Modelagem matemática uma prática no

673 visualizações

Publicada em

Modelagem matemática uma prática no

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
673
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
7
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Modelagem matemática uma prática no

  1. 1. r: r: r r r r r ,( RHYCARDO DE PAULA MODELAGEM MATEMÁTICA UMA PRÁTICA NO CURSO DE ENGENHARIA CIVIL Monografia apresentada como requisito parcial para a obtenção do grau de Especialista em Matemática: dimensões teórico - metodológicas Orientadora: Prol" Ms. Marlene Perez Universidade Estadual de Ponta Grossa. PONTA GROSSA 2003
  2. 2. RHYCARDO DE PAULA r MODELAGEM MATEMÁTICA UMA PRÁTICA NO CURSO DE ENGENHARIA CIVIL Monografia apresentada como requisito parcial para a obtenção do grau de Especialista em Matemática: dimensões teórico - metodológicas Orientadora: Prof' Ms. Marlene Perez Universidade Estadual de Ponta Grossa. r- r> PONTA GROSSA 2003
  3. 3. "Modelar uma estátua e dar-lhe vida é belo. Modelar uma inteligência e dar-lhe verdade é sublime. Só a sabedoria divina poderia substituir com vasta e igual clareza todas as vacilantes imaginações da sabedoria. Pitágoras, Epicuro, Sócrates, Platão são raios de luz; Cristo é o dia. A verdade é alimento como o trigo. Os velhos têm necessidade de afeto como o sol ". VICTOR HUGO li
  4. 4. AGRADECIMENTOS r Aos familiares pelo incentivo, compreensão e apoio em todos os momentos; Ao chefe do Departamento de Engenharia Civil, professor Luis Antônio Krelling e coordenador professor Lúcio Marcos de Geus pela disponibilidade de espaço, equipamentos e materiais complementares. Em especial ao professor Vivente C. Campiteli pelo auxílio e conhecimento dedicado e ao --funcionário Paulo, do Laboratório de Materiais de Construção. Aos acadêmicos do primeiro ano do curso de Engenharia Civil d universidade Estadual de Ponta Grossa pela participação e enriquecimento dos trabalhos A professora Marlene Perez, pela amizade, compreensão, empenho e serenidade na orientação realizada. 11
  5. 5. r- r SUMÁRIO RESUMO v INTRODUÇÃO 01 CAPÍTULO I - A ENGENHARIA E O ENSINO APRENDIZAGEM NO CURSO SUPERIOR 04 1.1 BREVE HISTÓRICO DA ENGENHARIA. 06 1.2 BREVE HISTÓRICO DO CURSO DE ENGENHARIA NO BRASIL. 08 1.3 BREVE HISTÓRICO DO CURSO DE ENGENHARIA EM PONTA GROSSA. l O CAPÍTULo fi - MODELAGEM MATEMÁTICA E SUAS UTILIDADES 15 2.1 APLICAÇÕES DA MODELAGEM COMO INSTRUMENTO NAS CIÊNCIAS 15 2.2 MODELO MATEMÁ TICO 17 2.3 MODELAGEM MATEMÁ TICA 22 CAPÍTULo m - APLICAÇÃO DA METODOLOGIA DA MODELAGEM MATEMÁTICA 36 CONSIDERAÇÕES FINAIS 71 ANEXOS 73 REFERÊNCIAS BffiLIOGRÁFICAS 82 IV
  6. 6. RESUMO Na condição ainda de acadêmico do curso de Engenharia Civil..fr:::versas com outros, possibilitaram constatar que o curso necessita de uma prática e até uma reformulação metodológica no ensino de matemática que possa contribuiy levando o acadêmico a desenvolver a capacidade de interpretar e analisar as situações que se deparará no decorrer da sua vida acadêmica e na futura vida profissional. A resolução de problemas em quase todos os níveis do ensino e até mesmo no ensino superior aborda as características do ensino tradicional, professor detentor de todo conhecimento conduz a aprendizagem dando maior importância à linguagem do simbolismo, o exagero de exercícios, considerando a repetição e resultados exatos essenciais, deixando para segundo plano as discussões. Considerando o conteúdo principal fator que determina o problema a ser estudado. As aulas de matemática se tomam cansativas e desestimulant , deixando de lado a busca do conhecimento, o processo de pesquisa e a verdade sobre a utilização dos conteúdos. A partir daí esta monografia vem através de urna prática desenvolvida com os acadêmicos do primeiro ano do curso de Engenharia Civil da Universidade Estadual de Ponta Grossa com o propósito de aumentar o interesse do acadêmico de Engenharia Civil pela matemática nos anos iniciais, utilizando a Modelagem Matemática como alternativa metodológica. O Capítulo I é destinado a parte histórica Engenharia e reflexões sobre o ensino aprendizagem no curso superior. No Capítulo II direciona o estudo para o Modelo Matemático, Modelagem temática e também a importância dos modelos desenvolvidos pelos computadores melhorando a qualidade de vida. Já no Capítulo Ill é o momento da prática, discussão e comparação dos dados e modelos elaborados pelos acadêmicos, após a modelagem. palavras- chave: modelagem matemática; modelo; ensino aprendizagem. v
  7. 7. / INTRODUÇÃO r: A incorporação do aluno à universidade lhe proporciona novas responsabilidades, saindo da condição de adolescente para o de adulto. É um período delicado que merece cuidado especial, pois muitas vezes o vestibulando é de algum modo influenciado pelos familiares e não tem idéia dos conteúdos que estudará e ainda menos a sua aplicabilidade na vida profissional. Essa falha vem do ensino médio, pois tem o papel de orientar os alunos, mostrando as várias possibilidades e áreas de estudo e trabalho para o futuro. Nesse período de ensino poder-se-ia estabelecer novas vias de acesso ao conhecimento. Saindo do ensino formal, levando o aluno a situações práticas formalizando conscientemente o conteúdo trabalhado. A partir daí as diferenças individuais de cada aluno seriam avaliadas, proporcionando um direcionamento de suas tendências para áreas especificas do ensino técnico ou superior. Infelizmente o jovem vem acostumado com as fórmulas e definições decoradas e não compreendidos e acaba por ingressar na universidade. A universidade é o local onde a pesquisa e compreensões dos conceitos devem ser trabalhadas. A pesquisa de maneira geral, não apenas em nível de iniciação cientifica e pós- graduação, mas sim a pesquisa diária, acadêmica, na busca do porque de cada conteúdo que lhe é transmitido. O momento é específico para o posicionamento e coordenação do professor universitário buscando a melhora do processo ensino aprendizagem, colocando à frente toda a sua visão e bom senso, pois sabe que as ementas são muito pesadas, principalmente com relação a grande quantidade de conteúdo especifico que exigem do aluno, evitando comentários do porque e para que destes conteúdos. Levando a desmotivação e desorientação quanto a sua posição no esquema acadêmico e futuras disciplinas, além de atribuições futuras como profissional. Devido a isso, o presente estudo tem como tema central uma proposta metodológica para o ensino da matemática, resgatando o interesse do acadêmico através de uma prática valorizando a interdisciplinaridade no curso de Engenharia Civil da Universidade Estadual de Ponta Grossa, apoiado na essência do método da Modelagem Matemática, analisando suas origens nas aplicações de matemática . ...J
  8. 8. 2 A pesquisa realizada é de cunho qualitativo com apoio em materiais bibliográficos e um estudo de caso que tem por objetivos: - orientar o acadêmico no esquema universitário quanto às futuras disciplinas e atribuições como profissional na engenharia civil; - dinamizar o estudo da matemática no curso de Engenharia Civil através da Metodologia da Modelagem Matemática; Com esta pesquisa, pretende-se um amadurecimento pedagógico, bem como a busca de uma metodologia de ensino alternativa para o trabalho com a Matemática no Curso Superior, que possa contribuir para a formação do acadêmico no Curso de Engenharia Civil. Buscando possibilidades e reflexões sobre as condições do ensino universitário a nível local. A partir de interrogações: Como está sendo trabalhada a matemática nos anos iniciais dos cursos superiores? Precisa-se de uma inter ligação entre as disciplinas? O que deveria ser feito para melhorar? A modelagem seria a metodologia mais indicada para essas situações? Para tanto, procedeu-se a um levantamento e estudo de publicações existentes, relacionadas com o tema, como: livros, revistas e artigos na internet. A pesquisa bibliográfica fez-se necessária para a estruturação teórica e construção de modelos matemáticos. Foram elaborados questionários com a finalidade de melhor conhecer os alunos do 10 ano do Curso de Engenharia Civil da UEPG a fim de aplicar a prática de Modelagem Matemática, para posterior analise dos modelos elaborados. Percorremos o seguinte caminho metodológico: - levantamento do histórico da trajetória do Curso de Engenharia Civil, principalmente como se constituiu o curso em Ponta Grossa e como se formou o quadro de professores, que deu forma ao primeiro capítulo do trabalho. estudo das publicações sobre Modelos e Modelagem Matemática que oportunizou e deu sustentação teórica ao desenvolvimento do trabalho, o que constitui o segundo capítulo. realização de questionário no início para estabelecer um diálogo com os acadêmicos(futuros engenheiros), sobre as áreas de atuação, expectativas futuras quanto ao mercado de trabalho e no final do trabalho servindo como material didático no encaminhamento das atividades.
  9. 9. r 3 Procurou-se, nesse contato, induzir a escolha do tema a ser trabalhado e para tanto nos apoiamos em BURAK (1998, p.32) "o professor é apenas mediador, cuja principal finalidade é despertar o conhecimento que o aluno possui". O relato da experiência realizada encontra-se no terceiro capítulo. r
  10. 10. CAPÍTULO I - A ENGENHARIA E O ENSINO APRENDIZAGEM NO CURSO SUPERIOR ~ ~~( r" ..- --- O ensino superior é sem dúvida muito importante para o crescimento em nível pessoal e principalmente no fortalecimento de um coletivo forte e participativo, na troca de informações e idéias construtivas. O tempo do aluno passivo e do professor como o único detentor de todo o conhecimento não pode mais existir. Não há mais espaço para conhecimentos prontos e acabados e ao professor cabe o papel de mediador do processo de ensino e aprendizagem. Assim, o ensino superior, está num processo lento de transformação já que a maioria dos professores do ensino superior não possui uma formação pedagógica. Mesmo na licenciatura os cursos possuem poucas disciplinas didático pedagógicas. Os professores "muito preocupados com o domínio de conteúdo, nem sempre conseguem dar ,.....r conta dos aspectos pedagógicos de seu trabalho", diz BERB~2001, p.07). I ~ -J J 'v. /J Mesmo os docentes que procuram o aperfeiçoamento através do curso de pós- graduação, se não optam pela área da educação, não terão uma formação pedagógica. ---------.)O elevado índice de reprovação, principalmente na área de cálculo nas engenharias, se dá por vários motivos, um dos quais é pela falta de visão dos professores sobre o processo de ensino e aprendizagem. É fundamental que os professores do ensino superior, tenham uma formação pedagógica, embora a grande maioria seja formada de engenheiros. Outro motivo é a avaliação da aprendizagem que é um instante pedagógico "delicado", pois não envolve apenas a avaliação do acadêmico, mas também o processo de consciência individual e preparação do professor, que deve sempre buscar o crescimento humano e profissional do acadêmico. Não deixando escapar a visão a médio e longo prazo, das conseqüências avaliativas ... é o momento em que nós professores julgamos, é o momento em que podemos definir a vida acadêmica do aluno. Com nossas atitudes, podemos ter um comportamento que revela nosso respeito, nosso compromisso ético com a aprendizagem e o crescimento dos alunos, ou ao contrário, podemos ler comportamentos que revelam arbitrariedades, abusos de poder, uso de punições, injustiças, protecionismos, falta de consideração e de respeito, que resultam em prejuízos dos alunos. VASCONCELLOS (2001, p.173). ("
  11. 11. No curso superior, ainda e o docente o soberano ae suas allVIUdUÇ~Ç avauayv...,~. 'J" acadêmicos, na maioria das universidades não possuem o direito de ver seus erros e quando o têm, o processo é demorado e na maioria das vezes não possui o acesso direto da avaliação corrigida,apenas é mostrado em anotações os detalhes das questões que errou. A questão não é criticar a competência e consciência dos professores, mas resgatar a interação, criatividade e principalmente a busca das habilidades intelectuais dos acadêmicos. Para isso é necessário um ensino e uma avaliação que não o prive do exercício de pensar, já que muitas vezes lhe é cobrada apenas a memorização e isso acaba com uma das etapas do ensino que é o exercício e o raciocínio. Pensamos que uma proposta para o ensino e aprendizagem da matemática na engenharia contribuiria para minimizar os problemas apontados. A proposta da Modelagem Matemática vem sendo representada no cenário da Educação Matemática por aproximadamente duas décadas, porém ainda não tem presença significativa na sala de aula real. Os Educadores Matemáticos que participam de cursos relativos a esta temática não utilizam esta proposta pedagógica em suas salas de aulas. Mostram-se inseguros e podem mesmo evitar envolverem-se nas tarefas dos alunos, segundo BURAK, (1992). Para compreender parágrafo acima há de se entender a prática docente. A ação do professor é, em grande parte formada por suas concepções de ~atemática e ensino de matemática, que vão se construindo ao longo dos anos, mesmo naqueles anteriores à sua.......- CJZ... formação inicial. As concepções orientam o professor num determinado contexto escolar, com ) suas possibilidades e limitações (guias curriculares, livro didático, cultura escolar, pais, alunos, etc). :A. partir das suas concepções, o professor reflete, e avalia seu trabalho. A { profundidade da reflexão dependerá, substancialmente, da história de vida e das experiências ~da professor. Assim é possível conhecer o caminho percorrido e o ponto em que o ensino superior se encontra, quanto às suas concepções de ensino e de avaliação matemática. Um dos maiores "problemas" está quanto à formação de professores e a limitação dos programas de formação, pois se trata de experiências pontuais das relações entre a concepção e o contexto escolar. Os professores, por sua vez, podem ser desafiados em suas concepções, pois isto alteraria o equilíbrio das relações acima apontadas. Entretanto, é possível notar que as concepções não
  12. 12. 6 são influenciadas através do discurso, mas da prática matemática, a experiência. E é neste contexto que se pode propor a Modelagem como desafiadora das concepções já consolidadas. Com efeito, pode-se levantar algumas atividades possíveis na formação continuada e colaborativa de professores em relação à Modelagem, segundo BARBOSA (1999): V J) Desenvolvimento de tarefas de Modelagem pelos professores de modo a emergir os aspectos importantes do método, como os pressupostos, a necessidade de fazer aproximações, etc. 2) Estudo de modelos prontos, avaliando sua plausibilidade. 3) Estudo de casos de sala de aula nos quais Modelagem foi usada como abordagem pedagógica, levando, assim, questões curriculares e colocando bases práticas para a reflexão. 4) Desenvolvimento de intervenções em sala de aula, com apoio e reflexão de um grupo colaborativo. As experiências acima podem levar os professores a se sentirem mais seguros em relação à modelagem. A modelagem não deve ser apenas vista em caráter científico . (Matemática Aplicada), mas juntamente com o conhecimento prático na sala de aula. Assim o professor de nível superior ou não, terá conhecimentos matemáticos e educacionais, aliados para aplicar seguramente no ambiente escolar. 1.1 BREVE HISTÓRlCO DA ENGENHARlA .:» A Engenharia é uma atividade tão antiga quanto à própria civilização, no entanto só há dois séculos passou a ser levada em consideração, quando se verificou que tudo que o homem construía, instintivamente, era regido por leis matemáticas e científicas. Na história da engenharia, nos primórdios da civilização, o homem para atravessar pequenos cursos d'água, pisava em galhos caídos de árvores. Quando houve a necessidade de travessias maiores, ou seja, de transpor rios mais largos, o homem teve que utilizar árvores inteiras. Para isso, lançou mão do fogo, súnbolo do começo da civilização, empregado para aquecer, iluminar e cozinhar alimentos. O fogo foi, então, utilizado como ferramenta; ao queimar as árvores em sua as fez tombar até a out mar em, surgindo assim a "primeira ------------------~~ ------
  13. 13. 7 ponte", que foi o passo inicial da aplicação da engenharia; daí em diante o homem chegou a canoa rudimentar e mais tarde inventou a roda e eixo, descobriu a luz elétrica o rádio, a televisão, o avião, o computador, etc. para tudo isso usou recursos da engenharia. C? atual canal de Suez, aberto em 1869 para a ligação do Mediterrâneo ao Mar Vermelho e que sem dúvida nenhuma é um grande marco da engenharia. Entretanto no tempo de Seti, cerca de 1380 a.c., os egípcios já haviam construído obra semelhante, um canal menos estreito e menos fundo, mas que permitia a passagem dos maiores navios da éPoca] Merecem destaques as antigas obras de irrigação do vale do Nilo e também da Babilônia, onde se encontram ruínas de represas, canais e aquedutos que terão sido executados por volta do século VI a.c., ainda no Egito, o templo de Amon em Karnak, terminado em tomo de 980 a.c., ainda a pirâmide de Queóps século XXVII a.c. . Outras obras famosas da engenharia: a Via Apia (312 a.Cc), construída por Claudius Caecus;)o-e RIo aqueduto Cláudia, iniciado por Calícula ~36 a.C.) e terminado por Claudius (50a.C.), etc. (:/ di. --- I ""'f~ Esses e muitos outros trabalhos importantes de engenharia do passado deixaram o ~ testemunho da habilidade e do conhecimento do homem em tão relevante setor de atividade. A primeira escola dedicada a engenharia foi instalada em Paris em 1747 e denominava-se, École des Ponts. Et Caussées. Em 1818 foi fundado em Londres o Instituto de Engenheiros Civis, cuja finalidade era defender e prestigiar o significado da profissão. Dez ? anos mais tarde, o instituto pleiteou uma carta régia e tanto, precisou adotar uma definição de - --- -engenharia civil, recaindo a escolha a dos fundadores da associação, o famoso especialista em estruturas de madeira, Thomas Tredgold, tendo o mesmo definido como; Engenharia Civil é a arte de dirigir as grandes fontes de energia da natureza para uso e conveniência do homem, pelo aperfeiçoamento dos meios de produção e de transporte, tanto para o comércio interno quanto para o externo, aplicada às obras de estradas, pontes, aquedutos, canais, navegação fluvial, docas e armazéns para facilidades de intercâmbio; às construções de portos, moldes, quebra-mares e faróis; à navegação por meio de energia artificial para fins de comércio; à construção e adaptação de maquinarias e a drenagem das cidades. A engenharia civil ampliou seus horizontes a ponto mais abrangentes que àqueles Ja bem definidos por Tredgold, através de um mundo de experiências e resultados posteriores, e com o avanço e a modernização da civilização, e por existência do mercado tecnológico, houve a necessidade da criação de especialistas dentro da área da engenharia civil; como engenharia elétrica, engenharia mecânica, geologia, engenharia de minas, engenharia
  14. 14. 8 cartográfica, engenharia agronômica, engenharia química, engenharia de produção, engenharia mecatrônica, etc. Como se vê a engenharia está presente em todos os segmentos da sociedade e tudo teve inicio com a engenharia civil. Quem primeiro intitulou-se engenheiro civil foi o inglês John Smeaton (1724-1792) que cedo se dedicou a estudos de mecânica e astronomia, depois foi fabricante de instrumentos, muitos dos quais aperfeiçoou, e mais tarde tornou-se responsável pela abertura de canais, trabalho de drenagens, execução de pontes e pela construção do Farol de Eddystone, escrevendo em seguida monografias sobre alguns desses serviços. O legado dos primeiros engenheiros chegou aos dias de hoje com os acréscimos, adaptações e correções, e irá beneficiar o engenheiro de amanhã, que o aprimorará, para transmiti-lo às gerações futuras. 1.2 BREVE HISTÓRICO DO CURSO DE ENGENHARIA NO BRASIL. ( A primeira obra de vulto de engenharia no Brasil foi à cidade de Salvador iniciada em 1549 com a finalidade de tornar-se a sede do governo, trabalho confiado ao mestre português Luis Dias, que os historiadores consideram o primeiro engenheiro nesta terra. O ensino de engenharia no Brasil teve início em 1810, na Carta Régia em que D.João VI, animado pelo ministro da Guerra, o Conde de Linhares, D.Rodrigo de Souza Coutinho, criou a Academia Real Militar, no Rio de Janeiro. Somente quatro meses depois dessa carta, já em 1811, a Academia Real Militar foi inaugurada solenemente com a sua primeira aula em sala da chamada Casa do Trem, na ponta do Calabouço, mais tarde Arsenal de Guerra, onde hoje funciona o Museu Histórico Nacional. Em 1822, Proclamada a Independência, a academia passou a obedecer a um plano organizado de ensino, passando a chamar-se Academia Imperial Militar e, depois, Escola Militar, permitindo o ingresso de civis, em fms de 1823. Em 1839, alterou-se essa denominação para Escola Militar da Corte, ministrando cursos para as três armas do exercito, para a engenharia militar e para o estado maior, voltando a servir apenas aos militares. Entretanto, ante a premente necessidade da formação de engenheiros civis, a Escola Militar sofreu uma série de reformas. Em 1858, foi baixado um decreto dando nova organização às escolas militares e criando a Escola Central, destinada ao
  15. 15. ensino das matemáticas e ciências naturais e também ao das noutnnas propnas aa engeunaria civil. r Depois de várias reformas, em 1874 o ensino militar ficou separado do ensino civil, ao instituir-se a tradicional Escola Politécnica do Rio de Janeiro, no Largo de São Francisco de Paula, depois Escola Nacional de Engenharia, sendo criado três cursos: de Engenheiros Civis, de Minas e de Artes e Manufaturas. A segunda escola de Engenharia do Brasil foi a Escola de Minas de Ouro Preto, criada em 1876,com o curso de Engenharia de Minas e Metalurgia e, a partir de 1885, com o curso de Engenheiros Civis. Em 1894 foi fundada a Escola Politécnica de São Paulo; em 1896, a Escola de Engenharia Mackenzie (São Paulo) e em 1897, as escolas de Engenharia de Salvador e de Porto Alegre. Logo depois vieram as escolas do Recife (1905), de Belo Horizonte (1911) e de Itajubá (1973). Antes de 1940, foram ainda fundadas as escolas de Belém, Juiz de Fora (MG), Curitiba e a Escola Técnica do Exercito [atual Instituto Militar de Engenharia (RJ)]. Em meados do século XIX, começaram a surgir grandes engenheiros brasileiros, que de um modo geral, iniciaram a vida profissional ou dela aplicarem bom tempo no setor ferroviário, devido a expansão do país. Mariano Procópio, Marcelino Ramos, André Rebouças, os irmãos Francisco e Honório Bicalho, Pereira Passos, Paulo de Frontin, Pandiá Calógeras, Sampaio Correia, Carlos Sampaio, Vieira Souto, Gabriel Osório de Almeida e outros. Em outras especializações foram surgindo novos profissionais da engenharia brasileira, alguns nomes de destaque como: Cristiano Ottoni (estrada de ferro), Alfredo Lisboa (portos), Francisco de Brito (saneamento), Luis Felipe Gonzaga de Campos (geologia), J.1. Queiras Jr. (metalurgia), Luis Augusto da Silva (obras contra as secas) e Emílio Baurngart (concreto armado) e tanto outros que recentemente se destacam no cenário nacional da engenharia. r r r: r r
  16. 16. 10 1.3 BREVE HISTÓRICO DO CURSO DE ENGENHARIA EM PONTA GROSSA *No ano de 1973, durante a gestão do Reitor de Assuntos Acadêmicos Prof. João ---Lubczyk e com a Prof' Adelaide Chamma na Chefia do Setor de Ciências Exatas e Naturais, discutiu-se a implantação de um curso da área de Engenharia na Universidade Estadual de Ponta Grossa. A primeira opção era pela Engenharia Cartográfica, porém, no final do processo, decidiu-se pelo curso de Engenharia Civil. Criado através da Resolução N° 15, de 14 de dezembro de 1973, dentro do sistema semestral de créditos então em vigor na Universidade Estadual de Ponta Grossa, o Curso de Engenharia Civil teve seu primeiro vestibular em janeiro de 1974, com 60 vagas, sendo as aulas iniciadas em março do mesmo ano. Em 1975, com a oferta de disciplinas específicas, a serem ministradas por engenheiros civis, o ingresso desses profissionais no corpo docente do curso deu origem ao grupo que constituiria o Departamento de Engenharia, criado no ano seguinte, pela resolução R.SC/015, de 31 de dezembro de 1975, vinculado ao Setor de Ciências Exatas e Naturais. A formação do Departamento de Engenharia com engenheiros e arquitetos enfrentou as dificuldades naturais do inicio, motivadas pelo pequeno número de profissionais capacitados e disponíveis para ingressar na carreira do magistério superior. A maioria dos docentes contratados na época era de engenheiros que trabalhavam em Ponta Grossa. A fim de viabilizar o funcionamento de algumas disciplinas profissionais, em 1975 foram instalados no Laboratório Boa Vista - em caráter provisório - os laboratórios de Matérias de Construção, Mecânica dos Solos e Pavimentação, Hidráulica e Mecânica dos Fluidos. O credenciamento do Curso pelo Ministério da Educação, por ocasião da Formatura da primeira turma, ocorreu em 1978, com a vistoria de um perito, o professor engenheiro Dr. Hernani Sávio Sobral, da Universidade Federal da Bahia. Nessa ocasião, além da exigência de que as instalações, laboratórios e biblioteca fossem adequadas às necessidades do cursofs professores deveriam apresentar currículos comprobatórios de experiências acadêmica e profissional ou formação em nível de pós-graduação. Na época, alguns professores da Universidade Federal do Paraná ministravam aulas no Curso da Universidade, como convidados.
  17. 17. 11 o Curso de Engenharia Civil foi reconhecido pelo Decreto N° 82.190, de 29 de agosto de 1978 - Diário Oficial da União de 30 de agosto de 1978, assim os primeiros Engenheiros Civis formados pelo Curso estavam credenciados a receber seu diploma e com ele obter seu registro no CREA (Conselho Regional de Engenharia e Arquitetura), podendo assim ingressar no exercício da profissão. Com o reconhecimento do Curso pelo MEC (Ministério de Educação e Cultura), o Departamento de Engenharia Civil da Universidade Estadual de Ponta Grossa passou a ter assento no Conselho Regional de Engenharia, Agronomia e Arquitetura, participando dele ininterruptamente. Desde a sua criação em 1976, o Departamento, através de seus docentes, participa ativamente da administração universitária, seja ocupando cargos seletivos, seja pela ocupação de funções por convite. Professores do Curso já ocuparam, desde então, cargos como Reitor da UEPG, Pró- Reitor, Diretor do Setor, refeito do Campus, Chefe de Divisão, Membro dos Conselhos Superiores, ocasião em que seus representantes têm demonstrado reconhecida competência. Com o crescimento da Universidade Estadual de Ponta Grossa, o Campus Central, situado na Praça Santos Andrade, mostrou-se insuficiente para alojar adequadamente os cursos já existentes e para viabilizar a instalação de outros. A fim de solucionar o problema, foi obtido junto a EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária), um amplo terreno no Bairro de Uvaranas, para a construção de novo Campus. Nessa ocasião, as aulas teóricas do Curso de Engenharia eram ministradas em salas dos diversos blocos do Campus Central, o que trazia inúmeros inconvenientes a alunos e professores, pelos repetidos deslocamentos de um a outro bloco. Em vista disso, o Departamento de Engenharia Civil foi um dos primeiros a ser transferido para o Campus de Uvaranas. Os professores do Curso de Engenharia Civil, juntamente com os engenheiros da Prefeitura do Campus, desenvolveram o projeto do Bloco de Engenharia em padrão semelhantes ao do Bloco de Agronomia. O Bloco E, que abriga até hoje o Curso de Engenharia Civil, foi construído em paredes monolíticas de solocimento, no Campus de Uvaranas. Com essa construção, os laboratórios de Materiais de Construção, de Mecânica dos Fluidos e Pavimentação, de Hidráulica e Mecânica dos Fluidos e o de Eletrotécnica passaram a dispor de salas independentes, enquanto o departamento ganhou instalações mais amplas,
  18. 18. 12 com salas de colegiado, sala de chefia, sala de reuniões, salas de professores, bem como um anfiteatro e biblioteca própria. A transferência do Curso e do Departamento de Engenharia Civil para o Campus efetivou-se em 1988, o que melhorou sensivelmente suas condições de funcionamento. Em 1999 e ainda hoje o Corpo Docente do Curso de Engenharia Civil é constituído, em sua maioria, por engenheiros e arquitetos que ministram preferencialmente disciplinas de sua área de atuação profissional. A qualificação desses docentes em nível de pós-graduação teve seu início em 1978, com a realização, em convênio com a Universidade Federal do Paraná, do Curso de Especialização em Estruturas, envolvendo vários professores do Departamento. Nos anos 80, muitos docentes iniciaram cursos em nível de Mestrad s e Doutoradj esforço esse que vem se intensificando no sentido de qualificar todo o quadro. Atualmente o Departamento conta com 04 doutores, 06 mestres, sendo 02 doutorandos, 06 mestrandos e 10 especialistas. Graças a isso, tem sido possível a oferta de cursos de pós-graduação em nível de especialização, como é o caso do curso de Especialização em Gestão Ambiental, ofertado desde 1998. o Departamento participa ainda do curso de Mestrado em Saúde Pública, promovido pela universidade, com disciplinas relativas à área de meio ambiente e saneamento básico, bem como desenvolve ações no sentido de contribuir com a orientação de acadêmicos e oferta de disciplinas num curso de Mestrado e Doutorado em Engenharia Civil, organizado pela .Universidade Federal do Paraná, a partir do ano 2000. No âmbito institucional, foi decisiva a .participação do Departamento de Engenharia Civil ~o do Curso de Engenharia de Materiais, desde a sua idealização até seu reconhecimento pelo ME e igual importância tem sido a colaboração do Departamento no recente processo de implantação do Curso de Engenharia de Alimentos. A partir de 1990, o Curso de Engenharia Civil teve seu currículo alterado, passando do regime de créditos para o regime seriado anual, conforme decisão dos Conselhos Superiores da Universidade Estadual de Ponta Grossa. Dentro de novas sistemáticas, os acadêmicos passaram a ter aulas em turnos alterados: a 1a, 3a e 5a séries predominantemente pela manhã, e a 2a e 4a séries, à tarde. Essa alteração permitiu aos alunos períodos livres para desenvolverem outras atividades, inclusive estágios em empresas de engenharia, o que tem contribuído positivamente em sua formação profissional. -
  19. 19. 13 Também com o objetivo de aprimorar a qualidade dos alunos, o Colegiado de Curso incluiu, no seu currículo da 1a série, a disciplina "Introdução à Engenharia Civil", através da qual o acadêmico toma conhecimento de como deverá ser sua atuação nas disciplinas profissionalizantes do Curso e, mais tarde como engenheiro, nas mais diversas áreas de atuação profissional. Outra melhoria curricular foi a criação, na última séries do curso, de uma atividade denominada "Trabalho de Conclusão de Curso", em que o acadêmico desenvolve um trabalho de caráter profissional sob orientação de um docente da área de sua escolha, visando dar ao futuro engenheiro uma experiência da realidade da profissão. Ainda nessa linha de formação profissional, é significativa a implantação do "Estágio em tempo integral", quando o acadêmico, durante o último semestre do curso, engaja-se em uma empresa de engenharia, previamente cadastrada pelo Colegiado, onde atuará profissionalmente, apresentando relatórios periódicos ao coordenador de Estágio que o orientará nessa atividade, preparando-o assim para o exercício profissional. Todas essas iniciativas apresentam resultados e perspectivas positivas na aprendizagem profissional e na criação de oportunidades de emprego e projetos empresariais. Como forma de garantir o acesso dos acadêmicos aos avanços da tecnologia, ocorreu a consolidação do Laboratório de Informática, o que possibilitou o uso intensivo de aplicativos da área de Engenharia Civil nas atividades curriculares, bem como o desenvolvimento de vários cursos de extensão, além do aperfeiçoamento de alunos e docentes da Universidade. Um embrião do futuro Laboratório de Estrutura e de Construção Civil foi implantado, permitindo que diversos produtos, maquetes e equipamentos sejam colocados à disposição .dos alunos no desenvolvimento das disciplinas. Os docentes pós-graduados vêm desenvolvendo pesquisas em áreas específicas como Hidráulica e Saneamento, Construção Civil e Estruturas, com a participação de acadêmicos em projetos de Iniciação Científica, tanto com bolsas de estudos pelo programa PIBIC/CNPq- UEPG, como na condição de voluntários. Os resultados desses trabalhos têm sido apresentados em diversos eventos e publicados em revista nacionais e estrangeiras, influindo na melhoria da qualidade do Curso e na valorização dele. Merecem destaques também as ações extensionistas do Departamento de Engenharia Civil, como é o caso dos convênios com a Sanepar, para a preservação de mananciais e a formação do Eco-Museu do Saneamento, além do projeto desenvolvido por acadêmicos no
  20. 20. 14 Distrito de Itaiacoca, na zona rural de Ponta Grossa, através do qual se procura atender às necessidades básicas de moradia e saúde da população local. Soma-se a essas atividades a prestação de serviços à comunidade, particularmente pelo Laboratório de Materiais de Construção, com ensaios e serviços de tecnologia de concretos e argamassas e pelo Laboratório de Mecânica dos Solos e de Pavimentação, na realização de estudos geotécnicos utilizados nos projetos de pavimentação. É também relevante a participação do Departamento no NUCLEAM - Núcleo de Estudos em Meio Ambiente - atuando no desenvolvimento de estudos, projetos e pesquisas em parcerias com outros departamentos da UEPG. - Leis de Newton aplicadas aos movimentos da atmosfera. As equações aplicadas são chamadas r de modelos numérico~~ ••--
  21. 21. / 16 Os modelos devem conter variáveis representando os fenômenos que acontecem na atmosfera, os processos de formação de nuvens, chuvas, ventos e também a diferenciação de condições dos mares, continentes, solos e vegetações. O objetivo da modelagem é alcançar previsões cada vez mais confiáveis e de rápido acesso para a população e assim auxiliar no planejamento dos governos, alertando e evitando possíveis catástrofes. Em entrevista, E ,comenta a respeito da saúde pública, e a importância da modelagem e sua aplicação na epidemologia, sendo um dos seus ramos a área da vigilância / sanitária. Procurando responder perguntas como: qual a cobertura vacinal necessária para o controle das doenças imunizáveis? em que grupos de risco devem concentrar nossos ---esforços? qual a densidade de mosquitos necessários para viabilizar a transmissão da dengue? -quais são as combinações de fatores ambientais que predispõe ao aparecimento de quadros ~ respiratórios? entre outras (2002, p.l). ~ -- ~----A interação da biologia à matemática e a ciência da computação possibilita o melhor --- .-acompanhamento dos programas de controle de doenças infecciosas. Como exemplo tem-se a malária, onde modelos tentam demonstrar que o uso de inseticidas, de vetores, e de vacinas 7 alisando aquele que seria o modo mais eficaz para o controle da doença. ~ O professor Y AN , do Departamento de Matemática Aplicada do Instituto e ~ matemática, Estatística e Computação Científica da UNICAMP, comenta que "devido as...• o capacidades preditiva e comparativa, os modelos matemáticos estão ocupando uma posição muito importante na epidemologia contemporânea" (2002, p.4). .:»: Analisando a utilidade da modelagem matemática na questão da produtividade, TAU~ diz: "O uso da matemática em administração, economia, sociologia, engenharias e ciências são reconhecidas como necessárias. Nem por isso os profissionais dessas áreas deixam de se valerem da experiência e da intuição profissional para analisar seus problemas" (2002, p.l). A matemática é sem dúvida conhecimento fundamental para o desenvolvimento do modelo, mas não se pode dizer que é o único. Ela é precedida de elementos importantes, como o perfeito conhecimento do problema a ser trabalhado, a maneira de operar e os passos na evolução dos trabalhos da empresa atuante. O conhecimento profissional é essencial para analisar os problemas e saber assim utilizar e aplicar da melhor maneira os conhecimentos utilizando corretamente os conceitos matemáticos.
  22. 22. 17 /J I Outro ramo que vem utilizando a modelagem matemática é a pesca marítima. Segundo PETREN§.. IR., para fazer modelagem matemática e manejar estoques pesqueiros afetados pela sobrepesca são importantes considerar os dados de captura e esforço de pesca, ou seja tudo o que é investido em termos de trabalho para capturar o peixe (número de barcos operando na frota, quantidade de combustível) (1999,p.2). As questões da captura infelizmente no Brasil têm graves problemas na coleta desses dados, por se tratar de um sistema incerto e desorganizado de coleta. Pois quando no desembarque é necessário tomar dados, como o comprimento e peso dos peixes capturados. Com esses modelos alimentados pelos dados conseguidos por especialistas das várias áreas, é possível realizar testes e melhorar cada vez mais os modelos, entendendo as interações entre variáveis envolvidas no processo. O modelo matemático é a essência de um trabalho, que não é criado de uma hora para outra, existe todo um processo. Os educadores dizem que o Modelo de ensino atual não está correto, e que é preciso melhorá-lol A partir desta frase é possível ter uma noção de Modelo. Para chegar a este modelo educacional foi necessário um período anterior de construção que se pode chamar de Modelagem. 2.2. MODELO MATEMÁTICO É possível encontrar Modelos nos primeiros estudos matemáticos quando se referiam a funções, números naturais, conjuntos e outros. Nos dias de hoje o termo Modelo Matemático é amplamente utilizado no meio acadêmico. Do ponto de vista da pesquisa é muito importante analisar a categoria a que pertence o modelo, entre a pesquisa qualitativa e a pesquisa quantitativa. ----- SCHOBER, diz que o sucesso de um modelo matemático resulta da capacidade de --representar e manipular o conhecimento qualitativo e quantitativo das variáveis envolvidas e as formas de interação entre elas. Por isso a modelagem é um método de resolução de problemas multidisciplinar, que exige o trabalho conjunto de engenheiros, matemáticos, economistas, biólogos e outros (2 2, p.3). A análise de todas as variáveis seria ideal para testar a validade do modelo? No meio científico ocorre que muitas variáveis são propositadamente ignoradas, como estabelece
  23. 23. 18 PARAÍBA pesquisador da Empresa Brasileira de Pesquisa Agropecuária (Embrapa)/Meio Ambiente. O importante é que sejam utilizados nos modelos os fatores que realmente interessam. Com esses modelos, alimentados pelos dados conseguidos por especialistas das várias áreas, é possível realizar testes (experimentos). Os modelos são observados para ver se há uma correspondência com a realidade. Se houver, significa que o modelo está coerente. Se não, ele deve ser corrigido. "O modelo é algo dinâmico, simples ou complexo, tem variáveis , •.•..... que sempre são ignoradas", reforça ARAlBA (2002, p.2j !('dV COIJJ~a. Desconsiderando algumas variáveis não quer dizer que o modelo está incompleto. Na formulação de um modelo matemático é importante a escolha de variáveis ou parâmetros relevantes para o fenômeno em estudo, obedecendo sempre a mesma linha de raciocínio pelas variáveis escolhidas. Infelizmente alguns modelos são tão complicados de resolver manualmente que é necessário o uso de computadores. A importância na escolha das primeiras hipóteses é fundamental pois se não forem pelo menos razoáveis, os computadores poderão extrair dados ou informações erradas comprometendo o modelo. Confirma-se que o computador nada acrescenta de novo, e os fenômenos e seus modelos são dinâmicos e devem ser bem fundamentados. Para diversas áreas do conhecimento a palavra modelo apresenta diferentes significados. Daí vem a importância do pesquisador estar com os objetivos do modelo bem claros, evitando se comprometer com modelagem quando o modelo não estiver apropriado, ou quando estiver construindo uma classe errada de modelos SODRÉ (1998, p.6). Para evitar uso incorreto são considerados dois tipos de modelos, em função do que se espera dele: Modelos Mecanisticos Modelos Empíricos O modelador mecanistico parte das hipóteses, verificando se estas variáveis são importantes no sistema, quais delas devem ser ignoradas e como elas devem se comportar. Em seguida o modelo deve ser descrito matematicamente e as hipóteses devem aparecer nas equações. O experimento testará as suas hipóteses e possivelmente definirá um mecanismo ao invés de outro. Com a comparação das hipóteses com os dados experimentados é possível testar a exatidão dos dados algébricos e numéricos desenvolvidos. Apenas com o passar do tempo é possível verificar que as hipóteses iniciais não eram tão boas quanto se poderia esperar, aSSllTIocorre uma relutância em mudá-Ia prevendo novamente todo o trabalho e tempo a ser gasto.
  24. 24. 19 o modelador empírico parte da verificação dos dados experimentais, fazendo uma análise dos dados e tentando fazer alguma suposição inteligente na forma de equações, que poderão ser utilizadas como modelo matemático. Este método é de abordagem tradicional dos cientistas ao fazer deduções sobre mecanismos de dados experimentais. Se uma excelente resposta for obtida usando dados experimentais através da abordagem empírica ela será valorizada para um mecanismo ou modelo que levará a resposta desejada. Um modelo empírico redescreve como são os dados e nada diz sobre o que não está nos dados. Na verdade não existe um espaço bem definido entre os métodos mecanisticos e empíricos e usualmente ocorre uma mistura entre os dois nos exercícios de modelagem. Na área da educação matemática, a preparação de uma atividade de modelagem para o ensino fundamenta1, médio ou universitário, o educador primeiramente no papel de pesquisador deverá investigar e trabalhar para a construção e desenvolvimento do seu modelo. Em seguida verá a necessidade ou não de aprimorar seus conhecimentos, no que diz respeito a sua metodologia, conteúdo e a comunicação entre o aluno e os mecanismos matemáticos que melhor se adaptam à sua realidade. Pois BIEMBENGUT (1997, p.20) diz que "na ciência, a noção de modelo é fundamental". Quando BARBOSA (2000, p.53), comenta da relação e extensão da Matemática Aplicada para a Modelagem Matemática citando os escritores Cross & Moscardini e Edward & Harnson, fica nítida a sua evolução, tendo inicio pela Matemática aplicada e científica, cuja metodologia está baseada na restrição das variáveis, visando a simplificação das expressões matemáticas. Quando alguns elementos da situação real chegam a ser representados através de objetos matemáticos (gráficos, equações) predizendo ou representando uma situação, dizemos ser um modelo matemático. Mas, segundo citação de BARBOSA (2000, p. 54), "o modelo nunca conduz a uma resposta correta, ele é mais geral e especulativo", resolvendo sim, uma situação que aflige o meio, sem a finalidade obscura de encontrar o resultado em si, mas sim de levar ao aluno a entender a ferramenta matemática e a importância de resolver o problema, não apenas matemático, mas também da sua vida diária. A seguir algumas definições encontradas na literatura consultada, para melhor entender o conceito de Modelo, na Educação Matemática: Para BIEMBENGUT, um conjunto de símbolos e relações matemáticas que procura traduzir, de alguma forma, um fenômeno em questão ou problema de situação real, denomina- se modelo matemático (1999, p.20).
  25. 25. r- r0- r r r JiJ r r (J r / r r r 20 MATOS coloca que: "Com um modelo procura-se descrever os elementos considerados como fundamentais na situação, ignorando-se deliberadamente os elementos tidos como secundários. No entanto, na medida em que um modelo matemático tende a ser uma simplificação útil daquilo que pretendo descrever, ele simplifica alguns aspectos da realidade de forma a classificar ou tornar mais salientes outros aspectos. É típica dos bons modelos a tendência para não haver demasiadas simplificações mas sim para tornar salientes aspectos fundamentais da situação. (1995, p. 01). Segundo ~=S~-~ZL,. modelo matemático de um fenômeno, é um conjunto de símbolos e relações matemáticas que traduzem de alguma forma, o fenômeno em questão.(,1997, p.65). / - I Diz BURAK que o processo da modelagem pode ser dividido em cinco etapas, entre elas tem-se a resolução does) problema(s), essa etapa "amplia o conceito de modelo que também pode ser entendido como uma representação". (1998, p.32) Afirma CARRAHER que os modelos matemáticos são instrumentos para encontrar soluções de problemas onde o significado desempenha um papel fundamental. Os resultados não são simplesmente números; são indicações de decisões a serem tomadas {...} (1991, p.146). Se forem analisados as definições e os pontos de vista sobre modelos estes, não mudam na sua essência. Biembengut e Burak concordam que as fórmulas, tabelas, diagramas e gráficos "podem se constituir num modelo", não de elementos matemáticos complexos, mas sim de elementos próximos dos alunos. Quando Burak compara o modelo matemático à "apenas uma representação" aí está a diferença entre os modeladores pedagógicos dos modeladores profissionais. O importante não é apenas o modelo, mas todo o processo e conteúdos matemáticos que são envolvidos na resolução do problema proposto. Na mesma intenção BASSANEZI afirma que na tradução do fenômeno estudado as aproximações nem sempre condizem com a realidade, pois não é o ponto principal do processo. MAKI E THOMPSON, citados por ANASTÁCIO (1991, p.48), determinam que a construção de modelos se dá através de várias interações entre os passos na construção do modelo, através do aperfeiçoamento continuo até chegar a uma aceitável, com o esquema da figura 01, em que a linha pontilhada indica a versão abreviada do processo que é: Termos srmOUIlCUS.v rmnrenr+rear=nrrrra=se u ouero materna te (quantidades reais e processos são substituídos por símbolos e operações matemáticas); 4- O estudo do sistema matemático resultante pelo uso de técnicas e idéias matemáticas;
  26. 26. 22 5- Comparação dos resultados previstos com base no trabalho matemático e no mundo real. 2.3 MODELAGEM MATEMÁTICA A Modelagem Matemática tem se fixado como uma abordagem pedagógica nas últimas décadas. No passado graças a pesquisadores com espíritos investigadores, que não se contentavam apenas com hipóteses, utilizavam a matemática como ferramenta na exploração e melhor compreensão do mundo. Na utilização de expressões numéricas, eliminando a comodidade das pesquisas embasadas apenas em fatos, temos um dos primeiros defensores da descrição quantitativa - e educativa- dos fenômenos naturais, o fisico e matemático italiano Galileu (1564-1642). Considerado o Pai da Ciência Moderna, amparado em provas experimentais foi capaz de quebrar antigos paradigmas. Após alguns anos se chega aos dias de hoje, com a educação em um processo de mudanças, e amparados naqueles que com coragem, observação e prática, mostraram a aplicação da matemática "não apenas em números, mas sim avaliando a solução encontrada", afirma I arraher. -Sf ~ ~' A busca de uma indústria com menos perdas, alternativas para a melhoria da saúde pública e previsões meteoro lógicas mais precisas, se chega aos Modelos Matemáticos a partir do processo de construção chamada de Modelagem Matemática. Para melhor esclarecer o conceito será apresentado a seguir algumas definições encontradas na literatura consultada: D' AMBRÓSIO (1986" p.31), define Modelagem Matemática através do seguinte esquema:
  27. 27. 23 Figura 02: esquema proposta por D' AMBRÓSIO. ) ! Informação Individuo oEstratégia / Realidade Artefatos Mentefatos I o individuo é parte integrante e ao mesmo tempo, observador da realidade. Sendo que ele recebe informações sobre determinada situação e busca através da reflexão, a representação dessa situação em grau de complexidade. Para se chegar ao modelo é necessário que o individuo faça uma análise global da realidade na qual tem sua ação, onde define estratégias para criar o mesmo, sendo esse processo caracterizado pela modelagem. r A opinião e definição de D' AMBRÓSIO "um dos maiores matemáticos do mundo" (Revista Nova Escola, agosto-1993) sobre a modelagem matemática não poderia ser deixada sem registro. Esse professor não é o único a defender o programa denominado Etnomatemática, pois ela não é de sua criação, mas o nome foi criado por ele e apresentado no Congresso Internacional de Matemática da Austrália, em 1984. A Etnomatemática estuda o presente no cotidiano dos grupos culturais, visando o desenvolvimento dos conhecimentos matemáticos que possuem. A contextualização da matemática através das raízes culturais, se faz pela modelagem matemática, buscando as noções conceituais e as técnicas matemáticas na resolução dos problemas, 7r _ ,.! - -OREY (2001) comenta sobre a importância da relação e harmonia do programa etnomatemática e da metodologia modelagem na educação matemática. A sua relação é um fato, Q'AMB~ÓSI9 (2QO.o, .1-42), "todos estarão fazendo modelagem, cada grupo utilizando os recursos intelectuais e materiais próprios, isto é, a sua própria etnomatemática". Os grupos culturais utilizando a modelagem poderão compreender os sistemas matemáticos das práticas matemáticas. Dependendo do meio cultural e principalmente na resolução de situações reais, este sistema de resolução pode ser descrito como modelagem; as técnicas de modelagem proporcionam a contextualização da matemática e a modelagem como uma metodologia é
  28. 28. 24 essencial ao programa da etnomatemática , pois seus conceitos melhoram os valores da ética, respeito e solidariedade que estão presentes nos grupos culturais. Para BIEMBENGUT, modelagem matemática é o processo que envolve a obtenção de um processo artístico, visto que, para se elaborar um modelo, além de conhecimento apurado de matemática, o modelador deve ter uma dose significativa de intuição e criatividade para interpretar o contexto, saber discernir o conteúdo lúdico para jogar com as variáveis envolvidas.] A matemática e a realidade são dois conjuntos distintos e a modelagem é um meio de fazê-Ias interagir. (1997, p.20). Figura 03: esquema proposto por Biembengut. < MATE~ÁTICA 'W > IMatemática II Situação Real I MODELAGEM II modelo ,vi' •. -~igo, diz que o processo de modelação usualmente se dá esquema lC ente na forma de um ciclo, que pode se repetir com o objetivo de melhor se ajustar à situação que se pretende modelar. A metodologia varia de autor para autor. O autor citado opta por trabalhar com o esquema proposto por *Kerr e Maki levando em consideração o cenário pedagógico, desenvolvendo os processos de construção e manipulação de modelos, procurando tornar o trabalho de modelagem adequado para a sala de aula de maneira que os alunos utilizem algumas das idéias e dos instrumentais matemático. Kerr e Maki acrescentam um passo intermediário entre o Modelo Real e o Modelo Matemático, representado no esquema por Modelo para a Sala de Aula. No caso do esquema comentado, o ciclo de modelagem consiste nos seguintes passos: 1- identificação de um problema do mundo real. * livro de. KeIT. D. e Maki, D. Mathematical Models to Provide Applications in the Classroom. Em: ShatTOI1. s. e Rcys, R. Applications in School Mathematics. National Council ofTeachcrs of Mathcmatics, 1979
  29. 29. 25 2- O problema é muitas vezes modificado e simplificado com vistas a ser descrito em termos razoavelmente precisos e sucintos. Essa descrição do problema constitui o chamado modelo real. Trata-se de um modelo tendo em vista que uma idealização, ou simplificação foi feita, isto é, nem todos os aspectos da construção real são incorporados na descrição. 3- Com o objetivo de produzir um ambiente para a Aplicação da matemática na sala de Aula, acrescenta-se uma outra etapa, "que pode ser decisiva do ponto de vista pedagógico". 4- O modelo real é ainda mais simplificado e apresentado num contexto que seja interessante e compreensível para os alunos, tornando viável a aplicação de alguns conceitos e idéias matemáticas presentes na situação-problema. Chegando ao chamado Modelo para a Sala de Aula e a sua presença relaciona-se com o fato do modelo matemático ser construído com fins didáticos. 5- Conversão de aspectos e conceitos do mundo real em símbolos e representações matemáticas. 6- Uso de instrumentos e técnicas matemáticas para se obter conclusões baseada na utilização do modelo construído. 7- A validade de um modelo pode ser verificada através do confronto das conclusões obtidas a partir do modelo com a realidade. No entanto, durante todo processo de construção de um modelo, testes podem ser feitos para~erir a validade ou não do modelo proposto. Identificada alguma insuficiência relevante no modelo, ou seja sua inadequação para fornecer informações úteis acerca da realidade, o processo deve ser retomado. ANASTÁCIO (1991, p.35-55), descreve alguns estudos desenvolvidos por matemáticos e educadores de outros países como: Mogen Niss (1987), McLone (1976), Medley, Andrews e McLone, Tim O'Shea e John Berry (1982), Pinker (1981), Rubin (1982), Oke e Bajpai (1982). Devido a sua importância será comentado algo sobre, nos parágrafos a seguir: MOGEN NISS citado por ANASTÁCIO (1991, p. 36) apresenta um estudo sobre a modelagem matemática tomando como parâmetro à visão histórica. Diz que no período anterior a 2a Guerra Mundial desenvolveu-se a técnica de resolução de problemas, preocupando os educadores da época, temendo a baixa compreensão do conteúdo matemático.
  30. 30. 26 Depois da 2a Guerra começa o movimento da Matemática Moderna, sendo essa matemática inconsistente para resolver questões do dia-a-dia proporcionando assim a diminuição da capacidade de encontrar resultados rápidos e precisos nas questões aritméticas, no nível secundário, levando a juventude a exigir a melhora do conteúdo e a forma de Educação Matemática. Os graduados e pós-graduados em matemática estavam sendo direcionados a empregos em matemática aplicada ou ensino de matemática, a partir daí foi dado maior importância no conteúdo e forma começando a ser entendida e exigida como aplicabilidade. Esse autor ressalta três fases na escola elementar, não sendo cronológica mais sim de cunho estrutural: 1a fase acaba a necessidade do aluno decorar mecanicamente. Agora é exigida a compreensão -dos conceitos matemáticos. -r C X /J / /J 2a fase se preocupa em não apenas na resolução dos proplemas, mas sim a preocupação com atividades e estratégias para resolvê-los, No final da 2arase(!illasticicjcita Niss, "nasce o desafio com a humanização da instrução matemática", que acaba por originar a 3a fase que pretende encontrar a matemática na vida real dos alunos e o entendimento das respostas matemáticas encontradas (p.37). Os currículos do nível superior, citados pelo autor como pós-elementar, são divididas em quatro fases. A 1a fase foi antecedida pela maior atenção à matemática aplicada, não apenas a matemática postulada, mas sim aplicada. Com questões bem defirúdas nos exercícios, surgindo nessa fase o termo "modelo" com o objetivo de evitar a confusão entre modelo e a realidade. Aparecem cursos separados de "Modelos Matemáticos" e de "Aplicações Matemáticas". Na 2a fase, os alunos deveriam ser capazes de manipular a ferramenta matemática em situações do dia-a-dia, construir modelos matemáticos relativos com aquelas situações, investigar suas propriedades e interpretá-Ias como propriedades dos objetos e relações que pertenciam à área modelada. As situações problema são "abertas" e os alunos já não necessitam ser apresentados aos problemas arrumados da primeira fase, mas chegar a eles como resultado de próprios esforços. Isso tudo implicou numa mudança nos papéis convencionais:o professor passa de conferencistas a guia; os alunos trabalham em grupos pequenos; as aulas deixam de ser sessões fechadas e estanques e passam a existir longas seqüências de trabalho.
  31. 31. 27 Nessa fase, os cursos de aplicações e modelos prontos começam a apresentar característica de serem cursos mais voltados para o processo de aplicação da matemática e de modelagem, enfatizando o processo de construção de modelos. Os modelos resultantes da matematização dos alunos, que de início eram conhecidos pelos professores, começam a ser "abertos" também para os professores. Finalmente uma fase em que há uma reversão da ordem do que vem primeiro, a matemática ou situações de aplicação e suas necessidades - o campo de aplicação do modelo e o problema associado vem primeiro e subseqüentemente é que a matemática é introduzida no contexto da construção do modelo. lOque há de novo nesta fase é a independência da matemática, que não visa apenas ser um objeto que serve aos interesses de outras disciplinas. São feitos, nesta perspectiva, vários experimentos que vão desde instâncias em que a abordagem foi usada dentro dos limites do currículo tradicional até a organização de um programa inteiro de matemática construído sobre estas bases. Como essas fases não são cronológicas, a situação atual apresenta, nos diferentes países, características de todas as fases, havendo um denominador comum que é a distância entre a frente de debates e o desenvolvimento da modelagem matemática,por um lado, e o fluxo principal do ensino por outro lado. McLONE citado por ANAST ÁCIO define a Modelagem Matemática como, "a representação em termos matemáticos do nosso assim chamado 'mundo real' de modo a que se possa ganhar um entendimento mais preciso de suas propriedades significativas, permitindo alguma forma de predição de eventos futuros" (1991, p.42). Em seguida apresenta um diagrama sintetizando os passos de seus estudos com relação à modelagem.
  32. 32. 28 Figura 04: csqucma proposto por McLonc. rl SITUAÇÃO Modelo 1P==~i Prediçã~ REAL Consistência li em si mesmo J /: .>: o estudo e análise dos detalhes principais, buscando as características que levem à identificação do problema a ser trabalhado matematicamente. Depois de encontradas as principais características, em seguida é fundamental transcrevê-Ias em linguagem matemática documentando as relações encontradas. INa construção do modelo é necessário que seja descrito matematicamente utilizando a experiência pessoal e conhecimentos matemáticos para melhor representar a situação inicial. Na finalização do modelo é importante que os elementos (variáveis) matemáticos estejam correta e claramente relacionados à situação proposta' MEDLEY coloca em evidência a necessidade de diferenciar o processo Modelagem Matemática, da etapa que se chama Modelo Matemático. Diz que "Modelagem consiste de muitos passos, começando por uma confluência de idéias de diferentes tipos, terminando com testes rigorosos, e apresentando as conclusões - seja sob forma de previsão ou de tomada de decisão - de um modo conveniente para o uso" (1991, p.43). Para melhor explicar a diferença entre Modelo e Modelagem, cita o diagrama de Burghes e Botrie (1981), apresentando a modelagem num conjunto de 7 passos e o modelo em apenas 2.passos (3 e 4, da figura 05).
  33. 33. 29 Figura OS: eSquema proposto por Medley, de Burgbes e Botrie. ! 1-Formule o II=~~I 2-Hipóteses para o ~~~=+ll 3 - Formule o problema modelo real. I .~Imodelo. I matemático. a.. ••• 6 -Validação do 5 -Interprete a 4 -Resolva o problema modelo. solução. matemático. II 7 -Use o modelo matemático para explicar, predizer, decidir, definir. No esquema a, o item 1 - necessita incluir: - geração de idéias - seleção de idéias - desenvolvimento de idéias onde elas necessitam estar. - áreas de interesse na situação. - variáveis. - relações entre as variáveis. b Esse autor preocupa-se com os problemas abertos para os quais é necessário passar pelo processo de construção de um modelo, analisando detalhadamente as características que a situação apresenta (passos 1 e 3 do esquema da figo05). A importância de que esta etapa do processo e as relações iniciais entre as suas variáveis sejam bem definidas, visando à resolução do problema de maneira menos complicada. O importante não é apenas desenvolver o processo e chegar ao modelo, mas sim é de fundamental importância a passagem por todos os caminhos ou etapas, encontrando no final não apenas uma solução. Desenvolvendo o espírito critico ao encontrar as várias possibilidades de resultados, conhecendo e sabendo manipular e discutir matematicamente. ANDREWS e McLONE citados por ANASTÁCIO (1991, p.44) alertam da necessidade, para aqueles que possuem a intenção de usar um modelo, de estar consciente e preparado para manipular a ferramenta matemática, de "lá pra cá" entre o mundo em que se vive e o mundo matemático. O'SHEA e J.BERRY citados por ANASTÁCIO (1991, p.44) apresentam o esquema na figura 06, propondo a modelagem como o processo de escolher características que descrevem adequadamente um problema de origem não matemática, para chegar numa linguagem matemática. Essa linguagem deve permitir encontrar uma (ou mais) que deve(m) ser trazida(s) de volta para o mundo real, onde o proplema original foi proposto.
  34. 34. 30 Figura 06: esquema proposto por O'Shea e .loho Bcrry. REAL MATEMÁTICO MUNDO MUNDO Comentam o diagrama proposto por McLone (figura 04), além do diagrama acima, reforçando a idéia de que a Modelagem Matemática é um processo interativo em que o estágio de validação freqüentemente leva a diferenças entre as predições baseadas no modelo e a realidade. Desta maneira, o modelo é revisto para chegar a ser uma representação mais próxima da realidade. Antes de resumir o processo de modelagem em três estágios principais, Tim O'Shea e John Berry citam ainda o "diagrama das Sete Caixas" (figura 07), divulgado pelo Curso da Universidade Aberta em que é proposto aos alunos "preencher" cada etapa, auxiliando-os a decidir qual o próximo passo a ser dado na construção de um modelo e sua resolução.
  35. 35. 31 Figura 07: "diagrama Sete Caixas" proposto pela Universidade Aberta. Especifique o proble - Construa um f--- Formule o proble - ma real. modelo. ma matemático. I Compare com a rea- Interprete. Solução. lidade. - - I Escreva um relatório. Propõe três etapas que constituem o processo de Modelagem Matemática, como pode ser observado através do exame da tabela dada, abaixo: Figura 08: Tabela: três etapas que constituem o processo de modelagem r: ESTÁGIO O que acontece fORMULAÇÃO ( 1 ) Selecione os fatores importantes que descrevem o problema. ( 2 ) Faça hipóteses que simplifiquem. ( 3 ) Escolha variáveis para representar as características a serem contidas no plano. ( 4 ) Relacione as variáveis através de equações, inequações ou gráficos; através de uma estrutura matemática SOLUÇÃO Resolva o problema matemático proposto pelo modelo. Pode ser uma equação diferencial, ou um conjunto de eq uações lineares. ANASTAcro (1991, p.47) cita PINKER, definindo o processo de Modelagem segundo as etapas:
  36. 36. 32 1- -fonnule o problema; 2- -construa um modelo matemático que represente o sistema a ser estudado; 3- -encontre uma solução para o modelo; 4- -este o modelo e a solução obtida. Ru~partindo da premissa de que um problema de modelagem é constituído a partir de três componentes: "informação (sobre algum fenômeno), questões (sobre propriedades dos fenômenos) e critérios de avaliação (para determinar a aceitabilidade das propostas às questões)", define os seguintes estágios do processo de modelagem matemática: 1- formulação do problema; 2- representação matemática; 3- solução; 4- verificação. Reforçando que a formulação de um modelo matemático é apenas uma parte do complicado processo interativo de modelagem", processo esse que difere da simulação porque esta última é apenas um processo descritivo, não orientado por um objetivo. No período da graduação em Licenciatura em Matemática aconteceu o primeiro contato com modelagem matemática. O grupo em que participávamos optou pelo estudo de - ---uma quadra poliesportiva. A construção do modelo matemático (Matemática Aplicada) não ocorreu, mas sim a construção de um modelo (maquete) utilizando modelos matemáticos prontos na sua elaboração. ) Quando cursando Engenharia Civil presenciei nos dois primeiros anos que a maior parte do tempo foi ocupado com disciplinas matemáticas. Percebe-se que os acadêmicos que não estão convictos da importância do estudo da matemática para os próximos anos, acabam por reprovar algumas vezes e desestimulados desistem de estudar e trancam o curso. Aqueles que estudam com dedicação ou que têm mais facilidade para aprendizagem desse conhecimento, normalmente são aprovados nas disciplinas matemáticas. Mesmo para esses, e principalmente para aqueles, as negativas quanto à matemática são constantes. Para que serve "esta" matemática? Estou cursando engenharia e não matemática! Mas para a "alegria" da maioria, no terceiro ano as disciplinas práticas da engenharia começam a serem estudadas (Materiais de construção, Hidráulica, Mecânica dos solos, Transportes e outras) e os
  37. 37. 33 acadêmicos (nem todos) começam a perceber a importância dos conteúdos matemáticos dos anos iniciais. A partir do terceiro ano são desenvolvidos e aplicados muitos modelos matemáticos nas disciplinas práticas. O convívio com os modelos matemáticos aplicados e a necessidade pessoal, de responder para os acadêmicos recém aprovados no vestibular as mesmas perguntas que nbs fizemos, e apaziguar algumas exclamações, foram responsáveis ----pelo meu ingresso para a pós-graduação em educação com idéia voltada para uma prática envolvendo a modelagem matemática. A lembrança da prática sobre a modelagem no curso de licenciatura e as práticas da modelagem na engenharia, geraram um certo conflito interior. Que caminho seguir? A prática na licenciatura seria a única forma de modelagem ou a modelagem vivenciada na engenharia seria a forma correta de modelagem? x Para responder a essas questões levantaram-se algumas possibilidades sobre a modelagem: a) O objetivo principal da prática é convidar o aluno a explorar matematicamente situações não-matemáticas, tendo por fim sua formação matemática. Se este processo não resultar num modelo matemático, as atividades são também reconhecidas como modelagem segundo Biembengut e Monteiro, citados por BARBOSA (2000, p.56). Aqui se tem a afirmação da não necessidade do modelo matemático, para contatar a aplicação da modelagem, sendo que quando os educadores falam de modelagem matemática, falam também em modelo matemático. b) Mas, se a prática se limitar em apenas conduzir os alunos até o local e solicitar que identifiquem as figuras geométricas "Isso não é Modelagem" afirma BIEMBENGUT (1999, p.42), pois o professor está apenas procurando afirmar conceitos geométricos. c) BARBOSA (2000), apresenta dois exemplos que reforçam o papel da modelagem: - Exemplo 1 - Um grupo de alunas acompanhou o crescimento da planta"sansão do campo" em contato com três substratos diferentes(A, B e A+B), chegando num gráfico que representava o crescimento das mudas em função do tempo. De fato, as alunas construíram um modelo: uma descrição do fenômeno de crescimento da planta. Exemplo 2 - Biembengut, trabalhando com os alunos o crescimento populacional de uma colméia, chegou numa descrição do fenômeno: PCt) = 1OOOO.e-O,02532.l
  38. 38. - 34 Nos dois exemplos acima, se obtém um modelo, a representação ideal para traduzir o fenômeno do crescimento da planta, e do crescimento populacional das abelhas. Ficou clara a necessidade de um modelo, gráfico ou tabela visando uma "tornada de decisão" BURAK (1998, p.33) desenvolvendo o "senso critico, a argumentação, a lógica e a r----.::--' adequação da solução à realidade vivida' BURAK (1998, p.61). ~ As possibilidades levantadas nos exemplos (1 e 2) contrariam as idéias colocadas nos item (a) e (b) que definem a resolução da situação-problema da quadra poliesportiva trabalhada na Licenciatura como Modelagem Matemática. Quando bem explorada a situação, estaria promovendo a construção de idéias conceituais importantes, embora não trabalhasse propriamente com um modelo matemático, como nos exemplos 1 e 2, mas evitaria a aplicação restrita de conceitos matemáticos prontos e acabados de que fala o item(b). A situação descrita está de acordo com a proposta de modelagem colocada por BARBOSA no item (a). Assim BARBOSA (2001), apresenta as possíveis aplicações da modelagem em três casos "esses casos não pretendem engessar a prática, mas, uma vez que é reflexão sobre a prática" ( p.7): 1- Caso 1. O professor apresenta a descrição de uma situação problema, com as informações necessárias à sua resolução e o problema formulado, cabendo aos alunos o processo de resolução, não sendo preciso que eles procurem dados fora da sala de aula. 2- Caso 2. O professor traz para a sala de aula um problema de outra área da realidade, cabendo aos alunos coleta das informações necessárias para a simplificação ajustando na resolução do problema. 3- Caso 3. A partir de temas não-matemáticos, os alunos formulam e resolvem problemas. Eles também são responsáveis pela coleta de informações e simplificação das situações problema. Assim é o trabalho em projetos. A tabela abaixo esquematiza a participação do professor e do aluno em cada caso.
  39. 39. Tabela 01: Segundo IlARIlOSA(2000) a relação professor-aluno e a modelagem Caso I Caso 2 Caso 3 Elaboração da situação- problema professor professor professor / aluno Simplificação professor professor / aluno professor / aluno Dados qualitativos e quantitativos professor professor / aluno professor / al uno Resolução professor / aluno professor / aluno professor / aluno A terminologia Modelagem está sendo corriqueiramente utilizada em qualquer atividade que envolva diferentes temas (atividades comerciais, esportes, agrícolas), não interessa necessariamente o modelo matemático. O importante é o processo, onde o aluno é envolvido na aplicação e consolidação dos conceitos na resolução da situação não- matemática. Na verdade, quando se fala em Modelagem Matemática, os educadores matemáticos associam a palavra modelagem, a exploração de situações reais, e a simplificação em um modelo, possibilitando a reflexão sobre a situação modelada, buscando um modelo que melhor represente o problema solucionado e nessa busca a consolidação da aprendizagem matemática é firmada. I
  40. 40. CAPÍTULO ID: APLICAÇÃO DA METODOLOGIA DA MODELAGEM MATEMÁTICA Para investigar a validade da Modelagem matemática para o ensino e aprendizagem do conhecimento matemático, procuramos aplicar essa prática na primeira série do Curso de engenharia Civil. O desenvolvimento das atividades referentes a essa prática deu-se em 04( quatro) encontros. O primeiro encontro teve caráter informativo e incentivador urna vez que se procurou .argumentar quanto à importância da participação em tal evento. O Departamento de Engenharia apoiou a atividade e incentivou os alunos a participarem. Ao término do evento os alunos irão receber um certificado válido para horas .complementares do Curso. Foram abertas as inscrições e houve 22(vinte e dois) acadêmicos interessados sendo marcados o local, dias e horário da realização do evento. O segundo encontro deu-se no dia 20 de maio de 2003, nas dependências do Curso de Engenharia Civil da UEPG, e foram destinadas 02 (duas) horas para o desenvolvimento das atividades. Os objetivos desse encontro foram: -identifícar o perfil dos acadêmicos, com a finalidade de auxiliar no desenvolvimento das atividades; - apresentar modelos com a finalidade de interação e farniliarização com o processo de modelagem; - escolher um tema para o desenvolvimento da prática. No dia e horário marcado deu-se início às atividades. Em primeiro lugar foi distribuído um questionário (ANEXO-Ol- Questionário aplicado no primeiro encontro), com o qual foi levantado o perfil dos alunos que formaram o grupo de trabalho: 1) Quantos anos você completa no ano de 2003? - completam 18 anos: 43% - completam 19 anos: 32% - completam 20 anos ou mais: 25%.
  41. 41. 37 2) No período do ensino médio você estudou a maior parte do tempo, em escola pública ou particular? Fez curso pré-vestibular? Os acadêmicos que completam os estudos em escola particular fizeram algum tipo de curso pré-vestibular e aqueles que estudaram em escola pública assistiram algum tipo de pré- vestibular. - escola particular: - escola pública: 66% 34% 3) Foi aprovado no primeiro vestibular? Caso a resposta seja negativa, para qual curso prestou nas tentativas anteriores? Nem todos os acadêmicos foram aprovados no pnmeiro vestibular em tentativas anteriores, alguns nessas tentativas prestaram vestibular para engenharia, outros por motivo de indecisão (falta de personalidade, mercado de trabalho instável, influência familiar ou amigos, status social, entre outros) "atiravam para todos os lados" procurando descobrir "do que gostavam" . -aprovados no primeiro vestibular: 43%. -não aprovados no primeiro, mas optaram por engenharia em anteriores: 29%. -não aprovados no primeiro, e prestaram para outros cursos: 28%. 4) Qual a razão que o levou a optar pelo Curso de Engenharia Civil: a) afinidade d) não sei. b) por influência dos seus pais, tios, amigos. e)outras _ c) as duas alternativas anteriores Essa pergunta teve por finalidade avaliar a razão pela qual escolheram prestar vestibular para Engenharia Civil e o nível de influência externa recebida. -possui afinidade pelo curso: 60% -receberam influência única dos pais, parentes e amigos: 3% -receberam influência parcial dos pais e por vontade própria: 20% -simplesmente não sabem porque optaram pela engenharia: 8% -possuem outras razões, de cunho profissional: 9%. Resumindo as porcentagens acima temos:
  42. 42. / 38 / G60% : possuem afinidade pessoal pelo curso escolhido ) 0% : foram de alguma forma influenciados. 5) Qual a área da engenharia que você possui maior afinidade? a) construção civil b) saneamento c) estruturas e fundações d) transportes e) hidráulica f) projetos g) mecânica dos solos g) outra, _ h) ainda não sei, pois comecei os estudos há pouco tempo. Esta pergunta foi criada visando a escolha do Tema. Depois de respondido o questionário, numa certa oportunidade em um intervalo essas porcentagens foram calculadas e no momento correto foi apresentada aos acadêmicos, servindo de um material importante no direcionamento da escolha do tema. Essa pergunta poderia não ser utilizada, caso a porcentagem de afinidade pela Construção Civil atingisse valores irrisórios. -não possui, ainda, afinidade por uma área de engenharia: 43% -possui afinidade pela Construção Civil: 20% -possui afinidade pela elaboração de projetos: 14% -possuem afinidade por outras áreas da engenharia: 23% 6) Quais são suas expectativas quanto a metodologia de ensino das disciplinas matemáticas no curso de Engenharia? a) a mesma aplicada no ensino médio. b) a mesma aplicada nos cursos pré-vestibular. c)uma metodologia relacionando o conteúdo à futura vida profissional d) nenhuma expectativa diferenciada da tradicional, pois o modo ensinar matemática é sempre a mesma. ejoutra _
  43. 43. Procurou-se levantar qUalS expectanvas o t:SLUUé:lmç pv""", • ..,'-'v.~ ~~ __ . ensinada no decorrer dos anos letivos. E felizmente após muitos anos de ensino tradicional, salvo alguma exceção, ainda existe forte disposição em participar de uma metodologia direcionada à futura vida profissional. -metodologia direcionada a futura vida profissional: 92% -não possuem expectativas diferentes sobre o ensino da matemática: 8%. 7) Qual a influência do excesso d' água na mistura do concreto? Esta é a única pergunta técnica, avaliando o grau de conhecimento sobre a situação problema que seria apresentada. Algumas das respostas: -Não sei. -Deixa o concreto menos "firme". -Fica menos resistente. Suporta menos peso. -Muita água deixa o concreto mole, mais fraco, menos resistente. -O concreto terá sua estrutura comprometida, quebrará facilmente. -Eu acho que quanto mais água na mistura, mais tempo demorará o concreto para curar. -Compromete a qualidade do concreto. -Umidade.Má aderência. Baixa qualidade. -Concreto com baixa resistência, futuras rachaduras. Totalizando: - não sei: 55%. - escreveu algum tipo de resposta: 45%. Como os acadêmicos não possuíam conhecimento sobre modelos, foi utilizado o artigo: Átomos de Bohr, ratos de laboratório e Gisele Bündchen: O que é que eles têm em comum? De Roberto J. M. Covolan e Li Li Min (ANEXO: 02-Transparências: utilizadas no primeiro encontro). A exploração do artigo oportunizou, de maneira descontraída, a diferenciação entre dois tipos de modelo científico: os teóricos e os experimentais. Em seguida apresentamos os dois modelos:
  44. 44. 40 MODELO 01 (Unb/CESPE-SEEDIPR-2003) As funções são modelos matemáticos importantes e freqüentemente descrevem uma lei fisica. Como exemplo, considere que uma bola é atirada verticalmente para cima, no instante t = 0, com uma velocidade de 200 cm/s. Nesta situação, a velocidade da bola, em cm/s, corno função do tempo é dada por v(t) = 200-96t. Assim, é correto afirmar que a altura máxima atingida pela bola ocorre: a) Menos de 2 s após o seu lançamento. b) Entre 2 s e 2,5 s após o seu lançamento. c) Entre 2,6 s e 3 s após o seu lançamento. d) Entre 3,1 se 3,5 s após o seu lançamento. e) Mais de 3,5 s após o seu lançamento. Esse problema teve a finalidade de mostrar a importância dos modelos já equacionados, que são utilizados na maioria das vezes sem analise, pois geralmente confiamos na sua precisão. Trata-se da equação da velocidade, modelo matemático utilizado na Física. Observa-se que no próprio enunciado do problema são tecidos comentários sobre a importância da lei fisica. Levando-se a questão que, só se chega à formulação de uma lei fisica quando esta é analisada e testada por meio de métodos científicos apropriados. Foi analisada a situação em que quando se lança um corpo verticalmente para cima, no momento em que o corpo é lançado existe uma velocidade inicial (Vo) e quando atinge a altura máxima a velocidade é nula (V=O). De posse dessa informação foi possível substituir esse valor na equação e encontrar um resultado. Nesse caso temos a resolução de um problema, não se trata de modelagem. MODELO 02 (ProfU.José RF.Maciel) Uma prefeitura que dispõe de uma verba que pode ser destinada à construção de casas populares ou a pavimentação de ruas. Se optar por investir em casas populares, poderá construir 300 casas, se optar por investir em pavimentação de ruas, a verba é suficiente para a pavimentação de apenas 150 km. Mas a verba pode ser destinada a outros planos. Fazendo uma pesquisa de preços junto a empreiteiras, chegou-se aos seguintes planos:
  45. 45. Tabela 02: Dados coletados nas empreiteiras (Km x Casas populares) Kmderuas Casas populares O 300 20 290 60 240 90 180 105 140 135 50 150 O De posse da situação e com a tabela de dados (que também se pode chamar de um modelo "organizado") solicitou-se um modelo matemático que melhor represente a situação. Primeiramente foram posicionados os pontos entre os eixos cartesianos e traçada as possíveis curvas que melhor se adaptariam aos dados fornecidos pela empreiteira. Os acadêmicos estavam muito passivos, então foi preciso estimulá-los para participar, sem restrições, pois neste momento eles eram engenheiros em busca da melhor resolução na situação proposta. O gráfico foi construído no quadro de giz (Gráfico-O1), interrogando a curva que melhor se adaptaria a situação?
  46. 46. a) Gráfico com os pontos posicionados e segmentos de retas correspondentes: MODELO 2 - Prefeitura Pontos e segmentos de reta >- 350 1 P1 " o >< '(jj 300 "- li! 250 - e! 200.!!! ::s 150Q. o 100Q. li! 50lU li! lU OU O 20 60 90 105 135 150 Km de ruas ( eixo x ) Gráfico 01: pontos e segmentos de retas posicionados 42 b) Qual a função que melhor descreve os pontos? Seria uma função descrita por uma curva: exponencial, reta ou parabólica? Nesse momento surgiram discussões, tentando encontrar a curva que melhor representaria os pontos dados. Entre as várias opiniões, a dúvida ficou entre a reta e parábola. Prevendo a maior prática e manipulação matemática, foi proposta a análise da melhor reta não apenas em uma situação, mas sim tomando como referencia a análise de: um ponto em cada extremidade, dois pontos centrais e três pontos. E para a parábola a análise de três pontos, um de cada extremidade e um central. Obs: A resolução por três pontos, para a reta, não foi desenvolvida em aula, mas ficou como uma proposta complementar para a atividade. No final, após a formulação dos quatro modelos, analisar e visualizar o melhor, montando uma tabela comparativa e se for de interesse construir os gráficos de cada uma das quatro situações.
  47. 47. b.I_ Se a reta representasse a melhor situação: MODELO 2 - Prefeitura Ajuste linear - Reta - Função do 1° grau 350 300 t:'-.li) $ 250+-------r_~~~ __----_4------_+------~----~ à 200T---~~~~~~~~~~~~~~~~~_r.~~~ o c.. 150 +---':---+-~""'--:'~--'-~----+---''''''';='''''''''"',..,.t---::.-~---+-----''.---,,-: li) eu li) eu U 100+-----~~--~~~----~~--~~~--+_----~, 50 +-------+-------..,-j-----_4---"----+----~~"'-::---~ O+---~~r_-=~~~~--~~~~_+_~~~~~~~ O 20 60 90 105 135 Km de ruas Gráfico 02: Função do 10 grau b.I.I) Um ponto de cada extremidade: Equação do IO grau: y = a.x + b -dado os pontos: PI(0,300) e P7(I50,0) -considerando-se o sistema linear: { a.(o) +b = 300 a.(I50)+b=0 cuja solução é a=-2 b=300 43 150 curva: Os alunos resolveram o sistema acima com facilidade, chegando a função que representa a I y = -2x +300 I /
  48. 48. 44 b.1.2) Dois pontos centrais: P3(60,240) e P5(105, 140) { a.( 60) +b = 240 a.(105)+b =140 multiplicando por (-1) a primeira equação: { a.(-60)-b = -240 a.(105) +b = 140 somando a primeira equação com a segunda: 45.a = -100 a =-100/ /45 a--20/ - /9 cuja solução é: a --20/ - /9 b -1120/ - /3 a função que representa a curva: b.l.3) Três pontos: P3(60,240), P4(90, 180) e P5( lO5,l40)
  49. 49. 45 { a.( 60) +b = 240 a.(90)+b=180 a.(105) +b = 140 ( 60 90 105 :~:~J1 140 cuja solução é a=-2 b=360 a função que representa a curva é: y = -2.x+360 b.2_ Se a parábola representasse a melhor situação: 20 60 90 Km de ruas 105 135 150 MODELO 2 - Prefeitura Ajuste polinomial - Parábola - Função do 2° grau 350 I/) 300 e~ 250 ~~..--.-"-""-':':;'~~~""i't-":;:;""'~-;"-+'-.;...,......,~~+"~~;--+-~:;;"'-'~ ~ 200 +_------+_------~--~ __ ±-------+_--~--+_-------: o ~ 150 ~~----+---_=--~------+-~~__~~------+_----~ I/) m 100 +_~~~+-~~~~~~~+r~~~+_~~~+_~~---; ~ 50 +_-::--~--+_'----".,....,.:::.."'c_+_--'-"-~--+_"'__;_-;-:--""--+_--.....".._____'__'l:~Ii;o---'---'__'! o +_--~--+_~~--+_--~~+-~~--+_--~--+_--~=- o Gráfico 03: Função do r grau b.2.1) Três pontos escolhidos: A resolução do sistema linear é mais fácil para os alunos, pois são muitos trabalhados no ensino médio. Na resolução do sistema envolvendo a função do 2° grau os alunos ficaram com dúvidas. Alguns alunos resolveram através da regra de Cramer. Optei em resolver no quadro de giz por Escalonamento, pois poucos alunos lembravam, ou tiveram, a resolução por esse método no Ensino Médio. Desta forma, substituindo os três pontos escolhidos. Pl(0,300), P4(90,180) e P7(150,0). Na equação y= a.r+b.x + c, chegou-se ao sistema abaixo:
  50. 50. 46 { a.(150)2 +b.150+c = O a.(90)2 + b.90 + c = 180 a.(0)2 + b.O+ c = 300 cuja solução é: a=-~O b=- tj c=300 a função que representa a curva é: c) montar uma tabela comparando os dados reais e os valores com as funções obtidas: Tabela 03: Comparação entre os dados reais e funções (modelos) obtidas. Funções de 10 grau Função do ~de ruas Casas dois pontos dois pontos três pontos r grau. Populares extremos centrais Três pontos (x) dados reais) y = - 2x+300 y = - 20/9x+1120/3 y= - 2x+360 y = - 1I90x -1/3x+300 O 300 300 373,3 360,0 300,0 20 290 260 328,9 320,0 288,9 60 240 180 240,0 240,0 240,0 90 180 120 173,3 180,0 180,0 105 140 90 140,0 150,0 142,5 135 50 30 73,3 90,0 52,5 150 O O 40,0 60,0 0,0 Pode-se notar na Tabela 03, que o modelo mais adequado seria o da função do 20 grau. Mesmo adotando três pontos para a função do 10 grau o modelo não atingiu aproximações precisas. Ao concluir este modelo, explicou-se aos alunos que na maioria das vezes quando se tem uma tabela de dados o caminho para se obter a equação que represente a curva, seria repassar os dados para um gráfico. As funções podem ser utilizadas para fazer previsões
  51. 51. 47 muito próximas da realidade e a confiabilidade que estes modelos fornecem facilitam a vida do engenheiro, ao tomar decisões importantes. Esse contato propiciou a aplicação de modelos prontos através dos valores (pontos) já definidos em tabela. O exercício com dois modelos serviu de preparação para o próximo encontro, pois o grupo de trabalho irá coletar os dados e desenvolver os seus próprios modelos matemáticos. A presente prática veio se ajustar ao Caso 1, de modelagem, defendido por BARBOSA e citado neste trabalho na Tabela 01, do Capítulo II, em que apenas os alunos participam do processo de resolução, não sendo preciso que procurem dados fora da sala de aula. Dando seqüência ao trabalho, levantaram-se algumas áreas de atuação do engenheiro civil, tais como: - Construção civil: projeto e construção de imóveis - Estruturas e Fundações: projeto e construção de barragens, canais, instalações hidráulicas para produção de energia elétrica, sistemas de irrigação e drenagem. - Mecânica dos Solos: estudo da atmosfera, do solo e subsolo do local de uma obra. - Saneamento: projeto e execução de obras de saneamento básico. - Transportes: projeto, construção e manutenção de obras como ferrovias, rodovias e aeroportos. Nesse momento desperto - e o discussão levava às disciplinas que no enquanto futuros profissionais. Entre as áreas de atuação levantadas tanto no questionário (20% de aceitações), quanto ------ interesse do grupo de trabalho' foi despertado pois a -....--L--- decorrer do Curso darão suporte para suas atuações na discussão na sala de aula, a que mais se destacou foi a de construção civil. Aproveitando a oportunidade lançou-se o seguinte questionamento: - Que material é mais utilizado na construção de edifícios? Nesse momento a discussão tomou conta do grupo que levantou vários materiais e também chegaram a algumas conclusões: madeira: não é utilizada normalmente para construções de grande porte, em edifícios. aço: embora venha sendo mit difundido entre os países de primeiro mundo ainda não é viável no nosso País, devido ao elevado custo do material.
  52. 52. 48 Concreto: concluíram que este material é o mais utilizado. Então, levantaram-se os seguintes questionamentos: Quais os elementos ou materiais que constituem o concreto? Qual a finalidade de cada elemento ou material? Controlar a quantidade dos materiais que constituem o concreto é importante? A escolha do tema "Concreto" justificou-se por ser um elemento de vasta aplicação na construção, sendo um ponto que normalmente desperta a curiosidade dos acadêmicos, futuros engenheíros, oportunizando também a possibilidade de um aprofundamento no desenvolvimento de modelos matemáticos buscando a interdisciplinaridade entre uma situação prática no Laboratório de Materiais de Construção vindo a oportunizar a formalização de conteúdos matemáticos vistos nas disciplinas das séries iniciais do curso. Foi solicitado ao grupo de trabalho, a investigação em revistas técnicas, normas, livros e também junto a outros acadêmicos de séries mais avançadas, das questões levantadas, para o próximo encontro. Assim a pesquisa exploratória foi iniciada com a coleta de dados de ordem técnica e curiosidades sobre o assunto. "O fato de tomar contato com outras 'realidades', procurar captar suas particularidades e as suas generalidades são aspectos positivos na formação de um aluno mais crítico, e capaz de fazer uma leitura mais clara de uma situação"(~ p.32). QVA) -;J Terceiro encontro O terceiro encontro deu-se no Laboratório de Materiais de Construção. Os 22 acadêmicos ficaram distribuídos nas quatro bancadas do laboratório (ANEXO 03- Fotos do grupo de estudo, no laboratório). Para esse encontro dedicaram-se 4 horas. Concluindo a pesquisa exploratória os acadêmicos trouxeram alguns artigos e capítulos de livros sobre o concreto, entre eles: - Artigo: A durabilidade em questão, de M.Collepardi, tradução de André Andrade. Revista - Téchne de janeiro/fevereiro - 1999. n° 38 - Artigo: Assim Caminha a Corrosão, de Enio P. Figueiredo - Revista - Téchne de maio/junho- 1994. nOlO
  53. 53. - L1V<V. r.LJ 11'•.Uvvl, .LJIC1UIVU. '--UII~n~lU ue ~lInt!nlU rUnlanO, oe L- eo. edrtora ULUHU, Porto Alegre: 1975. - Livro: MEHTA, P.K. Concreto Estrutura Propriedades e Materiais. Capítulo 11. Avanços em Tecnologia do Concreto. 1985, p. 384. Com a leitura dos artigos apareceram muitas dúvidas, pois quase todo assunto pesquisado era novidade. As respostas quanto às dúvidas eram controladas e direcionadas evitando prolongar as discussões em assuntos que para o momento não seriam importantes. Os pontos principais levantados e analisados foram às quantidades dos materiais: Como seriam controlados os materiais na obra? Os materiais em excesso ou falta causariam algum comprometimento na qualidade do concreto? As possíveis causas do comprometimento da qualidade do concreto, seriam: a qualidade dos materiais utilizados na confecção do concreto; inexperiência e/ou falta de treinamento dos pedreiros, o excesso de confiança na prática e falta o conhecimento técnico apropriado. Na maioria das vezes nem tudo o que aparenta ser melhor ou mais fácil na prática, é o melhor para atingir o aproveitamento das propriedades dos materiais. A necessidade diária do engenheiro em fiscalizar a qualidade do concreto preparado na obra e também do concreto quando de empresas especializadas (concreteiras) com a mistura pronta. Amparado, segundo as normas técnicas, o concreto deve ser testado no momento da concretagem para verificar a relação água / materiais secos, e moldado em corpos de prova para avaliar a real resistência do concreto oferecido pela empresa. Se mais tarde comprovada a baixa qualidade do concreto, as responsabilidades éticas e penais, serão do engenheiro receptor. Chegou-se então à problemática principal: O controle dos materiais na obra como cimento, areia e brita são de certa forma fáceis. Mas o controle do volume de água fica muito dificil, pois a água é um material relativamente de baixo custo e de fácil acesso em obra. Nesse momento ocorrem os problemas quanto a finalidade da água na mistura do concreto. A faíta de água não pode ser considerada, pois
  54. 54. 50 assim a mistura se tornaria muito seca como uma "farofa". Mas os excessos de água sim podem ser analisados. Não apenas uma quantia, mas sim várias situações de exagero de água. Verificou-se na análise da questão 7 do questionário inicial, algumas respostas(hipóteses), quanto à questão do excesso da água no concreto: -Não sei. -Deixa o concreto menos "firme". -Fica menos resistente. Suporta menos peso. -Muita água deixa o concreto mole, mais fraco, menos resistente. -O concreto terá sua estrutura comprometida, quebrará facilmente. -Eu acho que quanto mais água na mistura, mais tempo demorará o concreto para curar. -Compromete a qualidade do concreto. -Umidade. Má aderência. Baixa qualidade. -Concreto com baixa resistência, futuras rachaduras. Porcentagens das respostas: -escreveu algum tipo de resposta, como as anteriores: 45%. -Não sei: 55%. As hipóteses acima foram respondidas antes da pesquisa exploratória, sendo que essa teve a finalidade de ampliar o conhecimento dos alunos com relação aos diversos elementos envolvidos na elaboração do concreto (levantamento dos problemas). O grande problema questionado pelos acadêmicos seria a quantidade de água no concreto, pois se sabe em princípio que excesso causa problemas. Mas não se sabe em quais proporções esse acréscimo comprometeria a qualidade do concreto. Visando a ordenação dos fatos foi elaborada uma situação problema, com alguns dados técnicos necessários para a sua resolução. Sendo que algumas hipóteses iniciais serão mais tarde analisadas e comparadas com os modelos matemáticos que melhor representarão a realidade na resolução do problema (quarto encontro). Concluindo a situação problema tem-se o seguinte texto:
  55. 55. 51 -Dados do concreto: Cimento: CPV - AR! Areia: Rio Iguaçu Brita: n° 1 -Massa Específica(ME): MEc'IMENTO= 3,10 g / crrr' MEARE1A = 2,604 g / cm3 MEpEDRA = 3,00 g / cm3 r A seguir colocou-se: Digamos que somos engenheiros e está sob nossa responsabilidade determinada obra. Os materiais utilizados na obra são de boa procedência e atendem todas as especificações de norma. O traço (proporção em volume ou massa) a ser utilizado será: 1: a: p: x (cimento: areia: brita : água) 1 : 2,115 : 2,654 : 0,45 já estudado e definido pela equipe técnica. Devido a problemas em algumas peças anteriormente concretadas você decide observar o serviço do operário. O operário está preparando a mistura, liga a betoneira e começa a misturar os materiais adicionados (brita, água, areia e cimento). Em certo momento adiciona mais uma quantia de água, em seguida mais uma, mais uma e mais uma ainda!(ver no segundo parágrafo abaixo, as quatro situações). Você se aproxima do operário e interroga-o do porque adicionar essa quantia de água a mais? O operário dentro do seu "conhecimento" responde que o concreto estava seco, e assim ficaria dificil e pesado trabalhar. E agora? Como o engenheiro deve proceder? Obs: A Norma Brasileira (NBR 12655) para o concreto estabelece a moldagem de corpos de prova do concreto ainda fresco, para a seguida verificação da sua resistência, quando endurecidos, em ensaios de resistência a compressão. Essa prática é desenvolvida normalmente na vida diária do engenheiro de obra (realidade), a moldagem e análise da resistência do concreto preparado. Despertando o interesse do acadêmico para a presente prática, embora que no terceiro ano do Curso de Engenharia essa prática é semelhantemente desenvolvida (alterando não apenas a água, como a presente prática, mas também o cimento, areia e pedra).
  56. 56. A moldagem terá como base os seguintes traços (proporções) de concreto, mantendo a mesma quantidade de cimento, areia (a) e pedra(p) e variando apenas a água(x): - Primeira situação (concreto em proporções ideais). x, = 0,45 1 : 2,115 : 2,654 : 0,45 (traço 1) - Segunda situação. xz= 0,50 1: 2,115 : 2,654 : 0,50 (traço 2) - Terceira situação. X3 = 0,55 1 : 2,115 : 2,654 : 0,55 (traço 3) - Quarta situação. X4 = 0,60 1: 2,115: 2,654: 0,60 (traço 4) Moldagem dos corpos de prova Cada grupo recebeu um molde metálico cilíndrico (Figura 1). Para a moldagem dos corpos (Figura 2) de prova (modelos experimentais) foi necessário determinar: as dimensões e volume de molde cilíndrico; o volume total de concreto para o traço dado; a massa de cimento para os quatro corpos de prova; as quantidades de água a serem acrescentadas a mais (que seria a diferença entre os traços 0,50-0,45=0,05,,- vezes a massa de cimento). v Figura 1: Molde metálico Figura 2: Corpo de prova de concreto

×