SlideShare uma empresa Scribd logo
1 de 50
Introduction to
Probability Concepts
BBA3274 / DBS1084 QUANTITATIVE METHODS for BUSINESS
by
Stephen Ong
Visiting Fellow, Birmingham City
University Business School, UK
Visiting Professor, Shenzhen University
•Probability Concepts1
• Events2
• Bayes’ Theorem3
Today’s Overview
Learning Objectives
1. Understand the basic foundations of
probability analysis.
2. Describe statistically dependent and
independent events.
3. Use Bayes’ theorem to establish posterior
probabilities.
After this lecture, students will be able to:
2-4
Outline
2.1 Introduction
2.2 Fundamental Concepts
2.3 Mutually Exclusive and
Collectively Exhaustive Events
2.4 Statistically Independent Events
2.5 Statistically Dependent Events
2.6 Revising Probabilities with
Bayes’ Theorem
2.7 Further Probability Revisions
2-5
Introduction
 Life is uncertain; we are not sure what the future will
bring.
 Probability is a numerical statement about the likelihood
that an event will occur.
2-6
Fundamental Concepts
1. The probability, P, of any event or state of nature occurring
is greater than or equal to 0 and less than or equal to 1.
That is:
0 P (event) 1
2. The sum of the simple probabilities for all possible outcomes
of an activity must equal 1.
2-7
Quantitative Methods that use
Probability
TOPIC METHOD
3 Decision Analysis
4 Regression Models
5 Forecasting
6 Inventory Control Models
12 Project Management
13 Waiting Lines and Queuing Theory Models
14 Simulation Modeling
15 Markov Analysis
16 Statistical Quality Control
Module 3 Decision Theory and the Normal Distribution
Module 4 Game Theory
Table 2.1
2-8
Diversey Paint Example
 Demand for white latex paint at Diversey Paint
and Supply has always been either 0, 1, 2, 3, or 4
gallons per day.
 Over the past 200 days, the owner has observed
the following frequencies of demand:
QUANTITY
DEMANDED
NUMBER OF DAYS PROBABILITY
0 40 0.20 (= 40/200)
1 80 0.40 (= 80/200)
2 50 0.25 (= 50/200)
3 20 0.10 (= 20/200)
4 10 0.05 (= 10/200)
Total 200 Total 1.00 (= 200/200)
2-9
Diversey Paint Example
 Demand for white latex paint at Diversey Paint
and Supply has always been either 0, 1, 2, 3, or 4
gallons per day
 Over the past 200 days, the owner has observed
the following frequencies of demand
QUANTITY
DEMANDED
NUMBER OF DAYS PROBABILITY
0 40 0.20 (= 40/200)
1 80 0.40 (= 80/200)
2 50 0.25 (= 50/200)
3 20 0.10 (= 20/200)
4 10 0.05 (= 10/200)
Total 200 Total 1.00 (= 200/200)
Notice the individual probabilities
are all between 0 and 1
0 ≤ P (event) ≤ 1
And the total of all event
probabilities equals 1
∑ P (event) = 1.00
2-10
Determining objective probability :
 Relative frequency
 Typically based on historical data
Types of Probability
P (event) =
Number of occurrences of the event
Total number of trials or outcomes
 Classical or logical method
 Logically determine probabilities without
trials
P (head) =
1
2
Number of ways of getting a head
Number of possible outcomes (head or tail)
2-11
Types of Probability
Subjective probability is based on the
experience and judgment of the person
making the estimate.
Opinion polls
Judgment of experts
Delphi method
2-12
Mutually Exclusive Events
Events are said to be mutually exclusive if only one of the
events can occur on any one trial.
 Tossing a coin will result
in either a head or a tail.
 Rolling a die will result in
only one of six possible
outcomes.
2-13
Collectively Exhaustive Events
Events are said to be collectively exhaustive if the list of
outcomes includes every possible outcome.
 Both heads and
tails as possible
outcomes of
coin flips.
 All six possible
outcomes
of the roll
of a die.
OUTCOME
OF ROLL
PROBABILITY
1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6
Total 1
2-14
Drawing a Card
Draw one card from a deck of 52 playing cards
P (drawing a 7) = 4/52 = 1/13
P (drawing a heart) = 13/52 = 1/4
 These two events are not mutually exclusive
since a 7 of hearts can be drawn
 These two events are not collectively
exhaustive since there are other cards in the
deck besides 7s and hearts
2-15
Table of Differences
DRAWS
MUTUALLY
EXCLUSIVE
COLLECTIVELY
EXHAUSTIVE
1. Draws a spade and a club Yes No
2. Draw a face card and a
number card
Yes Yes
3. Draw an ace and a 3 Yes No
4. Draw a club and a nonclub Yes Yes
5. Draw a 5 and a diamond No No
6. Draw a red card and a
diamond
No No
Adding Mutually Exclusive
Events
We often want to know whether one or a
second event will occur.
 When two events are mutually
exclusive, the law of addition is:
P (event A or event B) = P (event A) + P (event B)
P (spade or club) = P (spade) + P (club)
= 13/52 + 13/52
= 26/52 = 1/2 = 0.50
2-17
Adding Not Mutually Exclusive Events
P (event A or event B) = P (event A) + P (event B)
– P (event A and event B both occurring)
P (A or B) = P (A) + P (B) – P (A and B)
P(five or diamond) = P(five) + P(diamond) – P(five and diamond)
= 4/52 + 13/52 – 1/52
= 16/52 = 4/13
The equation must be modified to account
for double counting.
 The probability is reduced by
subtracting the chance of both events
occurring together.
2-18
Venn Diagrams
P (A) P (B)
Events that are mutually
exclusive.
P (A or B) = P (A) + P (B)
Figure 2.1
Events that are not
mutually exclusive.
P (A or B) = P (A) + P (B)
– P (A and B)
Figure 2.2
P (A) P (B)
P (A and B)
2-19
Statistically Independent
Events
Events may be either
independent or dependent.
For independent events, the
occurrence of one event has no
effect on the probability of
occurrence of the second event.
2-20
Which Sets of Events Are
Independent?
1. (a) Your education
(b) Your income level
2. (a) Draw a jack of hearts from a full 52-card deck
(b) Draw a jack of clubs from a full 52-card deck
3. (a) Chicago Cubs win the National League pennant
(b) Chicago Cubs win the World Series
4. (a) Snow in Santiago, Chile
(b) Rain in Tel Aviv, Israel
Dependent events
Dependent
events
Independent
events
Independent events
2-21
Three Types of Probabilities
 Marginal (or simple) probability is just the
probability of a single event occurring.
P (A)
 Joint probability is the probability of two or more
events occurring and is equal to the product of
their marginal probabilities for independent
events.
P (AB) = P (A) x P (B)
 Conditional probability is the probability of event
B given that event A has occurred.
P (B | A) = P (B)
 Or the probability of event A given that event B
has occurred
P (A | B) = P (A)
2-22
Joint Probability Example
The probability of tossing a 6 on the
first roll of the die and a 2 on the
second roll:
P (6 on first and 2 on second)
= P (tossing a 6) x P (tossing a 2)
= 1/6 x 1/6 = 1/36 = 0.028
2-23
Independent Events
1. The probability of a black ball drawn on
first draw is:
P (B) = 0.30 (a marginal probability)
2. The probability of two green balls drawn
is:
P (GG) = P (G) x P (G) = 0.7 x 0.7 = 0.49
(a joint probability for two independent events)
A bucket contains 3 black balls and 7 green balls.
 Draw a ball from the bucket, replace it, and
draw a second ball.
2-24
Independent Events
3. The probability of a black ball drawn on the
second draw if the first draw is green is:
P (B | G) = P (B) = 0.30
(a conditional probability but equal to the marginal
because the two draws are independent events)
4. The probability of a green ball drawn on the
second draw if the first draw is green is:
P (G | G) = P (G) = 0.70
(a conditional probability as in event 3)
A bucket contains 3 black balls and 7 green balls.
 Draw a ball from the bucket, replace it, and
draw a second ball.
2-25
Statistically Dependent Events
The marginal probability of an event
occurring is computed in the same way:
P (A)
The formula for the joint probability of
two events is:
P (AB) = P (B | A) P (A)
Calculating conditional probabilities is
slightly more complicated. The probability of
event A given that event B has occurred is:
P (A | B) =
P (AB)
P (B)
2-26
When Events Are Dependent
Assume that we have an urn containing 10 balls of
the following descriptions:
 4 are white (W) and lettered (L)
 2 are white (W) and numbered (N)
 3 are yellow (Y) and lettered (L)
 1 is yellow (Y) and numbered (N)
P (WL) = 4/10 = 0.4 P (YL) = 3/10 = 0.3
P (WN) = 2/10 = 0.2 P (YN) = 1/10 = 0.1
P (W) = 6/10 = 0.6 P (L) = 7/10 = 0.7
P (Y) = 4/10 = 0.4 P (N) = 3/10 = 0.3
2-27
When Events Are Dependent
4 balls
White (W)
and
Lettered (L)
2 balls
White (W)
and
Numbered (N)
3 balls
Yellow (Y)
and
Lettered (L)
1 ball Yellow (Y)
and Numbered (N)
Probability (WL) =
4
10
Probability (YN) =
1
10
Probability (YL) =
3
10
Probability (WN) =
2
10
The urn
contains 10
balls:
Figure 2.3
2-28
When Events Are Dependent
The conditional probability that the ball drawn
is lettered, given that it is yellow, is:
P (L | Y) = = = 0.75
P (YL)
P (Y)
0.3
0.4
We can verify P (YL) using the joint probability formula
P (YL) = P (L | Y) x P (Y) = (0.75)(0.4) = 0.3
2-29
Joint Probabilities
for Dependent Events
P (MT) = P (T | M) x P (M) = (0.70)(0.40) = 0.28
If the stock market reaches 12,500 point by January,
there is a 70% probability that Tubeless Electronics
will go up.
 You believe that there is only a 40% chance the
stock market will reach 12,500.
 Let M represent the event of the stock market
reaching 12,500 and let T be the event that
Tubeless goes up in value.
2-30
Posterior
Probabilities
Bayes’
Process
Revising Probabilities with
Bayes’ Theorem
Bayes’ theorem is used to incorporate
additional information and help create
posterior probabilities.
Prior
Probabilities
New
Information
Figure 2.4
2-31
Posterior Probabilities
A cup contains two dice identical in appearance but
one is fair (unbiased), the other is loaded (biased).
 The probability of rolling a 3 on the fair die is 1/6 or
0.166.
 The probability of tossing the same number on the loaded
die is 0.60.
 We select one by chance,
toss it, and get a 3.
 What is the probability that
the die rolled was fair?
 What is the probability that
the loaded die was rolled?
2-32
Posterior Probabilities
We know the probability of the die being fair or
loaded is:
P (fair) = 0.50 P (loaded) = 0.50
And that
P (3 | fair) = 0.166 P (3 | loaded) = 0.60
We compute the probabilities of P (3 and fair)
and P (3 and loaded):
P (3 and fair) = P (3 | fair) x P (fair)
= (0.166)(0.50) = 0.083
P (3 and loaded) = P (3 | loaded) x P (loaded)
= (0.60)(0.50) = 0.300
2-33
Posterior Probabilities
We know the probability of the die being fair or
loaded is
P (fair) = 0.50 P (loaded) = 0.50
And that
P (3 | fair) = 0.166 P (3 | loaded) = 0.60
We compute the probabilities of P (3 and fair)
and P (3 and loaded)
P (3 and fair) = P (3 | fair) x P (fair)
= (0.166)(0.50) = 0.083
P (3 and loaded) = P (3 | loaded) x P (loaded)
= (0.60)(0.50) = 0.300
The sum of these probabilities
gives us the unconditional
probability of tossing a 3:
P (3) = 0.083 + 0.300 = 0.383
2-34
Posterior Probabilities
P (loaded | 3) = = = 0.78
P (loaded and 3)
P (3)
0.300
0.383
The probability that the die was loaded is:
P (fair | 3) = = = 0.22
P (fair and 3)
P (3)
0.083
0.383
If a 3 does occur, the probability that the die rolled
was the fair one is:
These are the revised or posterior probabilities
for the next roll of the die.
We use these to revise our prior probability
estimates.
2-35
Bayes’ Calculations
Given event B has occurred:
STATE OF
NATURE
P (B | STATE
OF NATURE)
PRIOR
PROBABILITY
JOINT
PROBABILITY
POSTERIOR
PROBABILITY
A P(B | A) x P(A) = P(B and A) P(B and A)/P(B) = P(A|B)
A’ P(B | A’) x P(A’) = P(B and A’) P(B and A’)/P(B) = P(A’|B)
P(B)
Table 2.2
Given a 3 was rolled:
STATE OF
NATURE
P (B | STATE
OF NATURE)
PRIOR
PROBABILITY
JOINT
PROBABILITY
POSTERIOR
PROBABILITY
Fair die 0.166 x 0.5 = 0.083 0.083 / 0.383 = 0.22
Loaded die 0.600 x 0.5 = 0.300 0.300 / 0.383 = 0.78
P(3) = 0.383
Table 2.3
2-36
Independent Events
3. The probability of a black ball drawn on the
second draw if the first draw is green is:
P (B | G) = P (B) = 0.30
(a conditional probability but equal to the marginal
because the two draws are independent events)
4. The probability of a green ball drawn on the
second draw if the first draw is green is:
P (G | G) = P (G) = 0.70
(a conditional probability as in event 3)
A bucket contains 3 black balls and 7 green balls.
 Draw a ball from the bucket, replace it, and
draw a second ball.
2-37
Statistically Dependent Events
The marginal probability of an event occurring
is computed in the same way:
P (A)
The formula for the joint probability of two events is:
P (AB) = P (B | A) P (A)
Calculating conditional probabilities is
slightly more complicated. The probability of
event A given that event B has occurred is:
P (A | B) =
P (AB)
P (B)
2-38
When Events Are
Dependent
Assume that we have an urn containing 10 balls of
the following descriptions:
 4 are white (W) and lettered (L)
 2 are white (W) and numbered (N)
 3 are yellow (Y) and lettered (L)
 1 is yellow (Y) and numbered (N)
P (WL) = 4/10 = 0.4 P (YL) = 3/10 = 0.3
P (WN) = 2/10 = 0.2 P (YN) = 1/10 = 0.1
P (W) = 6/10 = 0.6 P (L) = 7/10 = 0.7
P (Y) = 4/10 = 0.4 P (N) = 3/10 = 0.3
2-39
When Events Are Dependent
4 balls
White (W)
and
Lettered (L)
2 balls
White (W)
and
Numbered (N)
3 balls
Yellow (Y)
and
Lettered (L)
1 ball Yellow (Y)
and Numbered (N)
Probability (WL) =
4
10
Probability (YN) =
1
10
Probability (YL) =
3
10
Probability (WN) =
2
10
The urn
contains 10
balls:
Figure 2.3
2-40
When Events Are Dependent
The conditional probability that the ball drawn
is lettered, given that it is yellow, is:
P (L | Y) = = = 0.75
P (YL)
P (Y)
0.3
0.4
We can verify P (YL) using the joint probability formula
P (YL) = P (L | Y) x P (Y) = (0.75)(0.4) = 0.3
2-41
Joint Probabilities
for Dependent Events
P (MT) = P (T | M) x P (M) = (0.70)(0.40) = 0.28
If the stock market reaches 12,500 point by
January, there is a 70% probability that
Tubeless Electronics will go up.
 You believe that there is only a 40%
chance the stock market will reach
12,500.
 Let M represent the event of the stock
market reaching 12,500 and let T be the
event that Tubeless goes up in value.
2-42
Posterior
Probabilities
Bayes’
Process
Revising Probabilities with
Bayes’ Theorem
Bayes’ theorem is used to incorporate
additional information and help create
posterior probabilities.
Prior
Probabilities
New
Information
Figure 2.4
2-43
Posterior Probabilities
A cup contains two dice identical in appearance but
one is fair (unbiased), the other is loaded (biased).
 The probability of rolling a 3 on the fair die is 1/6 or
0.166.
 The probability of tossing the same number on the loaded
die is 0.60.
 We select one by chance,
toss it, and get a 3.
 What is the probability that
the die rolled was fair?
 What is the probability that
the loaded die was rolled?
2-44
Posterior Probabilities
We know the probability of the die being fair or
loaded is:
P (fair) = 0.50 P (loaded) = 0.50
And that
P (3 | fair) = 0.166 P (3 | loaded) = 0.60
We compute the probabilities of P (3 and fair)
and P (3 and loaded):
P (3 and fair) = P (3 | fair) x P (fair)
= (0.166)(0.50) = 0.083
P (3 and loaded) = P (3 | loaded) x P (loaded)
= (0.60)(0.50) = 0.300
2-45
Posterior Probabilities
We know the probability of the die being fair or
loaded is
P (fair) = 0.50 P (loaded) = 0.50
And that
P (3 | fair) = 0.166 P (3 | loaded) = 0.60
We compute the probabilities of P (3 and fair)
and P (3 and loaded)
P (3 and fair) = P (3 | fair) x P (fair)
= (0.166)(0.50) = 0.083
P (3 and loaded) = P (3 | loaded) x P (loaded)
= (0.60)(0.50) = 0.300
The sum of these probabilities
gives us the unconditional
probability of tossing a 3:
P (3) = 0.083 + 0.300 = 0.383
2-46
Posterior Probabilities
P (loaded | 3) = = = 0.78
P (loaded and 3)
P (3)
0.300
0.383
The probability that the die was loaded is:
P (fair | 3) = = = 0.22
P (fair and 3)
P (3)
0.083
0.383
If a 3 does occur, the probability that the die rolled
was the fair one is:
These are the revised or posterior
probabilities for the next roll of the die.
We use these to revise our prior probability
estimates.
2-47
Bayes’ Calculations
Given event B has occurred:
STATE OF
NATURE
P (B | STATE
OF NATURE)
PRIOR
PROBABILITY
JOINT
PROBABILITY
POSTERIOR
PROBABILITY
A P(B | A) x P(A) = P(B and A) P(B and A)/P(B) = P(A|B)
A’ P(B | A’) x P(A’) = P(B and A’) P(B and A’)/P(B) = P(A’|B)
P(B)
Table 2.2
Given a 3 was rolled:
STATE OF
NATURE
P (B | STATE
OF NATURE)
PRIOR
PROBABILITY
JOINT
PROBABILITY
POSTERIOR
PROBABILITY
Fair die 0.166 x 0.5 = 0.083 0.083 / 0.383 = 0.22
Loaded die 0.600 x 0.5 = 0.300 0.300 / 0.383 = 0.78
P(3) = 0.383
Table 2.3
Tutorial
Lab Practical : Spreadsheet
1 - 48
Further Reading
Render, B., Stair Jr.,R.M. & Hanna, M.E.
(2013) Quantitative Analysis for
Management, Pearson, 11th Edition
Waters, Donald (2007) Quantitative
Methods for Business, Prentice Hall, 4th
Edition.
Balakrishnan, Render & Stair (2013)
Managerial Decision Modeling with
Spreadsheets,Pearson, 3rd Edition
Taylor (2013) Introduction to Management
Science, Pearson, 11th edition
Questions?

Mais conteúdo relacionado

Mais procurados

Research Method for Business chapter # 2
Research Method for Business chapter # 2Research Method for Business chapter # 2
Research Method for Business chapter # 2Mazhar Poohlah
 
Chapter 11 Marketing Reserach , Malhotra
Chapter 11 Marketing Reserach , MalhotraChapter 11 Marketing Reserach , Malhotra
Chapter 11 Marketing Reserach , MalhotraAADITYA TANTIA
 
Marketing research ch 10_malhotra
Marketing research ch 10_malhotraMarketing research ch 10_malhotra
Marketing research ch 10_malhotraJamil Ahmed AKASH
 
Introduction to Probability and Probability Distributions
Introduction to Probability and Probability DistributionsIntroduction to Probability and Probability Distributions
Introduction to Probability and Probability DistributionsJezhabeth Villegas
 
Chapter 15 Marketing Research Malhotra
Chapter 15 Marketing Research MalhotraChapter 15 Marketing Research Malhotra
Chapter 15 Marketing Research MalhotraAADITYA TANTIA
 
Chapter2 - Research Methods for Business By Authors Uma Sekaran and Roger Bo...
Chapter2  - Research Methods for Business By Authors Uma Sekaran and Roger Bo...Chapter2  - Research Methods for Business By Authors Uma Sekaran and Roger Bo...
Chapter2 - Research Methods for Business By Authors Uma Sekaran and Roger Bo...Hassan Usman
 
Reporting Chi Square Test of Independence in APA
Reporting Chi Square Test of Independence in APAReporting Chi Square Test of Independence in APA
Reporting Chi Square Test of Independence in APAKen Plummer
 
Chapter3 - Research Methods for Business By Authors Uma Sekaran and Roger Bo...
Chapter3  - Research Methods for Business By Authors Uma Sekaran and Roger Bo...Chapter3  - Research Methods for Business By Authors Uma Sekaran and Roger Bo...
Chapter3 - Research Methods for Business By Authors Uma Sekaran and Roger Bo...Hassan Usman
 
Research Method for Business chapter 4
Research Method for Business chapter 4Research Method for Business chapter 4
Research Method for Business chapter 4Mazhar Poohlah
 
Statr sessions 11 to 12
Statr sessions 11 to 12Statr sessions 11 to 12
Statr sessions 11 to 12Ruru Chowdhury
 
Accounting Principles, 12th Edition ch2
Accounting Principles, 12th Edition ch2Accounting Principles, 12th Edition ch2
Accounting Principles, 12th Edition ch2AbdelmonsifFadl
 
Chp11 - Research Methods for Business By Authors Uma Sekaran and Roger Bougie
Chp11  - Research Methods for Business By Authors Uma Sekaran and Roger BougieChp11  - Research Methods for Business By Authors Uma Sekaran and Roger Bougie
Chp11 - Research Methods for Business By Authors Uma Sekaran and Roger BougieHassan Usman
 
Chp7 - Research Methods for Business By Authors Uma Sekaran and Roger Bougie
Chp7  - Research Methods for Business By Authors Uma Sekaran and Roger BougieChp7  - Research Methods for Business By Authors Uma Sekaran and Roger Bougie
Chp7 - Research Methods for Business By Authors Uma Sekaran and Roger BougieHassan Usman
 
Chapter 1 Marketing Research Malhotra
Chapter 1 Marketing Research MalhotraChapter 1 Marketing Research Malhotra
Chapter 1 Marketing Research MalhotraAADITYA TANTIA
 
Discrete Probability Distributions
Discrete Probability DistributionsDiscrete Probability Distributions
Discrete Probability Distributionsmandalina landy
 
introduction to probability
introduction to probabilityintroduction to probability
introduction to probabilitylovemucheca
 

Mais procurados (20)

Bays theorem of probability
Bays theorem of probabilityBays theorem of probability
Bays theorem of probability
 
Research Method for Business chapter # 2
Research Method for Business chapter # 2Research Method for Business chapter # 2
Research Method for Business chapter # 2
 
Chapter 11 Marketing Reserach , Malhotra
Chapter 11 Marketing Reserach , MalhotraChapter 11 Marketing Reserach , Malhotra
Chapter 11 Marketing Reserach , Malhotra
 
Marketing research ch 10_malhotra
Marketing research ch 10_malhotraMarketing research ch 10_malhotra
Marketing research ch 10_malhotra
 
Introduction to Probability and Probability Distributions
Introduction to Probability and Probability DistributionsIntroduction to Probability and Probability Distributions
Introduction to Probability and Probability Distributions
 
Chapter 15 Marketing Research Malhotra
Chapter 15 Marketing Research MalhotraChapter 15 Marketing Research Malhotra
Chapter 15 Marketing Research Malhotra
 
Malhotra14
Malhotra14Malhotra14
Malhotra14
 
Chapter2 - Research Methods for Business By Authors Uma Sekaran and Roger Bo...
Chapter2  - Research Methods for Business By Authors Uma Sekaran and Roger Bo...Chapter2  - Research Methods for Business By Authors Uma Sekaran and Roger Bo...
Chapter2 - Research Methods for Business By Authors Uma Sekaran and Roger Bo...
 
Reporting Chi Square Test of Independence in APA
Reporting Chi Square Test of Independence in APAReporting Chi Square Test of Independence in APA
Reporting Chi Square Test of Independence in APA
 
Malhotra16
Malhotra16Malhotra16
Malhotra16
 
Chapter3 - Research Methods for Business By Authors Uma Sekaran and Roger Bo...
Chapter3  - Research Methods for Business By Authors Uma Sekaran and Roger Bo...Chapter3  - Research Methods for Business By Authors Uma Sekaran and Roger Bo...
Chapter3 - Research Methods for Business By Authors Uma Sekaran and Roger Bo...
 
Research Method for Business chapter 4
Research Method for Business chapter 4Research Method for Business chapter 4
Research Method for Business chapter 4
 
Statr sessions 11 to 12
Statr sessions 11 to 12Statr sessions 11 to 12
Statr sessions 11 to 12
 
Addition Rule and Multiplication Rule
Addition Rule and Multiplication RuleAddition Rule and Multiplication Rule
Addition Rule and Multiplication Rule
 
Accounting Principles, 12th Edition ch2
Accounting Principles, 12th Edition ch2Accounting Principles, 12th Edition ch2
Accounting Principles, 12th Edition ch2
 
Chp11 - Research Methods for Business By Authors Uma Sekaran and Roger Bougie
Chp11  - Research Methods for Business By Authors Uma Sekaran and Roger BougieChp11  - Research Methods for Business By Authors Uma Sekaran and Roger Bougie
Chp11 - Research Methods for Business By Authors Uma Sekaran and Roger Bougie
 
Chp7 - Research Methods for Business By Authors Uma Sekaran and Roger Bougie
Chp7  - Research Methods for Business By Authors Uma Sekaran and Roger BougieChp7  - Research Methods for Business By Authors Uma Sekaran and Roger Bougie
Chp7 - Research Methods for Business By Authors Uma Sekaran and Roger Bougie
 
Chapter 1 Marketing Research Malhotra
Chapter 1 Marketing Research MalhotraChapter 1 Marketing Research Malhotra
Chapter 1 Marketing Research Malhotra
 
Discrete Probability Distributions
Discrete Probability DistributionsDiscrete Probability Distributions
Discrete Probability Distributions
 
introduction to probability
introduction to probabilityintroduction to probability
introduction to probability
 

Destaque

Bba 3274 qm week 3 probability distribution
Bba 3274 qm week 3 probability distributionBba 3274 qm week 3 probability distribution
Bba 3274 qm week 3 probability distributionStephen Ong
 
Rohit Business and economic environment
Rohit Business and economic environmentRohit Business and economic environment
Rohit Business and economic environmentRohit Yadav
 
03 probability-distributions
03 probability-distributions03 probability-distributions
03 probability-distributionsPooja Sakhla
 
03+probability+distributions.ppt
03+probability+distributions.ppt03+probability+distributions.ppt
03+probability+distributions.pptabhinav3874
 
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...Daniel Katz
 
Nature and purpose of business
Nature and purpose of businessNature and purpose of business
Nature and purpose of businessSakshi Verma
 

Destaque (8)

Bba 3274 qm week 3 probability distribution
Bba 3274 qm week 3 probability distributionBba 3274 qm week 3 probability distribution
Bba 3274 qm week 3 probability distribution
 
Rohit Business and economic environment
Rohit Business and economic environmentRohit Business and economic environment
Rohit Business and economic environment
 
03 probability-distributions
03 probability-distributions03 probability-distributions
03 probability-distributions
 
03+probability+distributions.ppt
03+probability+distributions.ppt03+probability+distributions.ppt
03+probability+distributions.ppt
 
Session 3
Session 3Session 3
Session 3
 
Probability Concepts
Probability ConceptsProbability Concepts
Probability Concepts
 
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...
 
Nature and purpose of business
Nature and purpose of businessNature and purpose of business
Nature and purpose of business
 

Semelhante a Bba 3274 qm week 2 probability concepts

G10 Math Q4-Week 1- Mutually Exclusive.ppt
G10 Math Q4-Week 1- Mutually Exclusive.pptG10 Math Q4-Week 1- Mutually Exclusive.ppt
G10 Math Q4-Week 1- Mutually Exclusive.pptArnoldMillones4
 
Probability concepts-applications-1235015791722176-2
Probability concepts-applications-1235015791722176-2Probability concepts-applications-1235015791722176-2
Probability concepts-applications-1235015791722176-2satysun1990
 
Probability Concepts Applications
Probability Concepts  ApplicationsProbability Concepts  Applications
Probability Concepts Applicationsguest44b78
 
[Junoon - E - Jee] - Probability - 13th Nov.pdf
[Junoon - E - Jee] - Probability - 13th Nov.pdf[Junoon - E - Jee] - Probability - 13th Nov.pdf
[Junoon - E - Jee] - Probability - 13th Nov.pdfPrakashPatra7
 
CLO2-PPT2-Probability Addition Rules.pptx
CLO2-PPT2-Probability Addition Rules.pptxCLO2-PPT2-Probability Addition Rules.pptx
CLO2-PPT2-Probability Addition Rules.pptxshahad1121
 
Unit 4--probability and probability distribution (1).pptx
Unit 4--probability and probability distribution (1).pptxUnit 4--probability and probability distribution (1).pptx
Unit 4--probability and probability distribution (1).pptxakshay353895
 
PROBABILITY AND PROBABILITY DISTRIBUTIONS.ppt
PROBABILITY AND PROBABILITY DISTRIBUTIONS.pptPROBABILITY AND PROBABILITY DISTRIBUTIONS.ppt
PROBABILITY AND PROBABILITY DISTRIBUTIONS.pptJimbertTingcang2
 
11.5 Independent and Dependent Events
11.5 Independent and Dependent Events11.5 Independent and Dependent Events
11.5 Independent and Dependent Eventssmiller5
 
Probability (gr.11)
Probability (gr.11)Probability (gr.11)
Probability (gr.11)Vukile Xhego
 
Probability and probability distributions ppt @ bec doms
Probability and probability distributions ppt @ bec domsProbability and probability distributions ppt @ bec doms
Probability and probability distributions ppt @ bec domsBabasab Patil
 
probability-180324013552.pptx
probability-180324013552.pptxprobability-180324013552.pptx
probability-180324013552.pptxVukile Xhego
 
Lecture_5Conditional_Probability_Bayes_T.pptx
Lecture_5Conditional_Probability_Bayes_T.pptxLecture_5Conditional_Probability_Bayes_T.pptx
Lecture_5Conditional_Probability_Bayes_T.pptxAbebe334138
 
Year 12 Maths A Textbook - Chapter 9
Year 12 Maths A Textbook - Chapter 9Year 12 Maths A Textbook - Chapter 9
Year 12 Maths A Textbook - Chapter 9westy67968
 

Semelhante a Bba 3274 qm week 2 probability concepts (20)

G10 Math Q4-Week 1- Mutually Exclusive.ppt
G10 Math Q4-Week 1- Mutually Exclusive.pptG10 Math Q4-Week 1- Mutually Exclusive.ppt
G10 Math Q4-Week 1- Mutually Exclusive.ppt
 
Probability concepts-applications-1235015791722176-2
Probability concepts-applications-1235015791722176-2Probability concepts-applications-1235015791722176-2
Probability concepts-applications-1235015791722176-2
 
Probability Concepts Applications
Probability Concepts  ApplicationsProbability Concepts  Applications
Probability Concepts Applications
 
Rsh qam11 ch02
Rsh qam11 ch02Rsh qam11 ch02
Rsh qam11 ch02
 
Probability+distribution
Probability+distributionProbability+distribution
Probability+distribution
 
Claas 11 Basic Probability.pptx
Claas 11 Basic Probability.pptxClaas 11 Basic Probability.pptx
Claas 11 Basic Probability.pptx
 
[Junoon - E - Jee] - Probability - 13th Nov.pdf
[Junoon - E - Jee] - Probability - 13th Nov.pdf[Junoon - E - Jee] - Probability - 13th Nov.pdf
[Junoon - E - Jee] - Probability - 13th Nov.pdf
 
603-probability mj.pptx
603-probability mj.pptx603-probability mj.pptx
603-probability mj.pptx
 
CLO2-PPT2-Probability Addition Rules.pptx
CLO2-PPT2-Probability Addition Rules.pptxCLO2-PPT2-Probability Addition Rules.pptx
CLO2-PPT2-Probability Addition Rules.pptx
 
Unit 4--probability and probability distribution (1).pptx
Unit 4--probability and probability distribution (1).pptxUnit 4--probability and probability distribution (1).pptx
Unit 4--probability and probability distribution (1).pptx
 
Class 11 Basic Probability.pptx
Class 11 Basic Probability.pptxClass 11 Basic Probability.pptx
Class 11 Basic Probability.pptx
 
PROBABILITY AND PROBABILITY DISTRIBUTIONS.ppt
PROBABILITY AND PROBABILITY DISTRIBUTIONS.pptPROBABILITY AND PROBABILITY DISTRIBUTIONS.ppt
PROBABILITY AND PROBABILITY DISTRIBUTIONS.ppt
 
11.5 Independent and Dependent Events
11.5 Independent and Dependent Events11.5 Independent and Dependent Events
11.5 Independent and Dependent Events
 
Probability (gr.11)
Probability (gr.11)Probability (gr.11)
Probability (gr.11)
 
Probability and probability distributions ppt @ bec doms
Probability and probability distributions ppt @ bec domsProbability and probability distributions ppt @ bec doms
Probability and probability distributions ppt @ bec doms
 
probability-180324013552.pptx
probability-180324013552.pptxprobability-180324013552.pptx
probability-180324013552.pptx
 
Probability-11.pdf
Probability-11.pdfProbability-11.pdf
Probability-11.pdf
 
Lecture_5Conditional_Probability_Bayes_T.pptx
Lecture_5Conditional_Probability_Bayes_T.pptxLecture_5Conditional_Probability_Bayes_T.pptx
Lecture_5Conditional_Probability_Bayes_T.pptx
 
Year 12 Maths A Textbook - Chapter 9
Year 12 Maths A Textbook - Chapter 9Year 12 Maths A Textbook - Chapter 9
Year 12 Maths A Textbook - Chapter 9
 
Different kinds of Probability
Different kinds of ProbabilityDifferent kinds of Probability
Different kinds of Probability
 

Mais de Stephen Ong

Tcm step 3 venture assessment
Tcm step 3 venture assessmentTcm step 3 venture assessment
Tcm step 3 venture assessmentStephen Ong
 
Tcm step 2 market needs analysis
Tcm step 2 market needs analysisTcm step 2 market needs analysis
Tcm step 2 market needs analysisStephen Ong
 
Tcm step 1 technology analysis
Tcm step 1 technology analysisTcm step 1 technology analysis
Tcm step 1 technology analysisStephen Ong
 
Tcm Workshop 1 Technology analysis
Tcm Workshop 1 Technology analysisTcm Workshop 1 Technology analysis
Tcm Workshop 1 Technology analysisStephen Ong
 
Tcm step 3 venture assessment
Tcm step 3 venture assessmentTcm step 3 venture assessment
Tcm step 3 venture assessmentStephen Ong
 
Tcm step 2 market needs analysis
Tcm step 2 market needs analysisTcm step 2 market needs analysis
Tcm step 2 market needs analysisStephen Ong
 
Tcm step 1 technology analysis
Tcm step 1 technology analysisTcm step 1 technology analysis
Tcm step 1 technology analysisStephen Ong
 
Tcm concept discovery stage introduction
Tcm concept discovery stage introductionTcm concept discovery stage introduction
Tcm concept discovery stage introductionStephen Ong
 
Mod001093 german sme hidden champions 120415
Mod001093 german sme hidden champions 120415Mod001093 german sme hidden champions 120415
Mod001093 german sme hidden champions 120415Stephen Ong
 
Tbs910 linear programming
Tbs910 linear programmingTbs910 linear programming
Tbs910 linear programmingStephen Ong
 
Mod001093 family businesses 050415
Mod001093 family businesses 050415Mod001093 family businesses 050415
Mod001093 family businesses 050415Stephen Ong
 
Gs503 vcf lecture 8 innovation finance ii 060415
Gs503 vcf lecture 8 innovation finance ii 060415Gs503 vcf lecture 8 innovation finance ii 060415
Gs503 vcf lecture 8 innovation finance ii 060415Stephen Ong
 
Gs503 vcf lecture 7 innovation finance i 300315
Gs503 vcf lecture 7 innovation finance i 300315Gs503 vcf lecture 7 innovation finance i 300315
Gs503 vcf lecture 7 innovation finance i 300315Stephen Ong
 
Tbs910 regression models
Tbs910 regression modelsTbs910 regression models
Tbs910 regression modelsStephen Ong
 
Tbs910 sampling hypothesis regression
Tbs910 sampling hypothesis regressionTbs910 sampling hypothesis regression
Tbs910 sampling hypothesis regressionStephen Ong
 
Mod001093 intrapreneurship 290315
Mod001093 intrapreneurship 290315Mod001093 intrapreneurship 290315
Mod001093 intrapreneurship 290315Stephen Ong
 
Gs503 vcf lecture 6 partial valuation ii 160315
Gs503 vcf lecture 6 partial valuation ii  160315Gs503 vcf lecture 6 partial valuation ii  160315
Gs503 vcf lecture 6 partial valuation ii 160315Stephen Ong
 
Gs503 vcf lecture 5 partial valuation i 140315
Gs503 vcf lecture 5 partial valuation i  140315Gs503 vcf lecture 5 partial valuation i  140315
Gs503 vcf lecture 5 partial valuation i 140315Stephen Ong
 
Mod001093 context of sme 220315
Mod001093 context of sme 220315Mod001093 context of sme 220315
Mod001093 context of sme 220315Stephen Ong
 
Mod001093 from innovation business model to startup 140315
Mod001093 from innovation business model to startup 140315Mod001093 from innovation business model to startup 140315
Mod001093 from innovation business model to startup 140315Stephen Ong
 

Mais de Stephen Ong (20)

Tcm step 3 venture assessment
Tcm step 3 venture assessmentTcm step 3 venture assessment
Tcm step 3 venture assessment
 
Tcm step 2 market needs analysis
Tcm step 2 market needs analysisTcm step 2 market needs analysis
Tcm step 2 market needs analysis
 
Tcm step 1 technology analysis
Tcm step 1 technology analysisTcm step 1 technology analysis
Tcm step 1 technology analysis
 
Tcm Workshop 1 Technology analysis
Tcm Workshop 1 Technology analysisTcm Workshop 1 Technology analysis
Tcm Workshop 1 Technology analysis
 
Tcm step 3 venture assessment
Tcm step 3 venture assessmentTcm step 3 venture assessment
Tcm step 3 venture assessment
 
Tcm step 2 market needs analysis
Tcm step 2 market needs analysisTcm step 2 market needs analysis
Tcm step 2 market needs analysis
 
Tcm step 1 technology analysis
Tcm step 1 technology analysisTcm step 1 technology analysis
Tcm step 1 technology analysis
 
Tcm concept discovery stage introduction
Tcm concept discovery stage introductionTcm concept discovery stage introduction
Tcm concept discovery stage introduction
 
Mod001093 german sme hidden champions 120415
Mod001093 german sme hidden champions 120415Mod001093 german sme hidden champions 120415
Mod001093 german sme hidden champions 120415
 
Tbs910 linear programming
Tbs910 linear programmingTbs910 linear programming
Tbs910 linear programming
 
Mod001093 family businesses 050415
Mod001093 family businesses 050415Mod001093 family businesses 050415
Mod001093 family businesses 050415
 
Gs503 vcf lecture 8 innovation finance ii 060415
Gs503 vcf lecture 8 innovation finance ii 060415Gs503 vcf lecture 8 innovation finance ii 060415
Gs503 vcf lecture 8 innovation finance ii 060415
 
Gs503 vcf lecture 7 innovation finance i 300315
Gs503 vcf lecture 7 innovation finance i 300315Gs503 vcf lecture 7 innovation finance i 300315
Gs503 vcf lecture 7 innovation finance i 300315
 
Tbs910 regression models
Tbs910 regression modelsTbs910 regression models
Tbs910 regression models
 
Tbs910 sampling hypothesis regression
Tbs910 sampling hypothesis regressionTbs910 sampling hypothesis regression
Tbs910 sampling hypothesis regression
 
Mod001093 intrapreneurship 290315
Mod001093 intrapreneurship 290315Mod001093 intrapreneurship 290315
Mod001093 intrapreneurship 290315
 
Gs503 vcf lecture 6 partial valuation ii 160315
Gs503 vcf lecture 6 partial valuation ii  160315Gs503 vcf lecture 6 partial valuation ii  160315
Gs503 vcf lecture 6 partial valuation ii 160315
 
Gs503 vcf lecture 5 partial valuation i 140315
Gs503 vcf lecture 5 partial valuation i  140315Gs503 vcf lecture 5 partial valuation i  140315
Gs503 vcf lecture 5 partial valuation i 140315
 
Mod001093 context of sme 220315
Mod001093 context of sme 220315Mod001093 context of sme 220315
Mod001093 context of sme 220315
 
Mod001093 from innovation business model to startup 140315
Mod001093 from innovation business model to startup 140315Mod001093 from innovation business model to startup 140315
Mod001093 from innovation business model to startup 140315
 

Último

Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessSeta Wicaksana
 
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...ShrutiBose4
 
Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Seta Wicaksana
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCRashishs7044
 
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCRashishs7044
 
Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionMintel Group
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Pereraictsugar
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Kirill Klimov
 
Innovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdfInnovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdfrichard876048
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCRashishs7044
 
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607dollysharma2066
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxMarkAnthonyAurellano
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMintel Group
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...ictsugar
 
Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03DallasHaselhorst
 

Último (20)

Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
Call Us ➥9319373153▻Call Girls In North Goa
Call Us ➥9319373153▻Call Girls In North GoaCall Us ➥9319373153▻Call Girls In North Goa
Call Us ➥9319373153▻Call Girls In North Goa
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful Business
 
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
 
Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
 
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
 
Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted Version
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Perera
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024
 
Innovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdfInnovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdf
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR
 
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
 
No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...
No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...
No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...
 
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCREnjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 Edition
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
 
Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03
 

Bba 3274 qm week 2 probability concepts

  • 1. Introduction to Probability Concepts BBA3274 / DBS1084 QUANTITATIVE METHODS for BUSINESS by Stephen Ong Visiting Fellow, Birmingham City University Business School, UK Visiting Professor, Shenzhen University
  • 2. •Probability Concepts1 • Events2 • Bayes’ Theorem3 Today’s Overview
  • 3. Learning Objectives 1. Understand the basic foundations of probability analysis. 2. Describe statistically dependent and independent events. 3. Use Bayes’ theorem to establish posterior probabilities. After this lecture, students will be able to:
  • 4. 2-4 Outline 2.1 Introduction 2.2 Fundamental Concepts 2.3 Mutually Exclusive and Collectively Exhaustive Events 2.4 Statistically Independent Events 2.5 Statistically Dependent Events 2.6 Revising Probabilities with Bayes’ Theorem 2.7 Further Probability Revisions
  • 5. 2-5 Introduction  Life is uncertain; we are not sure what the future will bring.  Probability is a numerical statement about the likelihood that an event will occur.
  • 6. 2-6 Fundamental Concepts 1. The probability, P, of any event or state of nature occurring is greater than or equal to 0 and less than or equal to 1. That is: 0 P (event) 1 2. The sum of the simple probabilities for all possible outcomes of an activity must equal 1.
  • 7. 2-7 Quantitative Methods that use Probability TOPIC METHOD 3 Decision Analysis 4 Regression Models 5 Forecasting 6 Inventory Control Models 12 Project Management 13 Waiting Lines and Queuing Theory Models 14 Simulation Modeling 15 Markov Analysis 16 Statistical Quality Control Module 3 Decision Theory and the Normal Distribution Module 4 Game Theory Table 2.1
  • 8. 2-8 Diversey Paint Example  Demand for white latex paint at Diversey Paint and Supply has always been either 0, 1, 2, 3, or 4 gallons per day.  Over the past 200 days, the owner has observed the following frequencies of demand: QUANTITY DEMANDED NUMBER OF DAYS PROBABILITY 0 40 0.20 (= 40/200) 1 80 0.40 (= 80/200) 2 50 0.25 (= 50/200) 3 20 0.10 (= 20/200) 4 10 0.05 (= 10/200) Total 200 Total 1.00 (= 200/200)
  • 9. 2-9 Diversey Paint Example  Demand for white latex paint at Diversey Paint and Supply has always been either 0, 1, 2, 3, or 4 gallons per day  Over the past 200 days, the owner has observed the following frequencies of demand QUANTITY DEMANDED NUMBER OF DAYS PROBABILITY 0 40 0.20 (= 40/200) 1 80 0.40 (= 80/200) 2 50 0.25 (= 50/200) 3 20 0.10 (= 20/200) 4 10 0.05 (= 10/200) Total 200 Total 1.00 (= 200/200) Notice the individual probabilities are all between 0 and 1 0 ≤ P (event) ≤ 1 And the total of all event probabilities equals 1 ∑ P (event) = 1.00
  • 10. 2-10 Determining objective probability :  Relative frequency  Typically based on historical data Types of Probability P (event) = Number of occurrences of the event Total number of trials or outcomes  Classical or logical method  Logically determine probabilities without trials P (head) = 1 2 Number of ways of getting a head Number of possible outcomes (head or tail)
  • 11. 2-11 Types of Probability Subjective probability is based on the experience and judgment of the person making the estimate. Opinion polls Judgment of experts Delphi method
  • 12. 2-12 Mutually Exclusive Events Events are said to be mutually exclusive if only one of the events can occur on any one trial.  Tossing a coin will result in either a head or a tail.  Rolling a die will result in only one of six possible outcomes.
  • 13. 2-13 Collectively Exhaustive Events Events are said to be collectively exhaustive if the list of outcomes includes every possible outcome.  Both heads and tails as possible outcomes of coin flips.  All six possible outcomes of the roll of a die. OUTCOME OF ROLL PROBABILITY 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 Total 1
  • 14. 2-14 Drawing a Card Draw one card from a deck of 52 playing cards P (drawing a 7) = 4/52 = 1/13 P (drawing a heart) = 13/52 = 1/4  These two events are not mutually exclusive since a 7 of hearts can be drawn  These two events are not collectively exhaustive since there are other cards in the deck besides 7s and hearts
  • 15. 2-15 Table of Differences DRAWS MUTUALLY EXCLUSIVE COLLECTIVELY EXHAUSTIVE 1. Draws a spade and a club Yes No 2. Draw a face card and a number card Yes Yes 3. Draw an ace and a 3 Yes No 4. Draw a club and a nonclub Yes Yes 5. Draw a 5 and a diamond No No 6. Draw a red card and a diamond No No
  • 16. Adding Mutually Exclusive Events We often want to know whether one or a second event will occur.  When two events are mutually exclusive, the law of addition is: P (event A or event B) = P (event A) + P (event B) P (spade or club) = P (spade) + P (club) = 13/52 + 13/52 = 26/52 = 1/2 = 0.50
  • 17. 2-17 Adding Not Mutually Exclusive Events P (event A or event B) = P (event A) + P (event B) – P (event A and event B both occurring) P (A or B) = P (A) + P (B) – P (A and B) P(five or diamond) = P(five) + P(diamond) – P(five and diamond) = 4/52 + 13/52 – 1/52 = 16/52 = 4/13 The equation must be modified to account for double counting.  The probability is reduced by subtracting the chance of both events occurring together.
  • 18. 2-18 Venn Diagrams P (A) P (B) Events that are mutually exclusive. P (A or B) = P (A) + P (B) Figure 2.1 Events that are not mutually exclusive. P (A or B) = P (A) + P (B) – P (A and B) Figure 2.2 P (A) P (B) P (A and B)
  • 19. 2-19 Statistically Independent Events Events may be either independent or dependent. For independent events, the occurrence of one event has no effect on the probability of occurrence of the second event.
  • 20. 2-20 Which Sets of Events Are Independent? 1. (a) Your education (b) Your income level 2. (a) Draw a jack of hearts from a full 52-card deck (b) Draw a jack of clubs from a full 52-card deck 3. (a) Chicago Cubs win the National League pennant (b) Chicago Cubs win the World Series 4. (a) Snow in Santiago, Chile (b) Rain in Tel Aviv, Israel Dependent events Dependent events Independent events Independent events
  • 21. 2-21 Three Types of Probabilities  Marginal (or simple) probability is just the probability of a single event occurring. P (A)  Joint probability is the probability of two or more events occurring and is equal to the product of their marginal probabilities for independent events. P (AB) = P (A) x P (B)  Conditional probability is the probability of event B given that event A has occurred. P (B | A) = P (B)  Or the probability of event A given that event B has occurred P (A | B) = P (A)
  • 22. 2-22 Joint Probability Example The probability of tossing a 6 on the first roll of the die and a 2 on the second roll: P (6 on first and 2 on second) = P (tossing a 6) x P (tossing a 2) = 1/6 x 1/6 = 1/36 = 0.028
  • 23. 2-23 Independent Events 1. The probability of a black ball drawn on first draw is: P (B) = 0.30 (a marginal probability) 2. The probability of two green balls drawn is: P (GG) = P (G) x P (G) = 0.7 x 0.7 = 0.49 (a joint probability for two independent events) A bucket contains 3 black balls and 7 green balls.  Draw a ball from the bucket, replace it, and draw a second ball.
  • 24. 2-24 Independent Events 3. The probability of a black ball drawn on the second draw if the first draw is green is: P (B | G) = P (B) = 0.30 (a conditional probability but equal to the marginal because the two draws are independent events) 4. The probability of a green ball drawn on the second draw if the first draw is green is: P (G | G) = P (G) = 0.70 (a conditional probability as in event 3) A bucket contains 3 black balls and 7 green balls.  Draw a ball from the bucket, replace it, and draw a second ball.
  • 25. 2-25 Statistically Dependent Events The marginal probability of an event occurring is computed in the same way: P (A) The formula for the joint probability of two events is: P (AB) = P (B | A) P (A) Calculating conditional probabilities is slightly more complicated. The probability of event A given that event B has occurred is: P (A | B) = P (AB) P (B)
  • 26. 2-26 When Events Are Dependent Assume that we have an urn containing 10 balls of the following descriptions:  4 are white (W) and lettered (L)  2 are white (W) and numbered (N)  3 are yellow (Y) and lettered (L)  1 is yellow (Y) and numbered (N) P (WL) = 4/10 = 0.4 P (YL) = 3/10 = 0.3 P (WN) = 2/10 = 0.2 P (YN) = 1/10 = 0.1 P (W) = 6/10 = 0.6 P (L) = 7/10 = 0.7 P (Y) = 4/10 = 0.4 P (N) = 3/10 = 0.3
  • 27. 2-27 When Events Are Dependent 4 balls White (W) and Lettered (L) 2 balls White (W) and Numbered (N) 3 balls Yellow (Y) and Lettered (L) 1 ball Yellow (Y) and Numbered (N) Probability (WL) = 4 10 Probability (YN) = 1 10 Probability (YL) = 3 10 Probability (WN) = 2 10 The urn contains 10 balls: Figure 2.3
  • 28. 2-28 When Events Are Dependent The conditional probability that the ball drawn is lettered, given that it is yellow, is: P (L | Y) = = = 0.75 P (YL) P (Y) 0.3 0.4 We can verify P (YL) using the joint probability formula P (YL) = P (L | Y) x P (Y) = (0.75)(0.4) = 0.3
  • 29. 2-29 Joint Probabilities for Dependent Events P (MT) = P (T | M) x P (M) = (0.70)(0.40) = 0.28 If the stock market reaches 12,500 point by January, there is a 70% probability that Tubeless Electronics will go up.  You believe that there is only a 40% chance the stock market will reach 12,500.  Let M represent the event of the stock market reaching 12,500 and let T be the event that Tubeless goes up in value.
  • 30. 2-30 Posterior Probabilities Bayes’ Process Revising Probabilities with Bayes’ Theorem Bayes’ theorem is used to incorporate additional information and help create posterior probabilities. Prior Probabilities New Information Figure 2.4
  • 31. 2-31 Posterior Probabilities A cup contains two dice identical in appearance but one is fair (unbiased), the other is loaded (biased).  The probability of rolling a 3 on the fair die is 1/6 or 0.166.  The probability of tossing the same number on the loaded die is 0.60.  We select one by chance, toss it, and get a 3.  What is the probability that the die rolled was fair?  What is the probability that the loaded die was rolled?
  • 32. 2-32 Posterior Probabilities We know the probability of the die being fair or loaded is: P (fair) = 0.50 P (loaded) = 0.50 And that P (3 | fair) = 0.166 P (3 | loaded) = 0.60 We compute the probabilities of P (3 and fair) and P (3 and loaded): P (3 and fair) = P (3 | fair) x P (fair) = (0.166)(0.50) = 0.083 P (3 and loaded) = P (3 | loaded) x P (loaded) = (0.60)(0.50) = 0.300
  • 33. 2-33 Posterior Probabilities We know the probability of the die being fair or loaded is P (fair) = 0.50 P (loaded) = 0.50 And that P (3 | fair) = 0.166 P (3 | loaded) = 0.60 We compute the probabilities of P (3 and fair) and P (3 and loaded) P (3 and fair) = P (3 | fair) x P (fair) = (0.166)(0.50) = 0.083 P (3 and loaded) = P (3 | loaded) x P (loaded) = (0.60)(0.50) = 0.300 The sum of these probabilities gives us the unconditional probability of tossing a 3: P (3) = 0.083 + 0.300 = 0.383
  • 34. 2-34 Posterior Probabilities P (loaded | 3) = = = 0.78 P (loaded and 3) P (3) 0.300 0.383 The probability that the die was loaded is: P (fair | 3) = = = 0.22 P (fair and 3) P (3) 0.083 0.383 If a 3 does occur, the probability that the die rolled was the fair one is: These are the revised or posterior probabilities for the next roll of the die. We use these to revise our prior probability estimates.
  • 35. 2-35 Bayes’ Calculations Given event B has occurred: STATE OF NATURE P (B | STATE OF NATURE) PRIOR PROBABILITY JOINT PROBABILITY POSTERIOR PROBABILITY A P(B | A) x P(A) = P(B and A) P(B and A)/P(B) = P(A|B) A’ P(B | A’) x P(A’) = P(B and A’) P(B and A’)/P(B) = P(A’|B) P(B) Table 2.2 Given a 3 was rolled: STATE OF NATURE P (B | STATE OF NATURE) PRIOR PROBABILITY JOINT PROBABILITY POSTERIOR PROBABILITY Fair die 0.166 x 0.5 = 0.083 0.083 / 0.383 = 0.22 Loaded die 0.600 x 0.5 = 0.300 0.300 / 0.383 = 0.78 P(3) = 0.383 Table 2.3
  • 36. 2-36 Independent Events 3. The probability of a black ball drawn on the second draw if the first draw is green is: P (B | G) = P (B) = 0.30 (a conditional probability but equal to the marginal because the two draws are independent events) 4. The probability of a green ball drawn on the second draw if the first draw is green is: P (G | G) = P (G) = 0.70 (a conditional probability as in event 3) A bucket contains 3 black balls and 7 green balls.  Draw a ball from the bucket, replace it, and draw a second ball.
  • 37. 2-37 Statistically Dependent Events The marginal probability of an event occurring is computed in the same way: P (A) The formula for the joint probability of two events is: P (AB) = P (B | A) P (A) Calculating conditional probabilities is slightly more complicated. The probability of event A given that event B has occurred is: P (A | B) = P (AB) P (B)
  • 38. 2-38 When Events Are Dependent Assume that we have an urn containing 10 balls of the following descriptions:  4 are white (W) and lettered (L)  2 are white (W) and numbered (N)  3 are yellow (Y) and lettered (L)  1 is yellow (Y) and numbered (N) P (WL) = 4/10 = 0.4 P (YL) = 3/10 = 0.3 P (WN) = 2/10 = 0.2 P (YN) = 1/10 = 0.1 P (W) = 6/10 = 0.6 P (L) = 7/10 = 0.7 P (Y) = 4/10 = 0.4 P (N) = 3/10 = 0.3
  • 39. 2-39 When Events Are Dependent 4 balls White (W) and Lettered (L) 2 balls White (W) and Numbered (N) 3 balls Yellow (Y) and Lettered (L) 1 ball Yellow (Y) and Numbered (N) Probability (WL) = 4 10 Probability (YN) = 1 10 Probability (YL) = 3 10 Probability (WN) = 2 10 The urn contains 10 balls: Figure 2.3
  • 40. 2-40 When Events Are Dependent The conditional probability that the ball drawn is lettered, given that it is yellow, is: P (L | Y) = = = 0.75 P (YL) P (Y) 0.3 0.4 We can verify P (YL) using the joint probability formula P (YL) = P (L | Y) x P (Y) = (0.75)(0.4) = 0.3
  • 41. 2-41 Joint Probabilities for Dependent Events P (MT) = P (T | M) x P (M) = (0.70)(0.40) = 0.28 If the stock market reaches 12,500 point by January, there is a 70% probability that Tubeless Electronics will go up.  You believe that there is only a 40% chance the stock market will reach 12,500.  Let M represent the event of the stock market reaching 12,500 and let T be the event that Tubeless goes up in value.
  • 42. 2-42 Posterior Probabilities Bayes’ Process Revising Probabilities with Bayes’ Theorem Bayes’ theorem is used to incorporate additional information and help create posterior probabilities. Prior Probabilities New Information Figure 2.4
  • 43. 2-43 Posterior Probabilities A cup contains two dice identical in appearance but one is fair (unbiased), the other is loaded (biased).  The probability of rolling a 3 on the fair die is 1/6 or 0.166.  The probability of tossing the same number on the loaded die is 0.60.  We select one by chance, toss it, and get a 3.  What is the probability that the die rolled was fair?  What is the probability that the loaded die was rolled?
  • 44. 2-44 Posterior Probabilities We know the probability of the die being fair or loaded is: P (fair) = 0.50 P (loaded) = 0.50 And that P (3 | fair) = 0.166 P (3 | loaded) = 0.60 We compute the probabilities of P (3 and fair) and P (3 and loaded): P (3 and fair) = P (3 | fair) x P (fair) = (0.166)(0.50) = 0.083 P (3 and loaded) = P (3 | loaded) x P (loaded) = (0.60)(0.50) = 0.300
  • 45. 2-45 Posterior Probabilities We know the probability of the die being fair or loaded is P (fair) = 0.50 P (loaded) = 0.50 And that P (3 | fair) = 0.166 P (3 | loaded) = 0.60 We compute the probabilities of P (3 and fair) and P (3 and loaded) P (3 and fair) = P (3 | fair) x P (fair) = (0.166)(0.50) = 0.083 P (3 and loaded) = P (3 | loaded) x P (loaded) = (0.60)(0.50) = 0.300 The sum of these probabilities gives us the unconditional probability of tossing a 3: P (3) = 0.083 + 0.300 = 0.383
  • 46. 2-46 Posterior Probabilities P (loaded | 3) = = = 0.78 P (loaded and 3) P (3) 0.300 0.383 The probability that the die was loaded is: P (fair | 3) = = = 0.22 P (fair and 3) P (3) 0.083 0.383 If a 3 does occur, the probability that the die rolled was the fair one is: These are the revised or posterior probabilities for the next roll of the die. We use these to revise our prior probability estimates.
  • 47. 2-47 Bayes’ Calculations Given event B has occurred: STATE OF NATURE P (B | STATE OF NATURE) PRIOR PROBABILITY JOINT PROBABILITY POSTERIOR PROBABILITY A P(B | A) x P(A) = P(B and A) P(B and A)/P(B) = P(A|B) A’ P(B | A’) x P(A’) = P(B and A’) P(B and A’)/P(B) = P(A’|B) P(B) Table 2.2 Given a 3 was rolled: STATE OF NATURE P (B | STATE OF NATURE) PRIOR PROBABILITY JOINT PROBABILITY POSTERIOR PROBABILITY Fair die 0.166 x 0.5 = 0.083 0.083 / 0.383 = 0.22 Loaded die 0.600 x 0.5 = 0.300 0.300 / 0.383 = 0.78 P(3) = 0.383 Table 2.3
  • 48. Tutorial Lab Practical : Spreadsheet 1 - 48
  • 49. Further Reading Render, B., Stair Jr.,R.M. & Hanna, M.E. (2013) Quantitative Analysis for Management, Pearson, 11th Edition Waters, Donald (2007) Quantitative Methods for Business, Prentice Hall, 4th Edition. Balakrishnan, Render & Stair (2013) Managerial Decision Modeling with Spreadsheets,Pearson, 3rd Edition Taylor (2013) Introduction to Management Science, Pearson, 11th edition