epicyclic bevel GT (Humpage’s reduction gear) in which the gear B is connected to the input shaft, and gear F is connected to the output shaft. The Arm (A), carrying the compound wheels D & E, turns freely on the output shaft. If the input speed is 1000 rpm CCL (seen from the right), determine the speed of the output shaft, when: I: gear C is fixed II: gear C is rotated at 10 rpm CCL.
  • 22. Epicyclic Gear Train with Bevel Gear: Problem 1 NB = 1000 rpm CCL, determine NF, when: I: gear C is fixed II: gear C is rotated at 10 rpm CCL. C D B F E 3 2 1 To find NF, find NE to find which, find ND
  • 23. Epicyclic Gear Train with Bevel Gear: Problem 1 NB = 1000 rpm CCL, determine NF, when: I: gear C is fixed II: gear C is rotated at 10 rpm CCL. C D B F E 3 2 1