Circles

T
Higher Maths  2  4  Circles UNIT OUTCOME SLIDE
Distance Between Two Points NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME The Distance Formula d   =  (   y 2   –   y 1 ) ² +  (   x 2   –   x 1 ) ² √ B (   x 2   ,   y 2   ) A (   x 1   ,   y 1   ) y 2  –  y 1   x 2  –  x 1   Example Calculate the distance between (-2,9) and (4,-3). d   =  +  6 ² √ 12 ² = 180 √ = 5 √ 6 Where required, write answers as a  surd  in its simplest form. REMEMBER
Points on a Circle NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME Example Plot the following points and find a rule connecting  x   and  y . x y (   5   ,   0   ) (   4   ,   3   ) (   3   ,   4   ) (   0   ,   5   ) (-3   ,   4   ) (-4   ,   3   ) (-5   ,   0   ) (-4   ,-3   ) (-3   ,-4   ) (   0   ,-5   ) (   3   ,-4   ) (   4   ,-3   ) All points lie on a circle with radius 5 units and centre at the origin. x   ²   +   y   ²  =  25 x   ²   +   y   ²  =  r   ² For any point on the circle, For any radius... NOTICE
The Equation of a Circle with centre at the Origin NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME x   ²   +   y   ²  =  r   ² For any circle with radius  r  and centre the origin,  x y The ‘Origin’ is the point  (0,0)   origin Example Show that the point  ( - 3   ,  ) lies on the circle with equation 7 x   ²   +   y   ²  =  16 x   ²   +   y   ² =  ( -3 ) ²  +   (   ) ² 7 =  9  +   7 =  16 Substitute point into equation: The point lies on the circle. LEARN THIS
The Equation of a Circle with centre  (   a   ,   b   ) NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME (   x   –   a   )   ²   +  (   y   –   b   )   ²   =  r   ² For any circle with radius  r  and centre at the point  (   a   ,   b   )   ... Not all circles are centered at the origin. x y (   a   ,   b   ) r Example Write the equation of the circle with centre  (   3   , -5   ) and radius  2  3  . (   x   –   a   )   ²   +  (   y   –   b   )   ²   =  r   ² (   x   –   3   )   ²   +  (   y   –   ( -5 )   )   ²   =  (  )   ² 2  3 (   x   –   3   )   ²   +  (   y   +   5   )   ²   =  12 LEARN THIS
NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME The General Equation of a Circle (   x   +   g   ) 2   +  (   y   +   f   ) 2   =   r   2 (   x   2   +  2 g   x  +  g   2   )   +  (   y   2   +  2 fy  +  f   2   )   =   r   2 x   2   +  y   2   +  2 g   x   +  2 f   y   +   g   2  +  f   2  –  r   2  =   0 x   2   +  y   2  +  2 g   x  +  2 f   y   +  c   =   0 c   =   g   2   +   f   2   –   r   2 r   2   =   g   2   +   f   2   –   c   r   =   g   2   +   f   2   –   c   Try expanding the equation of a circle with centre  (   - g   ,   -   f  )   . General Equation of a Circle with center  (   - g   ,   -   f  ) and radius r   =   g   2   +   f   2   –   c   this is just a number... LEARN
NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME Circles and Straight Lines A line and a circle can have two, one or no points of intersection. r A line which intersects a circle at only one point is at  90° to the radius  and is is called a  tangent . two points of intersection one point of intersection no points of intersection REMEMBER
NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME Intersection of a Line and a Circle Example Find the intersection of the circle and the line 2   x   –  y  = 0 x   2   +  ( 2   x ) 2   =  45 x   2   + 4   x   2   =  45 5   x   2   =  45 x   2   =  9 x   =  3   or  -3 y  = 2   x   x   2   +  y 2   =  45 Substitute into  y  = 2   x  : How to find the points of intersection between a  line  and a circle: •  rearrange the equation of the line into the form  y  =   m   x   +   c  • substitute  y  =   m   x   +   c   into the equation of the circle  • solve the quadratic for  x  and substitute into  m   x   +   c   to find  y y   =  6   or  -6 Points of intersection are  ( 3,6 )  and  ( -3,-6 ) .
NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME Intersection of a Line and a Circle (continued) Example 2 Find where the line  2   x   –  y  + 8   =   0   intersects the circle  x   2   +  y   2  +  4   x  +  2   y  – 20   =   0 x y x   2   +  ( 2   x   +   8 ) 2  +  4   x  +  2   ( 2   x   +   8 )   – 20  =  0 x   2   +  4   x   2  +  32   x  +  64 + 4   x  + 4   x   + 16 – 20   =  0 5   x   2  +  40   x   + 60   =  0 5 (   x   2  +  8   x  +  12   )   =  0 5 (   x  +  2 )(   x  +  6 )   =  0 x   = -2   or   -6 Substituting into  y  = 2   x   +   8  points of intersection as ( -2,4 )  and  ( -6,-4 ) . Factorise  and solve
NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME The Discriminant and Tangents x   = - b b   2   –   ( 4   ac   ) ± 2   a b   2   –   ( 4   ac   ) Discriminant The  discriminant  can be used to show that a line is a tangent: •  substitute  into the circle equation  • rearrange to form a quadratic equation  • evaluate the  discriminant y  =   m   x   +   c b   2   –   ( 4   ac   )   > 0 Two points of intersection b   2   –   ( 4   ac   )   = 0 The line is a  tangent b   2   –   ( 4   ac   )   < 0 No points of intersection  r REMEMBER
NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME Circles and Tangents Show that the line  3   x   +  y   =   -10   is a tangent to the circle  x   2   +  y   2  –  8   x  +  4   y  – 20   =   0 Example x   2   +  (- 3   x   –   10 ) 2  –  8   x  +  4   (- 3   x   –   10 )   – 20  =  0 x   2   +  9   x   2  +  60   x  +   100   –   8   x   –   12   x   – 40   – 20  =  0 10   x   2  +  40   x  +   40  =  0 b   2   –  ( 4   ac   ) =  40   2   –  (   4 × 10 × 40   ) =  0 =  1600   – 1600   The line is a tangent to the circle since b   2   –  ( 4   ac   )   =  0 x y
NOTE SLIDE Higher Maths  2  4  Circles UNIT OUTCOME Equation of Tangents To find the equation of a tangent to a circle: • Find the center of the circle and the point where the tangent intersects • Calculate the  gradient of the radius  using the gradient formula • Write down the  gradient of the tangent • Substitute the gradient of the tangent and the point of intersection into y   –   b   =   m   (   x   –   a   )   REMEMBER Straight Line Equation y   –   b   =   m   (   x   –   a   )   m   tangent   =   – 1 m   radius x 2   –   x 1   y 2   –   y 1   m   radius   = r
1 de 12

Recomendados

Higher Maths 2.1.2 - Quadratic Functions por
Higher Maths 2.1.2 - Quadratic FunctionsHigher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic Functionstimschmitz
7.6K visualizações15 slides
Advanced Trigonometry por
Advanced TrigonometryAdvanced Trigonometry
Advanced Trigonometrytimschmitz
10.6K visualizações14 slides
5.1graphquadratics por
5.1graphquadratics5.1graphquadratics
5.1graphquadraticsvhiggins1
8.6K visualizações22 slides
Higher Maths 1.2.3 - Trigonometric Functions por
Higher Maths 1.2.3 - Trigonometric FunctionsHigher Maths 1.2.3 - Trigonometric Functions
Higher Maths 1.2.3 - Trigonometric Functionstimschmitz
15.6K visualizações12 slides
Conic sections circles - STEM TEACH por
Conic sections circles - STEM TEACHConic sections circles - STEM TEACH
Conic sections circles - STEM TEACHMr Math
3.3K visualizações25 slides
6.2 vertex form por
6.2 vertex form6.2 vertex form
6.2 vertex formhisema01
1.9K visualizações9 slides

Mais conteúdo relacionado

Mais procurados

3 Forms Of A Quadratic Function por
3 Forms Of A Quadratic Function3 Forms Of A Quadratic Function
3 Forms Of A Quadratic Functionguestc8e5bb
85.2K visualizações8 slides
Higher Maths 1.2.2 - Graphs and Transformations por
Higher Maths 1.2.2 - Graphs and TransformationsHigher Maths 1.2.2 - Graphs and Transformations
Higher Maths 1.2.2 - Graphs and Transformationstimschmitz
9.9K visualizações5 slides
Quadratic function por
Quadratic functionQuadratic function
Quadratic functionDwight Ikitan
861 visualizações22 slides
0101: Graphing Quadratic Functions por
0101: Graphing Quadratic Functions0101: Graphing Quadratic Functions
0101: Graphing Quadratic Functionskijo13
529 visualizações9 slides
1512 circles (1) por
1512 circles (1)1512 circles (1)
1512 circles (1)Dr Fereidoun Dejahang
91 visualizações14 slides
General equation of a circle por
General equation of a  circleGeneral equation of a  circle
General equation of a circlerey castro
3.6K visualizações8 slides

Mais procurados(20)

3 Forms Of A Quadratic Function por guestc8e5bb
3 Forms Of A Quadratic Function3 Forms Of A Quadratic Function
3 Forms Of A Quadratic Function
guestc8e5bb85.2K visualizações
Higher Maths 1.2.2 - Graphs and Transformations por timschmitz
Higher Maths 1.2.2 - Graphs and TransformationsHigher Maths 1.2.2 - Graphs and Transformations
Higher Maths 1.2.2 - Graphs and Transformations
timschmitz9.9K visualizações
Quadratic function por Dwight Ikitan
Quadratic functionQuadratic function
Quadratic function
Dwight Ikitan861 visualizações
0101: Graphing Quadratic Functions por kijo13
0101: Graphing Quadratic Functions0101: Graphing Quadratic Functions
0101: Graphing Quadratic Functions
kijo13529 visualizações
General equation of a circle por rey castro
General equation of a  circleGeneral equation of a  circle
General equation of a circle
rey castro3.6K visualizações
Conic Sections por hallb76
Conic SectionsConic Sections
Conic Sections
hallb763.6K visualizações
Parabola por Gian Ra'afi
ParabolaParabola
Parabola
Gian Ra'afi371 visualizações
Mathematics Secondary 2 Revision por missing island
Mathematics Secondary 2 RevisionMathematics Secondary 2 Revision
Mathematics Secondary 2 Revision
missing island4.5K visualizações
Quadratic function and its graph using geogebra por Larisa Kavtaradze
Quadratic function and its graph using geogebraQuadratic function and its graph using geogebra
Quadratic function and its graph using geogebra
Larisa Kavtaradze1.3K visualizações
Graphs Of Equations por missing island
Graphs Of EquationsGraphs Of Equations
Graphs Of Equations
missing island6.5K visualizações
Irisan Kerucut por Waidatin Azizah
Irisan KerucutIrisan Kerucut
Irisan Kerucut
Waidatin Azizah965 visualizações
Circles and Tangent Lines por Leo Crisologo
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent Lines
Leo Crisologo19K visualizações
Quadratic functions and Equations.pdf por Dr. Subhash Unhale
Quadratic functions and Equations.pdfQuadratic functions and Equations.pdf
Quadratic functions and Equations.pdf
Dr. Subhash Unhale191 visualizações
Nov. 3 Coordinate Equation Of A Circle por RyanWatt
Nov. 3 Coordinate Equation Of A CircleNov. 3 Coordinate Equation Of A Circle
Nov. 3 Coordinate Equation Of A Circle
RyanWatt499 visualizações
H 2004 2007 por sjamaths
H 2004   2007H 2004   2007
H 2004 2007
sjamaths66 visualizações
1.1.3 Circle Equations por smiller5
1.1.3 Circle Equations1.1.3 Circle Equations
1.1.3 Circle Equations
smiller51.8K visualizações
Tangents + intersections por Shaun Wilson
Tangents + intersectionsTangents + intersections
Tangents + intersections
Shaun Wilson524 visualizações
Obj. 60 Circles in the Coordinate Plane por smiller5
Obj. 60 Circles in the Coordinate PlaneObj. 60 Circles in the Coordinate Plane
Obj. 60 Circles in the Coordinate Plane
smiller53.4K visualizações

Destaque

Higher Maths 1.2.1 - Sets and Functions por
Higher Maths 1.2.1 - Sets and FunctionsHigher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and Functionstimschmitz
8.9K visualizações12 slides
Higher Maths 2.1.1 - Polynomials por
Higher Maths 2.1.1 - PolynomialsHigher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - Polynomialstimschmitz
5.2K visualizações18 slides
Integration por
IntegrationIntegration
Integrationtimschmitz
3.4K visualizações15 slides
Higher Maths 1.4 - Sequences por
Higher Maths 1.4 - SequencesHigher Maths 1.4 - Sequences
Higher Maths 1.4 - Sequencestimschmitz
5.5K visualizações9 slides
Higher Maths 1.1 - Straight Line por
Higher Maths 1.1 - Straight LineHigher Maths 1.1 - Straight Line
Higher Maths 1.1 - Straight Linetimschmitz
10.4K visualizações12 slides
Differentiation por
DifferentiationDifferentiation
Differentiationtimschmitz
34.1K visualizações20 slides

Destaque(20)

Higher Maths 1.2.1 - Sets and Functions por timschmitz
Higher Maths 1.2.1 - Sets and FunctionsHigher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and Functions
timschmitz8.9K visualizações
Higher Maths 2.1.1 - Polynomials por timschmitz
Higher Maths 2.1.1 - PolynomialsHigher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - Polynomials
timschmitz5.2K visualizações
Integration por timschmitz
IntegrationIntegration
Integration
timschmitz3.4K visualizações
Higher Maths 1.4 - Sequences por timschmitz
Higher Maths 1.4 - SequencesHigher Maths 1.4 - Sequences
Higher Maths 1.4 - Sequences
timschmitz5.5K visualizações
Higher Maths 1.1 - Straight Line por timschmitz
Higher Maths 1.1 - Straight LineHigher Maths 1.1 - Straight Line
Higher Maths 1.1 - Straight Line
timschmitz10.4K visualizações
Differentiation por timschmitz
DifferentiationDifferentiation
Differentiation
timschmitz34.1K visualizações
10.7 writing and graphing circles por guest35706da
10.7 writing and graphing circles10.7 writing and graphing circles
10.7 writing and graphing circles
guest35706da3.4K visualizações
Geom10point1.Doc por herbison
Geom10point1.DocGeom10point1.Doc
Geom10point1.Doc
herbison357 visualizações
Circle por George Tan
CircleCircle
Circle
George Tan801 visualizações
Laws of indices por JJkedst
Laws of indicesLaws of indices
Laws of indices
JJkedst17.9K visualizações
Proving trigonometric identities por Froyd Wess
Proving trigonometric identitiesProving trigonometric identities
Proving trigonometric identities
Froyd Wess7K visualizações
Indices and laws of logarithms por JJkedst
Indices and laws of logarithmsIndices and laws of logarithms
Indices and laws of logarithms
JJkedst3.5K visualizações
Information about Admission in NUST Engineering_2016 por Atiqa khan
Information about Admission in NUST Engineering_2016Information about Admission in NUST Engineering_2016
Information about Admission in NUST Engineering_2016
Atiqa khan1.6K visualizações
World Cities Quiz por timschmitz
World Cities QuizWorld Cities Quiz
World Cities Quiz
timschmitz4.3K visualizações
Tacheometry ppt por Vilas Nikam
Tacheometry pptTacheometry ppt
Tacheometry ppt
Vilas Nikam80.8K visualizações
Benginning Calculus Lecture notes 2 - limits and continuity por basyirstar
Benginning Calculus Lecture notes 2 - limits and continuityBenginning Calculus Lecture notes 2 - limits and continuity
Benginning Calculus Lecture notes 2 - limits and continuity
basyirstar6.7K visualizações
Tacheometric survey por Student
Tacheometric surveyTacheometric survey
Tacheometric survey
Student140.5K visualizações

Similar a Circles

Circle por
CircleCircle
CircleSharingIsCaring1000
5K visualizações46 slides
Straight-Line-Graphs-Final -2.pptx por
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxKviskvis
53 visualizações66 slides
Circle-03-THEORY por
Circle-03-THEORYCircle-03-THEORY
Circle-03-THEORYSTUDY INNOVATIONS
19 visualizações18 slides
Circle (TN)l.pdf por
Circle (TN)l.pdfCircle (TN)l.pdf
Circle (TN)l.pdfSTUDY INNOVATIONS
90 visualizações31 slides
48 circle part 1 of 2 por
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2tutulk
7K visualizações21 slides
Core 1 revision notes a por
Core 1 revision notes aCore 1 revision notes a
Core 1 revision notes aclaire meadows-smith
2.2K visualizações8 slides

Similar a Circles(20)

Straight-Line-Graphs-Final -2.pptx por Kviskvis
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
Kviskvis53 visualizações
Circle-03-THEORY por STUDY INNOVATIONS
Circle-03-THEORYCircle-03-THEORY
Circle-03-THEORY
STUDY INNOVATIONS19 visualizações
Circle (TN)l.pdf por STUDY INNOVATIONS
Circle (TN)l.pdfCircle (TN)l.pdf
Circle (TN)l.pdf
STUDY INNOVATIONS90 visualizações
48 circle part 1 of 2 por tutulk
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
tutulk7K visualizações
Core 1 revision notes a por claire meadows-smith
Core 1 revision notes aCore 1 revision notes a
Core 1 revision notes a
claire meadows-smith2.2K visualizações
Bonus math project por Kenton Hemsing
Bonus math projectBonus math project
Bonus math project
Kenton Hemsing1.2K visualizações
2.2 Circles por smiller5
2.2 Circles2.2 Circles
2.2 Circles
smiller5166 visualizações
Circle (TN for faculty).pdf por STUDY INNOVATIONS
Circle (TN for faculty).pdfCircle (TN for faculty).pdf
Circle (TN for faculty).pdf
STUDY INNOVATIONS56 visualizações
Quadratic Function Presentation por RyanWatt
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
RyanWatt35.7K visualizações
Conic Section (Para_Ellipse_Hyperbola).pdf por STUDY INNOVATIONS
Conic Section (Para_Ellipse_Hyperbola).pdfConic Section (Para_Ellipse_Hyperbola).pdf
Conic Section (Para_Ellipse_Hyperbola).pdf
STUDY INNOVATIONS27 visualizações
Parabola direction , vertex ,roots, minimum and maximum por Nadeem Uddin
Parabola direction , vertex ,roots, minimum and maximumParabola direction , vertex ,roots, minimum and maximum
Parabola direction , vertex ,roots, minimum and maximum
Nadeem Uddin93 visualizações
add math form 4/5 por Sofia Mahmood
add math form 4/5add math form 4/5
add math form 4/5
Sofia Mahmood614 visualizações
Chap-11 - Circle.docx por STUDY INNOVATIONS
Chap-11 - Circle.docxChap-11 - Circle.docx
Chap-11 - Circle.docx
STUDY INNOVATIONS14 visualizações
Unit 16 Circle English.docx por STUDY INNOVATIONS
Unit 16 Circle  English.docxUnit 16 Circle  English.docx
Unit 16 Circle English.docx
STUDY INNOVATIONS30 visualizações
(4) Parabola theory. Module-3pdf por STUDY INNOVATIONS
(4) Parabola theory. Module-3pdf(4) Parabola theory. Module-3pdf
(4) Parabola theory. Module-3pdf
STUDY INNOVATIONS12 visualizações
(4) Parabola theory Module.pdf por RajuSingh806014
(4) Parabola theory Module.pdf(4) Parabola theory Module.pdf
(4) Parabola theory Module.pdf
RajuSingh8060143 visualizações
2.2 Circles por smiller5
2.2 Circles2.2 Circles
2.2 Circles
smiller577 visualizações
Quadraticfunctionpresentation 100127142417-phpapp02 por Vine Gonzales
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02
Vine Gonzales108 visualizações

Último

His_Life_Our_Light_Part_1_His_Life_Our_Light por
His_Life_Our_Light_Part_1_His_Life_Our_LightHis_Life_Our_Light_Part_1_His_Life_Our_Light
His_Life_Our_Light_Part_1_His_Life_Our_LightNetwork Bible Fellowship
7 visualizações17 slides
Q11 WHAT IS THE FIRST RELIGIOUS OBLIGATION IN ISLAM RAMZY AJEM por
Q11 WHAT IS THE FIRST RELIGIOUS OBLIGATION IN ISLAM RAMZY AJEMQ11 WHAT IS THE FIRST RELIGIOUS OBLIGATION IN ISLAM RAMZY AJEM
Q11 WHAT IS THE FIRST RELIGIOUS OBLIGATION IN ISLAM RAMZY AJEMRamzy Ajem
5 visualizações1 slide
Lead us safely to our homes.docx por
Lead us safely to our homes.docxLead us safely to our homes.docx
Lead us safely to our homes.docxtummyy633
7 visualizações1 slide
BRAVELY - CHICO XAVIER.pdf por
BRAVELY - CHICO XAVIER.pdfBRAVELY - CHICO XAVIER.pdf
BRAVELY - CHICO XAVIER.pdfMashaL38
16 visualizações109 slides
The Revealed Path Guide Book New Muslims por
The Revealed Path Guide Book New MuslimsThe Revealed Path Guide Book New Muslims
The Revealed Path Guide Book New MuslimsRamzy Ajem
10 visualizações68 slides
Parish Diary for Dec. 23-Jan. 24. por
Parish Diary for Dec. 23-Jan. 24.Parish Diary for Dec. 23-Jan. 24.
Parish Diary for Dec. 23-Jan. 24.Chris Lyne
9 visualizações4 slides

Último(18)

Q11 WHAT IS THE FIRST RELIGIOUS OBLIGATION IN ISLAM RAMZY AJEM por Ramzy Ajem
Q11 WHAT IS THE FIRST RELIGIOUS OBLIGATION IN ISLAM RAMZY AJEMQ11 WHAT IS THE FIRST RELIGIOUS OBLIGATION IN ISLAM RAMZY AJEM
Q11 WHAT IS THE FIRST RELIGIOUS OBLIGATION IN ISLAM RAMZY AJEM
Ramzy Ajem5 visualizações
Lead us safely to our homes.docx por tummyy633
Lead us safely to our homes.docxLead us safely to our homes.docx
Lead us safely to our homes.docx
tummyy6337 visualizações
BRAVELY - CHICO XAVIER.pdf por MashaL38
BRAVELY - CHICO XAVIER.pdfBRAVELY - CHICO XAVIER.pdf
BRAVELY - CHICO XAVIER.pdf
MashaL3816 visualizações
The Revealed Path Guide Book New Muslims por Ramzy Ajem
The Revealed Path Guide Book New MuslimsThe Revealed Path Guide Book New Muslims
The Revealed Path Guide Book New Muslims
Ramzy Ajem10 visualizações
Parish Diary for Dec. 23-Jan. 24. por Chris Lyne
Parish Diary for Dec. 23-Jan. 24.Parish Diary for Dec. 23-Jan. 24.
Parish Diary for Dec. 23-Jan. 24.
Chris Lyne9 visualizações
KingsandProphets2.pptx por Vaughndj
KingsandProphets2.pptxKingsandProphets2.pptx
KingsandProphets2.pptx
Vaughndj16 visualizações
Matthew 5:10 Persecuted.pptx por Marvin McKenzie
Matthew 5:10 Persecuted.pptxMatthew 5:10 Persecuted.pptx
Matthew 5:10 Persecuted.pptx
Marvin McKenzie17 visualizações
Frenchie Shore’ criticised as too sexually explicit by French culture ministe... por Bnher.com
Frenchie Shore’ criticised as too sexually explicit by French culture ministe...Frenchie Shore’ criticised as too sexually explicit by French culture ministe...
Frenchie Shore’ criticised as too sexually explicit by French culture ministe...
Bnher.com 6 visualizações
Advent (2023) - Hope por Vintage Church
Advent (2023) - HopeAdvent (2023) - Hope
Advent (2023) - Hope
Vintage Church7 visualizações
A333 If the two are different Knowing you => to recover all your sins Togethe... por franktsao4
A333 If the two are different Knowing you => to recover all your sins Togethe...A333 If the two are different Knowing you => to recover all your sins Togethe...
A333 If the two are different Knowing you => to recover all your sins Togethe...
franktsao48 visualizações
capstone presentation.pptx por DJKerns
capstone presentation.pptxcapstone presentation.pptx
capstone presentation.pptx
DJKerns10 visualizações
Walking in maturity por Ed Sullivan
Walking in maturityWalking in maturity
Walking in maturity
Ed Sullivan31 visualizações
Why, I wonder por Brian Lewis
Why, I wonder Why, I wonder
Why, I wonder
Brian Lewis29 visualizações
Christmas List - Mary_Slideshare.pptx por Stephen Palm
Christmas List - Mary_Slideshare.pptxChristmas List - Mary_Slideshare.pptx
Christmas List - Mary_Slideshare.pptx
Stephen Palm22 visualizações
Deerfoot Church of Christ 12 3 23 por deerfootcoc
Deerfoot Church of Christ 12 3 23Deerfoot Church of Christ 12 3 23
Deerfoot Church of Christ 12 3 23
deerfootcoc20 visualizações

Circles

  • 1. Higher Maths 2 4 Circles UNIT OUTCOME SLIDE
  • 2. Distance Between Two Points NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME The Distance Formula d = ( y 2 – y 1 ) ² + ( x 2 – x 1 ) ² √ B ( x 2 , y 2 ) A ( x 1 , y 1 ) y 2 – y 1 x 2 – x 1 Example Calculate the distance between (-2,9) and (4,-3). d = + 6 ² √ 12 ² = 180 √ = 5 √ 6 Where required, write answers as a surd in its simplest form. REMEMBER
  • 3. Points on a Circle NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME Example Plot the following points and find a rule connecting x and y . x y ( 5 , 0 ) ( 4 , 3 ) ( 3 , 4 ) ( 0 , 5 ) (-3 , 4 ) (-4 , 3 ) (-5 , 0 ) (-4 ,-3 ) (-3 ,-4 ) ( 0 ,-5 ) ( 3 ,-4 ) ( 4 ,-3 ) All points lie on a circle with radius 5 units and centre at the origin. x ² + y ² = 25 x ² + y ² = r ² For any point on the circle, For any radius... NOTICE
  • 4. The Equation of a Circle with centre at the Origin NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME x ² + y ² = r ² For any circle with radius r and centre the origin, x y The ‘Origin’ is the point (0,0) origin Example Show that the point ( - 3 , ) lies on the circle with equation 7 x ² + y ² = 16 x ² + y ² = ( -3 ) ² + ( ) ² 7 = 9 + 7 = 16 Substitute point into equation: The point lies on the circle. LEARN THIS
  • 5. The Equation of a Circle with centre ( a , b ) NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME ( x – a ) ² + ( y – b ) ² = r ² For any circle with radius r and centre at the point ( a , b ) ... Not all circles are centered at the origin. x y ( a , b ) r Example Write the equation of the circle with centre ( 3 , -5 ) and radius 2 3 . ( x – a ) ² + ( y – b ) ² = r ² ( x – 3 ) ² + ( y – ( -5 ) ) ² = ( ) ² 2 3 ( x – 3 ) ² + ( y + 5 ) ² = 12 LEARN THIS
  • 6. NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME The General Equation of a Circle ( x + g ) 2 + ( y + f ) 2 = r 2 ( x 2 + 2 g x + g 2 ) + ( y 2 + 2 fy + f 2 ) = r 2 x 2 + y 2 + 2 g x + 2 f y + g 2 + f 2 – r 2 = 0 x 2 + y 2 + 2 g x + 2 f y + c = 0 c = g 2 + f 2 – r 2 r 2 = g 2 + f 2 – c r = g 2 + f 2 – c Try expanding the equation of a circle with centre ( - g , - f ) . General Equation of a Circle with center ( - g , - f ) and radius r = g 2 + f 2 – c this is just a number... LEARN
  • 7. NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME Circles and Straight Lines A line and a circle can have two, one or no points of intersection. r A line which intersects a circle at only one point is at 90° to the radius and is is called a tangent . two points of intersection one point of intersection no points of intersection REMEMBER
  • 8. NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME Intersection of a Line and a Circle Example Find the intersection of the circle and the line 2 x – y = 0 x 2 + ( 2 x ) 2 = 45 x 2 + 4 x 2 = 45 5 x 2 = 45 x 2 = 9 x = 3 or -3 y = 2 x x 2 + y 2 = 45 Substitute into y = 2 x : How to find the points of intersection between a line and a circle: • rearrange the equation of the line into the form y = m x + c • substitute y = m x + c into the equation of the circle • solve the quadratic for x and substitute into m x + c to find y y = 6 or -6 Points of intersection are ( 3,6 ) and ( -3,-6 ) .
  • 9. NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME Intersection of a Line and a Circle (continued) Example 2 Find where the line 2 x – y + 8 = 0 intersects the circle x 2 + y 2 + 4 x + 2 y – 20 = 0 x y x 2 + ( 2 x + 8 ) 2 + 4 x + 2 ( 2 x + 8 ) – 20 = 0 x 2 + 4 x 2 + 32 x + 64 + 4 x + 4 x + 16 – 20 = 0 5 x 2 + 40 x + 60 = 0 5 ( x 2 + 8 x + 12 ) = 0 5 ( x + 2 )( x + 6 ) = 0 x = -2 or -6 Substituting into y = 2 x + 8 points of intersection as ( -2,4 ) and ( -6,-4 ) . Factorise and solve
  • 10. NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME The Discriminant and Tangents x = - b b 2 – ( 4 ac ) ± 2 a b 2 – ( 4 ac ) Discriminant The discriminant can be used to show that a line is a tangent: • substitute into the circle equation • rearrange to form a quadratic equation • evaluate the discriminant y = m x + c b 2 – ( 4 ac ) > 0 Two points of intersection b 2 – ( 4 ac ) = 0 The line is a tangent b 2 – ( 4 ac ) < 0 No points of intersection r REMEMBER
  • 11. NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME Circles and Tangents Show that the line 3 x + y = -10 is a tangent to the circle x 2 + y 2 – 8 x + 4 y – 20 = 0 Example x 2 + (- 3 x – 10 ) 2 – 8 x + 4 (- 3 x – 10 ) – 20 = 0 x 2 + 9 x 2 + 60 x + 100 – 8 x – 12 x – 40 – 20 = 0 10 x 2 + 40 x + 40 = 0 b 2 – ( 4 ac ) = 40 2 – ( 4 × 10 × 40 ) = 0 = 1600 – 1600 The line is a tangent to the circle since b 2 – ( 4 ac ) = 0 x y
  • 12. NOTE SLIDE Higher Maths 2 4 Circles UNIT OUTCOME Equation of Tangents To find the equation of a tangent to a circle: • Find the center of the circle and the point where the tangent intersects • Calculate the gradient of the radius using the gradient formula • Write down the gradient of the tangent • Substitute the gradient of the tangent and the point of intersection into y – b = m ( x – a ) REMEMBER Straight Line Equation y – b = m ( x – a ) m tangent = – 1 m radius x 2 – x 1 y 2 – y 1 m radius = r