SlideShare uma empresa Scribd logo
1 de 14
Separação de materiaisprofessor:ÉdioMazera-quimica Equipe3:Alan, Eduardo Tell, Fernando, Robert Série:1ª02 Tema:centrifugação 2011
A centrifugação é um processo de separação em que a força centrífuga relativa gerada pela rotação da amostra é usada para sedimentarsólidos em líquidos, ou líquidos imiscíveis de diferentes densidades, separando-os. É usada em diferentes aplicações laboratoriais, industriais e domésticas.
Princípio físico A força centrífuga relativa (FCR) é gerada quando uma partícula ou conjunto de partículas é sujeito a um movimento circular. De acordo com a primeira lei de Newton, uma partícula em movimento uniforme linear não perturbada por forças exteriores continuará com este tipo de movimento. Isto significa que terá uma velocidade constante e uma trajectóriarectilínea. Quando a partícula é forçada a descrever uma trajectóriacircular (tomando portanto uma determinada velocidade angular), uma força é exercida na partícula de modo a tentar continuar na trajectóriarectilínea. Essa é a força centrífuga relativa, cuja intensidade aumenta com o quadrado da velocidade angular, sendo directamente proporcional ao raio da circunferência descrita e à massa da partícula. Esta relação é matematicamente descrita da seguinte forma: F = mv²/R = 4 π ² m n²R, em que F é o módulo da intensidade da força centrífuga, m é a massa da partícula, R o seu raio e n o número de rotações por segundo.
Isto significa que quanto maior for o número de rotações por segundo, maior será a força centrífuga aplicada na partícula. Do mesmo modo, quanto maior for o raio da circunferência descrita pela partícula, maior será a força centrífuga. A força centrífuga relativa é calculada da seguinte forma: FCR = 0.00001118 × R × N² onde R é o raio de centrifugação, em centímetros, e N a velocidade de centrifugação em rotações por minuto (rpm). A unidade de medida da força centrífuga relativa é o "g", sendo 1g equivalente à aceleração da gravidade na superfície da terra. Usualmente mede-se a velocidade de centrifugação em rotações por minuto (rpm), apesar de tratar-se de uma informação indireta da eficiência da centrifugação.
A centrifugação é uma técnica fundamental usada em diversos ramos da Química, Biologia e Bioquímica para a separação de amostras. Em geral, estas são introduzidas em tubos de diferentes tamanhos, que são dispostos num rotor de centrífuga. As centrífugas estão normalmente adaptadas para a utilização de diferentes tipos e tamanhos de rotores, conforme a velocidade e aplicação desejadas. Enquanto que microcentrífugas de bancada podem centrifugar tubos entre os 200 μL e os 2 mL de volume, centrífugas de grande porte podem usar tubos de volume muito variável, tipicamente até 1 L.
Separação de diferentes fases Uma das aplicações mais frequentes da centrifugação é na separação de diferentes fases de uma amostra, em especial uma fase sólida de uma aquosa. Partículas insolúveis numa amostra sedimentam no fundo do tubo de centrífuga, restando o chamado sobrenadante (fase líquida) por cima do sedimento. O sobrenadante é então aspirado ou decantado e o sedimento retirado do tubo. Esta técnica é usada, por exemplo, na separação de membranas celulares (insolúveis em água) e citoplasma (solvente celular aquoso) após ruptura de células. Também é usada para a separação dos elementos figurados do sangue e o plasma sanguíneo, em que as células (eritrócitos, leucócitos, plaquetas) são depositados no tubo, podendo o plasma ser separado e analisado.
Centrifugação diferencial A centrifugação diferencial foi desenvolvida nos anos 60 do século XX por Christopher John Champerline e Juan Burdettee. Consiste em sujeitar uma amostra feita homogénea (homogenato) de um tecido ou órgão (por exemplo, fígado) a repetidas centrifugações, aumentando de cada vez a força centrífuga. Hoje em dia esta técnica é largamente substituída pela centrifugação isopícnica. Esta técnica permite a separação de diferentes organelos celulares de eucariontes, como mitocôndrios, núcleo celulares e microssomas (resíduos do retículo endoplasmático).
Centrifugação isopícnica ou de equilíbrio A centrifugação isopícnica, também chamada centrifugação de equilíbrio, é usada na separação de macromoléculas recorrendo a gradientes de concentração da solução base usada para a separação das partículas. Uma das aplicações deste tipo de centrifugação é na separação de moléculas de DNA usando cloreto de césio (CsCl). É uma técnica sensível, capaz de separar moléculas de DNA de igual dimensão mas diferindo apenas na sua proporção AT/GC (proporção entre as basesadenina e timina e as bases guanina e citosina). Neste tipo de centrifugação, a amostra de DNA a separar é misturada com CsCl e posta a centrifugar a cerca de 10 000 g durante um prolongado período de tempo (tipicamente entre dois e três dias). O cloreto de césio é usado numa concentração em que toma uma densidade muito próxima da do DNA. Após este tempo, um gradiente de cloreto de césio será formado e o DNA separa-se segundo as suas proporções AT/GC em diferentes bandas ao longo do tubo.
Os gradientes de sacarose são utilizados na separação de partículas como organelos celulares e vírus, sendo uma alternativa à centrifugação diferencial. Nestes, um gradiente de densidade de sacarose é obtido adicionando cuidadosamente no tubo de centrífuga camadas de soluções de sacarose de diferentes concentrações, começando pela mais alta. Um gradiente típico usa 70% a 20% (p/v), com decrementos de 10%, mas estes valores dependem largamente da amostra a separar. A amostra é colocada no topo do tubo e ultracentrifugada. As partículas migram em direcção ao fundo do tubo e estacionam nas zonas do gradiente com densidade idêntica. A amostra assim dividida em diferentes camadas ao longo do tubo pode ser retirada aspirando cuidadosamente cada camada. Uma modificação do gradiente de sacarose consiste na utilização de soluções de apenas 70% e 20%(p/v). A solução de 70% é depositada no fundo do tubo e a de 20% preenche o restante tubo; a amostra é também depositada no topo, migrando durante a centrifugação para a interface com a solução de 70%. Esta técnica permite a concentração de partículas de uma amostra sem que estas entrem em contacto com a parede do tubo, evitando um stress mecânico que muitas vezes provoca a desintegração dessas partículas.
Ultracentrifugação O termo ultracentrifugação aplica-se à centrifugação que necessita de um tipo específico de centrífuga (ultracentrífuga). As velocidades alcançadas pelos rotores nestas centrífugas são muito elevadas, obtendo-se acelerações até 500 000 g. Neste tipo de centrífuga, a câmara onde se situa o rotor é refrigerada e encontra-se sob vácuo, para evitar o sobreaquecimento por atrito com o ar e para permitir que altas velocidades sejam atingidas. A ultracentrifugação é usada para a sedimentação de macromoléculas; sob determinadas condições, acontece também uma distribuição não uniforme de moléculas de menores dimensões ao longo do tubo. A sedimentação depende da massa, forma e densidade das moléculas, bem como da densidade do solvente. O rotor e velocidade de rotação apropriados são usados dependendo da utilização.
É possível calcular o coeficiente de sedimentação (unidade: Svedberg, S) através da ultracentrifugação. Este coeficiente é proporcional à massa e à densidade da substância, dependendo também da forma das suas moléculas. Assim sendo, partículas de grande massa molecular e densidade sedimentam mais facilmente, enquanto que partículas com forma alongada sedimentam mais lentamente (devido ao maior atrito com o solvente). Uma aplicação clássica deste coeficiente é visível na classificação de subunidades dos ribossomas que, dependendo do seu tamanho, têm diferentes coeficientes de sedimentação: por exemplo, a subunidade pequena dos ribossomasbacterianos é chamada 16S e a sua sequêncianucleotídica serve de base em estudos filogenéticos. A ultracentrífuga foi inventada em 1925 por Theodor Svedberg, que ganhou o prémio Nobel da Química em 1926 pelo seu trabalho em sistemas coloidais, em que usou a sua invenção.
Desenho de um rotor simples de aplicação industrial para a separação de sólidos e líquidos, semelhante ao tambor das máquinas de lavar roupa domésticas.
Uma centrífuga de bancada.
Separação de materiais

Mais conteúdo relacionado

Mais procurados

Mais procurados (18)

análise granulométrica
análise granulométricaanálise granulométrica
análise granulométrica
 
3.1 análise granulométrica
3.1 análise granulométrica3.1 análise granulométrica
3.1 análise granulométrica
 
Trabalho sobre cromatografia 2ª turismo
Trabalho sobre cromatografia   2ª turismoTrabalho sobre cromatografia   2ª turismo
Trabalho sobre cromatografia 2ª turismo
 
Introdução operações unitárias.
Introdução operações unitárias.Introdução operações unitárias.
Introdução operações unitárias.
 
Aula18 sedimentacao
Aula18 sedimentacaoAula18 sedimentacao
Aula18 sedimentacao
 
4896
48964896
4896
 
Diana kaue artigo4
Diana kaue artigo4Diana kaue artigo4
Diana kaue artigo4
 
SEDIMENTAÇÃO
SEDIMENTAÇÃOSEDIMENTAÇÃO
SEDIMENTAÇÃO
 
Sedimentacao
SedimentacaoSedimentacao
Sedimentacao
 
Relatório 7: Viscosímetro de Stokes
Relatório 7: Viscosímetro de StokesRelatório 7: Viscosímetro de Stokes
Relatório 7: Viscosímetro de Stokes
 
1.5.coeficiente de viscosidade de um líquido
1.5.coeficiente de viscosidade de um líquido1.5.coeficiente de viscosidade de um líquido
1.5.coeficiente de viscosidade de um líquido
 
Relatório viscosidade
Relatório viscosidade Relatório viscosidade
Relatório viscosidade
 
Sedimentação power point
Sedimentação power  pointSedimentação power  point
Sedimentação power point
 
Relatório de Cromatografia
Relatório de CromatografiaRelatório de Cromatografia
Relatório de Cromatografia
 
TL I.6 - Coeficiente de Viscosidade
TL I.6 - Coeficiente de ViscosidadeTL I.6 - Coeficiente de Viscosidade
TL I.6 - Coeficiente de Viscosidade
 
Amanda,damielle,nicoli e luiz cadorin.
Amanda,damielle,nicoli e luiz cadorin.Amanda,damielle,nicoli e luiz cadorin.
Amanda,damielle,nicoli e luiz cadorin.
 
Experimento 4 balão-foguete
Experimento 4  balão-fogueteExperimento 4  balão-foguete
Experimento 4 balão-foguete
 
Experimento 3 barquinho
Experimento 3  barquinhoExperimento 3  barquinho
Experimento 3 barquinho
 

Semelhante a Separação de materiais

Centrifugação e Ultracentrifugação
Centrifugação e UltracentrifugaçãoCentrifugação e Ultracentrifugação
Centrifugação e UltracentrifugaçãoEEB Francisco Mazzola
 
Separação de diferentes fases
Separação de diferentes fasesSeparação de diferentes fases
Separação de diferentes fasesKerciely Martins
 
Separação de materiais
Separação de materiaisSeparação de materiais
Separação de materiaisThiago Sgrott
 
Separação de materiais
Separação de materiaisSeparação de materiais
Separação de materiaisThiago Sgrott
 
Separação de materiais
Separação de materiaisSeparação de materiais
Separação de materiaisThiago Sgrott
 
CENTRIFUGAÇÃO biofísica para nutrição, nesta aula será
CENTRIFUGAÇÃO biofísica para nutrição, nesta aula seráCENTRIFUGAÇÃO biofísica para nutrição, nesta aula será
CENTRIFUGAÇÃO biofísica para nutrição, nesta aula seráCARLOSEDUARDOSALESDA
 
Relatorio - cromatografia liquida - Métodos Instrumentais
Relatorio -  cromatografia liquida -  Métodos Instrumentais Relatorio -  cromatografia liquida -  Métodos Instrumentais
Relatorio - cromatografia liquida - Métodos Instrumentais Juliana Teófilo
 
Vazao pressão fluídos
Vazao pressão fluídosVazao pressão fluídos
Vazao pressão fluídosCleber Costa
 
Nefelometria e citometria de fluxo.pptx
Nefelometria e citometria de fluxo.pptxNefelometria e citometria de fluxo.pptx
Nefelometria e citometria de fluxo.pptxDreisson Aguilera
 
Mod 3 moviment ode-particulasnumfluido-parte3
Mod 3 moviment ode-particulasnumfluido-parte3Mod 3 moviment ode-particulasnumfluido-parte3
Mod 3 moviment ode-particulasnumfluido-parte3Fersay
 
Cap-9-Velocidade e Vazão em Fluidos.pdf
Cap-9-Velocidade e Vazão em Fluidos.pdfCap-9-Velocidade e Vazão em Fluidos.pdf
Cap-9-Velocidade e Vazão em Fluidos.pdfssusercaba04
 
concentracao_gravitica_e_separacao_magnetica_unidade_i.pdf
concentracao_gravitica_e_separacao_magnetica_unidade_i.pdfconcentracao_gravitica_e_separacao_magnetica_unidade_i.pdf
concentracao_gravitica_e_separacao_magnetica_unidade_i.pdfHiago Monteiro
 

Semelhante a Separação de materiais (20)

Cetrifugação
CetrifugaçãoCetrifugação
Cetrifugação
 
Apresentação1
Apresentação1Apresentação1
Apresentação1
 
Centrifugação e Ultracentrifugação
Centrifugação e UltracentrifugaçãoCentrifugação e Ultracentrifugação
Centrifugação e Ultracentrifugação
 
Separação de diferentes fases
Separação de diferentes fasesSeparação de diferentes fases
Separação de diferentes fases
 
Separação de materiais
Separação de materiaisSeparação de materiais
Separação de materiais
 
Separação de materiais
Separação de materiaisSeparação de materiais
Separação de materiais
 
Separação de materiais
Separação de materiaisSeparação de materiais
Separação de materiais
 
Separação de materiais
Separação de materiaisSeparação de materiais
Separação de materiais
 
Separação de materiais
Separação de materiaisSeparação de materiais
Separação de materiais
 
CENTRIFUGAÇÃO biofísica para nutrição, nesta aula será
CENTRIFUGAÇÃO biofísica para nutrição, nesta aula seráCENTRIFUGAÇÃO biofísica para nutrição, nesta aula será
CENTRIFUGAÇÃO biofísica para nutrição, nesta aula será
 
Relatorio - cromatografia liquida - Métodos Instrumentais
Relatorio -  cromatografia liquida -  Métodos Instrumentais Relatorio -  cromatografia liquida -  Métodos Instrumentais
Relatorio - cromatografia liquida - Métodos Instrumentais
 
Receba Pai.pptx
Receba Pai.pptxReceba Pai.pptx
Receba Pai.pptx
 
Vazao pressão fluídos
Vazao pressão fluídosVazao pressão fluídos
Vazao pressão fluídos
 
Nefelometria e citometria de fluxo.pptx
Nefelometria e citometria de fluxo.pptxNefelometria e citometria de fluxo.pptx
Nefelometria e citometria de fluxo.pptx
 
Microscopia
MicroscopiaMicroscopia
Microscopia
 
Cinemátic..
Cinemátic..Cinemátic..
Cinemátic..
 
Mod 3 moviment ode-particulasnumfluido-parte3
Mod 3 moviment ode-particulasnumfluido-parte3Mod 3 moviment ode-particulasnumfluido-parte3
Mod 3 moviment ode-particulasnumfluido-parte3
 
06 eletroforese
06  eletroforese06  eletroforese
06 eletroforese
 
Cap-9-Velocidade e Vazão em Fluidos.pdf
Cap-9-Velocidade e Vazão em Fluidos.pdfCap-9-Velocidade e Vazão em Fluidos.pdf
Cap-9-Velocidade e Vazão em Fluidos.pdf
 
concentracao_gravitica_e_separacao_magnetica_unidade_i.pdf
concentracao_gravitica_e_separacao_magnetica_unidade_i.pdfconcentracao_gravitica_e_separacao_magnetica_unidade_i.pdf
concentracao_gravitica_e_separacao_magnetica_unidade_i.pdf
 

Mais de EEB Francisco Mazzola

V1c1 l1a3 - Aprender Química para o exercício da cidadania.
V1c1 l1a3 - Aprender Química para o exercício da cidadania.V1c1 l1a3 - Aprender Química para o exercício da cidadania.
V1c1 l1a3 - Aprender Química para o exercício da cidadania.EEB Francisco Mazzola
 
Cap1 licao3 - Breve panorama histórico da química
Cap1 licao3 - Breve panorama histórico da químicaCap1 licao3 - Breve panorama histórico da química
Cap1 licao3 - Breve panorama histórico da químicaEEB Francisco Mazzola
 
Cap1 lição2 - Os vários aspectos da química
Cap1 lição2 - Os vários aspectos da químicaCap1 lição2 - Os vários aspectos da química
Cap1 lição2 - Os vários aspectos da químicaEEB Francisco Mazzola
 
Trabalho sobre cromatografia 2ª turismo
Trabalho sobre cromatografia   2ª turismoTrabalho sobre cromatografia   2ª turismo
Trabalho sobre cromatografia 2ª turismoEEB Francisco Mazzola
 

Mais de EEB Francisco Mazzola (20)

V1c2 l1a10 - Substâncias Químicas
V1c2 l1a10 - Substâncias QuímicasV1c2 l1a10 - Substâncias Químicas
V1c2 l1a10 - Substâncias Químicas
 
V1c1 l1a3 - Aprender Química para o exercício da cidadania.
V1c1 l1a3 - Aprender Química para o exercício da cidadania.V1c1 l1a3 - Aprender Química para o exercício da cidadania.
V1c1 l1a3 - Aprender Química para o exercício da cidadania.
 
Cap1 licao3 - Breve panorama histórico da química
Cap1 licao3 - Breve panorama histórico da químicaCap1 licao3 - Breve panorama histórico da química
Cap1 licao3 - Breve panorama histórico da química
 
Cap1 lição2 - Os vários aspectos da química
Cap1 lição2 - Os vários aspectos da químicaCap1 lição2 - Os vários aspectos da química
Cap1 lição2 - Os vários aspectos da química
 
Cap1 licao1 - O que é química?
Cap1 licao1 - O que é química?Cap1 licao1 - O que é química?
Cap1 licao1 - O que é química?
 
Fundamentos de Qúimica Geral
Fundamentos de Qúimica GeralFundamentos de Qúimica Geral
Fundamentos de Qúimica Geral
 
Cap01 licao06
Cap01 licao06Cap01 licao06
Cap01 licao06
 
Cap01 licao7a8
Cap01 licao7a8Cap01 licao7a8
Cap01 licao7a8
 
Cap01 licao1a5
Cap01 licao1a5Cap01 licao1a5
Cap01 licao1a5
 
Separação de Materias
Separação de Materias Separação de Materias
Separação de Materias
 
Separação de Materias
Separação de Materias Separação de Materias
Separação de Materias
 
Traalho de quimica
Traalho de quimicaTraalho de quimica
Traalho de quimica
 
Separação de materiais
Separação de materiaisSeparação de materiais
Separação de materiais
 
Separação..
Separação..Separação..
Separação..
 
SEPARAÇÃO DE MATERIAS
SEPARAÇÃO DE MATERIAS SEPARAÇÃO DE MATERIAS
SEPARAÇÃO DE MATERIAS
 
Novo trabalho de quimica
Novo trabalho de quimicaNovo trabalho de quimica
Novo trabalho de quimica
 
Separação de materias
Separação de materiasSeparação de materias
Separação de materias
 
Separaçao de materias
Separaçao de materiasSeparaçao de materias
Separaçao de materias
 
Separação de matérias
Separação de matériasSeparação de matérias
Separação de matérias
 
Trabalho sobre cromatografia 2ª turismo
Trabalho sobre cromatografia   2ª turismoTrabalho sobre cromatografia   2ª turismo
Trabalho sobre cromatografia 2ª turismo
 

Separação de materiais

  • 1. Separação de materiaisprofessor:ÉdioMazera-quimica Equipe3:Alan, Eduardo Tell, Fernando, Robert Série:1ª02 Tema:centrifugação 2011
  • 2. A centrifugação é um processo de separação em que a força centrífuga relativa gerada pela rotação da amostra é usada para sedimentarsólidos em líquidos, ou líquidos imiscíveis de diferentes densidades, separando-os. É usada em diferentes aplicações laboratoriais, industriais e domésticas.
  • 3. Princípio físico A força centrífuga relativa (FCR) é gerada quando uma partícula ou conjunto de partículas é sujeito a um movimento circular. De acordo com a primeira lei de Newton, uma partícula em movimento uniforme linear não perturbada por forças exteriores continuará com este tipo de movimento. Isto significa que terá uma velocidade constante e uma trajectóriarectilínea. Quando a partícula é forçada a descrever uma trajectóriacircular (tomando portanto uma determinada velocidade angular), uma força é exercida na partícula de modo a tentar continuar na trajectóriarectilínea. Essa é a força centrífuga relativa, cuja intensidade aumenta com o quadrado da velocidade angular, sendo directamente proporcional ao raio da circunferência descrita e à massa da partícula. Esta relação é matematicamente descrita da seguinte forma: F = mv²/R = 4 π ² m n²R, em que F é o módulo da intensidade da força centrífuga, m é a massa da partícula, R o seu raio e n o número de rotações por segundo.
  • 4. Isto significa que quanto maior for o número de rotações por segundo, maior será a força centrífuga aplicada na partícula. Do mesmo modo, quanto maior for o raio da circunferência descrita pela partícula, maior será a força centrífuga. A força centrífuga relativa é calculada da seguinte forma: FCR = 0.00001118 × R × N² onde R é o raio de centrifugação, em centímetros, e N a velocidade de centrifugação em rotações por minuto (rpm). A unidade de medida da força centrífuga relativa é o "g", sendo 1g equivalente à aceleração da gravidade na superfície da terra. Usualmente mede-se a velocidade de centrifugação em rotações por minuto (rpm), apesar de tratar-se de uma informação indireta da eficiência da centrifugação.
  • 5. A centrifugação é uma técnica fundamental usada em diversos ramos da Química, Biologia e Bioquímica para a separação de amostras. Em geral, estas são introduzidas em tubos de diferentes tamanhos, que são dispostos num rotor de centrífuga. As centrífugas estão normalmente adaptadas para a utilização de diferentes tipos e tamanhos de rotores, conforme a velocidade e aplicação desejadas. Enquanto que microcentrífugas de bancada podem centrifugar tubos entre os 200 μL e os 2 mL de volume, centrífugas de grande porte podem usar tubos de volume muito variável, tipicamente até 1 L.
  • 6. Separação de diferentes fases Uma das aplicações mais frequentes da centrifugação é na separação de diferentes fases de uma amostra, em especial uma fase sólida de uma aquosa. Partículas insolúveis numa amostra sedimentam no fundo do tubo de centrífuga, restando o chamado sobrenadante (fase líquida) por cima do sedimento. O sobrenadante é então aspirado ou decantado e o sedimento retirado do tubo. Esta técnica é usada, por exemplo, na separação de membranas celulares (insolúveis em água) e citoplasma (solvente celular aquoso) após ruptura de células. Também é usada para a separação dos elementos figurados do sangue e o plasma sanguíneo, em que as células (eritrócitos, leucócitos, plaquetas) são depositados no tubo, podendo o plasma ser separado e analisado.
  • 7. Centrifugação diferencial A centrifugação diferencial foi desenvolvida nos anos 60 do século XX por Christopher John Champerline e Juan Burdettee. Consiste em sujeitar uma amostra feita homogénea (homogenato) de um tecido ou órgão (por exemplo, fígado) a repetidas centrifugações, aumentando de cada vez a força centrífuga. Hoje em dia esta técnica é largamente substituída pela centrifugação isopícnica. Esta técnica permite a separação de diferentes organelos celulares de eucariontes, como mitocôndrios, núcleo celulares e microssomas (resíduos do retículo endoplasmático).
  • 8. Centrifugação isopícnica ou de equilíbrio A centrifugação isopícnica, também chamada centrifugação de equilíbrio, é usada na separação de macromoléculas recorrendo a gradientes de concentração da solução base usada para a separação das partículas. Uma das aplicações deste tipo de centrifugação é na separação de moléculas de DNA usando cloreto de césio (CsCl). É uma técnica sensível, capaz de separar moléculas de DNA de igual dimensão mas diferindo apenas na sua proporção AT/GC (proporção entre as basesadenina e timina e as bases guanina e citosina). Neste tipo de centrifugação, a amostra de DNA a separar é misturada com CsCl e posta a centrifugar a cerca de 10 000 g durante um prolongado período de tempo (tipicamente entre dois e três dias). O cloreto de césio é usado numa concentração em que toma uma densidade muito próxima da do DNA. Após este tempo, um gradiente de cloreto de césio será formado e o DNA separa-se segundo as suas proporções AT/GC em diferentes bandas ao longo do tubo.
  • 9. Os gradientes de sacarose são utilizados na separação de partículas como organelos celulares e vírus, sendo uma alternativa à centrifugação diferencial. Nestes, um gradiente de densidade de sacarose é obtido adicionando cuidadosamente no tubo de centrífuga camadas de soluções de sacarose de diferentes concentrações, começando pela mais alta. Um gradiente típico usa 70% a 20% (p/v), com decrementos de 10%, mas estes valores dependem largamente da amostra a separar. A amostra é colocada no topo do tubo e ultracentrifugada. As partículas migram em direcção ao fundo do tubo e estacionam nas zonas do gradiente com densidade idêntica. A amostra assim dividida em diferentes camadas ao longo do tubo pode ser retirada aspirando cuidadosamente cada camada. Uma modificação do gradiente de sacarose consiste na utilização de soluções de apenas 70% e 20%(p/v). A solução de 70% é depositada no fundo do tubo e a de 20% preenche o restante tubo; a amostra é também depositada no topo, migrando durante a centrifugação para a interface com a solução de 70%. Esta técnica permite a concentração de partículas de uma amostra sem que estas entrem em contacto com a parede do tubo, evitando um stress mecânico que muitas vezes provoca a desintegração dessas partículas.
  • 10. Ultracentrifugação O termo ultracentrifugação aplica-se à centrifugação que necessita de um tipo específico de centrífuga (ultracentrífuga). As velocidades alcançadas pelos rotores nestas centrífugas são muito elevadas, obtendo-se acelerações até 500 000 g. Neste tipo de centrífuga, a câmara onde se situa o rotor é refrigerada e encontra-se sob vácuo, para evitar o sobreaquecimento por atrito com o ar e para permitir que altas velocidades sejam atingidas. A ultracentrifugação é usada para a sedimentação de macromoléculas; sob determinadas condições, acontece também uma distribuição não uniforme de moléculas de menores dimensões ao longo do tubo. A sedimentação depende da massa, forma e densidade das moléculas, bem como da densidade do solvente. O rotor e velocidade de rotação apropriados são usados dependendo da utilização.
  • 11. É possível calcular o coeficiente de sedimentação (unidade: Svedberg, S) através da ultracentrifugação. Este coeficiente é proporcional à massa e à densidade da substância, dependendo também da forma das suas moléculas. Assim sendo, partículas de grande massa molecular e densidade sedimentam mais facilmente, enquanto que partículas com forma alongada sedimentam mais lentamente (devido ao maior atrito com o solvente). Uma aplicação clássica deste coeficiente é visível na classificação de subunidades dos ribossomas que, dependendo do seu tamanho, têm diferentes coeficientes de sedimentação: por exemplo, a subunidade pequena dos ribossomasbacterianos é chamada 16S e a sua sequêncianucleotídica serve de base em estudos filogenéticos. A ultracentrífuga foi inventada em 1925 por Theodor Svedberg, que ganhou o prémio Nobel da Química em 1926 pelo seu trabalho em sistemas coloidais, em que usou a sua invenção.
  • 12. Desenho de um rotor simples de aplicação industrial para a separação de sólidos e líquidos, semelhante ao tambor das máquinas de lavar roupa domésticas.
  • 13. Uma centrífuga de bancada.