SlideShare uma empresa Scribd logo
1 de 97
Baixar para ler offline
2017/07/21@STAIR Lab AI seminar
Improving Nearest Neighbor Methods
from the Perspective of Hubness Phenomenon
Yutaro Shigeto

STAIR Lab, Chiba Institute of Technology
A complete reference list is available at
https://yutaro-s.github.io/download/ref-20170721.html
!3
Nearest neighbor methods are
•a fundamental technique

•used in various fields: NLP, CV, ML, DM
!4
Nearest neighbor methods are
•a fundamental technique

•used in various fields: NLP, CV, ML, DM
!5
Nearest neighbor methods are
•a fundamental technique

•used in various fields: NLP, CV, ML, DM
•a fundamental technique

•used in various fields: NLP, CV, ML, DM
Nearest neighbor methods are
!6
cat
dog
gorilla
•a fundamental technique

•used in various fields: NLP, CV, ML, DM
Nearest neighbor methods are
!7
cat
dog
gorilla
•a fundamental technique

•used in various fields: NLP, CV, ML, DM
Nearest neighbor methods are
!8
cat
dog
gorilla
•a fundamental technique

•used in various fields: NLP, CV, ML, DM
Nearest neighbor methods are
!9cat
cat
dog
gorilla
Hubness Phenomenon
!11
The nearest neighbors of many queries are the same
objects (“hubs”)
Hubness Phenomenon
cat
[Radovanović+, 2010]
!12
The nearest neighbors of many queries are the same
objects (“hubs”)
Hubness Phenomenon
[Radovanović+, 2010]
cat
!13
The nearest neighbors of many queries are the same
objects (“hubs”)
Hubness Phenomenon
[Radovanović+, 2010]
cat
!14
The nearest neighbors of many queries are the same
objects (“hubs”)
Hubness Phenomenon
hub
[Radovanović+, 2010]
cat
: Normal distribution (zero mean)
!15
Then it can be shown that
Fixed objects , with
EX [ x y2 ] EX [ x y1 ] > 0
y1 < y2
is more likely to be closer to
more likely to be a hubi.e.
Why hubs emerge?
[Radovanović+, 2010]
: Normal distribution (zero mean)
!16
Then it can be shown that
Fixed objects , with
EX [ x y2 ] EX [ x y1 ] > 0
y1 < y2
is more likely to be closer to
more likely to be a hubi.e.
Because this holds for any pair and ,
objects closest to the origin tend to be hubs

This bias is called “spatial centrality”
Why hubs emerge?
[Radovanović+, 2010]
Variants
•Squared Euclidean distance [Shigeto+, 2015]

•Inner product [Suzuki+, 2013]
!17
EX x y2
2
EX x y1
2
> 0
1
|D|
x D
x, y2
1
|D|
x D
x, y1 < 0
!18
Research Objective:
Improve the performance of nearest neighbor
methods via reducing the emergence of hubs
Problem:
The emergence of hubs diminishes nearest
neighbor methods
Normalization of Distances
!20
[Suzuki+, 2013]
Centering: Reducing spatial centrality
Spatial centrality implies the object which is similar to
the centroid tends to be hub
After centering, similarities are identical: i.e., zero
centroid
tends to be hub
!21
Centering: Reducing spatial centrality
Spatial centrality implies the object which is similar to
the centroid tends to be hub
After centering, similarities are identical: i.e., zero
centroid = origin
[Suzuki+, 2013]
Mutual proximity: Breaking asymmetric relation
!22
[Schnitzer+, 2012]
Although hub becomes the nearest neighbor of many
objects, such objects can not become the nearest
neighbor of hub
Mutual proximity makes neighbor relations symmetric
hub
Mutual proximity: Breaking asymmetric relation
!23
Although hub becomes the nearest neighbor of many
objects, such objects can not become the nearest
neighbor of hub
Mutual proximity makes neighbor relations symmetric
hub
[Schnitzer+, 2012]
Mutual proximity: Breaking asymmetric relation
!24
Although hub becomes the nearest neighbor of many
objects, such objects can not become the nearest
neighbor of hub
Mutual proximity makes neighbor relations symmetric
hub
[Schnitzer+, 2012]
Zero-Shot Learning
[Shigeto+, 2015]
Zero-shot learning
Active research topic in NLP, CV, ML

Many applications:
•Image labeling

•Bilingual lexicon extraction

+ Many other cross-domain matching tasks
!26
[Larochelle+, 2008]
…but classifier has to predict

labels not appearing in training set
ZSL is a type of multi-class classification
!27
ZSL task
Standard classification task
!28
Pre-processing: Label embedding
Labels are embedded in metric space
Objects and labels = both vectors
label space
lion
tigerexample space
chimpanzee
Find a matrix M that projects examples into label space
!29
chimpanzee
lion
tigerlabel spaceexample space
M
Training: find a projection function
lion
tigerlabel spaceexample space label spaceexample space
chimpanzee
leopard
gorilla
!30
Prediction: Nearest neighbor search
Given test object and test labels,

to predict the label of a test object,
1. project the example into label space, using matrix M
2. find the nearest label
Prediction: Nearest neighbor search
Given test object and test labels,

to predict the label of a test object,
lion
tigerlabel spaceexample space label spaceexample space
chimpanzee
leopard
gorilla
M
!31
Hubness: Problem in ZSL
!32
sheep
zebra
hippo
rat
label spaceexample space
Classifier frequently predicts the same labels (“hubs”)
[Dinu and Baroni, 2015; see also Radovanović+, 2010]
!33
sheep
zebra
hippo
rat
label spaceexample space
Classifier frequently predicts the same labels (“hubs”)
Hubness: Problem in ZSL
[Dinu and Baroni, 2015; see also Radovanović+, 2010]
!34
Classifier frequently predicts the same labels (“hubs”)
sheep
zebra
hippo
rat
label spaceexample space
Hubness: Problem in ZSL
[Dinu and Baroni, 2015; see also Radovanović+, 2010]
!35
sheep
zebra
hippo
rat
label spaceexample space
Classifier frequently predicts the same labels (“hubs”)
Hubness: Problem in ZSL
[Dinu and Baroni, 2015; see also Radovanović+, 2010]
!36
sheep
zebra
hippo
rat
label spaceexample space
Classifier frequently predicts the same labels (“hubs”)
Hubness: Problem in ZSL
[Dinu and Baroni, 2015; see also Radovanović+, 2010]
!37
Problem with current regression approach:
Research objective:
Learned classifier frequently predicts the same labels

(Emergence of “hub” labels)
Investigate why hubs emerge in regression-based ZSL,
and how to reduce the emergence of hubs
Proposed approach
Current approach:
!39
Proposed approach:
chimpanzee
lion
tigerlabel spaceexample space
M
example space
chimpanzee
lion
tigerlabel space
M
Current approach:
Proposed approach:
chimpanzee
lion
tigerlabel spaceexample space
M
example space
chimpanzee
lion
tigerlabel space
label spaceexample space
label spaceexample space !40
leopard
gorilla
M
leopard
gorillaM
Synthetic data result
!41
Hubness

(N1 skewness)
Accuracy
24.2
13.8
0.5
87.6
Current Proposed
Proposed approach reduces hubness

and improves accuracy
Why proposed approach reduces hubness
Shrinkage
in regression
!42
Argument for our proposal relies on two concepts
Spatial centrality
of data distributions
!43
If we optimize
Then, we have
“Shrinkage” in ridge/least squares regression
[See also Lazaridou+,2015]
!44
If we optimize
Then, we have
For simplicity, projected objects are assumed to also follow normal distribution
“Shrinkage” in ridge/least squares regression
[See also Lazaridou+,2015]
Why proposed approach reduces hubness
Shrinkage
in regression
!45
Argument for our proposal relies on two concepts
Spatial centrality
of data distributions
✔
“Spatial centrality”
: query distribution (zero mean)
!46
Fixed objects , with
[See also Radovanović+, 2010]
“Spatial centrality”
: query distribution (zero mean)
is more likely to be closer to
more likely to be a hub
!47
Then it can be shown that
i.e.
Fixed objects , with
EX x y2
2
EX x y1
2
> 0
[See also Radovanović+, 2010]
“Spatial centrality”
: query distribution (zero mean)
is more likely to be closer to
more likely to be a hub
!48
Then it can be shown that
i.e.
Fixed objects , with
Because this holds for any pair and ,
objects closest to the origin tend to be hubs

This bias is called “spatial centrality.”
EX x y2
2
EX x y1
2
> 0
[See also Radovanović+, 2010]
Degree of spatial centrality
!49
Further assume distribution of

and
Degree of spatial centrality
!50
Further assume distribution of 

and
This formula quantifies the degree of spatial centrality
We have
The smaller the variance of label distribution, the
smaller the spatial centrality (= bias causing hubness)
Spatial centrality depends on variance of
label distributions
!51
Why proposed approach reduces hubness
Shrinkage
in regression
!52
Argument for our proposal relies on two concepts
Spatial centrality
of data distributions
✔ ✔
!53
Current approach: map X into Y
Proposed approach: map Y into X
!54
Current approach: map X into Y
Proposed approach: map Y into X
Shrinkage
!55
Current approach: map X into Y
Proposed approach: map Y into X
!56
Current approach: map X into Y
Proposed approach: map Y into X
Q. Which configuration is better for reducing hubs?
!57
Proposed Current
Q. Which configuration is better for reducing hubs?
!58
Proposed Current逆方向 順方向
Spatial centrality
For a fixed query distribution ,
data distribution with smaller variance is
preferable to reduce hubs
Q. Which configuration is better for reducing hubs?
!59
Proposed Current
Q. Which configuration is better for reducing hubs?
!60
Proposed Current
Since distribution is not fixed,
comparing label distribution is not meaningful
!61
Proposed (scaled) Current
Q. Which configuration is better for reducing hubs?
Scaling does not change the nearest neighbor relation
!62
Proposed (scaled) Current
Q. Which configuration is better for reducing hubs?
A. Reverse direction is preferable
For fixed distribution ,
variance of distribution in proposed is smaller
Summary of our proposal
!63
Project labels into example space

➥ reduces variance of labels,
hence suppresses hubness
chimpanzee
gorilla
example space label space
Label distribution with smaller variance is
desirable to reduce hubness
Spatial centrality
Regression shrinks variance of projected
objects
Shrinkage
Proposal
Experiments
64
Experimental objective
!65
We evaluate proposed approach in real tasks
•Does it suppress hubs?

•Does it improve the prediction accuracy?
•Bilingual lexicon extraction
gorilla
leopard
: source language : target language
gorille
Zero-shot tasks
!66
•Image labeling
gorilla
leopard
: image : label
Compared methods
!67
Current Proposed CCA
We used Euclidean distance as a distance measure 

for finding the nearest label
2.00
0.08
2.61
better
Hubness (skewness)
!68
9.2
41.3
22.6
current reverse CCA
better
Accuracy [%]
Image labeling
10.0
37.7
3.85.2
65.162.1
better
Hubness (skewness)
Ja → En En → Ja
Bilingual lexicon extraction: Ja - En
!69
21.620.2
34.431.9
0.40.2
current reverse CCA
better
Accuracy [%]
Ja → En En → Ja
Summary
• Analyzed why hubs emerge in current ZSL approach

- Variance of labels greater than examples

• Proposed a simple method for reducing hubness

- Reverse the mapping direction

• Proposed method reduced hubness and
outperformed current approach and CCA in image
labeling and bilingual lexicon extraction tasks
!70
k-Nearest Neighbor Classification
[Shigeto+, 2016]
k-nearest neighbor classification
!72
Given a dataset D = {(xi, yi)}n
i=1
the label of is decided by its k-nearest neighbors:x
ˆy = arg min
yi:(xi,yi) D
f(x, xi)
k-nearest neighbor classification
!73
Given a dataset D = {(xi, yi)}n
i=1
the label of is decided by its k-nearest neighbors:x
ˆy = arg min
yi:(xi,yi) D
f(x, xi)
k-nearest neighbor classification
!74
Given a dataset D = {(xi, yi)}n
i=1
the label of is decided by its k-nearest neighbors:x
ˆy = arg min
yi:(xi,yi) D
f(x, xi)
!75
Given a dataset D = {(xi, yi)}n
i=1
the label of is decided by its k-nearest neighbors:x
ˆy = arg min
yi:(xi,yi) D
f(x, xi)
k-nearest neighbor classification
Distance metric learning learns a matrix
f(x, xi) = Lx Lxi
L
Training is computationally expensive
!76
Given a dataset D = {(xi, yi)}n
i=1
the label of is decided by its k-nearest neighbors:x
ˆy = arg min
yi:(xi,yi) D
f(x, xi)
Proposal: Dissimilarity
!77
Given a dataset D = {(xi, yi)}n
i=1
the label of is decided by its k-nearest neighbors:x
ˆy = arg min
yi:(xi,yi) D
f(x, xi)
Proposal: Dissimilarity
Spatial centrality
For a fixed query distribution ,
data distribution with smaller variance is
preferable to reduce hubs
!78
Given a dataset D = {(xi, yi)}n
i=1
the label of is decided by its k-nearest neighbors:x
ˆy = arg min
yi:(xi,yi) D
f(x, xi)
The function f needs to be computed only
between labeled objects and unlabeled object

➡labeled objects are always target of retrieval,

and unlabeled object is always query
f(x, xi) = x Wxi
2
Proposal: Dissimilarity
This method is not metric learning
!79
•The goal of classification is to classify the query
correctly

-finding a suitable decision boundary (not metric)
!80
min
W
n
i=1 z Ti
xi Wz 2
+ W 2
F
Find a matrix which minimizes the distance:
Proposal: Training
W
!81
min
W
n
i=1 z Ti
xi Wz 2
+ W 2
F
Proposal: Training
Find a matrix which minimizes the distance:W
!82
min
W
n
i=1 z Ti
xi Wz 2
+ W 2
F
Proposal: Training
Find a matrix which minimizes the distance:W
!83
min
W
n
i=1 z Ti
xi Wz 2
+ W 2
F
Proposal: Training
W = XJXT
(XXT
+ I) 1
This function has the closed-form solution:
Find a matrix which minimizes the distance:W
!84
Givne a query object ,
ˆy = arg min
yi:(xi,yi) D
x Wxi
2
Proposal: Test
x
!85
ˆy = arg min
yi:(xi,yi) D
x Wxi
2
Proposal: Test
Givne a query object ,x
Move labeled objects v.s. move query
!86
f(x, xi) = Mx xi
2
f(x, xi) = x Wxi
2
•Move labeled objects (proposal)
•Move query
This reduces the variance 

= reducing the emergence of hubs
This increases the variance 

= promoting the emergence of hubs
Experiments
87
Experimental objective
!88
We evaluate the proposed method on various datasets

Our main focuses are
-Does it suppress hubs?

-Does it improve the classification accuracy?

-Is it faster than distance metric learning?
Results: Skewness (degree of hubness)
!89
The proposed method

-reduces the emergence of hubs

method RCV News Reuters TDT
original metric 13.35 21.93 7.61 4.89
LMNN 3.86 14.74 7.63 4.01
ITML 4.27 19.65 7.30 2.39
DML-eig 1.71 1.45 3.05 1.34
Move-labeled (proposed) 1.14 2.88 4.53 1.44
Move-query 21.57 33.36 17.49 6.71
(c) Image datasets.
method AwA CUB SUN aPY
original metric 2.49 2.38 2.52 2.80
LMNN 3.10 2.96 2.80 3.94
ITML 2.42 2.27 2.37 2.69
DML-eig 1.90 1.77 2.39 2.17
Move-labeled (proposed) 1.24 0.97 1.02 1.23
Move-query 7.81 7.83 7.48 11.65
Image datasets (smaller is better)
Results: Classification accuracy [%]
!90
Image datasets
The proposed method

-reduces the emergence of hubs

-is better than metric learning methods on most datasets

method RCV News Reuters TDT
original metric 92.1 76.9 89.5 96.1
LMNN 94.7 79.9 91.5 96.6
ITML 93.2 77.0 90.8 96.5
DML-eig 94.5 73.3 85.9 95.7
Move-labeled (proposed) 94.4 81.6 91.6 96.7
Move-query 89.1 70.0 85.9 95.4
(c) Image datasets.
method AwA CUB SUN aPY
original metric 83.2 51.6 26.2 82.2
LMNN 83.0 54.7 24.4 81.8
ITML 83.1 51.3 26.0 82.4
DML-eig 82.0 53.5 22.4 81.6
Move-labeled (proposed) 84.1 52.4 28.3 83.4
Move-query 79.2 43.3 14.6 78.7
Results: Training time [s]
!91
The proposed method

-reduces the emergence of hubs

-is better than metric learning methods on most datasets

-is faster than … on all datasets
Document datasetsndicate the best performer for each dataset.
(b) Image datasets.
method AwA CUB SUN aPY
LMNN 1525.5 1098.2 15704.3 317.3
ITML 1536.3 577.6 1126.4 9211.2
DML-eig 2048.0 2084.7 2006.1 1787.1
proposed 9.5 1.5 4.1 6.4
Results: UCI datasets
!92
The proposed method

-reduces the emergence of hubs

-is better than metric learning methods on most datasets

-is faster than … on all datasets

-does not work well on UCI datasets
able 3: Classification accuracy [%]: Bold figures indicate the best performers for each
ataset.
(a) UCI datasets.
method ionosphere balance-scale iris wine glass
original metric 86.8 89.5 97.2 98.1 68.1
LMNN 90.3 90.0 96.7 98.1 67.7
ITML 87.7 89.5 97.8 99.1 65.0
DML-eig 87.7 91.2 96.7 98.6 66.5
Move-labeled (proposed) 89.6 89.5 97.2 98.6 70.8
Move-query 79.7 89.4 97.2 96.3 62.3
(b) Document datasets.
Summary
!93
Prediction:
ˆy = arg min
yi:(xi,yi) D
x Wxi
2
The proposed method

-reduces the emergence of hubs

-is better than metric learning methods on most datasets

-is faster than … on all datasets

-does not work well on UCI datasets
Misc.
Other topics
• Normalization of distances

- Local scaling [Schnitzer+, 2012], Laplacian-based kernel [Suzuki+, 2012],
Localized centering [Hara+, 2015]

• Classifiers

-hw-kNN [Radovanović+, 2009], h-FNN [Tomašev+, 2013], NHBNN
[Tomašev+, 2011]
!95See comprehensive survey [Tomašev+, 2015; Suzuki, 2014; Radovanović, 2017]
Tools
• Hub miner: Hubness-aware machine learning

• Hub toolbox

• PyHubs

• Our code
!96
Conclusions
• Introduced why hubs emerge

-Spatial centrality

• Showed hub reduction methods which improved the
performance of nearest neighbor methods
!97

Mais conteúdo relacionado

Mais procurados

[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by FactorisingDeep Learning JP
 
グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題joisino
 
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性Ichigaku Takigawa
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデルMasahiro Suzuki
 
[DL輪読会]A System for General In-Hand Object Re-Orientation
[DL輪読会]A System for General In-Hand Object Re-Orientation[DL輪読会]A System for General In-Hand Object Re-Orientation
[DL輪読会]A System for General In-Hand Object Re-OrientationDeep Learning JP
 
A systematic study of the class imbalance problem in convolutional neural net...
A systematic study of the class imbalance problem in convolutional neural net...A systematic study of the class imbalance problem in convolutional neural net...
A systematic study of the class imbalance problem in convolutional neural net...Yuya Soneoka
 
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)Masahiro Suzuki
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門hoxo_m
 
ベイズ最適化
ベイズ最適化ベイズ最適化
ベイズ最適化MatsuiRyo
 
DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜Jun Okumura
 
MS COCO Dataset Introduction
MS COCO Dataset IntroductionMS COCO Dataset Introduction
MS COCO Dataset IntroductionShinagawa Seitaro
 
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State SpacesDeep Learning JP
 
コンピュータビジョン分野メジャー国際会議 Award までの道のり
コンピュータビジョン分野メジャー国際会議 Award までの道のりコンピュータビジョン分野メジャー国際会議 Award までの道のり
コンピュータビジョン分野メジャー国際会議 Award までの道のりcvpaper. challenge
 
[DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions [DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions Deep Learning JP
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Yusuke Uchida
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)MLSE
 

Mais procurados (20)

ELBO型VAEのダメなところ
ELBO型VAEのダメなところELBO型VAEのダメなところ
ELBO型VAEのダメなところ
 
[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising
 
グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題
 
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデル
 
[DL輪読会]A System for General In-Hand Object Re-Orientation
[DL輪読会]A System for General In-Hand Object Re-Orientation[DL輪読会]A System for General In-Hand Object Re-Orientation
[DL輪読会]A System for General In-Hand Object Re-Orientation
 
A systematic study of the class imbalance problem in convolutional neural net...
A systematic study of the class imbalance problem in convolutional neural net...A systematic study of the class imbalance problem in convolutional neural net...
A systematic study of the class imbalance problem in convolutional neural net...
 
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 
ベイズ最適化
ベイズ最適化ベイズ最適化
ベイズ最適化
 
DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜
 
Mobilenet
MobilenetMobilenet
Mobilenet
 
MS COCO Dataset Introduction
MS COCO Dataset IntroductionMS COCO Dataset Introduction
MS COCO Dataset Introduction
 
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
 
コンピュータビジョン分野メジャー国際会議 Award までの道のり
コンピュータビジョン分野メジャー国際会議 Award までの道のりコンピュータビジョン分野メジャー国際会議 Award までの道のり
コンピュータビジョン分野メジャー国際会議 Award までの道のり
 
[DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions [DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
 

Destaque

Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)
Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)
Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)STAIR Lab, Chiba Institute of Technology
 
画像キャプションの自動生成(第3回ステアラボ人工知能セミナー)
画像キャプションの自動生成(第3回ステアラボ人工知能セミナー)画像キャプションの自動生成(第3回ステアラボ人工知能セミナー)
画像キャプションの自動生成(第3回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)STAIR Lab, Chiba Institute of Technology
 
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)STAIR Lab, Chiba Institute of Technology
 
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)STAIR Lab, Chiba Institute of Technology
 
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)STAIR Lab, Chiba Institute of Technology
 
言語資源と付き合う
言語資源と付き合う言語資源と付き合う
言語資源と付き合うYuya Unno
 
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜Yuya Unno
 
深層学習時代の自然言語処理
深層学習時代の自然言語処理深層学習時代の自然言語処理
深層学習時代の自然言語処理Yuya Unno
 

Destaque (20)

第1回ステアラボ人工知能セミナー(オープニング)
第1回ステアラボ人工知能セミナー(オープニング)第1回ステアラボ人工知能セミナー(オープニング)
第1回ステアラボ人工知能セミナー(オープニング)
 
Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)
Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)
Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)
 
画像キャプションの自動生成(第3回ステアラボ人工知能セミナー)
画像キャプションの自動生成(第3回ステアラボ人工知能セミナー)画像キャプションの自動生成(第3回ステアラボ人工知能セミナー)
画像キャプションの自動生成(第3回ステアラボ人工知能セミナー)
 
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)
 
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)
 
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)
 
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
 
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
 
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)
 
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)
 
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)
 
言語資源と付き合う
言語資源と付き合う言語資源と付き合う
言語資源と付き合う
 
JSAI Cup2017報告会
JSAI Cup2017報告会JSAI Cup2017報告会
JSAI Cup2017報告会
 
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)
 
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)
 
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)
 
情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜
 
深層学習による自然言語処理の研究動向
深層学習による自然言語処理の研究動向深層学習による自然言語処理の研究動向
深層学習による自然言語処理の研究動向
 
深層学習時代の自然言語処理
深層学習時代の自然言語処理深層学習時代の自然言語処理
深層学習時代の自然言語処理
 

Semelhante a 高次元空間におけるハブの出現 (第11回ステアラボ人工知能セミナー)

Word_Embeddings.pptx
Word_Embeddings.pptxWord_Embeddings.pptx
Word_Embeddings.pptxGowrySailaja
 
Word2vec slide(lab seminar)
Word2vec slide(lab seminar)Word2vec slide(lab seminar)
Word2vec slide(lab seminar)Jinpyo Lee
 
Poggi analytics - clustering - 1
Poggi   analytics - clustering - 1Poggi   analytics - clustering - 1
Poggi analytics - clustering - 1Gaston Liberman
 
Latent Dirichlet Allocation
Latent Dirichlet AllocationLatent Dirichlet Allocation
Latent Dirichlet AllocationMarco Righini
 
Deep Learning for Information Retrieval
Deep Learning for Information RetrievalDeep Learning for Information Retrieval
Deep Learning for Information RetrievalRoelof Pieters
 
Machine Learning Foundations for Professional Managers
Machine Learning Foundations for Professional ManagersMachine Learning Foundations for Professional Managers
Machine Learning Foundations for Professional ManagersAlbert Y. C. Chen
 
Similarity and Contrast on Conceptual Spaces for Pertinent Description Genera...
Similarity and Contrast on Conceptual Spaces for Pertinent Description Genera...Similarity and Contrast on Conceptual Spaces for Pertinent Description Genera...
Similarity and Contrast on Conceptual Spaces for Pertinent Description Genera...Giovanni Sileno
 
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017StampedeCon
 
Clustering Methods with R
Clustering Methods with RClustering Methods with R
Clustering Methods with RAkira Murakami
 
Combinations of Local Search and Constraint Programming
Combinations of Local Search and Constraint ProgrammingCombinations of Local Search and Constraint Programming
Combinations of Local Search and Constraint ProgrammingPaulShawIBM
 
Lecture 6-computer vision features descriptors matching
Lecture 6-computer vision features descriptors matchingLecture 6-computer vision features descriptors matching
Lecture 6-computer vision features descriptors matchingcairo university
 
Deep Learning for NLP: An Introduction to Neural Word Embeddings
Deep Learning for NLP: An Introduction to Neural Word EmbeddingsDeep Learning for NLP: An Introduction to Neural Word Embeddings
Deep Learning for NLP: An Introduction to Neural Word EmbeddingsRoelof Pieters
 
Clustering Methods with R
Clustering Methods with RClustering Methods with R
Clustering Methods with RAkira Murakami
 
Yoav Goldberg: Word Embeddings What, How and Whither
Yoav Goldberg: Word Embeddings What, How and WhitherYoav Goldberg: Word Embeddings What, How and Whither
Yoav Goldberg: Word Embeddings What, How and WhitherMLReview
 
ObjRecog2-17 (1).pptx
ObjRecog2-17 (1).pptxObjRecog2-17 (1).pptx
ObjRecog2-17 (1).pptxssuserc074dd
 
Fast Single-pass K-means Clusterting at Oxford
Fast Single-pass K-means Clusterting at Oxford Fast Single-pass K-means Clusterting at Oxford
Fast Single-pass K-means Clusterting at Oxford MapR Technologies
 

Semelhante a 高次元空間におけるハブの出現 (第11回ステアラボ人工知能セミナー) (20)

Lec10 alignment
Lec10 alignmentLec10 alignment
Lec10 alignment
 
Word_Embeddings.pptx
Word_Embeddings.pptxWord_Embeddings.pptx
Word_Embeddings.pptx
 
Word2vec slide(lab seminar)
Word2vec slide(lab seminar)Word2vec slide(lab seminar)
Word2vec slide(lab seminar)
 
Poggi analytics - clustering - 1
Poggi   analytics - clustering - 1Poggi   analytics - clustering - 1
Poggi analytics - clustering - 1
 
Latent Dirichlet Allocation
Latent Dirichlet AllocationLatent Dirichlet Allocation
Latent Dirichlet Allocation
 
Deep Learning for Information Retrieval
Deep Learning for Information RetrievalDeep Learning for Information Retrieval
Deep Learning for Information Retrieval
 
Machine Learning Foundations for Professional Managers
Machine Learning Foundations for Professional ManagersMachine Learning Foundations for Professional Managers
Machine Learning Foundations for Professional Managers
 
Similarity and Contrast on Conceptual Spaces for Pertinent Description Genera...
Similarity and Contrast on Conceptual Spaces for Pertinent Description Genera...Similarity and Contrast on Conceptual Spaces for Pertinent Description Genera...
Similarity and Contrast on Conceptual Spaces for Pertinent Description Genera...
 
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
 
Clustering Methods with R
Clustering Methods with RClustering Methods with R
Clustering Methods with R
 
Combinations of Local Search and Constraint Programming
Combinations of Local Search and Constraint ProgrammingCombinations of Local Search and Constraint Programming
Combinations of Local Search and Constraint Programming
 
Lecture 6-computer vision features descriptors matching
Lecture 6-computer vision features descriptors matchingLecture 6-computer vision features descriptors matching
Lecture 6-computer vision features descriptors matching
 
Deep Learning for NLP: An Introduction to Neural Word Embeddings
Deep Learning for NLP: An Introduction to Neural Word EmbeddingsDeep Learning for NLP: An Introduction to Neural Word Embeddings
Deep Learning for NLP: An Introduction to Neural Word Embeddings
 
riken-RBlur-slides.pptx
riken-RBlur-slides.pptxriken-RBlur-slides.pptx
riken-RBlur-slides.pptx
 
Clustering Methods with R
Clustering Methods with RClustering Methods with R
Clustering Methods with R
 
Clustering - ACM 2013 02-25
Clustering - ACM 2013 02-25Clustering - ACM 2013 02-25
Clustering - ACM 2013 02-25
 
Yoav Goldberg: Word Embeddings What, How and Whither
Yoav Goldberg: Word Embeddings What, How and WhitherYoav Goldberg: Word Embeddings What, How and Whither
Yoav Goldberg: Word Embeddings What, How and Whither
 
16 17 bag_words
16 17 bag_words16 17 bag_words
16 17 bag_words
 
ObjRecog2-17 (1).pptx
ObjRecog2-17 (1).pptxObjRecog2-17 (1).pptx
ObjRecog2-17 (1).pptx
 
Fast Single-pass K-means Clusterting at Oxford
Fast Single-pass K-means Clusterting at Oxford Fast Single-pass K-means Clusterting at Oxford
Fast Single-pass K-means Clusterting at Oxford
 

Mais de STAIR Lab, Chiba Institute of Technology

リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)
リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)
リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)STAIR Lab, Chiba Institute of Technology
 
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)STAIR Lab, Chiba Institute of Technology
 
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)STAIR Lab, Chiba Institute of Technology
 
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 

Mais de STAIR Lab, Chiba Institute of Technology (7)

リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)
リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)
リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)
 
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)
 
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
 
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)
 
メテオサーチチャレンジ報告 (2位解法)
メテオサーチチャレンジ報告 (2位解法)メテオサーチチャレンジ報告 (2位解法)
メテオサーチチャレンジ報告 (2位解法)
 
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)
 
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
 

Último

April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024
April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024
April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024Timothy Spann
 
Semantic Shed - Squashing and Squeezing.pptx
Semantic Shed - Squashing and Squeezing.pptxSemantic Shed - Squashing and Squeezing.pptx
Semantic Shed - Squashing and Squeezing.pptxMike Bennett
 
ASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel CanterASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel Cantervoginip
 
Multiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfMultiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfchwongval
 
Decoding the Heart: Student Presentation on Heart Attack Prediction with Data...
Decoding the Heart: Student Presentation on Heart Attack Prediction with Data...Decoding the Heart: Student Presentation on Heart Attack Prediction with Data...
Decoding the Heart: Student Presentation on Heart Attack Prediction with Data...Boston Institute of Analytics
 
Learn How Data Science Changes Our World
Learn How Data Science Changes Our WorldLearn How Data Science Changes Our World
Learn How Data Science Changes Our WorldEduminds Learning
 
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝DelhiRS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhijennyeacort
 
GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]📊 Markus Baersch
 
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一F sss
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfBoston Institute of Analytics
 
Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...Seán Kennedy
 
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...Boston Institute of Analytics
 
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...Seán Kennedy
 
detection and classification of knee osteoarthritis.pptx
detection and classification of knee osteoarthritis.pptxdetection and classification of knee osteoarthritis.pptx
detection and classification of knee osteoarthritis.pptxAleenaJamil4
 
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...Amil Baba Dawood bangali
 
Heart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectHeart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectBoston Institute of Analytics
 
Real-Time AI Streaming - AI Max Princeton
Real-Time AI  Streaming - AI Max PrincetonReal-Time AI  Streaming - AI Max Princeton
Real-Time AI Streaming - AI Max PrincetonTimothy Spann
 
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...Boston Institute of Analytics
 

Último (20)

April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024
April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024
April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024
 
Semantic Shed - Squashing and Squeezing.pptx
Semantic Shed - Squashing and Squeezing.pptxSemantic Shed - Squashing and Squeezing.pptx
Semantic Shed - Squashing and Squeezing.pptx
 
ASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel CanterASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel Canter
 
Multiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfMultiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdf
 
Decoding the Heart: Student Presentation on Heart Attack Prediction with Data...
Decoding the Heart: Student Presentation on Heart Attack Prediction with Data...Decoding the Heart: Student Presentation on Heart Attack Prediction with Data...
Decoding the Heart: Student Presentation on Heart Attack Prediction with Data...
 
Learn How Data Science Changes Our World
Learn How Data Science Changes Our WorldLearn How Data Science Changes Our World
Learn How Data Science Changes Our World
 
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝DelhiRS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
 
GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]
 
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
 
Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...
 
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
 
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...
 
detection and classification of knee osteoarthritis.pptx
detection and classification of knee osteoarthritis.pptxdetection and classification of knee osteoarthritis.pptx
detection and classification of knee osteoarthritis.pptx
 
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
 
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
 
Heart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectHeart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis Project
 
Real-Time AI Streaming - AI Max Princeton
Real-Time AI  Streaming - AI Max PrincetonReal-Time AI  Streaming - AI Max Princeton
Real-Time AI Streaming - AI Max Princeton
 
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
 

高次元空間におけるハブの出現 (第11回ステアラボ人工知能セミナー)

  • 1. 2017/07/21@STAIR Lab AI seminar Improving Nearest Neighbor Methods from the Perspective of Hubness Phenomenon Yutaro Shigeto STAIR Lab, Chiba Institute of Technology
  • 2. A complete reference list is available at https://yutaro-s.github.io/download/ref-20170721.html
  • 3. !3 Nearest neighbor methods are •a fundamental technique •used in various fields: NLP, CV, ML, DM
  • 4. !4 Nearest neighbor methods are •a fundamental technique •used in various fields: NLP, CV, ML, DM
  • 5. !5 Nearest neighbor methods are •a fundamental technique •used in various fields: NLP, CV, ML, DM
  • 6. •a fundamental technique •used in various fields: NLP, CV, ML, DM Nearest neighbor methods are !6 cat dog gorilla
  • 7. •a fundamental technique •used in various fields: NLP, CV, ML, DM Nearest neighbor methods are !7 cat dog gorilla
  • 8. •a fundamental technique •used in various fields: NLP, CV, ML, DM Nearest neighbor methods are !8 cat dog gorilla
  • 9. •a fundamental technique •used in various fields: NLP, CV, ML, DM Nearest neighbor methods are !9cat cat dog gorilla
  • 11. !11 The nearest neighbors of many queries are the same objects (“hubs”) Hubness Phenomenon cat [Radovanović+, 2010]
  • 12. !12 The nearest neighbors of many queries are the same objects (“hubs”) Hubness Phenomenon [Radovanović+, 2010] cat
  • 13. !13 The nearest neighbors of many queries are the same objects (“hubs”) Hubness Phenomenon [Radovanović+, 2010] cat
  • 14. !14 The nearest neighbors of many queries are the same objects (“hubs”) Hubness Phenomenon hub [Radovanović+, 2010] cat
  • 15. : Normal distribution (zero mean) !15 Then it can be shown that Fixed objects , with EX [ x y2 ] EX [ x y1 ] > 0 y1 < y2 is more likely to be closer to more likely to be a hubi.e. Why hubs emerge? [Radovanović+, 2010]
  • 16. : Normal distribution (zero mean) !16 Then it can be shown that Fixed objects , with EX [ x y2 ] EX [ x y1 ] > 0 y1 < y2 is more likely to be closer to more likely to be a hubi.e. Because this holds for any pair and , objects closest to the origin tend to be hubs This bias is called “spatial centrality” Why hubs emerge? [Radovanović+, 2010]
  • 17. Variants •Squared Euclidean distance [Shigeto+, 2015] •Inner product [Suzuki+, 2013] !17 EX x y2 2 EX x y1 2 > 0 1 |D| x D x, y2 1 |D| x D x, y1 < 0
  • 18. !18 Research Objective: Improve the performance of nearest neighbor methods via reducing the emergence of hubs Problem: The emergence of hubs diminishes nearest neighbor methods
  • 20. !20 [Suzuki+, 2013] Centering: Reducing spatial centrality Spatial centrality implies the object which is similar to the centroid tends to be hub After centering, similarities are identical: i.e., zero centroid tends to be hub
  • 21. !21 Centering: Reducing spatial centrality Spatial centrality implies the object which is similar to the centroid tends to be hub After centering, similarities are identical: i.e., zero centroid = origin [Suzuki+, 2013]
  • 22. Mutual proximity: Breaking asymmetric relation !22 [Schnitzer+, 2012] Although hub becomes the nearest neighbor of many objects, such objects can not become the nearest neighbor of hub Mutual proximity makes neighbor relations symmetric hub
  • 23. Mutual proximity: Breaking asymmetric relation !23 Although hub becomes the nearest neighbor of many objects, such objects can not become the nearest neighbor of hub Mutual proximity makes neighbor relations symmetric hub [Schnitzer+, 2012]
  • 24. Mutual proximity: Breaking asymmetric relation !24 Although hub becomes the nearest neighbor of many objects, such objects can not become the nearest neighbor of hub Mutual proximity makes neighbor relations symmetric hub [Schnitzer+, 2012]
  • 26. Zero-shot learning Active research topic in NLP, CV, ML Many applications: •Image labeling •Bilingual lexicon extraction + Many other cross-domain matching tasks !26 [Larochelle+, 2008]
  • 27. …but classifier has to predict labels not appearing in training set ZSL is a type of multi-class classification !27 ZSL task Standard classification task
  • 28. !28 Pre-processing: Label embedding Labels are embedded in metric space Objects and labels = both vectors label space lion tigerexample space chimpanzee
  • 29. Find a matrix M that projects examples into label space !29 chimpanzee lion tigerlabel spaceexample space M Training: find a projection function
  • 30. lion tigerlabel spaceexample space label spaceexample space chimpanzee leopard gorilla !30 Prediction: Nearest neighbor search Given test object and test labels, to predict the label of a test object,
  • 31. 1. project the example into label space, using matrix M 2. find the nearest label Prediction: Nearest neighbor search Given test object and test labels, to predict the label of a test object, lion tigerlabel spaceexample space label spaceexample space chimpanzee leopard gorilla M !31
  • 32. Hubness: Problem in ZSL !32 sheep zebra hippo rat label spaceexample space Classifier frequently predicts the same labels (“hubs”) [Dinu and Baroni, 2015; see also Radovanović+, 2010]
  • 33. !33 sheep zebra hippo rat label spaceexample space Classifier frequently predicts the same labels (“hubs”) Hubness: Problem in ZSL [Dinu and Baroni, 2015; see also Radovanović+, 2010]
  • 34. !34 Classifier frequently predicts the same labels (“hubs”) sheep zebra hippo rat label spaceexample space Hubness: Problem in ZSL [Dinu and Baroni, 2015; see also Radovanović+, 2010]
  • 35. !35 sheep zebra hippo rat label spaceexample space Classifier frequently predicts the same labels (“hubs”) Hubness: Problem in ZSL [Dinu and Baroni, 2015; see also Radovanović+, 2010]
  • 36. !36 sheep zebra hippo rat label spaceexample space Classifier frequently predicts the same labels (“hubs”) Hubness: Problem in ZSL [Dinu and Baroni, 2015; see also Radovanović+, 2010]
  • 37. !37 Problem with current regression approach: Research objective: Learned classifier frequently predicts the same labels (Emergence of “hub” labels) Investigate why hubs emerge in regression-based ZSL, and how to reduce the emergence of hubs
  • 39. Current approach: !39 Proposed approach: chimpanzee lion tigerlabel spaceexample space M example space chimpanzee lion tigerlabel space M
  • 40. Current approach: Proposed approach: chimpanzee lion tigerlabel spaceexample space M example space chimpanzee lion tigerlabel space label spaceexample space label spaceexample space !40 leopard gorilla M leopard gorillaM
  • 41. Synthetic data result !41 Hubness (N1 skewness) Accuracy 24.2 13.8 0.5 87.6 Current Proposed Proposed approach reduces hubness and improves accuracy
  • 42. Why proposed approach reduces hubness Shrinkage in regression !42 Argument for our proposal relies on two concepts Spatial centrality of data distributions
  • 43. !43 If we optimize Then, we have “Shrinkage” in ridge/least squares regression [See also Lazaridou+,2015]
  • 44. !44 If we optimize Then, we have For simplicity, projected objects are assumed to also follow normal distribution “Shrinkage” in ridge/least squares regression [See also Lazaridou+,2015]
  • 45. Why proposed approach reduces hubness Shrinkage in regression !45 Argument for our proposal relies on two concepts Spatial centrality of data distributions ✔
  • 46. “Spatial centrality” : query distribution (zero mean) !46 Fixed objects , with [See also Radovanović+, 2010]
  • 47. “Spatial centrality” : query distribution (zero mean) is more likely to be closer to more likely to be a hub !47 Then it can be shown that i.e. Fixed objects , with EX x y2 2 EX x y1 2 > 0 [See also Radovanović+, 2010]
  • 48. “Spatial centrality” : query distribution (zero mean) is more likely to be closer to more likely to be a hub !48 Then it can be shown that i.e. Fixed objects , with Because this holds for any pair and , objects closest to the origin tend to be hubs This bias is called “spatial centrality.” EX x y2 2 EX x y1 2 > 0 [See also Radovanović+, 2010]
  • 49. Degree of spatial centrality !49 Further assume distribution of and
  • 50. Degree of spatial centrality !50 Further assume distribution of and This formula quantifies the degree of spatial centrality We have
  • 51. The smaller the variance of label distribution, the smaller the spatial centrality (= bias causing hubness) Spatial centrality depends on variance of label distributions !51
  • 52. Why proposed approach reduces hubness Shrinkage in regression !52 Argument for our proposal relies on two concepts Spatial centrality of data distributions ✔ ✔
  • 53. !53 Current approach: map X into Y Proposed approach: map Y into X
  • 54. !54 Current approach: map X into Y Proposed approach: map Y into X Shrinkage
  • 55. !55 Current approach: map X into Y Proposed approach: map Y into X
  • 56. !56 Current approach: map X into Y Proposed approach: map Y into X
  • 57. Q. Which configuration is better for reducing hubs? !57 Proposed Current
  • 58. Q. Which configuration is better for reducing hubs? !58 Proposed Current逆方向 順方向 Spatial centrality For a fixed query distribution , data distribution with smaller variance is preferable to reduce hubs
  • 59. Q. Which configuration is better for reducing hubs? !59 Proposed Current
  • 60. Q. Which configuration is better for reducing hubs? !60 Proposed Current Since distribution is not fixed, comparing label distribution is not meaningful
  • 61. !61 Proposed (scaled) Current Q. Which configuration is better for reducing hubs? Scaling does not change the nearest neighbor relation
  • 62. !62 Proposed (scaled) Current Q. Which configuration is better for reducing hubs? A. Reverse direction is preferable For fixed distribution , variance of distribution in proposed is smaller
  • 63. Summary of our proposal !63 Project labels into example space ➥ reduces variance of labels, hence suppresses hubness chimpanzee gorilla example space label space Label distribution with smaller variance is desirable to reduce hubness Spatial centrality Regression shrinks variance of projected objects Shrinkage Proposal
  • 65. Experimental objective !65 We evaluate proposed approach in real tasks •Does it suppress hubs? •Does it improve the prediction accuracy?
  • 66. •Bilingual lexicon extraction gorilla leopard : source language : target language gorille Zero-shot tasks !66 •Image labeling gorilla leopard : image : label
  • 67. Compared methods !67 Current Proposed CCA We used Euclidean distance as a distance measure for finding the nearest label
  • 69. 10.0 37.7 3.85.2 65.162.1 better Hubness (skewness) Ja → En En → Ja Bilingual lexicon extraction: Ja - En !69 21.620.2 34.431.9 0.40.2 current reverse CCA better Accuracy [%] Ja → En En → Ja
  • 70. Summary • Analyzed why hubs emerge in current ZSL approach - Variance of labels greater than examples • Proposed a simple method for reducing hubness - Reverse the mapping direction • Proposed method reduced hubness and outperformed current approach and CCA in image labeling and bilingual lexicon extraction tasks !70
  • 72. k-nearest neighbor classification !72 Given a dataset D = {(xi, yi)}n i=1 the label of is decided by its k-nearest neighbors:x ˆy = arg min yi:(xi,yi) D f(x, xi)
  • 73. k-nearest neighbor classification !73 Given a dataset D = {(xi, yi)}n i=1 the label of is decided by its k-nearest neighbors:x ˆy = arg min yi:(xi,yi) D f(x, xi)
  • 74. k-nearest neighbor classification !74 Given a dataset D = {(xi, yi)}n i=1 the label of is decided by its k-nearest neighbors:x ˆy = arg min yi:(xi,yi) D f(x, xi)
  • 75. !75 Given a dataset D = {(xi, yi)}n i=1 the label of is decided by its k-nearest neighbors:x ˆy = arg min yi:(xi,yi) D f(x, xi) k-nearest neighbor classification Distance metric learning learns a matrix f(x, xi) = Lx Lxi L Training is computationally expensive
  • 76. !76 Given a dataset D = {(xi, yi)}n i=1 the label of is decided by its k-nearest neighbors:x ˆy = arg min yi:(xi,yi) D f(x, xi) Proposal: Dissimilarity
  • 77. !77 Given a dataset D = {(xi, yi)}n i=1 the label of is decided by its k-nearest neighbors:x ˆy = arg min yi:(xi,yi) D f(x, xi) Proposal: Dissimilarity Spatial centrality For a fixed query distribution , data distribution with smaller variance is preferable to reduce hubs
  • 78. !78 Given a dataset D = {(xi, yi)}n i=1 the label of is decided by its k-nearest neighbors:x ˆy = arg min yi:(xi,yi) D f(x, xi) The function f needs to be computed only between labeled objects and unlabeled object ➡labeled objects are always target of retrieval, and unlabeled object is always query f(x, xi) = x Wxi 2 Proposal: Dissimilarity
  • 79. This method is not metric learning !79 •The goal of classification is to classify the query correctly -finding a suitable decision boundary (not metric)
  • 80. !80 min W n i=1 z Ti xi Wz 2 + W 2 F Find a matrix which minimizes the distance: Proposal: Training W
  • 81. !81 min W n i=1 z Ti xi Wz 2 + W 2 F Proposal: Training Find a matrix which minimizes the distance:W
  • 82. !82 min W n i=1 z Ti xi Wz 2 + W 2 F Proposal: Training Find a matrix which minimizes the distance:W
  • 83. !83 min W n i=1 z Ti xi Wz 2 + W 2 F Proposal: Training W = XJXT (XXT + I) 1 This function has the closed-form solution: Find a matrix which minimizes the distance:W
  • 84. !84 Givne a query object , ˆy = arg min yi:(xi,yi) D x Wxi 2 Proposal: Test x
  • 85. !85 ˆy = arg min yi:(xi,yi) D x Wxi 2 Proposal: Test Givne a query object ,x
  • 86. Move labeled objects v.s. move query !86 f(x, xi) = Mx xi 2 f(x, xi) = x Wxi 2 •Move labeled objects (proposal) •Move query This reduces the variance = reducing the emergence of hubs This increases the variance = promoting the emergence of hubs
  • 88. Experimental objective !88 We evaluate the proposed method on various datasets Our main focuses are -Does it suppress hubs? -Does it improve the classification accuracy? -Is it faster than distance metric learning?
  • 89. Results: Skewness (degree of hubness) !89 The proposed method -reduces the emergence of hubs method RCV News Reuters TDT original metric 13.35 21.93 7.61 4.89 LMNN 3.86 14.74 7.63 4.01 ITML 4.27 19.65 7.30 2.39 DML-eig 1.71 1.45 3.05 1.34 Move-labeled (proposed) 1.14 2.88 4.53 1.44 Move-query 21.57 33.36 17.49 6.71 (c) Image datasets. method AwA CUB SUN aPY original metric 2.49 2.38 2.52 2.80 LMNN 3.10 2.96 2.80 3.94 ITML 2.42 2.27 2.37 2.69 DML-eig 1.90 1.77 2.39 2.17 Move-labeled (proposed) 1.24 0.97 1.02 1.23 Move-query 7.81 7.83 7.48 11.65 Image datasets (smaller is better)
  • 90. Results: Classification accuracy [%] !90 Image datasets The proposed method -reduces the emergence of hubs -is better than metric learning methods on most datasets method RCV News Reuters TDT original metric 92.1 76.9 89.5 96.1 LMNN 94.7 79.9 91.5 96.6 ITML 93.2 77.0 90.8 96.5 DML-eig 94.5 73.3 85.9 95.7 Move-labeled (proposed) 94.4 81.6 91.6 96.7 Move-query 89.1 70.0 85.9 95.4 (c) Image datasets. method AwA CUB SUN aPY original metric 83.2 51.6 26.2 82.2 LMNN 83.0 54.7 24.4 81.8 ITML 83.1 51.3 26.0 82.4 DML-eig 82.0 53.5 22.4 81.6 Move-labeled (proposed) 84.1 52.4 28.3 83.4 Move-query 79.2 43.3 14.6 78.7
  • 91. Results: Training time [s] !91 The proposed method -reduces the emergence of hubs -is better than metric learning methods on most datasets -is faster than … on all datasets Document datasetsndicate the best performer for each dataset. (b) Image datasets. method AwA CUB SUN aPY LMNN 1525.5 1098.2 15704.3 317.3 ITML 1536.3 577.6 1126.4 9211.2 DML-eig 2048.0 2084.7 2006.1 1787.1 proposed 9.5 1.5 4.1 6.4
  • 92. Results: UCI datasets !92 The proposed method -reduces the emergence of hubs -is better than metric learning methods on most datasets -is faster than … on all datasets -does not work well on UCI datasets able 3: Classification accuracy [%]: Bold figures indicate the best performers for each ataset. (a) UCI datasets. method ionosphere balance-scale iris wine glass original metric 86.8 89.5 97.2 98.1 68.1 LMNN 90.3 90.0 96.7 98.1 67.7 ITML 87.7 89.5 97.8 99.1 65.0 DML-eig 87.7 91.2 96.7 98.6 66.5 Move-labeled (proposed) 89.6 89.5 97.2 98.6 70.8 Move-query 79.7 89.4 97.2 96.3 62.3 (b) Document datasets.
  • 93. Summary !93 Prediction: ˆy = arg min yi:(xi,yi) D x Wxi 2 The proposed method -reduces the emergence of hubs -is better than metric learning methods on most datasets -is faster than … on all datasets -does not work well on UCI datasets
  • 94. Misc.
  • 95. Other topics • Normalization of distances - Local scaling [Schnitzer+, 2012], Laplacian-based kernel [Suzuki+, 2012], Localized centering [Hara+, 2015] • Classifiers -hw-kNN [Radovanović+, 2009], h-FNN [Tomašev+, 2013], NHBNN [Tomašev+, 2011] !95See comprehensive survey [Tomašev+, 2015; Suzuki, 2014; Radovanović, 2017]
  • 96. Tools • Hub miner: Hubness-aware machine learning • Hub toolbox • PyHubs • Our code !96
  • 97. Conclusions • Introduced why hubs emerge -Spatial centrality • Showed hub reduction methods which improved the performance of nearest neighbor methods !97