Why is Azure Data Explorer fast in petabyte-scale analytics?

Sheik Uduman Ali
Sheik Uduman AliDirector, Industrial Digital Transformation em HARMAN International
Why is Azure Data Explorer
fast in petabyte-scale
analytics?
www.linkedin.com/in/sheik-uduman-ali-m-54b5ab8
https://technicallysheik.com
Understand how its data storage architecture
makes this possible
sheikudumanali@gmail.com
Sheik (technicallysheik.com)
Azure Data Explorer (ADX)
• Managed large scale big data analytics platform
• Suitable for use cases that have high volume and variety of data ingestion at high velocity
• Internet of things – device telemetry data
• Timeseries data
• Log analytics
• Geo-spatial
• Big data analytics
• Variety of connectors available to ingest data from various sources including streaming data
• Simple query language even for complex data analytics
• Built-in data visualization and native support to Power BI and Grafana
Ingest Analyze (Query) Visualize
Outperforms all industry leading big data analytics services on performance and pricing
Sheik (technicallysheik.com)
"TableName": StormEvents,
"Schema": StartTime:datetime,EndTime:datetime,EpisodeId:int,EventId:int,
State:string,EventType:string,InjuriesDirect:int,InjuriesIndirect:int,
DeathsDirect:int,DeathsIndirect:int,DamageProperty:int,DamageCrops:int,
Source:string,BeginLocation:string,EndLocation:string,BeginLat:real,BeginLon:real,
EndLat:real,EndLon:real,EpisodeNarrative:string,EventNarrative:string,
StormSummary:dynamic,
"DatabaseName": Samples,
"Folder": Storm_Events,
"DocString": US storm events. Data source: https://www.ncdc.noaa.gov/stormevents
StormEvents - Sample table
let us take StormEvents table as a sample
this table contains 22 columns of information on US storm events
Sheik (technicallysheik.com)
"StartTime": 2007-09-18T20:00:00Z,
"EndTime": 2007-09-19T18:00:00Z,
"EpisodeId": 11074,
"EventId": 60904,
"State": FLORIDA,
"EventType": Heavy Rain,
"InjuriesDirect": 0,
"InjuriesIndirect": 0,
"DeathsDirect": 0,
"DeathsIndirect": 0,
"DamageProperty": 0,
"DamageCrops": 0,
"Source": Trained Spotter,
"BeginLocation": ORMOND BEACH,
"EndLocation": NEW SMYRNA BEACH,
"BeginLat": 29.28,
"BeginLon": -81.05,
"EndLat": 29.02,
"EndLon": -80.93,
"EpisodeNarrative": Thunderstorms lingered over Volusia County.,
"EventNarrative": As much as 9 inches of rain fell in a 24-hour period across parts of coastal Volusia County.,
"StormSummary": {
"TotalDamages": 0,
"StartTime": "2007-09-18T20:00:00.0000000Z",
"EndTime": "2007-09-19T18:00:00.0000000Z",
"Details": {
"Description": "As much as 9 inches of rain fell in a 24-hour period across parts of coastal Volusia County.",
"Location": "FLORIDA"
}
}
Sample record
Sheik (technicallysheik.com)
ADX
Storage
Columnar
Store
text
inverted
index
data shard
/ extent
Key tenets of ADX data store
Sheik (technicallysheik.com)
Columnar Store
stores the values from each column together
in separate files per column
instead of storing all the values from a row together
To return a row as a result of a query, it needs
to fetch corresponding position from each
column storage files
append only WRITE operation of ADX helps use
of this storage format
consider StormEvent table data
Sheik (technicallysheik.com)
Advantages of Columnar Store - 1
StormEvents
| take 5
| project StartTime, EndTime, EventType, State;
high query performance
among multiple columns, projection of few columns needs
less disk scans instead of searching all rows in the table
StormEvents
| summarize StormCount = count(),
TypeOfStorms = dcount(EventType) by State
| top 5 by StormCount desc
high performant
aggregation queries
as an immutable data nature, results can be cached
particularly aggregations.
Sheik (technicallysheik.com)
Advantages of Columnar Store - 2
Column compression compressed column storage on disk improves throughput.
by default ADX uses LZ4 compression
StormEvents
| where EventType =="Flood"
| summarize EventCount = count() by State
| where EventCount > 100
queries with WHERE predicate performs well
because the columns contain the rows in the same order
and compression improves disk I/O
vectorized processing
with the compressed columns, when a query needs to
fetch data from disk to apply projection or predicates may
fit into L1 cache itself that avoids unnecessary
memory and disk I/O
Memory
L1
Sheik (technicallysheik.com)
Extent or Shard
Shard 1 Shard 2 Shard 3
StartTime
EndTime
EpisodeId
EventId
State
EventType
StartTime Index
EndTime Index
EpisodeId Index
EventId Index
State Index
EventType Index
Table
An extent or shard holds a collection of records
that are physically arranged in columns
Shard 1 holds StartTime and EndTime
columns collection of records
A shard contains data, metadata and index
All columns are indexed
Sheik (technicallysheik.com)
Shard on both Ingestion and Queries
Shard 1
Shard 2
Shard 3
Table
Data
Ingestion
Cluster Node 1
Cluster Node 2
Distributed
Query
Engine
Query
Shards are evenly spread across the cluster nodes based on the partition key.
By default, ingestion time is the partition key
immutable nature, data
stored in both memory
and SSD
A query will be
distributed across
the nodes and run
concurrently
Distributed
Query
Plan
append only write with effective use of
free-text inverted indexing
A query result will
be fetched from
more than one
shards
ingest into Table
r1:= (c1, c2, c3, …, cn)
append c1, c2
append c3, c4, c5
append cn
query result
r1:= (c1, c8)
return c8
query
return c1
Sheik (technicallysheik.com)
Advantages of Shards
• Scale-out nature of sharding allows to effectively use computing on all nodes that
improves query performance
• Petabyte scale of ingestion and storage is very fast and reliable
Sheik (technicallysheik.com)
Closing Note
• The columnar store, column compression, inverted text index and data shard are the
key tenets of ADX to perform well on petabyte-scale analytics queries
• Immutable records with caching benefit makes your data analytics faster
• Materialized View and Query Result Cache are other ADX features that improves the
performance of data analytics
1 de 12

Recomendados

Deploying your Data Warehouse on AWS por
Deploying your Data Warehouse on AWSDeploying your Data Warehouse on AWS
Deploying your Data Warehouse on AWSAmazon Web Services
5K visualizações64 slides
Interactive Analytics on AWS - AWS Summit Tel Aviv 2017 por
Interactive Analytics on AWS - AWS Summit Tel Aviv 2017Interactive Analytics on AWS - AWS Summit Tel Aviv 2017
Interactive Analytics on AWS - AWS Summit Tel Aviv 2017Amazon Web Services
513 visualizações30 slides
Masterclass - Redshift por
Masterclass - RedshiftMasterclass - Redshift
Masterclass - RedshiftAmazon Web Services
2.8K visualizações82 slides
Amazon Athena Hands-On Workshop por
Amazon Athena Hands-On WorkshopAmazon Athena Hands-On Workshop
Amazon Athena Hands-On WorkshopDoiT International
2.8K visualizações52 slides
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in... por
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...InfluxData
3.6K visualizações55 slides
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan... por
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...Jürgen Ambrosi
538 visualizações33 slides

Mais conteúdo relacionado

Similar a Why is Azure Data Explorer fast in petabyte-scale analytics?

2021 04-20 apache arrow and its impact on the database industry.pptx por
2021 04-20  apache arrow and its impact on the database industry.pptx2021 04-20  apache arrow and its impact on the database industry.pptx
2021 04-20 apache arrow and its impact on the database industry.pptxAndrew Lamb
257 visualizações37 slides
Making sense of your data jug por
Making sense of your data   jugMaking sense of your data   jug
Making sense of your data jugGerald Muecke
150 visualizações58 slides
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database por
Azure Cosmos DB - The Swiss Army NoSQL Cloud DatabaseAzure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud DatabaseBizTalk360
483 visualizações61 slides
Introduction to Amazon Athena por
Introduction to Amazon AthenaIntroduction to Amazon Athena
Introduction to Amazon AthenaAmazon Web Services
3.7K visualizações58 slides
IBM Cloud Native Day April 2021: Serverless Data Lake por
IBM Cloud Native Day April 2021: Serverless Data LakeIBM Cloud Native Day April 2021: Serverless Data Lake
IBM Cloud Native Day April 2021: Serverless Data LakeTorsten Steinbach
105 visualizações27 slides
Amazon Athena Capabilities and Use Cases Overview por
Amazon Athena Capabilities and Use Cases Overview Amazon Athena Capabilities and Use Cases Overview
Amazon Athena Capabilities and Use Cases Overview Amazon Web Services
7.9K visualizações67 slides

Similar a Why is Azure Data Explorer fast in petabyte-scale analytics?(20)

2021 04-20 apache arrow and its impact on the database industry.pptx por Andrew Lamb
2021 04-20  apache arrow and its impact on the database industry.pptx2021 04-20  apache arrow and its impact on the database industry.pptx
2021 04-20 apache arrow and its impact on the database industry.pptx
Andrew Lamb257 visualizações
Making sense of your data jug por Gerald Muecke
Making sense of your data   jugMaking sense of your data   jug
Making sense of your data jug
Gerald Muecke150 visualizações
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database por BizTalk360
Azure Cosmos DB - The Swiss Army NoSQL Cloud DatabaseAzure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database
BizTalk360483 visualizações
Introduction to Amazon Athena por Amazon Web Services
Introduction to Amazon AthenaIntroduction to Amazon Athena
Introduction to Amazon Athena
Amazon Web Services3.7K visualizações
IBM Cloud Native Day April 2021: Serverless Data Lake por Torsten Steinbach
IBM Cloud Native Day April 2021: Serverless Data LakeIBM Cloud Native Day April 2021: Serverless Data Lake
IBM Cloud Native Day April 2021: Serverless Data Lake
Torsten Steinbach105 visualizações
Amazon Athena Capabilities and Use Cases Overview por Amazon Web Services
Amazon Athena Capabilities and Use Cases Overview Amazon Athena Capabilities and Use Cases Overview
Amazon Athena Capabilities and Use Cases Overview
Amazon Web Services7.9K visualizações
Building Your Data Warehouse with Amazon Redshift por Amazon Web Services
Building Your Data Warehouse with Amazon RedshiftBuilding Your Data Warehouse with Amazon Redshift
Building Your Data Warehouse with Amazon Redshift
Amazon Web Services7K visualizações
Think Like Spark: Some Spark Concepts and a Use Case por Rachel Warren
Think Like Spark: Some Spark Concepts and a Use CaseThink Like Spark: Some Spark Concepts and a Use Case
Think Like Spark: Some Spark Concepts and a Use Case
Rachel Warren600 visualizações
Writing Continuous Applications with Structured Streaming PySpark API por Databricks
Writing Continuous Applications with Structured Streaming PySpark APIWriting Continuous Applications with Structured Streaming PySpark API
Writing Continuous Applications with Structured Streaming PySpark API
Databricks2.2K visualizações
The life of a query (oracle edition) por maclean liu
The life of a query (oracle edition)The life of a query (oracle edition)
The life of a query (oracle edition)
maclean liu2.2K visualizações
Apache IOTDB: a Time Series Database for Industrial IoT por jixuan1989
Apache IOTDB: a Time Series Database for Industrial IoTApache IOTDB: a Time Series Database for Industrial IoT
Apache IOTDB: a Time Series Database for Industrial IoT
jixuan19893.2K visualizações
Microsoft Azure Big Data Analytics por Mark Kromer
Microsoft Azure Big Data AnalyticsMicrosoft Azure Big Data Analytics
Microsoft Azure Big Data Analytics
Mark Kromer4.2K visualizações
A Rusty introduction to Apache Arrow and how it applies to a time series dat... por Andrew Lamb
A Rusty introduction to Apache Arrow and how it applies to a  time series dat...A Rusty introduction to Apache Arrow and how it applies to a  time series dat...
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
Andrew Lamb344 visualizações
MCT Virtual Summit 2021 por Riccardo Zamana
MCT Virtual Summit 2021MCT Virtual Summit 2021
MCT Virtual Summit 2021
Riccardo Zamana56 visualizações
Supercharging the Value of Your Data with Amazon S3 por Amazon Web Services
Supercharging the Value of Your Data with Amazon S3Supercharging the Value of Your Data with Amazon S3
Supercharging the Value of Your Data with Amazon S3
Amazon Web Services1.3K visualizações
Writing Continuous Applications with Structured Streaming in PySpark por Databricks
Writing Continuous Applications with Structured Streaming in PySparkWriting Continuous Applications with Structured Streaming in PySpark
Writing Continuous Applications with Structured Streaming in PySpark
Databricks2.2K visualizações
Interactively Querying Large-scale Datasets on Amazon S3 por Amazon Web Services
Interactively Querying Large-scale Datasets on Amazon S3Interactively Querying Large-scale Datasets on Amazon S3
Interactively Querying Large-scale Datasets on Amazon S3
Amazon Web Services3.7K visualizações
Getting Started with Amazon Redshift por Amazon Web Services
Getting Started with Amazon RedshiftGetting Started with Amazon Redshift
Getting Started with Amazon Redshift
Amazon Web Services1.6K visualizações
Big Data Tools in AWS por Shu-Jeng Hsieh
Big Data Tools in AWSBig Data Tools in AWS
Big Data Tools in AWS
Shu-Jeng Hsieh265 visualizações
Structuring Spark: DataFrames, Datasets, and Streaming by Michael Armbrust por Spark Summit
Structuring Spark: DataFrames, Datasets, and Streaming by Michael ArmbrustStructuring Spark: DataFrames, Datasets, and Streaming by Michael Armbrust
Structuring Spark: DataFrames, Datasets, and Streaming by Michael Armbrust
Spark Summit8.8K visualizações

Último

Best Home Security Systems.pptx por
Best Home Security Systems.pptxBest Home Security Systems.pptx
Best Home Security Systems.pptxmogalang
9 visualizações16 slides
Inawisdom Quick Sight por
Inawisdom Quick SightInawisdom Quick Sight
Inawisdom Quick SightPhilipBasford
7 visualizações27 slides
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init... por
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...DataScienceConferenc1
5 visualizações18 slides
Data about the sector workshop por
Data about the sector workshopData about the sector workshop
Data about the sector workshopinfo828217
29 visualizações27 slides
Product Research sample.pdf por
Product Research sample.pdfProduct Research sample.pdf
Product Research sample.pdfAllenSingson
33 visualizações29 slides
4_4_WP_4_06_ND_Model.pptx por
4_4_WP_4_06_ND_Model.pptx4_4_WP_4_06_ND_Model.pptx
4_4_WP_4_06_ND_Model.pptxd6fmc6kwd4
7 visualizações13 slides

Último(20)

Best Home Security Systems.pptx por mogalang
Best Home Security Systems.pptxBest Home Security Systems.pptx
Best Home Security Systems.pptx
mogalang9 visualizações
Inawisdom Quick Sight por PhilipBasford
Inawisdom Quick SightInawisdom Quick Sight
Inawisdom Quick Sight
PhilipBasford7 visualizações
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init... por DataScienceConferenc1
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
DataScienceConferenc15 visualizações
Data about the sector workshop por info828217
Data about the sector workshopData about the sector workshop
Data about the sector workshop
info82821729 visualizações
Product Research sample.pdf por AllenSingson
Product Research sample.pdfProduct Research sample.pdf
Product Research sample.pdf
AllenSingson33 visualizações
4_4_WP_4_06_ND_Model.pptx por d6fmc6kwd4
4_4_WP_4_06_ND_Model.pptx4_4_WP_4_06_ND_Model.pptx
4_4_WP_4_06_ND_Model.pptx
d6fmc6kwd47 visualizações
SUPER STORE SQL PROJECT.pptx por khan888620
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptx
khan88862013 visualizações
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx por DataScienceConferenc1
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
DataScienceConferenc111 visualizações
Listed Instruments Survey 2022.pptx por secretariat4
Listed Instruments Survey  2022.pptxListed Instruments Survey  2022.pptx
Listed Instruments Survey 2022.pptx
secretariat493 visualizações
[DSC Europe 23] Ivan Dundovic - How To Treat Your Data As A Product.pptx por DataScienceConferenc1
[DSC Europe 23] Ivan Dundovic - How To Treat Your Data As A Product.pptx[DSC Europe 23] Ivan Dundovic - How To Treat Your Data As A Product.pptx
[DSC Europe 23] Ivan Dundovic - How To Treat Your Data As A Product.pptx
DataScienceConferenc16 visualizações
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation por DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
DataScienceConferenc119 visualizações
Shreyas hospital statistics.pdf por samithavinal
Shreyas hospital statistics.pdfShreyas hospital statistics.pdf
Shreyas hospital statistics.pdf
samithavinal5 visualizações
[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo... por DataScienceConferenc1
[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo...[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo...
[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo...
DataScienceConferenc19 visualizações
[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines por DataScienceConferenc1
[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines
[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines
DataScienceConferenc15 visualizações
Employees attrition por MaryAlejandraDiaz
Employees attritionEmployees attrition
Employees attrition
MaryAlejandraDiaz5 visualizações
K-Drama Recommendation Using Python por FridaPutriassa
K-Drama Recommendation Using PythonK-Drama Recommendation Using Python
K-Drama Recommendation Using Python
FridaPutriassa5 visualizações

Why is Azure Data Explorer fast in petabyte-scale analytics?

  • 1. Why is Azure Data Explorer fast in petabyte-scale analytics? www.linkedin.com/in/sheik-uduman-ali-m-54b5ab8 https://technicallysheik.com Understand how its data storage architecture makes this possible sheikudumanali@gmail.com
  • 2. Sheik (technicallysheik.com) Azure Data Explorer (ADX) • Managed large scale big data analytics platform • Suitable for use cases that have high volume and variety of data ingestion at high velocity • Internet of things – device telemetry data • Timeseries data • Log analytics • Geo-spatial • Big data analytics • Variety of connectors available to ingest data from various sources including streaming data • Simple query language even for complex data analytics • Built-in data visualization and native support to Power BI and Grafana Ingest Analyze (Query) Visualize Outperforms all industry leading big data analytics services on performance and pricing
  • 3. Sheik (technicallysheik.com) "TableName": StormEvents, "Schema": StartTime:datetime,EndTime:datetime,EpisodeId:int,EventId:int, State:string,EventType:string,InjuriesDirect:int,InjuriesIndirect:int, DeathsDirect:int,DeathsIndirect:int,DamageProperty:int,DamageCrops:int, Source:string,BeginLocation:string,EndLocation:string,BeginLat:real,BeginLon:real, EndLat:real,EndLon:real,EpisodeNarrative:string,EventNarrative:string, StormSummary:dynamic, "DatabaseName": Samples, "Folder": Storm_Events, "DocString": US storm events. Data source: https://www.ncdc.noaa.gov/stormevents StormEvents - Sample table let us take StormEvents table as a sample this table contains 22 columns of information on US storm events
  • 4. Sheik (technicallysheik.com) "StartTime": 2007-09-18T20:00:00Z, "EndTime": 2007-09-19T18:00:00Z, "EpisodeId": 11074, "EventId": 60904, "State": FLORIDA, "EventType": Heavy Rain, "InjuriesDirect": 0, "InjuriesIndirect": 0, "DeathsDirect": 0, "DeathsIndirect": 0, "DamageProperty": 0, "DamageCrops": 0, "Source": Trained Spotter, "BeginLocation": ORMOND BEACH, "EndLocation": NEW SMYRNA BEACH, "BeginLat": 29.28, "BeginLon": -81.05, "EndLat": 29.02, "EndLon": -80.93, "EpisodeNarrative": Thunderstorms lingered over Volusia County., "EventNarrative": As much as 9 inches of rain fell in a 24-hour period across parts of coastal Volusia County., "StormSummary": { "TotalDamages": 0, "StartTime": "2007-09-18T20:00:00.0000000Z", "EndTime": "2007-09-19T18:00:00.0000000Z", "Details": { "Description": "As much as 9 inches of rain fell in a 24-hour period across parts of coastal Volusia County.", "Location": "FLORIDA" } } Sample record
  • 6. Sheik (technicallysheik.com) Columnar Store stores the values from each column together in separate files per column instead of storing all the values from a row together To return a row as a result of a query, it needs to fetch corresponding position from each column storage files append only WRITE operation of ADX helps use of this storage format consider StormEvent table data
  • 7. Sheik (technicallysheik.com) Advantages of Columnar Store - 1 StormEvents | take 5 | project StartTime, EndTime, EventType, State; high query performance among multiple columns, projection of few columns needs less disk scans instead of searching all rows in the table StormEvents | summarize StormCount = count(), TypeOfStorms = dcount(EventType) by State | top 5 by StormCount desc high performant aggregation queries as an immutable data nature, results can be cached particularly aggregations.
  • 8. Sheik (technicallysheik.com) Advantages of Columnar Store - 2 Column compression compressed column storage on disk improves throughput. by default ADX uses LZ4 compression StormEvents | where EventType =="Flood" | summarize EventCount = count() by State | where EventCount > 100 queries with WHERE predicate performs well because the columns contain the rows in the same order and compression improves disk I/O vectorized processing with the compressed columns, when a query needs to fetch data from disk to apply projection or predicates may fit into L1 cache itself that avoids unnecessary memory and disk I/O Memory L1
  • 9. Sheik (technicallysheik.com) Extent or Shard Shard 1 Shard 2 Shard 3 StartTime EndTime EpisodeId EventId State EventType StartTime Index EndTime Index EpisodeId Index EventId Index State Index EventType Index Table An extent or shard holds a collection of records that are physically arranged in columns Shard 1 holds StartTime and EndTime columns collection of records A shard contains data, metadata and index All columns are indexed
  • 10. Sheik (technicallysheik.com) Shard on both Ingestion and Queries Shard 1 Shard 2 Shard 3 Table Data Ingestion Cluster Node 1 Cluster Node 2 Distributed Query Engine Query Shards are evenly spread across the cluster nodes based on the partition key. By default, ingestion time is the partition key immutable nature, data stored in both memory and SSD A query will be distributed across the nodes and run concurrently Distributed Query Plan append only write with effective use of free-text inverted indexing A query result will be fetched from more than one shards ingest into Table r1:= (c1, c2, c3, …, cn) append c1, c2 append c3, c4, c5 append cn query result r1:= (c1, c8) return c8 query return c1
  • 11. Sheik (technicallysheik.com) Advantages of Shards • Scale-out nature of sharding allows to effectively use computing on all nodes that improves query performance • Petabyte scale of ingestion and storage is very fast and reliable
  • 12. Sheik (technicallysheik.com) Closing Note • The columnar store, column compression, inverted text index and data shard are the key tenets of ADX to perform well on petabyte-scale analytics queries • Immutable records with caching benefit makes your data analytics faster • Materialized View and Query Result Cache are other ADX features that improves the performance of data analytics