SlideShare a Scribd company logo
1 of 63
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode  (presentation mode).
Starlight and Atoms Chapter 7
Guidepost Some chapters in textbooks do little more than present facts. The chapters in this book attempt to present astronomy as organized understanding. But this chapter is special. It presents us with a tool. The interaction of light with matter gives astronomers clues about the nature of the heavens, but the clues are meaningless unless astronomers understand how atoms leave their traces on starlight. Thus, we dedicate an entire chapter to understanding how atoms interact with light.  This chapter marks a transition in the way we look at nature. Earlier chapters described what we see with our eyes and explained those observations using models and theories. With this chapter, we turn to modern astrophysics, the application of physics to the study of
Guidepost (continued) the sky. Now we can search out secrets of the stars that lie beyond the grasp of our eyes.  If this chapter presents us with a tool, then we should use it immediately. The next chapter will apply our new tool to understanding the sun.
Outline I. Starlight A. Temperature and Heat B. The Origin of Starlight C. Two Radiation Laws D. The Color Index II. Atoms A. A Model Atom B. Different Kinds of Atoms C. Electron Shells III. The Interaction of Light and Matter A. The Excitation of Atoms B. The Formation of a Spectrum
Outline (continued) IV. Stellar Spectra A. The Balmer Thermometer B. Spectral Classification C. The Composition of the Stars D. The Doppler Effect E. Calculating the Doppler Velocity F. The Shapes of Spectral Lines
The Amazing Power of Starlight Just by analyzing the light received from a star, astronomers can retrieve information about a star’s ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Color and Temperature Orion Betelgeuse Rigel Stars appear in different colors,  from blue (like Rigel)  via green / yellow (like our sun)  to red (like Betelgeuse). These colors tell us about the star’s temperature.
Black Body Radiation (1) The light from a star is usually concentrated in a rather narrow range of wavelengths.  The spectrum of a star’s light is approximately a thermal spectrum called a  black body spectrum . A perfect black body emitter would not reflect any radiation. Thus the name “black body”.
Two Laws of Black Body Radiation 2. The peak of the black body spectrum shifts towards shorter wavelengths when the temperature increases.       Wien’s displacement law :   max   ≈  3,000,000 nm / T K (where T K  is the temperature in Kelvin). 1. The  hotter  an object is, the  more luminous  it is:  L = A*  *T 4   where     = Stefan-Boltzmann constant  A = surface area;
The Color Index (1) B band V band The  color  of a star is measured by comparing its brightness in two different wavelength bands: The blue (B) band and the visual (V) band.  We define B-band and V-band magnitudes just as we did before for total magnitudes (remember: a larger number indicates a fainter star).
The Color Index (2) We define the Color Index B – V (i.e., B magnitude – V magnitude). The bluer a star appears, the smaller the color index B – V. The hotter a star is, the smaller its color index B – V.
Light and Matter Spectra of stars are more complicated than pure blackbody spectra.    characteristic lines, called absorption lines. To understand those lines, we need to understand atomic structure and the interactions between light and atoms.
Atomic Structure ,[object Object],[object Object]
Atomic Density If you could fill a teaspoon just with material as dense as the matter in an atomic nucleus, it would weigh  ~ 2 billion tons!!
Different Kinds of Atoms ,[object Object],Helium 4 Different numbers of  neutrons   ↔ different  isotopes ,[object Object],[object Object]
Electron Orbits ,[object Object],r 1 , E 1 r 2 , E 2 r 3 , E 3 ,[object Object]
Atomic Transitions ,[object Object],[object Object],E ph  = E 4  – E 1 E ph  = E 3  – E 1 (Remember that E ph  = h*f) Wrong energy ,[object Object],[object Object]
Kirchhoff’s Laws of Radiation (1) ,[object Object]
Kirchhoff’s Laws of Radiation (2) 2.  A low-density gas excited to emit light will do so at specific wavelengths and thus produce an  emission spectrum. Light excites electrons in atoms to higher energy states Transition back to lower states  emits light at specific frequencies
Kirchhoff’s Laws of Radiation (3) 3. If light comprising a continuous spectrum passes through a cool, low-density gas, the result will be an absorption spectrum. Light excites electrons in atoms to higher energy states Frequencies corresponding to the   transition energies are absorbed from the continuous spectrum.
The Spectra of Stars Inner, dense layers of a star produce a continuous (blackbody) spectrum. Cooler surface layers absorb light at specific frequencies. => Spectra of stars are  absorption spectra .
Kirchhoff’s Laws (SLIDESHOW MODE ONLY)
Analyzing Absorption Spectra ,[object Object],By far the most abundant elements in the Universe ,[object Object]
Lines of Hydrogen Most prominent lines in many astronomical objects:   Balmer lines of hydrogen
The Balmer Lines n = 1 n = 2 n = 4 n = 5 n = 3 H  H  H  The only hydrogen lines in the visible wavelength range. Transitions from 2 nd  to higher levels of hydrogen 2 nd  to 3 rd  level = H   (Balmer alpha line) 2 nd  to 4 th  level = H   (Balmer beta line) …
Observations of the H-Alpha Line Emission nebula, dominated by the red H   line.
Absorption Spectrum Dominated by Balmer Lines Modern spectra are usually recorded digitally and represented as plots of intensity vs. wavelength
The Balmer Thermometer Balmer line strength is sensitive to temperature: Almost all hydrogen atoms in the ground state (electrons in the n = 1 orbit) => few transitions from n = 2 => weak Balmer lines Most hydrogen atoms are ionized => weak Balmer lines
Measuring the Temperatures of Stars Comparing line strengths, we can measure a star’s surface temperature!
Spectral Classification of Stars (1) Temperature Different types of stars show different characteristic sets of absorption lines.
Spectral Classification of Stars (2) Mnemonics to remember the spectral sequence: M nemonics M e M e K nown K ills K iss G enerally G rade G irl/ G uy F orget F F ine A stronomers A n A B ad B oy, B e O nly O h O h
Stellar Spectra O B A F G K M Surface temperature
The Composition of Stars From the relative strength of absorption lines (carefully accounting for their temperature dependence), one can infer the composition of stars.
The Doppler Effect The light of a  moving source  is blue/red shifted by  /  0  = v r /c  0  = actual wavelength emitted by the source  Wavelength change due to Doppler effect v r  = radial velocity Blue Shift (to higher frequencies) Red Shift (to lower frequencies) v r
The Doppler Effect (2) The Doppler effect allows us to measure the source’s  radial velocity. v r
The Doppler Effect (3) Take     of the H   (Balmer alpha) line:  0  = 656 nm Assume, we observe a star’s spectrum with the H   line at    = 658 nm. Then,    = 2 nm. We find      = 0.003 = 3*10 -3 Thus, v r /c = 0.003,   or  v r  = 0.003*300,000 km/s = 900 km/s . The line is red shifted, so the star is receding from us with a radial velocity of 900 km/s.
Doppler Broadening In principle, line absorption should only affect a very unique wavelength. Observer Atoms in random thermal motion v r v r Red shifted abs. Blue shifted abs. In reality, also slightly different wavelengths are absorbed. ↔  Lines have a finite width; we say:  they are broadened. One reason for broadening:  The Doppler effect!
Line Broadening ,[object Object],[object Object],[object Object],Doppler Broadening is usually the most important broadening mechanism.
New Terms temperature Kelvin temperature scale absolute zero thermal energy electron black body radiation wavelength of maximum intensity (λ max ) color index nucleus proton neutron isotope ionization ion molecule Coulomb force binding energy quantum mechanics permitted orbit energy level excited atom ground state continuous spectrum absorption spectrum (dark-line spectrum) absorption line emission spectrum (bright-line spectrum) emission line Kirchhoff’s laws transition Lyman series Balmer series Paschen series spectral class or type
New Terms (continued) spectral sequence L dwarf T dwarf Doppler effect blue shift red shift radial velocity ( V r ) transverse velocity line profile Doppler broadening collisional broadening density
Discussion Questions 1. In what ways is our model of an atom a scientific model? How can we use it when it is not a completely correct description of an atom?  2. Can you think of classification systems we commonly use to simplify what would otherwise be very complex measurements? Consider foods, movies, cars, grades, clothes, and so on.
Quiz Questions 1. Which of the following statements is true about the Celsius and Kelvin (Absolute) temperature scales? a. Zero is at the same temperature on both scales. b. The size of one degree is the same on both scales. c. Zero degrees Celsius is the same temperature as -273 K. d. The size of one Celsius degree is 5/9 that of a Kelvin. e. The size of one Kelvin is 5/9 that of a Celsius degree.
Quiz Questions 2. The temperature of a gas is a measure of the a. total amount of internal energy in the gas. b. amount of heat that flows out of the gas. c. total number of atoms in the gas. d. density of the gas. e. average motion of its atoms.
Quiz Questions 3. Which subatomic particle has a negative charge? a. The electron. b. The proton. c. The neutron. d. Both a and b above. e. Both a and c above.
Quiz Questions 4. The wavelength of maximum intensity that is emitted by a black body is a. proportional to temperature. b. inversely proportional to temperature. c. proportional to temperature to the fourth power. d. inversely proportional to temperature to the fourth power. e. Both a and c above.
Quiz Questions 5. Of the following, which color represents the lowest surface temperature star? a. Yellow. b. Blue. c. Orange. d. Red. e. White.
Quiz Questions 6. The amount of electromagnetic energy radiated from every square meter of the surface of a blackbody each second is  a. proportional to temperature. b. inversely proportional to temperature. c. proportional to temperature to the fourth power. d. inversely proportional to temperature to the fourth power. e. Both a and c above.
Quiz Questions 7. The B - V color index of a star indicates its a. density. b. total mass. c. radius. d. chemical composition. e. surface temperature.
Quiz Questions 8. If a star appears brighter through a B filter than it does through a V filter, its B - V color index is a. negative. b. zero. c. positive. d. greater than or equal to zero. e. less than or equal to zero.
Quiz Questions 9. An atom that is ionized must have a. more neutrons than protons. b. more protons than neutrons. c. more electrons than protons. d. more protons than electrons. e. Either c or d above.
Quiz Questions 10. Which of the following is true of an atomic nucleus? a. It contains more than 99.9% of an atom’s mass. b. It contains all of an atom's positive charge. c. It contains no electrons. d. Both a and b above. e. All of the above.
Quiz Questions 11. At what energy level are the electrons in hydrogen gas at a temperature of 25,000 K? a. Most are in energy level 1 (also known as the ground state). b. Most are in energy level 2. c. Most are in levels higher than energy level 2. d. Half are in energy level 1, and half are in level 2.  e. None of the above.
Quiz Questions 12. What conditions produce a dark (absorption line) spectrum? a. A hot solid, liquid, or high-density gas. b. A hot low-density gas. c. Light from a continuous spectrum source passing through a cooler low-density gas. d. Both a and b above. e. All of the above.
Quiz Questions 13. Where is the location of the cooler low-density gas that yields the dark (absorption) line stellar spectra that were studied by Annie Jump Cannon? a. In the interior of the star. b. In the star's lower atmosphere. c. In Earth's atmosphere. d. Both a and b above. e. Both b and c above.
Quiz Questions 14. Which electron energy level transition corresponds to a hydrogen atom absorbing a visible-light photon that has a wavelength of 656 nanometers?  a. The electron makes the transition from energy level 1 to energy level 2. b. The electron makes the transition from energy level 2 to energy level 1. c. The electron makes the transition from energy level 2 to energy level 3. d. The electron makes the transition from energy level 3 to energy level 2. e. The electron makes the transition from energy level 3 to energy level 4.
Quiz Questions 15. What does the presence of molecular bands in the spectrum of a star indicate? a. The star has a low surface temperature. b. The star has a high surface temperature. c. The star is about to go supernova. d. The star is spectral type G. e. The star is spectral type TiO.
Quiz Questions 16. Of the following spectral types, which one represents a star with the highest surface temperature?  a. A b. B c. F d. K e. G
Quiz Questions 17. All stars are composed of mostly hydrogen and helium, yet many stars have no lines for hydrogen or helium in their spectrum.  What causes this apparent contradiction? a. Spectral lines are created in the lower atmospheres of stars, and for many stars hydrogen and helium are hidden below the atmosphere. b. The upper layers of a star contain hot low-density gases that produce bright lines at precisely the same wavelengths as the dark lines, thus making them invisible. c. Hot hydrogen and helium gas in the interstellar medium produces bright lines to fill in the dark lines. d. The resolution of many spectrographs is too poor to show the extremely thin spectral lines for hydrogen and helium. e. The surface temperature is such that the electrons are not at the proper energy levels to produce spectral lines at visible wavelengths.
Quiz Questions 18. You research the star Sirius and find that its spectral lines are blue shifted.  What does this tell you about Sirius? a. Its surface temperature is higher than that of the Sun. b. It has a transverse velocity that is away from us. c. It has a transverse velocity that is toward us. d. It has a radial velocity that is away from us. e. It has a radial velocity that is toward us.
Quiz Questions 19. Suppose that you take the spectrum of several stars and identify the 656-nanometer line of hydrogen.  You then measure against the reference spectrum on the same image and find that some of the 656-nm lines are shifted due to the Doppler Effect.  Of the following shifted locations of this line, which one signals a star that is moving away from us at the highest speed? a. Star A @ 655 nm. b. Star B @ 657 nm. c. Star C @ 658 nm. d. Star E @ 659 nm. e. Star D @ 654 nm.
Quiz Questions 20. What property of a star can broaden the width of its spectral lines? a. Rapid rotation of the star. b. High-density atmosphere. c. High-temperature atmosphere. d. Both b and c above. e. All of the above.
Answers 1. b 2. e 3. a 4. b 5. d 6. c 7. e 8. a 9. e 10. e 11. c 12. c 13. e 14. c 15. a 16. b 17. e 18. e 19. d 20. e

More Related Content

What's hot (20)

Properties of stars
Properties of starsProperties of stars
Properties of stars
 
7. effect of transform fault boundary
7.  effect of transform fault boundary7.  effect of transform fault boundary
7. effect of transform fault boundary
 
Cycles of climatic changes
Cycles of climatic changesCycles of climatic changes
Cycles of climatic changes
 
Interior Of Earth
Interior Of EarthInterior Of Earth
Interior Of Earth
 
Interior of earth
Interior of earthInterior of earth
Interior of earth
 
astronomy introduction
astronomy introductionastronomy introduction
astronomy introduction
 
Cosmology
CosmologyCosmology
Cosmology
 
Meteorites
MeteoritesMeteorites
Meteorites
 
Lesson 8: Shape,Size and Structure of the earth
Lesson 8: Shape,Size and Structure of the earthLesson 8: Shape,Size and Structure of the earth
Lesson 8: Shape,Size and Structure of the earth
 
Earth Structure
Earth StructureEarth Structure
Earth Structure
 
Intro to Astronomy
Intro to AstronomyIntro to Astronomy
Intro to Astronomy
 
Visible Light
Visible LightVisible Light
Visible Light
 
Electromagnetic spectrum-power point
Electromagnetic spectrum-power pointElectromagnetic spectrum-power point
Electromagnetic spectrum-power point
 
Magmatism.pptx
Magmatism.pptxMagmatism.pptx
Magmatism.pptx
 
Seismic Waves
Seismic WavesSeismic Waves
Seismic Waves
 
Name the series of the hydrogen spectrum
Name the series of the hydrogen spectrumName the series of the hydrogen spectrum
Name the series of the hydrogen spectrum
 
Spectral classification of stars
Spectral classification of starsSpectral classification of stars
Spectral classification of stars
 
Using SI units in Astronomy
Using SI units in AstronomyUsing SI units in Astronomy
Using SI units in Astronomy
 
seafloor spreading theory LP
seafloor spreading theory LPseafloor spreading theory LP
seafloor spreading theory LP
 
Op ch05 lecture_earth3, minerals
Op ch05 lecture_earth3, mineralsOp ch05 lecture_earth3, minerals
Op ch05 lecture_earth3, minerals
 

Similar to Chapter 07

Stellar evolution 2015
Stellar evolution 2015Stellar evolution 2015
Stellar evolution 2015Paula Mills
 
Lab 9 atomic structure
Lab 9 atomic structureLab 9 atomic structure
Lab 9 atomic structuredluetgens
 
Lab 8 atomic structure
Lab 8 atomic structureLab 8 atomic structure
Lab 8 atomic structuredluetgens
 
Chapter4electronsinatoms 111110092817-phpapp02
Chapter4electronsinatoms 111110092817-phpapp02Chapter4electronsinatoms 111110092817-phpapp02
Chapter4electronsinatoms 111110092817-phpapp02Cleophas Rwemera
 
Structure of atom plus one focus area notes
Structure of atom plus one focus area notesStructure of atom plus one focus area notes
Structure of atom plus one focus area notessaranyaHC1
 
Chapter 4 electrons in atoms
Chapter 4 electrons in atomsChapter 4 electrons in atoms
Chapter 4 electrons in atomstanzmanj
 
Atomic emission spectra
Atomic emission spectraAtomic emission spectra
Atomic emission spectraAmr Albasel
 
AP Chemistry Chapter 6 Outline
AP Chemistry Chapter 6 OutlineAP Chemistry Chapter 6 Outline
AP Chemistry Chapter 6 OutlineJane Hamze
 
Ch06 outline
Ch06 outlineCh06 outline
Ch06 outlineAP_Chem
 
Chemistry Chapter 5.pptx
Chemistry Chapter 5.pptxChemistry Chapter 5.pptx
Chemistry Chapter 5.pptxAderawAlemie
 
Chapter2_Nature_of_light-1.ppt
Chapter2_Nature_of_light-1.pptChapter2_Nature_of_light-1.ppt
Chapter2_Nature_of_light-1.pptTwagitayezuagy
 
Astonishing Astronomy 101 - Chapter 3
Astonishing Astronomy 101 - Chapter 3Astonishing Astronomy 101 - Chapter 3
Astonishing Astronomy 101 - Chapter 3Don R. Mueller, Ph.D.
 
Lecture 5.3- Atomic Spectra (Honors)
Lecture 5.3- Atomic Spectra (Honors)Lecture 5.3- Atomic Spectra (Honors)
Lecture 5.3- Atomic Spectra (Honors)Mary Beth Smith
 
Atomic structure – part ii
Atomic structure – part iiAtomic structure – part ii
Atomic structure – part iiMika Gancayco
 
2012 astrophysics ppt e2
2012 astrophysics ppt e22012 astrophysics ppt e2
2012 astrophysics ppt e2David Young
 

Similar to Chapter 07 (20)

Light
LightLight
Light
 
Stellar evolution 2015
Stellar evolution 2015Stellar evolution 2015
Stellar evolution 2015
 
Lab 9 atomic structure
Lab 9 atomic structureLab 9 atomic structure
Lab 9 atomic structure
 
Lab 8 atomic structure
Lab 8 atomic structureLab 8 atomic structure
Lab 8 atomic structure
 
Chapter4electronsinatoms 111110092817-phpapp02
Chapter4electronsinatoms 111110092817-phpapp02Chapter4electronsinatoms 111110092817-phpapp02
Chapter4electronsinatoms 111110092817-phpapp02
 
Structure of atom plus one focus area notes
Structure of atom plus one focus area notesStructure of atom plus one focus area notes
Structure of atom plus one focus area notes
 
Atom1
Atom1Atom1
Atom1
 
Chapter6
Chapter6Chapter6
Chapter6
 
Chapter 4 electrons in atoms
Chapter 4 electrons in atomsChapter 4 electrons in atoms
Chapter 4 electrons in atoms
 
Atomic emission spectra
Atomic emission spectraAtomic emission spectra
Atomic emission spectra
 
C H6
C H6C H6
C H6
 
AP Chemistry Chapter 6 Outline
AP Chemistry Chapter 6 OutlineAP Chemistry Chapter 6 Outline
AP Chemistry Chapter 6 Outline
 
Ch06 outline
Ch06 outlineCh06 outline
Ch06 outline
 
Chemistry Chapter 5.pptx
Chemistry Chapter 5.pptxChemistry Chapter 5.pptx
Chemistry Chapter 5.pptx
 
Chapter2_Nature_of_light-1.ppt
Chapter2_Nature_of_light-1.pptChapter2_Nature_of_light-1.ppt
Chapter2_Nature_of_light-1.ppt
 
Astonishing Astronomy 101 - Chapter 3
Astonishing Astronomy 101 - Chapter 3Astonishing Astronomy 101 - Chapter 3
Astonishing Astronomy 101 - Chapter 3
 
Lecture 5.3- Atomic Spectra (Honors)
Lecture 5.3- Atomic Spectra (Honors)Lecture 5.3- Atomic Spectra (Honors)
Lecture 5.3- Atomic Spectra (Honors)
 
Atomic structure – part ii
Atomic structure – part iiAtomic structure – part ii
Atomic structure – part ii
 
Ap chem unit 7
Ap chem unit 7Ap chem unit 7
Ap chem unit 7
 
2012 astrophysics ppt e2
2012 astrophysics ppt e22012 astrophysics ppt e2
2012 astrophysics ppt e2
 

More from smitamalik

Orbitals electron-configuration
Orbitals electron-configurationOrbitals electron-configuration
Orbitals electron-configurationsmitamalik
 
Emissionspectra1
Emissionspectra1Emissionspectra1
Emissionspectra1smitamalik
 
Atomic structure
Atomic structureAtomic structure
Atomic structuresmitamalik
 
Orbital shape-orientation
Orbital shape-orientationOrbital shape-orientation
Orbital shape-orientationsmitamalik
 
Full chapter redox
Full chapter redoxFull chapter redox
Full chapter redoxsmitamalik
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistrysmitamalik
 

More from smitamalik (7)

Orbitals electron-configuration
Orbitals electron-configurationOrbitals electron-configuration
Orbitals electron-configuration
 
Emissionspectra1
Emissionspectra1Emissionspectra1
Emissionspectra1
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
Orbital shape-orientation
Orbital shape-orientationOrbital shape-orientation
Orbital shape-orientation
 
Full chapter redox
Full chapter redoxFull chapter redox
Full chapter redox
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Full chapter
Full chapterFull chapter
Full chapter
 

Recently uploaded

Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 

Recently uploaded (20)

Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 

Chapter 07

  • 1. Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode).
  • 3. Guidepost Some chapters in textbooks do little more than present facts. The chapters in this book attempt to present astronomy as organized understanding. But this chapter is special. It presents us with a tool. The interaction of light with matter gives astronomers clues about the nature of the heavens, but the clues are meaningless unless astronomers understand how atoms leave their traces on starlight. Thus, we dedicate an entire chapter to understanding how atoms interact with light. This chapter marks a transition in the way we look at nature. Earlier chapters described what we see with our eyes and explained those observations using models and theories. With this chapter, we turn to modern astrophysics, the application of physics to the study of
  • 4. Guidepost (continued) the sky. Now we can search out secrets of the stars that lie beyond the grasp of our eyes. If this chapter presents us with a tool, then we should use it immediately. The next chapter will apply our new tool to understanding the sun.
  • 5. Outline I. Starlight A. Temperature and Heat B. The Origin of Starlight C. Two Radiation Laws D. The Color Index II. Atoms A. A Model Atom B. Different Kinds of Atoms C. Electron Shells III. The Interaction of Light and Matter A. The Excitation of Atoms B. The Formation of a Spectrum
  • 6. Outline (continued) IV. Stellar Spectra A. The Balmer Thermometer B. Spectral Classification C. The Composition of the Stars D. The Doppler Effect E. Calculating the Doppler Velocity F. The Shapes of Spectral Lines
  • 7.
  • 8. Color and Temperature Orion Betelgeuse Rigel Stars appear in different colors, from blue (like Rigel) via green / yellow (like our sun) to red (like Betelgeuse). These colors tell us about the star’s temperature.
  • 9. Black Body Radiation (1) The light from a star is usually concentrated in a rather narrow range of wavelengths. The spectrum of a star’s light is approximately a thermal spectrum called a black body spectrum . A perfect black body emitter would not reflect any radiation. Thus the name “black body”.
  • 10. Two Laws of Black Body Radiation 2. The peak of the black body spectrum shifts towards shorter wavelengths when the temperature increases.  Wien’s displacement law :   max ≈ 3,000,000 nm / T K (where T K is the temperature in Kelvin). 1. The hotter an object is, the more luminous it is: L = A*  *T 4 where  = Stefan-Boltzmann constant A = surface area;
  • 11. The Color Index (1) B band V band The color of a star is measured by comparing its brightness in two different wavelength bands: The blue (B) band and the visual (V) band. We define B-band and V-band magnitudes just as we did before for total magnitudes (remember: a larger number indicates a fainter star).
  • 12. The Color Index (2) We define the Color Index B – V (i.e., B magnitude – V magnitude). The bluer a star appears, the smaller the color index B – V. The hotter a star is, the smaller its color index B – V.
  • 13. Light and Matter Spectra of stars are more complicated than pure blackbody spectra.  characteristic lines, called absorption lines. To understand those lines, we need to understand atomic structure and the interactions between light and atoms.
  • 14.
  • 15. Atomic Density If you could fill a teaspoon just with material as dense as the matter in an atomic nucleus, it would weigh ~ 2 billion tons!!
  • 16.
  • 17.
  • 18.
  • 19.
  • 20. Kirchhoff’s Laws of Radiation (2) 2. A low-density gas excited to emit light will do so at specific wavelengths and thus produce an emission spectrum. Light excites electrons in atoms to higher energy states Transition back to lower states emits light at specific frequencies
  • 21. Kirchhoff’s Laws of Radiation (3) 3. If light comprising a continuous spectrum passes through a cool, low-density gas, the result will be an absorption spectrum. Light excites electrons in atoms to higher energy states Frequencies corresponding to the transition energies are absorbed from the continuous spectrum.
  • 22. The Spectra of Stars Inner, dense layers of a star produce a continuous (blackbody) spectrum. Cooler surface layers absorb light at specific frequencies. => Spectra of stars are absorption spectra .
  • 24.
  • 25. Lines of Hydrogen Most prominent lines in many astronomical objects: Balmer lines of hydrogen
  • 26. The Balmer Lines n = 1 n = 2 n = 4 n = 5 n = 3 H  H  H  The only hydrogen lines in the visible wavelength range. Transitions from 2 nd to higher levels of hydrogen 2 nd to 3 rd level = H  (Balmer alpha line) 2 nd to 4 th level = H  (Balmer beta line) …
  • 27. Observations of the H-Alpha Line Emission nebula, dominated by the red H  line.
  • 28. Absorption Spectrum Dominated by Balmer Lines Modern spectra are usually recorded digitally and represented as plots of intensity vs. wavelength
  • 29. The Balmer Thermometer Balmer line strength is sensitive to temperature: Almost all hydrogen atoms in the ground state (electrons in the n = 1 orbit) => few transitions from n = 2 => weak Balmer lines Most hydrogen atoms are ionized => weak Balmer lines
  • 30. Measuring the Temperatures of Stars Comparing line strengths, we can measure a star’s surface temperature!
  • 31. Spectral Classification of Stars (1) Temperature Different types of stars show different characteristic sets of absorption lines.
  • 32. Spectral Classification of Stars (2) Mnemonics to remember the spectral sequence: M nemonics M e M e K nown K ills K iss G enerally G rade G irl/ G uy F orget F F ine A stronomers A n A B ad B oy, B e O nly O h O h
  • 33. Stellar Spectra O B A F G K M Surface temperature
  • 34. The Composition of Stars From the relative strength of absorption lines (carefully accounting for their temperature dependence), one can infer the composition of stars.
  • 35. The Doppler Effect The light of a moving source is blue/red shifted by  /  0 = v r /c  0 = actual wavelength emitted by the source  Wavelength change due to Doppler effect v r = radial velocity Blue Shift (to higher frequencies) Red Shift (to lower frequencies) v r
  • 36. The Doppler Effect (2) The Doppler effect allows us to measure the source’s radial velocity. v r
  • 37. The Doppler Effect (3) Take   of the H  (Balmer alpha) line:  0 = 656 nm Assume, we observe a star’s spectrum with the H  line at  = 658 nm. Then,  = 2 nm. We find   = 0.003 = 3*10 -3 Thus, v r /c = 0.003, or v r = 0.003*300,000 km/s = 900 km/s . The line is red shifted, so the star is receding from us with a radial velocity of 900 km/s.
  • 38. Doppler Broadening In principle, line absorption should only affect a very unique wavelength. Observer Atoms in random thermal motion v r v r Red shifted abs. Blue shifted abs. In reality, also slightly different wavelengths are absorbed. ↔ Lines have a finite width; we say: they are broadened. One reason for broadening: The Doppler effect!
  • 39.
  • 40. New Terms temperature Kelvin temperature scale absolute zero thermal energy electron black body radiation wavelength of maximum intensity (λ max ) color index nucleus proton neutron isotope ionization ion molecule Coulomb force binding energy quantum mechanics permitted orbit energy level excited atom ground state continuous spectrum absorption spectrum (dark-line spectrum) absorption line emission spectrum (bright-line spectrum) emission line Kirchhoff’s laws transition Lyman series Balmer series Paschen series spectral class or type
  • 41. New Terms (continued) spectral sequence L dwarf T dwarf Doppler effect blue shift red shift radial velocity ( V r ) transverse velocity line profile Doppler broadening collisional broadening density
  • 42. Discussion Questions 1. In what ways is our model of an atom a scientific model? How can we use it when it is not a completely correct description of an atom? 2. Can you think of classification systems we commonly use to simplify what would otherwise be very complex measurements? Consider foods, movies, cars, grades, clothes, and so on.
  • 43. Quiz Questions 1. Which of the following statements is true about the Celsius and Kelvin (Absolute) temperature scales? a. Zero is at the same temperature on both scales. b. The size of one degree is the same on both scales. c. Zero degrees Celsius is the same temperature as -273 K. d. The size of one Celsius degree is 5/9 that of a Kelvin. e. The size of one Kelvin is 5/9 that of a Celsius degree.
  • 44. Quiz Questions 2. The temperature of a gas is a measure of the a. total amount of internal energy in the gas. b. amount of heat that flows out of the gas. c. total number of atoms in the gas. d. density of the gas. e. average motion of its atoms.
  • 45. Quiz Questions 3. Which subatomic particle has a negative charge? a. The electron. b. The proton. c. The neutron. d. Both a and b above. e. Both a and c above.
  • 46. Quiz Questions 4. The wavelength of maximum intensity that is emitted by a black body is a. proportional to temperature. b. inversely proportional to temperature. c. proportional to temperature to the fourth power. d. inversely proportional to temperature to the fourth power. e. Both a and c above.
  • 47. Quiz Questions 5. Of the following, which color represents the lowest surface temperature star? a. Yellow. b. Blue. c. Orange. d. Red. e. White.
  • 48. Quiz Questions 6. The amount of electromagnetic energy radiated from every square meter of the surface of a blackbody each second is a. proportional to temperature. b. inversely proportional to temperature. c. proportional to temperature to the fourth power. d. inversely proportional to temperature to the fourth power. e. Both a and c above.
  • 49. Quiz Questions 7. The B - V color index of a star indicates its a. density. b. total mass. c. radius. d. chemical composition. e. surface temperature.
  • 50. Quiz Questions 8. If a star appears brighter through a B filter than it does through a V filter, its B - V color index is a. negative. b. zero. c. positive. d. greater than or equal to zero. e. less than or equal to zero.
  • 51. Quiz Questions 9. An atom that is ionized must have a. more neutrons than protons. b. more protons than neutrons. c. more electrons than protons. d. more protons than electrons. e. Either c or d above.
  • 52. Quiz Questions 10. Which of the following is true of an atomic nucleus? a. It contains more than 99.9% of an atom’s mass. b. It contains all of an atom's positive charge. c. It contains no electrons. d. Both a and b above. e. All of the above.
  • 53. Quiz Questions 11. At what energy level are the electrons in hydrogen gas at a temperature of 25,000 K? a. Most are in energy level 1 (also known as the ground state). b. Most are in energy level 2. c. Most are in levels higher than energy level 2. d. Half are in energy level 1, and half are in level 2. e. None of the above.
  • 54. Quiz Questions 12. What conditions produce a dark (absorption line) spectrum? a. A hot solid, liquid, or high-density gas. b. A hot low-density gas. c. Light from a continuous spectrum source passing through a cooler low-density gas. d. Both a and b above. e. All of the above.
  • 55. Quiz Questions 13. Where is the location of the cooler low-density gas that yields the dark (absorption) line stellar spectra that were studied by Annie Jump Cannon? a. In the interior of the star. b. In the star's lower atmosphere. c. In Earth's atmosphere. d. Both a and b above. e. Both b and c above.
  • 56. Quiz Questions 14. Which electron energy level transition corresponds to a hydrogen atom absorbing a visible-light photon that has a wavelength of 656 nanometers? a. The electron makes the transition from energy level 1 to energy level 2. b. The electron makes the transition from energy level 2 to energy level 1. c. The electron makes the transition from energy level 2 to energy level 3. d. The electron makes the transition from energy level 3 to energy level 2. e. The electron makes the transition from energy level 3 to energy level 4.
  • 57. Quiz Questions 15. What does the presence of molecular bands in the spectrum of a star indicate? a. The star has a low surface temperature. b. The star has a high surface temperature. c. The star is about to go supernova. d. The star is spectral type G. e. The star is spectral type TiO.
  • 58. Quiz Questions 16. Of the following spectral types, which one represents a star with the highest surface temperature? a. A b. B c. F d. K e. G
  • 59. Quiz Questions 17. All stars are composed of mostly hydrogen and helium, yet many stars have no lines for hydrogen or helium in their spectrum. What causes this apparent contradiction? a. Spectral lines are created in the lower atmospheres of stars, and for many stars hydrogen and helium are hidden below the atmosphere. b. The upper layers of a star contain hot low-density gases that produce bright lines at precisely the same wavelengths as the dark lines, thus making them invisible. c. Hot hydrogen and helium gas in the interstellar medium produces bright lines to fill in the dark lines. d. The resolution of many spectrographs is too poor to show the extremely thin spectral lines for hydrogen and helium. e. The surface temperature is such that the electrons are not at the proper energy levels to produce spectral lines at visible wavelengths.
  • 60. Quiz Questions 18. You research the star Sirius and find that its spectral lines are blue shifted. What does this tell you about Sirius? a. Its surface temperature is higher than that of the Sun. b. It has a transverse velocity that is away from us. c. It has a transverse velocity that is toward us. d. It has a radial velocity that is away from us. e. It has a radial velocity that is toward us.
  • 61. Quiz Questions 19. Suppose that you take the spectrum of several stars and identify the 656-nanometer line of hydrogen. You then measure against the reference spectrum on the same image and find that some of the 656-nm lines are shifted due to the Doppler Effect. Of the following shifted locations of this line, which one signals a star that is moving away from us at the highest speed? a. Star A @ 655 nm. b. Star B @ 657 nm. c. Star C @ 658 nm. d. Star E @ 659 nm. e. Star D @ 654 nm.
  • 62. Quiz Questions 20. What property of a star can broaden the width of its spectral lines? a. Rapid rotation of the star. b. High-density atmosphere. c. High-temperature atmosphere. d. Both b and c above. e. All of the above.
  • 63. Answers 1. b 2. e 3. a 4. b 5. d 6. c 7. e 8. a 9. e 10. e 11. c 12. c 13. e 14. c 15. a 16. b 17. e 18. e 19. d 20. e