O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Quadratic Equation 2

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Carregando em…3
×

Confira estes a seguir

1 de 5 Anúncio

Mais Conteúdo rRelacionado

Semelhante a Quadratic Equation 2 (20)

Anúncio

Mais de Lakshmikanta Satapathy (19)

Mais recentes (20)

Anúncio

Quadratic Equation 2

  1. 1. Physics Helpline L K Satapathy Quadratic Equations 2
  2. 2. Physics Helpline L K Satapathy Quadratic Equations 2 Answer : Question : Let p and q be real numbers such that and If  and  are non-zero complex numbers satisfying and then a quadratic equation having and as its roots is 3 3 0 , .p p q p q            3 2 3 3 ( ) 2 0a p q x p q x p q      3 3 ,p q             3 2 3 3 ( ) 2 0b p q x p q x p q           3 2 3 3 ( ) 5 2 0c p q x p q x p q           3 2 3 3 ( ) 5 2 0d p q x p q x p q      3 3 ( ) ( )i p ii q        3 3p p q        3 3 q         Given : 3 3 p q p    
  3. 3. Physics Helpline L K Satapathy 2 0x x                        2 2 2 1 0x x              2 2 2 0x x        The quadratic equation having and as its roots is given by   2 2 ( ) 2 0x x           
  4. 4. Physics Helpline L K Satapathy Correct option = (b)  33 3 2 2 2 0 3 3 3 p qp q p q x p x p p p                 3 2 3 3 3 3 2 0p q x p p q x p q               3 2 3 3 2 0p q x p q x p q       Putting , we get 3 & 3 p q p p        
  5. 5. Physics Helpline L K Satapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline

×