SlideShare uma empresa Scribd logo
MODELAGEM PARA OTIMIZAÇÃO DE FLUXO DE ENERGIA
Marcos José Rodrigues dos Santos1
Sílvio Cesar Brás Araujo1
Vanessa Pecora Garcilasso1
1
Programa de Pós-Graduação em Energia – PPGE
Instituto de Eletrotécnica e Energia – IEE
Av. Professor Luciano Gualberto, 1289 – Cidade Universitária / Butantan
CEP: 05508-010 – São Paulo / SP
RESUMO
Um dos principais desafios do planejamento energético é identificar e desenvolver
sistemas e métodos para o equacionamento das relações sociais, econômicas,
energéticas e ambientais de estruturas de uma determinada região. A elaboração de
cenários prospectivos é baseada em séries históricas das disponibilidades energéticas
da região abordada. O planejamento energético é realizado com base nas alternativas
energéticas que satisfaçam as demandas estabelecidas por meio de modelos de
projeção e cenários, de modo a determinar a capacidade do modelo para utilização em
tomadas de decisões e estabelecimento de políticas públicas. Este trabalho apresenta os
modelos de projeção do consumo e da oferta de energia, além de discutir o modelo de
otimização de fluxo de energia denominado EFOM e suas aplicações na Dinamarca.
Com o planejamento do setor energético pode-se assegurar a continuidade de
abastecimento de energia a um menor custo, menor risco e menores impactos sócio-
econômicos e ambientais.
Palavras-Chave: planejamento energético, projeção energética, modelo de otimização
energética
1. INTRODUÇÃO
Os constantes desenvolvimentos na nossa sociedade têm conduzido cada vez
mais uma acentuada dependência das principais fontes de energia não renováveis –
combustíveis fósseis, como petróleo e seus derivados, gás natural e carvão mineral.
Por sua vez, a participação de energias renováveis na matriz energética brasileira
totaliza 45,3%, o que é bastante significativo. A utilização de energias renováveis no país
baseia-se principalmente em hidrelétricas (13,8%), produtos da cana-de-açúcar (16,4%),
lenha e carvão vegetal (11,6%). Apenas 3,5% da matriz energética brasileira
correspondem a outras fontes de energia renovável (BEN, 2009).
Segundo o BEN (2009), pode-se constatar que nos últimos anos ocorreu
substancial amento do uso de petróleo e derivados, de gás natural e de produtos de
cana-de-açúcar para a produção de energia no Brasil. Contudo, a participação do
petróleo e derivados continua sendo muito maior que as demais fontes energéticas.
A energia afeta diretamente o desenvolvimento social e econômico da população,
além de ser uma preocupação ambiental. O crescimento rápido e mal planejado da
produção e consumo energético no país acarreta em diversos impactos ambientais que
podem comprometer a qualidade de vida da população.
Diante do exposto é clara a necessidade de um planejamento energético. São
necessárias mudanças tecnológicas para diminuir a intensidade do uso de combustíveis
fósseis na maioria dos sistemas energéticos dos países, com ações pelo lado da oferta
de energia, e melhoria da eficiência no uso de combustíveis e eletricidade, com ações
pelo lado da demanda ou do mercado de energia (SAMPAIO, 2007). A grande vantagem
da eficiência energética é que geralmente o custo da eficiência energética é uma
pequena fração dos custos da produção de energia (JANNUZZI & SWISHER, 1997).
O planejamento do setor energético é fundamental para assegurar a continuidade
do abastecimento e/ou suprimento de energia ao menor custo, com o menor risco e com
os menores impactos sócio-econômicos e ambientais para a sociedade brasileira.
A falta do planejamento energético pode trazer conseqüências negativas, com
reflexos em termos de elevação de custos e/ou degradação na qualidade da prestação
do serviço, tais como racionamentos ou excessos de capacidade instalada, produção
ineficiente, etc.
O planejamento energético deve levar em conta aspectos políticos, sociais e
considerações ambientais, e estar munido de dados históricos coletados em planos
energéticos prévios da região sob exame. O planejamento energético estruturado de
forma estratégica inclui projetos de curto e médio prazo (até 10 e 20 anos) e longo prazo
(além de 20 anos), por meio de parâmetros que indiquem a situação atual, de forma a
projetar cenários futuros.
A proposição de cenários futuros, usando diversas tecnologias para oferta e
demanda de energia visa identificar, principalmente, alternativas para cada uso final,
avaliando o impacto de seu desempenho e custos. Com este panorama analítico é
possível comparar diferentes desempenhos energéticos, custos e políticas que podem
ser adotadas para influenciar suas taxas de desenvolvimento e uso, visando proporcionar
o mesmo nível de serviços de energia.
Este trabalho visa apresentar os modelos de projeção energética, bem como
discutir detalhes e aplicações do EFOM – Modelo de Otimização de Fluxo de Energia.
2. MODELO DE PROJEÇÃO ENERGÉTICA
A projeção do consumo e da oferta de energia engloba diversas áreas de
conhecimento e uma grande quantidade de variáveis envolvidas. Dada a abrangência
necessária, são utilizados modelos matemáticos que descrevem as cadeias energéticas,
desde a extração das fontes até o seu uso final, passando pela produção, conversão,
distribuição e armazenamento. De acordo com a disponibilidade de modelos para
aplicação em sistemas energéticos inclui além de seus balanços, técnicas de análise das
relações energia/economia através de matrizes insumo-produto, técnicas de
cenarização, modelos de projeção da demanda energética, modelos de otimização do
suprimento, modelos de equilíbrio demanda-oferta, modelos de simulação, modelos
paramétricos (ou contábeis), modelos corporativos, técnicas de avaliação qualitativa ou
quantitativa dos impactos sobre a sociedade de novos programas na área energética e
dentre outros (BAJAY,1989).
Geralmente as ferramentas construídas para análise do sistema energético
baseiam-se em duas abordagem distintas que diferem-se, basicamente, no nível de
agregação dos modelos. São elas as abordagens “bottom-up” e “top-down”.
2.1 MODELOS BOTTOM-UP
Os modelos “bottom-up” procuram fazer uma detalhada descrição das tecnologias
de conversão e utilização da energia, levando em consideração a desagregação da
economia. Tais modelos podem ser classificados em modelos de otimização, modelos de
simulação e modelos paramétricos. Com esses modelos pode-se identificar os potenciais
tecnológicos, requisitos de capital e taxas de reposição de equipamentos (EPE/ADENE,
2005).
2.1.1 MODELOS DE OTIMIZAÇÃO
Nos modelos de otimização são identificadas soluções de custo mínimo para
sistemas energéticos, considerando algumas restrições, tais como a disponibilidade
tecnológica, a igualdade entre a oferta e a demanda, restrições ambientais, de
investimento, entre outras.
Os modelos de otimização definem as trajetórias de crescimento. Entretanto,
limitam-se quanto à escolha política, pois assumem que a energia é o único fator de
escolha (EPE/ADENE, 2005).
Os principais exemplos de modelos de otimização energética são: MARKAL,
MESSAGE, NEWAVE e EFOM.
.
2.1.2 MODELOS DE SIMULAÇÃO
Nos modelos de simulação o comportamento dos consumidores e dos produtores
em relação à energia é determinado a partir da variação de preços, renda e progresso
tecnológico.
Geralmente esses modelos determinam o equilíbrio do mercado a partir de uma
abordagem interativa, por isso não são limitados pelo comportamento dos agentes
econômicos. Os agentes econômicos podem ser difíceis de parametrizar, acarretando
em projeções energéticas bastante sensíveis às condições e aos parâmetros adotados
inicialmente (EPE/ADENE, 2005).
Os principais exemplos de modelos de simulação energética são: NEXUS e Stella.
2.1.3 MODELOS PARAMÉTRICOS
Os modelos paramétricos, ou modelos contábeis, são utilizados para projeções
energéticas fortemente baseadas em especificações determinadas pelo próprio usuário.
Estes modelos têm a função de gerenciamento de dados e resultados, sendo úteis para
identificar resultados de políticas energéticas (EPE/ADENE, 2005).
Geralmente os modelos paramétricos são mais simples e flexíveis que os modelos
apresentados anteriormente, entretanto, podem proporcionar soluções inconsistentes.
Os principais exemplos de modelos paramétricos são: Leap, MIPE e MAED.
2.2 TOP- DOWN
Os modelos “top-down”, também conhecidos como modelos econômicos,
apresentam a economia de forma agregada, ou seja, representam de forma bem
simplificada o consumo energético por meio de poucas equações, não levando em
consideração a estrutura tecnológica do país.
Por utilizarem análise estatística para encontrar as relações entre os indicadores
utilizados, os modelos “top-down” são válidos apenas para grupos homogêneos de
consumidores. Tais modelos se mostram eficientes quanto a apresentação de uma boa
consistência entre oferta e demanda de energia (EPE/ADENE, 2005).
Os principais exemplos de modelos “top-down” são SGM e IMACLIM.
2.3 PROJEÇÃO DE CENÁRIOS
A projeção de um cenário energético requer um planejamento integrado do
sistema envolvido. Um planejamento energético envolve estudos do lado da oferta, da
demanda, ou de ambos, com abordagens micro ou macroeconômica.
As relações e interdependências entre os diversos níveis de planejamento são
complexas nos seus aspectos institucionais, econômicos e políticos. A otimização das
interações entre os diversos níveis de planejamento é uma área em que o planejamento
energético é de suma importância (BAJAY, 1989).
Em um processo de planejamento, primeiramente é elaborado um plano. Para
garantir o sucesso desse plano, além dos resultados obtidos serem analisados
continuamente, deve-se analisar, também, a necessidade de reajustes devido a
descoberta de erros ou falhas de avaliação durante o processo de planejamento ou
devido ao aparecimento de novos fatos que podem ser pertinentes ao processo em
andamento (SAMPAIO, 2007).
Após a elaboração de um plano, o próximo passo é implementar um sistema de
controle que permite (INSTITUTO DE ECONOMIA ENERGÉTICA, 1984):
 Identificar os desvios no cumprimento das metas do plano;
 Introduzir ajustes nas metas, em função dos desvios observados e dos previsíveis
para o futuro;
 Observar possíveis problemas na aplicação das políticas energéticas adotadas;
 Identificar gargalos que possam colocar em risco o cumprimento do plano;
 Recolher informações que permitam melhorar os dados a serem utilizados na
formulação do próximo plano.
As possíveis mudanças sugeridas em cenários de curto, médio e longo prazos
podem causar impactos quantitativos que devem ser investigados por meio de modelos
de previsão. Tais modelos utilizam técnicas econométricas e/ou de séries temporais para
projetar o futuro. Todavia, há necessidade de rever a estrutura de aquisição de
informações, uma vez que são comuns a obtenção de dados incompletos das séries
temporais para avaliações locais (DEVADAS, 2001).
O grau de autonomia com relação às opções tecnológicas e com a influência das
políticas setoriais deve ser analisado, principalmente, nas áreas mais importantes, como
a indústria, o transporte, a habitação, a classe rural, entre outras. Portanto, as hipóteses
acerca da evolução do consumo energético devem ser compatíveis com as de evolução
da economia e da sociedade (SAMPAIO, 2007).
2.3.1 PREMISSAS DE CENÁRIOS
Uma questão fundamental para a elaboração de cenários de projeção energética
é a especificação de um caso de referência. O caso de referência pode considerar a
penetração de novas tecnologias, medidas de redução das emissões requeridas pela
legislação existente e algumas medidas de conservação de energia que são
considerados na previsão de demanda (BUNN & LARSEN, 1997).
O caso de conservação é o caso de referência com penetração de novas medidas
de conservação que são as opções para otimização, por exemplo, aparelhos domésticos
mais eficientes (BUNN & LARSEN, 1997).
Outro cenário é o ponto de partida para a introdução das restrições de emissão de
CO2, por exemplo, no processo de otimização (BUNN & LARSEN, 1997).
3. EFOM – MODELO DE OTIMIZAÇÃO DE FLUXO DE ENERGIA
O modelo de otimização de fluxo de energia denominado EFOM, Energy Flow
Optimization Model em inglês, é um modelo energético de base tecnológica desenvolvido
pela Comunidade Européia na década de 1970. Tal modelo descreve o sistema
energético como uma rede de fluxos anuais de energia, com limites na capacidade de
conversão e transporte dos energéticos. As demandas energéticas são projetadas
exogenamente1
ao modelo, sendo por setores consumidores agregados ou
desagregados, dependendo dos objetivos de cada estudo (CARVALHO, 2005).
O EFOM foi desenvolvido para dar suporte às políticas de planejamento e
promover o uso de fontes alternativas de energia, incluindo as restrições
ambientais (CORMIO et al, 2003).
Os principais objetivos de estudo para o uso desse modelo têm sido a inclusão de
novas tecnologias, o impacto das mudanças do preço do combustível e as estratégias de
redução emissões à níveis ideais (BUNN & LARSEN, 1997). O mesmo modelo de
abordagem tem sido usado para o planejamento energético regional ou local,
abrangendo o "sistema de energia" dentro de uma pequena área geográfica.
A abordagem do modelo EFOM também é adequada para estudos setoriais. Essa
modelagem tem sido útil para estudos sobre a escolha da tecnologia e avaliação das
opções de investimento no setor de energia e nas indústrias de energia de grande
consumo, como por exemplo, cimento, aço, celulose, papel, etc. A Figura 1 mostra o
1
Variáveis exógenas: Variáveis determinantes dos modelos econômicos. Os modelos econômicos são construídos
com base nessas variáveis, supondo-se que seus valores não serão afetados por outras variáveis do modelo. Um
exemplo comum de variável exógena é o nível de um imposto qualquer cobrado pelo governo. O valor do imposto,
digamos, 10% sobre o preço da gasolina, só seria alterado caso o governo resolvesse mudar seu valor. Portanto,
outras variáveis do modelo não são capazes de afetar essa variável. Por outro lado, ela é importante para determinar
outras variáveis econômicas do modelo, como o valor do imposto coletado, a quantidade vendida de gasolina, entre
outras. Choques ou mudanças na economia são representados por alterações nas variáveis exógenas. A partir desses
choques, o modelo é resolvido matematicamente de forma a determinar o valor das variáveis endógenas, que, no
exemplo acima, seriam a quantidade vendida de gasolina e o valor coletado de imposto. FONTE:
http://www.iconebrasil.org.br/pt/?actA=16&areaID=14&secaoID=29&palavraID=299, consultado em 15/05/2011.
princípio de um modelo setorial que produz dois ou mais produtos em produção
combinada, ambos sujeitos à concorrência. As situações de mercado para os dois
produtos são muito diferentes.
A Figura 1 apresenta a estrutura geral do modelo EFOM.
Figura 1. Estrutura Geral do Modelo EFOM.
Fonte: (BUNN & LARSEN, 1997).
O sistema de energia estruturado combina a extração de combustíveis primários
por meio de tecnologias de conversão e transporte com a demanda por serviços de
energia ou grandes consumidores. Alguns dos subsistemas apresentados contém
tecnologias de redução de SO2 e NOx. Cada um dos subsistemas pode conter um grande
número de links referentes à base de dados que contém as informações da rede e o
conjunto de valores dos parâmetros estimados a partir de longas séries temporais de
dados estatísticos nacionais. Os fluxos anuais de electricidade, aquecimento e gás
natural são divididos em quatro fluxos diários, descrevendo variações sazonais ao longo
do ano. Apenas os links representando combustíveis primários contém previsões de
preços do combustível.
O sistema de geração de energia é a parte central do sistema de energia descrito,
incluindo a combinação aquecimento e eletricidade (CHP), tanto para a geração de vapor
industrial como para aquecimento urbano (DH). O modelo também permite a substituição
de tecnologia, que pode levar a diferentes demandas para eletricidade e aquecimento
(BUNN & LARSEN, 1997).
A principal característica da abordagem do modelo é que o sistema de energia é
descrito por um número limitado de tecnologias de produção de uma única, ou poucas,
saídas físicas, utilizando fontes de energia bem definidas como entradas. Cada tipo
destas tecnologias deve ser descrito por alguns parâmetros:
 Eficiência;
 Disponibilidade;
 Vida útil técnica;
 Fatores de emissão;
 Custo de investimento;
 Operação e custo de manutenção;
 Capacidade inicial e residual.
O impacto das condições de um determinado mercado foi testado por cinco países
(Dinamarca, Suécia, Finlândia, Letônia e Lituânia) usando a mesma opção de tecnologia
para todos os países. Somente a estrutura inicial dos setores de energia elétrica dos
vários países foi diferente. Esse método de comparação isola o impacto da estrutura
inicial do desenvolvimento ideal do setor. A condição de mercado usada para o ensaio foi
os preços de importação e importação fixados a longo-prazo marginal para usinas de
carvão em modo de condensação (apenas produção de energia elétrica).
Usando uma referência internacional desenvolvida ou uma simples versão do
modelo EFOM com informações técnico-econômicas padrão é o primeiro passo para
desenvolvimento de um modelo nacional. É o que foi feito na maioria dos países da
União Européia durante os anos de 1980. Um modelo para ser usado como ferramenta
de apóio as decisões para agências ou ministérios nacionais exige uma grande
organização para aquisição de informações e elaboração de cenários.
3.1 APLICAÇÕES DO EFOM NA DINAMARCA
O EFOM foi bastante utilizado na década de 1990 para gerar curvas de custo,
para um dado sistema energético, associadas a restrições ambientais com diferentes
graus de rigor, sobretudo referentes às emissões de CO2 (CARVALHO, 2005).
Curvas de custo mostram o aumento do valor da função de interesse para uma
série de cenários para a mesma descrição do sistema de energia, onde a restrição em
um ou mais poluentes se torna mais apertada.
As opções da análise de efetividade de custo para redução de CO2 da
Comunidade Européia era parte de um estudo desenvolvido em 1991 no âmbito do
programa Joule Energy Research, da Comissão das Comunidades Europeias, no que se
refere a emissões de CO2. O método da curva de custo foi desenvolvido para um estudo
anterior, em 1989, sobre estratégias de redução de emissões de SO2 e NO4. A
abordagem da curva de custo tem sido usada desde então para vários estudos
colaborativos internacionais, tal como o “UNEP Greenhouse Gas Custing study
(realizado em 1994), que desenvolveu um conjunto de diretrizes para a construção das
curvas de custo (BUNN & LARSEN, 1997).
A definição central de “efetividade de custo” é o custo atualizado do sistema de
energia dentro dos limites estabelecidos pelo modelo de descrição do sistema para
qualquer redução viável do nível de um particular item emissão em um dado período. Um
resultado importante que está em conformidade com a definição é mostrado na Figura 2.
O valor da função de interesse do problema de programação linear (por exemplo, o custo
atualizado da energia do sistema para o período de 1985 a 2010) é mostrado para
valores específicos de redução de CO2 em 2005, comparado com o nível de 2008.
30%
Figura 2. Redução da emissõa de CO2 e aumento dos descontos nos custos do
sistema de energia na Dinamarca em 2005, taxa de desconto de 5%
Fonte: (BUNN & LARSEN, 1997).
3.1.1 PREMISSAS PARA O ESTUDO DINAMARQUÊS
A premissa relativa à evolução da procura por serviços de energia e preços de
importação de combustível são aqueles do estudo multinacional harmonizado. Dados
tecnicos-economicos para tecnologia de energia, incluindo as opções técnicas para
redução de emissões foram baseadas em estudos multinacionais.
Dados nacionais descrevendo a estrutura do sistema de energia e premissas
detalhada para a demanda por serviços de energia foram especificados de modo
compatível com as estatísticas nacionais e com as premissas usadas no plano nacional
de energia que foram preparados ao mesmo tempo. As premissas mais importantes
assumidas são:
 Expansão das redes de aquecimento urbano ligado às estações de
calor e energia, instalações de incineração de resíduos urbanos e de
calor excedente industrial;
 Posicionamento de todas novas usinas de energia de modo a
estarem em conexão com os maiores mercados de aquecimento;
 Construção de redes de gás natural;
 Não construção de usinas nucleares num futuro previsível;
 Política de Conservação de Energia, em particular isolamento
térmico de edifícios.
Além da exclusão da energia nuclear, foram evitadas políticas adicionais de
restrições, a fim de se alcançar a mais confiável otimização de resultados.
Consequentemente, não foram adotadas premissas como uso de fontes interna de
energia, descentralização de calor e energia, ausência de limites para importação de gás
natural e penetração de energias renováveis mais caras.
Adicionalmente, às restrições que expressam importantes políticas de energia,
outras restrições são necessárias para evitar resultados fora da realidade para o modelo.
[m1] Comentário: Todo este
item 3.1.1 também é preocupante,
pois é pura tradução e não tem
citação ao BUNN & LARSEN,
1997
A maioria delas quantifica restrições de infraestrutura ou contratos de longa duração. As
mais importantes são:
 Máximo fornecimento de energia para aquecimento urbano e
máximo fornecimento de aquecimento a partir de estações centrais
de calor e energia;
 Máximo fornecimento para aquecimento a partir de incineradores de
lixo e máximo fornecimento de outros combustíveis de biomassa;
 Níveis de extração de gás “off shore” e exportação de gás;
 Importação e exportação de eletricidade;
 Máxima capacidade de turbinas eólicas.
Embora a penetração de novas tecnologias de energias renováveis e de
combustíveis fósseis possam ser limitadas devido à imaturidade tecnológica e restricões
sociais, não foram intruduzidas restrições arbitrárias para evitar que o modelo produza
resultados fora da realidade.
3.1.2 O ESTUDO DINAMARQUES
O sistema energético da Dinamarca é caracterizado por participações elevadas,
em relação aos demais países europeus, de plantas industriais de cogeração e grandes
centrais que geram, simultaneamente, energia elétrica e calor. Segundo Grohnheit
(1997), o modelo EFOM é aplicado ao sistema energético da Dinamarca com ênfase no
seu setor elétrico. Estas aplicações se deram no âmbito do projeto EURIO, da Comissão
Européia, que versou sobre as interações entre o planejamento energético e a proteção
ambiental, incluindo países do leste europeu. O projeto EURIO envolveu três modelos de
projeção energética: projeção de demanda, modelos de oferta e modelos
macroeconomicos.
Por meio de outros estudos similares desenvolvidos em outros países, foi
constatado que na Dinamarca também é possível diminuir substancialmente as emissões
de CO2 por meio de programas de conservação de energia, uso intensivo do gás natural
na geração de energia elétrica e emprego crescente de fontes renováveis de energia
(CARVALHO, 2005).
Bunn & Larsen (1997) apresentam alguns resultados de uma aplicação da
abordagem do modelo EFOM para análise do sistema de eletricidade dinamarquês até o
ano de 2010, enfatizando o impacto das condições de mudança de mercado na escolha
de uma nova capacidade de geração e combustíveis. A Figura 3 apresenta as
tecnologias de geração de energia elétrica na Dinamarca de 1995 a 2010.
Figura 3. Tecnologias de geração de energia elétrica na Dinamarca – 1995 a 2010
Fonte: (BUNN & LARSEN, 1997).
As variações dos parâmetros afetam:
 Limites para importação e exportação de eletricidade;
 Preços de importação e exportação;
 Taxas de descontos.
No cenário de referência, o sistema dinamarquês de eletricidade foi otimizado para
o período de 1995-2010 assumindo apenas contrato de importação e exportação. Nessa
versão do modelo os preços de importação e exportação foram fixados constantes ao
longo dos anos. O preço de importação foi escolhido a 0,15 Dkr/kWh para todo o
período, e o preço de exportação deveria refletir a longo prazo os custos marginais para
a tecnologia de referência (0,28 – 0,32 Dkr/kWh). A função objetivo é o desconto total
dos custos para o período com uma taxa de desconto de 5%. Um conjunto de restrições
reflete na infra-estrutura do sistema dinamarquês de eletricidade e sistema combinado de
calor e energia. O comércio internacional de eletricidade é limitado a um mínimo.
No próximo cenário, a “importação”, o máximo importado é fixado na capacidade
de transferência das linhas de 1994. O terceiro cenário, “mais comércio”, assume uma
nova expansão da capacidade de expansão. No cenário “preço médio” o mesmo preço é
fixado para ambos, importação e exportação. No último cenário é idêntico ao “preço
médio”, mas a taxa de desconto é fixada a 10% a fim de refletir nas condições
financeiras para investimento utilitário a um mercado competitivo para energia elétrica.
A situação ideal para os volumes de comércio livre são muito sensíveis às
mudanças nas premissas de preços de importação e exportação. Isso mostra que a
maior parte da energia elétrica é gerada nas centrais térmicas, quer que combinado calor
e energia ou apenas geração de energia elétrica. O volume deste último espelha nas
variações dos volumes de importação e exportação.
A Figura 4 mostra as despesas anuais, incluindo o investimento na capacidade em
cada ano por kWh consumido ou produzido na Dinamarca para o melhor
desenvolvimento, sob o pressuposto de vários cenários. Essas despesas normalmente
são aumentadas, quando uma nova capacidade for requerida para um melhor
desenvolvimento em longo prazo da indústria, pois não há despesas incluídas para
cumprir as obrigações financeiras dos equipamentos existentes.
Figura 4. Valores gastos para consumo de energia (a) e produção de energia (b)
na Dinamarca, 1995 a 2010, para desenvolvimento ideal
Fonte: (BUNN & LARSEN, 1997).
Os resultados para o setor dinamarquês de energia elétrica sujeita às diferentes
condições de mercado, mostram que o volume de importação é considerável no começo
do segundo ou terceiro período, porque os preços de importação são baixos ou o
investimento em novas capacidades é desestimulado pela alta taxa de desconto. No
último período, tanto importação como exportação se tornaram muito sensíveis as
condições de mercado, preços mais altos e o mercado internacional levará a mais
exportações e investimentos a fim de atender essas exportações.
O último resultado relativo ao investimento, entretanto, envolveria uma risco
financeiro substancial. Isso pode ser explicado, porque a disponibilidade de um mercado
aquecido, o qual pode ser alimentado por queima de gás natural combinado com plantas
de ciclo de energia, oferece oportunidades de investimento, que podem ser bases para
exportação, principalmente em períodos de pico e altas cargas.
Em particular, essa versão do modelo não deveria permitir essa conclusão para
ser traçada imediatamente. O preço de mercado é constante ao longo dos anos. Isso
pode ser uma simplificação razoável, mas devia ser testado pela modificação desse
modelo que permite preços diferentes durante os horários de pico e base. Essa extensão
do uso dos parâmetros é possível dentro do software do modelo EFOM existente. Tal
extensão da aplicação do modelo precisaria de um teste de validade da decomposição
dos fluxos anuais. O método para tais testes é usar os pressupostos do modelo em um
modelo que é mais detalhado sobre a repartição do tempo.
O EFOM também foi aplicado na Dinamarca para diversos sistemas de energia
elétrica municipais e regionais, com possibilidades de compra de eletricidade gerada fora
do sistema a fim de simular estratégias de diversos agentes. O custo total das
simulações efetuadas nesta condição se mostrou superior ao que se teria na situação
tradicional, caracterizado por monopólios regionais operando com despacho central
ótimo das plantas em um sistema nacional interligado (CARVALHO, 2005).
Grohnheit (1997) também apresenta alguns resultados de simulações efetuadas
com o mercado nórdico de energia elétrica, com o auxílio de dois modelos de equilíbrio
setorial, um desenvolvido para modelar o mercado a curto prazo, com capacidades fixas
das usinas geradoras e linhas de transmissão e quatro tipologias de carga ao longo do
ano, e o outro a longo prazo, prevendo a instalação de novas usinas e linhas. Como na
época das simulações havia um excesso de capacidade instalada na região, os preços
de equilíbrio foram menores no primeiro caso. Os preços de equilíbrio obtidos em ambos
os casos foram menores do que os adotados para as aplicações do modelo EFOM na
região (CARVALHO, 2005).
4. CONSIDERAÇÕES FINAIS
Existem vários modelos computacionais, utilizados e consolidados em vários
países, para realizar projeções futuras da demanda e da oferta de energéticos, em
função de cenários de desenvolvimento socioeconômicos, políticos e tecnológicos.
A crescente preocupação sobre os impactos ambientais da energia tem ampliado
significativamente o conjunto de metas políticas no setor energético. No passado, as
escolhas entre as políticas energéticas em níveis regionais eram baseadas somente em
minimização de custo e reprodução de aplicações de conceitos característicos de regiões
desenvolvidas. O planejamento energético regional contempla problemas de multi-
critérios e multi-ações, principalmente no caso de geração de energia em regiões que
apresentam altas taxas de crescimento de demanda de energia, junto com um
significante potencial de fontes renováveis de energia. Porém, diversos e freqüentes
pontos de vista conflitantes devem ser considerados, tais como aspectos
sociais,econômicos, ambientais, técnicos e políticos.
A principal conclusão do estudo para a Dinamarca foi que seria possível otimizar o
sistema de energia dinamarquês de modo a se atingir uma substancial redução na
emissão de CO2 com um custo extra não maior do que aquele que poderia ser
compensado por algumas medidas de economia do custo efetivo da energia. Os
principais elementos na redução de CO2 devem ser a conservação de energia, o uso
intensivo de gás natural na geração de eletricidade e a penetração de energias
renováveis. Reduções adicionais de CO2 exigirão que o consumo de gás natural seja
reduzido e, portanto, a substituição por combustível de tecnologia não fóssil. Os
resultados encontrados para Dinamarca foram semelhantes àqueles encontrados para a
maioria dos outros países da União Européia. No entanto, o uso destes resultado como
uma política geral pode ser contraprodutivo para uma meta de custo efetivo de redução
de emissão de CO2. Por este estudo, o ideal (considerando a efetiva redução de
consumo de gás natural) implicaria uma massiva substituição do gás por carvão no setor
de energia. Isto aconteceria de fato, particularmente em países onde o fornecimento de
eletricidade às indústrias foi liberalizado. Cedo ou tarde, esta substituição pode levar os
preços do gás a patamares superiores aos previstos no âmbito da otimização (BUNN &
LARSEN, 1997).
Deve ser enfatizado que o resultado de qualquer estudo de modelo é entendido
como o comportamento do sistema sob condições especiais ao invés de recomendações
a serem implementadas de acordo com uma solução considerada ótima.
5. REFERÊNCIAS BIBLIOGRÁFICAS
BAJAY, S. V. Planejamento energético: necessidade, objetivo e metodologia. Revista
Brasileira de Energia, Vol. l, n° l, 1989.
BEN – Balanço Energético Nacional 2009. Resultados Preliminares – Ano Base 2008.
Elaborado pelo MME – Ministério de Minas e Energia e pela EPE – Empresa de
Pesquisa Energética, 48 p. Brasil, 2009.
BUNN, D. W.; LARSEN, E.R. Systems Modelling for Energy Policy. Editora Wiley.
Chapter 7 – Application and Limitations of Annual Models for Electricity Capacity
Development, 1997.
CARVALHO, C. B. Avaliação crítica do planejamento energético de longo prazo no
Brasil, com ênfase no tratamento das incertezas e descentralização do processo. Tese
de doutorado apresentada à comissão de Pós Graduação da Faculdade de Engenharia
Mecânica da Universidade Estadual de Campinas, como requisito para a obtenção do
título de Doutor em Planejamento de Sistemas Energéticos. Campinas, 2005.
CORMIO, C.; DICORATO, M.; MINOIA, A.; TROVATO, M. A regional energy planning
methodology including renewable energy sources and environmental constraints,
Renewable and Sustainable Energy Reviews, Volume 7, Issue 2, April 2003, Pages 99-
130.
DEVADAS, V. Planning for rural energy system: part I, II, III. Renewable and Sustainable
Energy Reviews, Volume 5, Issue 3, September 2001, Pages 203-297.
EPE – Empresa de Pesquisa Energética / ADENE – Agência de Desenvolvimento do
Nordeste. Aspectos Fundamentais de Planejamento Energético. Rio de Janeiro, 2005.
GROHNHEIT, P. E. Application and limitations of annual models for electricity capacity
development. In Bunn, D. W. & Larsen, E. R. (Editors) Systems Modelling for Energy
Policy, John Wiley & Sons, New York, 1997, p.89-116.
INSTITUTO DE ECONOMIA ENERGÉTICA. Lecturas sobre proceso de planeamiento
energético. XVII Curso Latinoamericano de Economia y Planificación Energética,
Bariloche. IDEE/Fundación Bariloche, 1984.
JANNUZZI, G. M.; SWISHER, J. N. P. Planejamento integrado de recursos energéticos:
meio ambiente, conservação de energia e fontes renováveis. Campinas/SP, Editora
Autores Associados, 246p.1997.
SAMPAIO, H.C. Planejamento e Otimização de Sistemas Energéticos para Gestão
Econômica e Ambiental de Cidades. Tese apresentada à Faculdade de Engenharia do
Campus de Guaratinguetá, Universidade Estadual Paulista, para a obtenção do título de
Doutor em Engenharia Mecânica na área de Transmissão e Conversão de Energia.
Guaratinguetá – São Paulo, 2007.

Mais conteúdo relacionado

Mais procurados

10 dicas reforço escolar
10 dicas reforço escolar10 dicas reforço escolar
10 dicas reforço escolar
Terc Cre
 
16 triangulos-e-quadrilateros
16 triangulos-e-quadrilateros16 triangulos-e-quadrilateros
16 triangulos-e-quadrilateros
Ines Ferreira
 
Ficha para planejamento simone helen drumond ischkanian
Ficha para planejamento simone helen drumond ischkanianFicha para planejamento simone helen drumond ischkanian
Ficha para planejamento simone helen drumond ischkanian
SimoneHelenDrumond
 
Conselho tutelar
Conselho tutelarConselho tutelar
Conselho tutelar
Rogerio Catanese
 
Plano de aula dia das mães
Plano de aula dia das mãesPlano de aula dia das mães
Plano de aula dia das mães
André Moraes
 
Plano de aula calendário
Plano de aula calendárioPlano de aula calendário
Plano de aula calendário
Luana Maria Ferreira Fernandes
 
94315093 relatorios-do-desempenho-escolar-dos-alunos
94315093 relatorios-do-desempenho-escolar-dos-alunos94315093 relatorios-do-desempenho-escolar-dos-alunos
94315093 relatorios-do-desempenho-escolar-dos-alunos
Autonoma
 
PROJETO-MEIO-AMBIENTE-1-maria-socorro-de-oliveira.pdf
PROJETO-MEIO-AMBIENTE-1-maria-socorro-de-oliveira.pdfPROJETO-MEIO-AMBIENTE-1-maria-socorro-de-oliveira.pdf
PROJETO-MEIO-AMBIENTE-1-maria-socorro-de-oliveira.pdf
silvana938032
 
Jogos para Alfabetização
Jogos para AlfabetizaçãoJogos para Alfabetização
Jogos para Alfabetização
Graça Sousa
 
JOGOS MATEMÁTICOS 3º 4º 5º ANO PAIC + VOLUME I(PROFESSOR)
JOGOS MATEMÁTICOS 3º 4º 5º ANO PAIC + VOLUME I(PROFESSOR)JOGOS MATEMÁTICOS 3º 4º 5º ANO PAIC + VOLUME I(PROFESSOR)
JOGOS MATEMÁTICOS 3º 4º 5º ANO PAIC + VOLUME I(PROFESSOR)
orientadoresdeestudopaic
 
Termo de abertura livro registro
Termo de abertura livro registroTermo de abertura livro registro
Termo de abertura livro registro
edublogger
 
Contrato pedagógico
Contrato pedagógicoContrato pedagógico
Contrato pedagógico
josihy
 
Plano de Ação do SPAECE 2012
Plano de Ação do SPAECE 2012Plano de Ação do SPAECE 2012
Plano de Ação do SPAECE 2012
maricelio
 
Projeto carnaval
Projeto carnavalProjeto carnaval
Projeto carnaval
Aridiane Santos
 
Palavras geradoras
Palavras geradorasPalavras geradoras
Palavras geradoras
renatacbarboza
 
Direitos de aprendizagem no ciclo de alfabetizacao lingua portuguesa
Direitos de aprendizagem no ciclo de alfabetizacao   lingua portuguesaDireitos de aprendizagem no ciclo de alfabetizacao   lingua portuguesa
Direitos de aprendizagem no ciclo de alfabetizacao lingua portuguesa
Mirlene Marinho
 
Orientações gerais para o desfile cívico
Orientações gerais para o desfile cívicoOrientações gerais para o desfile cívico
Orientações gerais para o desfile cívico
SMEC PANAMBI-RS
 
CNT - 3ª série - Apostila 3º bimestre -Estudante.pdf
CNT - 3ª série - Apostila 3º bimestre -Estudante.pdfCNT - 3ª série - Apostila 3º bimestre -Estudante.pdf
CNT - 3ª série - Apostila 3º bimestre -Estudante.pdf
GernciadeProduodeMat
 
Fabulas sequencia didatica_4_e_5_ano
Fabulas sequencia didatica_4_e_5_anoFabulas sequencia didatica_4_e_5_ano
Fabulas sequencia didatica_4_e_5_ano
Aldneide Almeida
 
Matriz de matemática
Matriz de  matemáticaMatriz de  matemática
Matriz de matemática
elannialins
 

Mais procurados (20)

10 dicas reforço escolar
10 dicas reforço escolar10 dicas reforço escolar
10 dicas reforço escolar
 
16 triangulos-e-quadrilateros
16 triangulos-e-quadrilateros16 triangulos-e-quadrilateros
16 triangulos-e-quadrilateros
 
Ficha para planejamento simone helen drumond ischkanian
Ficha para planejamento simone helen drumond ischkanianFicha para planejamento simone helen drumond ischkanian
Ficha para planejamento simone helen drumond ischkanian
 
Conselho tutelar
Conselho tutelarConselho tutelar
Conselho tutelar
 
Plano de aula dia das mães
Plano de aula dia das mãesPlano de aula dia das mães
Plano de aula dia das mães
 
Plano de aula calendário
Plano de aula calendárioPlano de aula calendário
Plano de aula calendário
 
94315093 relatorios-do-desempenho-escolar-dos-alunos
94315093 relatorios-do-desempenho-escolar-dos-alunos94315093 relatorios-do-desempenho-escolar-dos-alunos
94315093 relatorios-do-desempenho-escolar-dos-alunos
 
PROJETO-MEIO-AMBIENTE-1-maria-socorro-de-oliveira.pdf
PROJETO-MEIO-AMBIENTE-1-maria-socorro-de-oliveira.pdfPROJETO-MEIO-AMBIENTE-1-maria-socorro-de-oliveira.pdf
PROJETO-MEIO-AMBIENTE-1-maria-socorro-de-oliveira.pdf
 
Jogos para Alfabetização
Jogos para AlfabetizaçãoJogos para Alfabetização
Jogos para Alfabetização
 
JOGOS MATEMÁTICOS 3º 4º 5º ANO PAIC + VOLUME I(PROFESSOR)
JOGOS MATEMÁTICOS 3º 4º 5º ANO PAIC + VOLUME I(PROFESSOR)JOGOS MATEMÁTICOS 3º 4º 5º ANO PAIC + VOLUME I(PROFESSOR)
JOGOS MATEMÁTICOS 3º 4º 5º ANO PAIC + VOLUME I(PROFESSOR)
 
Termo de abertura livro registro
Termo de abertura livro registroTermo de abertura livro registro
Termo de abertura livro registro
 
Contrato pedagógico
Contrato pedagógicoContrato pedagógico
Contrato pedagógico
 
Plano de Ação do SPAECE 2012
Plano de Ação do SPAECE 2012Plano de Ação do SPAECE 2012
Plano de Ação do SPAECE 2012
 
Projeto carnaval
Projeto carnavalProjeto carnaval
Projeto carnaval
 
Palavras geradoras
Palavras geradorasPalavras geradoras
Palavras geradoras
 
Direitos de aprendizagem no ciclo de alfabetizacao lingua portuguesa
Direitos de aprendizagem no ciclo de alfabetizacao   lingua portuguesaDireitos de aprendizagem no ciclo de alfabetizacao   lingua portuguesa
Direitos de aprendizagem no ciclo de alfabetizacao lingua portuguesa
 
Orientações gerais para o desfile cívico
Orientações gerais para o desfile cívicoOrientações gerais para o desfile cívico
Orientações gerais para o desfile cívico
 
CNT - 3ª série - Apostila 3º bimestre -Estudante.pdf
CNT - 3ª série - Apostila 3º bimestre -Estudante.pdfCNT - 3ª série - Apostila 3º bimestre -Estudante.pdf
CNT - 3ª série - Apostila 3º bimestre -Estudante.pdf
 
Fabulas sequencia didatica_4_e_5_ano
Fabulas sequencia didatica_4_e_5_anoFabulas sequencia didatica_4_e_5_ano
Fabulas sequencia didatica_4_e_5_ano
 
Matriz de matemática
Matriz de  matemáticaMatriz de  matemática
Matriz de matemática
 

Destaque

Validação de Voltímetro Via Regressão
Validação de Voltímetro Via RegressãoValidação de Voltímetro Via Regressão
Validação de Voltímetro Via Regressão
Marcos
 
Aproveitamento de calor residual nos estádios da copa 2014 apresentação
Aproveitamento de calor residual nos estádios da copa 2014 apresentaçãoAproveitamento de calor residual nos estádios da copa 2014 apresentação
Aproveitamento de calor residual nos estádios da copa 2014 apresentação
Marcos
 
Resenha do Primeiro Relatório de Avaliação Nacional Volume 3. Mitigação à Mud...
Resenha do Primeiro Relatório de Avaliação Nacional Volume 3. Mitigação à Mud...Resenha do Primeiro Relatório de Avaliação Nacional Volume 3. Mitigação à Mud...
Resenha do Primeiro Relatório de Avaliação Nacional Volume 3. Mitigação à Mud...
Marcos
 
O aproveitamento de calor residual nos estádios da copa 2014
O aproveitamento de calor residual nos estádios da copa 2014O aproveitamento de calor residual nos estádios da copa 2014
O aproveitamento de calor residual nos estádios da copa 2014
Marcos
 
Discussão do artigo "GROHNHEIT, P. E. Annual Models for Electricity Capacity ...
Discussão do artigo "GROHNHEIT, P. E. Annual Models for Electricity Capacity ...Discussão do artigo "GROHNHEIT, P. E. Annual Models for Electricity Capacity ...
Discussão do artigo "GROHNHEIT, P. E. Annual Models for Electricity Capacity ...
Marcos
 
Smart Grid no Brasil: Até quando esperar?
Smart Grid no Brasil: Até  quando esperar?Smart Grid no Brasil: Até  quando esperar?
Smart Grid no Brasil: Até quando esperar?
Marcos
 
Editando os Códigos HTML do Blogger da Google para Alterar Expressões Referen...
Editando os Códigos HTML do Blogger da Google para Alterar Expressões Referen...Editando os Códigos HTML do Blogger da Google para Alterar Expressões Referen...
Editando os Códigos HTML do Blogger da Google para Alterar Expressões Referen...
Marcos
 
REDES INTELIGENTES E A SUA IMPLANTAÇÃO NO BRASIL
REDES INTELIGENTES E A SUA IMPLANTAÇÃO NO BRASILREDES INTELIGENTES E A SUA IMPLANTAÇÃO NO BRASIL
REDES INTELIGENTES E A SUA IMPLANTAÇÃO NO BRASIL
Marcos
 
Resenha do Balanço Energético Nacional 2012 - Base 2011
Resenha do Balanço Energético Nacional 2012 - Base 2011Resenha do Balanço Energético Nacional 2012 - Base 2011
Resenha do Balanço Energético Nacional 2012 - Base 2011
Marcos
 
Impacto de Sistemas Eólicos na Qualidade de Energia
Impacto de Sistemas Eólicos na Qualidade de EnergiaImpacto de Sistemas Eólicos na Qualidade de Energia
Impacto de Sistemas Eólicos na Qualidade de Energia
Marcos
 
Impacto de Sistemas Eólicos na Qualidade de Energia_Apresentação
Impacto de Sistemas Eólicos na Qualidade de Energia_ApresentaçãoImpacto de Sistemas Eólicos na Qualidade de Energia_Apresentação
Impacto de Sistemas Eólicos na Qualidade de Energia_Apresentação
Marcos
 
Desenvolvimento Técnico de Processo para Calibração de Medidores de Energia E...
Desenvolvimento Técnico de Processo para Calibração de Medidores de Energia E...Desenvolvimento Técnico de Processo para Calibração de Medidores de Energia E...
Desenvolvimento Técnico de Processo para Calibração de Medidores de Energia E...
Marcos
 
Tensão média e tensão eficaz
Tensão média e tensão eficazTensão média e tensão eficaz
Tensão média e tensão eficaz
Rodrigo Thiago Passos Silva
 

Destaque (13)

Validação de Voltímetro Via Regressão
Validação de Voltímetro Via RegressãoValidação de Voltímetro Via Regressão
Validação de Voltímetro Via Regressão
 
Aproveitamento de calor residual nos estádios da copa 2014 apresentação
Aproveitamento de calor residual nos estádios da copa 2014 apresentaçãoAproveitamento de calor residual nos estádios da copa 2014 apresentação
Aproveitamento de calor residual nos estádios da copa 2014 apresentação
 
Resenha do Primeiro Relatório de Avaliação Nacional Volume 3. Mitigação à Mud...
Resenha do Primeiro Relatório de Avaliação Nacional Volume 3. Mitigação à Mud...Resenha do Primeiro Relatório de Avaliação Nacional Volume 3. Mitigação à Mud...
Resenha do Primeiro Relatório de Avaliação Nacional Volume 3. Mitigação à Mud...
 
O aproveitamento de calor residual nos estádios da copa 2014
O aproveitamento de calor residual nos estádios da copa 2014O aproveitamento de calor residual nos estádios da copa 2014
O aproveitamento de calor residual nos estádios da copa 2014
 
Discussão do artigo "GROHNHEIT, P. E. Annual Models for Electricity Capacity ...
Discussão do artigo "GROHNHEIT, P. E. Annual Models for Electricity Capacity ...Discussão do artigo "GROHNHEIT, P. E. Annual Models for Electricity Capacity ...
Discussão do artigo "GROHNHEIT, P. E. Annual Models for Electricity Capacity ...
 
Smart Grid no Brasil: Até quando esperar?
Smart Grid no Brasil: Até  quando esperar?Smart Grid no Brasil: Até  quando esperar?
Smart Grid no Brasil: Até quando esperar?
 
Editando os Códigos HTML do Blogger da Google para Alterar Expressões Referen...
Editando os Códigos HTML do Blogger da Google para Alterar Expressões Referen...Editando os Códigos HTML do Blogger da Google para Alterar Expressões Referen...
Editando os Códigos HTML do Blogger da Google para Alterar Expressões Referen...
 
REDES INTELIGENTES E A SUA IMPLANTAÇÃO NO BRASIL
REDES INTELIGENTES E A SUA IMPLANTAÇÃO NO BRASILREDES INTELIGENTES E A SUA IMPLANTAÇÃO NO BRASIL
REDES INTELIGENTES E A SUA IMPLANTAÇÃO NO BRASIL
 
Resenha do Balanço Energético Nacional 2012 - Base 2011
Resenha do Balanço Energético Nacional 2012 - Base 2011Resenha do Balanço Energético Nacional 2012 - Base 2011
Resenha do Balanço Energético Nacional 2012 - Base 2011
 
Impacto de Sistemas Eólicos na Qualidade de Energia
Impacto de Sistemas Eólicos na Qualidade de EnergiaImpacto de Sistemas Eólicos na Qualidade de Energia
Impacto de Sistemas Eólicos na Qualidade de Energia
 
Impacto de Sistemas Eólicos na Qualidade de Energia_Apresentação
Impacto de Sistemas Eólicos na Qualidade de Energia_ApresentaçãoImpacto de Sistemas Eólicos na Qualidade de Energia_Apresentação
Impacto de Sistemas Eólicos na Qualidade de Energia_Apresentação
 
Desenvolvimento Técnico de Processo para Calibração de Medidores de Energia E...
Desenvolvimento Técnico de Processo para Calibração de Medidores de Energia E...Desenvolvimento Técnico de Processo para Calibração de Medidores de Energia E...
Desenvolvimento Técnico de Processo para Calibração de Medidores de Energia E...
 
Tensão média e tensão eficaz
Tensão média e tensão eficazTensão média e tensão eficaz
Tensão média e tensão eficaz
 

Semelhante a MODELAGEM PARA OTIMIZAÇÃO DE FLUXO DE ENERGIA

Planejamento portugal 2007_v2
Planejamento portugal 2007_v2Planejamento portugal 2007_v2
Planejamento portugal 2007_v2
Jim Naturesa
 
Agrener 08 02
Agrener 08 02Agrener 08 02
Agrener 08 02
Jim Naturesa
 
Agrener 2010 jim_adriana_v4_10
Agrener 2010 jim_adriana_v4_10Agrener 2010 jim_adriana_v4_10
Agrener 2010 jim_adriana_v4_10
Jim Naturesa
 
Custo marginal do_dficit_de_energia_eltrica
Custo marginal do_dficit_de_energia_eltricaCusto marginal do_dficit_de_energia_eltrica
Custo marginal do_dficit_de_energia_eltrica
Alessandro Fontes
 
A Motivação Que Você Precisa
A Motivação Que Você PrecisaA Motivação Que Você Precisa
A Motivação Que Você Precisa
SuellenAlves31
 
ANÁLISE DO CONSUMO ENERGÉTICO EM HABITAÇÃO DE INTERESSE SOCIAL (HIS) VISANDO ...
ANÁLISE DO CONSUMO ENERGÉTICO EM HABITAÇÃO DE INTERESSE SOCIAL (HIS) VISANDO ...ANÁLISE DO CONSUMO ENERGÉTICO EM HABITAÇÃO DE INTERESSE SOCIAL (HIS) VISANDO ...
ANÁLISE DO CONSUMO ENERGÉTICO EM HABITAÇÃO DE INTERESSE SOCIAL (HIS) VISANDO ...
Anelise Morgan
 
Aplicações da Dinâmica de Sistemas (System Dynamics) no contexto da Energia
Aplicações da Dinâmica de Sistemas (System Dynamics) no contexto da EnergiaAplicações da Dinâmica de Sistemas (System Dynamics) no contexto da Energia
Aplicações da Dinâmica de Sistemas (System Dynamics) no contexto da Energia
Amarildo da Cruz Fernandes, DSc.
 
Agrener 2013 ee_vf_rev_jim
Agrener 2013 ee_vf_rev_jimAgrener 2013 ee_vf_rev_jim
Agrener 2013 ee_vf_rev_jim
Jim Naturesa
 
Livro bombeamento
Livro bombeamentoLivro bombeamento
Livro bombeamento
Jonnathan Amaral de Freitas
 
Gesel ufrj - leilao a-3 2011
Gesel  ufrj - leilao a-3 2011Gesel  ufrj - leilao a-3 2011
Gesel ufrj - leilao a-3 2011
Luis Nassif
 
TFC CEPI REBECA_12
TFC CEPI REBECA_12TFC CEPI REBECA_12
TFC CEPI REBECA_12
Rebeca Borges Salum
 
Fabiane sakai relatório-final-r02
Fabiane sakai relatório-final-r02Fabiane sakai relatório-final-r02
Fabiane sakai relatório-final-r02
Carlos Elson Cunha
 
manual_sistemas_bombeamento_procel.pdf
manual_sistemas_bombeamento_procel.pdfmanual_sistemas_bombeamento_procel.pdf
manual_sistemas_bombeamento_procel.pdf
Anny81834
 
LIVRO_MANUAL DE SISTEMAS DE BOMBEAMENTO.pdf
LIVRO_MANUAL DE SISTEMAS DE BOMBEAMENTO.pdfLIVRO_MANUAL DE SISTEMAS DE BOMBEAMENTO.pdf
LIVRO_MANUAL DE SISTEMAS DE BOMBEAMENTO.pdf
Anny81834
 
Padrões de Eficiência Energética para Equipamentos Elétricos de uso Residencial
Padrões de Eficiência Energética para Equipamentos Elétricos de uso Residencial Padrões de Eficiência Energética para Equipamentos Elétricos de uso Residencial
Padrões de Eficiência Energética para Equipamentos Elétricos de uso Residencial
Conrado Augustus de Melo
 
Como la gestion del conocimiento en el sector electrico brasileno puede contr...
Como la gestion del conocimiento en el sector electrico brasileno puede contr...Como la gestion del conocimiento en el sector electrico brasileno puede contr...
Como la gestion del conocimiento en el sector electrico brasileno puede contr...
Fernando Luiz Goldman
 
Procel (Programa Nacional de Conservação de Energia Elétrica) e Eletrobrás
Procel (Programa Nacional de Conservação de Energia Elétrica) e EletrobrásProcel (Programa Nacional de Conservação de Energia Elétrica) e Eletrobrás
Procel (Programa Nacional de Conservação de Energia Elétrica) e Eletrobrás
Ampla Energia S.A.
 
Quais os reais custos e benefícios das fontes de geração elétrica no Brasil?
Quais os reais custos e benefícios das fontes de geração elétrica no Brasil? Quais os reais custos e benefícios das fontes de geração elétrica no Brasil?
Quais os reais custos e benefícios das fontes de geração elétrica no Brasil?
Instituto Escolhas
 
Energia Fotovoltaica na Prática
Energia Fotovoltaica na PráticaEnergia Fotovoltaica na Prática
Energia Fotovoltaica na Prática
Ricardo Maximo
 
Gereciamento ambiental
Gereciamento ambientalGereciamento ambiental
Gereciamento ambiental
Keila Carvalho
 

Semelhante a MODELAGEM PARA OTIMIZAÇÃO DE FLUXO DE ENERGIA (20)

Planejamento portugal 2007_v2
Planejamento portugal 2007_v2Planejamento portugal 2007_v2
Planejamento portugal 2007_v2
 
Agrener 08 02
Agrener 08 02Agrener 08 02
Agrener 08 02
 
Agrener 2010 jim_adriana_v4_10
Agrener 2010 jim_adriana_v4_10Agrener 2010 jim_adriana_v4_10
Agrener 2010 jim_adriana_v4_10
 
Custo marginal do_dficit_de_energia_eltrica
Custo marginal do_dficit_de_energia_eltricaCusto marginal do_dficit_de_energia_eltrica
Custo marginal do_dficit_de_energia_eltrica
 
A Motivação Que Você Precisa
A Motivação Que Você PrecisaA Motivação Que Você Precisa
A Motivação Que Você Precisa
 
ANÁLISE DO CONSUMO ENERGÉTICO EM HABITAÇÃO DE INTERESSE SOCIAL (HIS) VISANDO ...
ANÁLISE DO CONSUMO ENERGÉTICO EM HABITAÇÃO DE INTERESSE SOCIAL (HIS) VISANDO ...ANÁLISE DO CONSUMO ENERGÉTICO EM HABITAÇÃO DE INTERESSE SOCIAL (HIS) VISANDO ...
ANÁLISE DO CONSUMO ENERGÉTICO EM HABITAÇÃO DE INTERESSE SOCIAL (HIS) VISANDO ...
 
Aplicações da Dinâmica de Sistemas (System Dynamics) no contexto da Energia
Aplicações da Dinâmica de Sistemas (System Dynamics) no contexto da EnergiaAplicações da Dinâmica de Sistemas (System Dynamics) no contexto da Energia
Aplicações da Dinâmica de Sistemas (System Dynamics) no contexto da Energia
 
Agrener 2013 ee_vf_rev_jim
Agrener 2013 ee_vf_rev_jimAgrener 2013 ee_vf_rev_jim
Agrener 2013 ee_vf_rev_jim
 
Livro bombeamento
Livro bombeamentoLivro bombeamento
Livro bombeamento
 
Gesel ufrj - leilao a-3 2011
Gesel  ufrj - leilao a-3 2011Gesel  ufrj - leilao a-3 2011
Gesel ufrj - leilao a-3 2011
 
TFC CEPI REBECA_12
TFC CEPI REBECA_12TFC CEPI REBECA_12
TFC CEPI REBECA_12
 
Fabiane sakai relatório-final-r02
Fabiane sakai relatório-final-r02Fabiane sakai relatório-final-r02
Fabiane sakai relatório-final-r02
 
manual_sistemas_bombeamento_procel.pdf
manual_sistemas_bombeamento_procel.pdfmanual_sistemas_bombeamento_procel.pdf
manual_sistemas_bombeamento_procel.pdf
 
LIVRO_MANUAL DE SISTEMAS DE BOMBEAMENTO.pdf
LIVRO_MANUAL DE SISTEMAS DE BOMBEAMENTO.pdfLIVRO_MANUAL DE SISTEMAS DE BOMBEAMENTO.pdf
LIVRO_MANUAL DE SISTEMAS DE BOMBEAMENTO.pdf
 
Padrões de Eficiência Energética para Equipamentos Elétricos de uso Residencial
Padrões de Eficiência Energética para Equipamentos Elétricos de uso Residencial Padrões de Eficiência Energética para Equipamentos Elétricos de uso Residencial
Padrões de Eficiência Energética para Equipamentos Elétricos de uso Residencial
 
Como la gestion del conocimiento en el sector electrico brasileno puede contr...
Como la gestion del conocimiento en el sector electrico brasileno puede contr...Como la gestion del conocimiento en el sector electrico brasileno puede contr...
Como la gestion del conocimiento en el sector electrico brasileno puede contr...
 
Procel (Programa Nacional de Conservação de Energia Elétrica) e Eletrobrás
Procel (Programa Nacional de Conservação de Energia Elétrica) e EletrobrásProcel (Programa Nacional de Conservação de Energia Elétrica) e Eletrobrás
Procel (Programa Nacional de Conservação de Energia Elétrica) e Eletrobrás
 
Quais os reais custos e benefícios das fontes de geração elétrica no Brasil?
Quais os reais custos e benefícios das fontes de geração elétrica no Brasil? Quais os reais custos e benefícios das fontes de geração elétrica no Brasil?
Quais os reais custos e benefícios das fontes de geração elétrica no Brasil?
 
Energia Fotovoltaica na Prática
Energia Fotovoltaica na PráticaEnergia Fotovoltaica na Prática
Energia Fotovoltaica na Prática
 
Gereciamento ambiental
Gereciamento ambientalGereciamento ambiental
Gereciamento ambiental
 

Último

Ferramentas e Técnicas para aplicar no seu dia a dia numa Transformação Digital!
Ferramentas e Técnicas para aplicar no seu dia a dia numa Transformação Digital!Ferramentas e Técnicas para aplicar no seu dia a dia numa Transformação Digital!
Ferramentas e Técnicas para aplicar no seu dia a dia numa Transformação Digital!
Annelise Gripp
 
Por que escolhi o Flutter - Campus Party Piauí.pdf
Por que escolhi o Flutter - Campus Party Piauí.pdfPor que escolhi o Flutter - Campus Party Piauí.pdf
Por que escolhi o Flutter - Campus Party Piauí.pdf
Ian Oliveira
 
Orientações para utilizar Drone no espaço Brasil
Orientações para utilizar Drone no espaço BrasilOrientações para utilizar Drone no espaço Brasil
Orientações para utilizar Drone no espaço Brasil
EliakimArajo2
 
PRATICANDO O SCRUM Scrum team, product owner
PRATICANDO O SCRUM Scrum team, product ownerPRATICANDO O SCRUM Scrum team, product owner
PRATICANDO O SCRUM Scrum team, product owner
anpproferick
 
Teoria de redes de computadores redes .doc
Teoria de redes de computadores redes .docTeoria de redes de computadores redes .doc
Teoria de redes de computadores redes .doc
anpproferick
 
Gestão de dados: sua importância e benefícios
Gestão de dados: sua importância e benefíciosGestão de dados: sua importância e benefícios
Gestão de dados: sua importância e benefícios
Rafael Santos
 
Como fui de 0 a lead na gringa em 3 anos.pptx
Como fui de 0 a lead na gringa em 3 anos.pptxComo fui de 0 a lead na gringa em 3 anos.pptx
Como fui de 0 a lead na gringa em 3 anos.pptx
tnrlucas
 

Último (7)

Ferramentas e Técnicas para aplicar no seu dia a dia numa Transformação Digital!
Ferramentas e Técnicas para aplicar no seu dia a dia numa Transformação Digital!Ferramentas e Técnicas para aplicar no seu dia a dia numa Transformação Digital!
Ferramentas e Técnicas para aplicar no seu dia a dia numa Transformação Digital!
 
Por que escolhi o Flutter - Campus Party Piauí.pdf
Por que escolhi o Flutter - Campus Party Piauí.pdfPor que escolhi o Flutter - Campus Party Piauí.pdf
Por que escolhi o Flutter - Campus Party Piauí.pdf
 
Orientações para utilizar Drone no espaço Brasil
Orientações para utilizar Drone no espaço BrasilOrientações para utilizar Drone no espaço Brasil
Orientações para utilizar Drone no espaço Brasil
 
PRATICANDO O SCRUM Scrum team, product owner
PRATICANDO O SCRUM Scrum team, product ownerPRATICANDO O SCRUM Scrum team, product owner
PRATICANDO O SCRUM Scrum team, product owner
 
Teoria de redes de computadores redes .doc
Teoria de redes de computadores redes .docTeoria de redes de computadores redes .doc
Teoria de redes de computadores redes .doc
 
Gestão de dados: sua importância e benefícios
Gestão de dados: sua importância e benefíciosGestão de dados: sua importância e benefícios
Gestão de dados: sua importância e benefícios
 
Como fui de 0 a lead na gringa em 3 anos.pptx
Como fui de 0 a lead na gringa em 3 anos.pptxComo fui de 0 a lead na gringa em 3 anos.pptx
Como fui de 0 a lead na gringa em 3 anos.pptx
 

MODELAGEM PARA OTIMIZAÇÃO DE FLUXO DE ENERGIA

  • 1. MODELAGEM PARA OTIMIZAÇÃO DE FLUXO DE ENERGIA Marcos José Rodrigues dos Santos1 Sílvio Cesar Brás Araujo1 Vanessa Pecora Garcilasso1 1 Programa de Pós-Graduação em Energia – PPGE Instituto de Eletrotécnica e Energia – IEE Av. Professor Luciano Gualberto, 1289 – Cidade Universitária / Butantan CEP: 05508-010 – São Paulo / SP RESUMO Um dos principais desafios do planejamento energético é identificar e desenvolver sistemas e métodos para o equacionamento das relações sociais, econômicas, energéticas e ambientais de estruturas de uma determinada região. A elaboração de cenários prospectivos é baseada em séries históricas das disponibilidades energéticas da região abordada. O planejamento energético é realizado com base nas alternativas energéticas que satisfaçam as demandas estabelecidas por meio de modelos de projeção e cenários, de modo a determinar a capacidade do modelo para utilização em tomadas de decisões e estabelecimento de políticas públicas. Este trabalho apresenta os modelos de projeção do consumo e da oferta de energia, além de discutir o modelo de otimização de fluxo de energia denominado EFOM e suas aplicações na Dinamarca. Com o planejamento do setor energético pode-se assegurar a continuidade de abastecimento de energia a um menor custo, menor risco e menores impactos sócio- econômicos e ambientais. Palavras-Chave: planejamento energético, projeção energética, modelo de otimização energética
  • 2. 1. INTRODUÇÃO Os constantes desenvolvimentos na nossa sociedade têm conduzido cada vez mais uma acentuada dependência das principais fontes de energia não renováveis – combustíveis fósseis, como petróleo e seus derivados, gás natural e carvão mineral. Por sua vez, a participação de energias renováveis na matriz energética brasileira totaliza 45,3%, o que é bastante significativo. A utilização de energias renováveis no país baseia-se principalmente em hidrelétricas (13,8%), produtos da cana-de-açúcar (16,4%), lenha e carvão vegetal (11,6%). Apenas 3,5% da matriz energética brasileira correspondem a outras fontes de energia renovável (BEN, 2009). Segundo o BEN (2009), pode-se constatar que nos últimos anos ocorreu substancial amento do uso de petróleo e derivados, de gás natural e de produtos de cana-de-açúcar para a produção de energia no Brasil. Contudo, a participação do petróleo e derivados continua sendo muito maior que as demais fontes energéticas. A energia afeta diretamente o desenvolvimento social e econômico da população, além de ser uma preocupação ambiental. O crescimento rápido e mal planejado da produção e consumo energético no país acarreta em diversos impactos ambientais que podem comprometer a qualidade de vida da população. Diante do exposto é clara a necessidade de um planejamento energético. São necessárias mudanças tecnológicas para diminuir a intensidade do uso de combustíveis fósseis na maioria dos sistemas energéticos dos países, com ações pelo lado da oferta de energia, e melhoria da eficiência no uso de combustíveis e eletricidade, com ações pelo lado da demanda ou do mercado de energia (SAMPAIO, 2007). A grande vantagem da eficiência energética é que geralmente o custo da eficiência energética é uma pequena fração dos custos da produção de energia (JANNUZZI & SWISHER, 1997). O planejamento do setor energético é fundamental para assegurar a continuidade do abastecimento e/ou suprimento de energia ao menor custo, com o menor risco e com os menores impactos sócio-econômicos e ambientais para a sociedade brasileira. A falta do planejamento energético pode trazer conseqüências negativas, com reflexos em termos de elevação de custos e/ou degradação na qualidade da prestação do serviço, tais como racionamentos ou excessos de capacidade instalada, produção ineficiente, etc. O planejamento energético deve levar em conta aspectos políticos, sociais e considerações ambientais, e estar munido de dados históricos coletados em planos
  • 3. energéticos prévios da região sob exame. O planejamento energético estruturado de forma estratégica inclui projetos de curto e médio prazo (até 10 e 20 anos) e longo prazo (além de 20 anos), por meio de parâmetros que indiquem a situação atual, de forma a projetar cenários futuros. A proposição de cenários futuros, usando diversas tecnologias para oferta e demanda de energia visa identificar, principalmente, alternativas para cada uso final, avaliando o impacto de seu desempenho e custos. Com este panorama analítico é possível comparar diferentes desempenhos energéticos, custos e políticas que podem ser adotadas para influenciar suas taxas de desenvolvimento e uso, visando proporcionar o mesmo nível de serviços de energia. Este trabalho visa apresentar os modelos de projeção energética, bem como discutir detalhes e aplicações do EFOM – Modelo de Otimização de Fluxo de Energia. 2. MODELO DE PROJEÇÃO ENERGÉTICA A projeção do consumo e da oferta de energia engloba diversas áreas de conhecimento e uma grande quantidade de variáveis envolvidas. Dada a abrangência necessária, são utilizados modelos matemáticos que descrevem as cadeias energéticas, desde a extração das fontes até o seu uso final, passando pela produção, conversão, distribuição e armazenamento. De acordo com a disponibilidade de modelos para aplicação em sistemas energéticos inclui além de seus balanços, técnicas de análise das relações energia/economia através de matrizes insumo-produto, técnicas de cenarização, modelos de projeção da demanda energética, modelos de otimização do suprimento, modelos de equilíbrio demanda-oferta, modelos de simulação, modelos paramétricos (ou contábeis), modelos corporativos, técnicas de avaliação qualitativa ou quantitativa dos impactos sobre a sociedade de novos programas na área energética e dentre outros (BAJAY,1989). Geralmente as ferramentas construídas para análise do sistema energético baseiam-se em duas abordagem distintas que diferem-se, basicamente, no nível de agregação dos modelos. São elas as abordagens “bottom-up” e “top-down”.
  • 4. 2.1 MODELOS BOTTOM-UP Os modelos “bottom-up” procuram fazer uma detalhada descrição das tecnologias de conversão e utilização da energia, levando em consideração a desagregação da economia. Tais modelos podem ser classificados em modelos de otimização, modelos de simulação e modelos paramétricos. Com esses modelos pode-se identificar os potenciais tecnológicos, requisitos de capital e taxas de reposição de equipamentos (EPE/ADENE, 2005). 2.1.1 MODELOS DE OTIMIZAÇÃO Nos modelos de otimização são identificadas soluções de custo mínimo para sistemas energéticos, considerando algumas restrições, tais como a disponibilidade tecnológica, a igualdade entre a oferta e a demanda, restrições ambientais, de investimento, entre outras. Os modelos de otimização definem as trajetórias de crescimento. Entretanto, limitam-se quanto à escolha política, pois assumem que a energia é o único fator de escolha (EPE/ADENE, 2005). Os principais exemplos de modelos de otimização energética são: MARKAL, MESSAGE, NEWAVE e EFOM. . 2.1.2 MODELOS DE SIMULAÇÃO Nos modelos de simulação o comportamento dos consumidores e dos produtores em relação à energia é determinado a partir da variação de preços, renda e progresso tecnológico. Geralmente esses modelos determinam o equilíbrio do mercado a partir de uma abordagem interativa, por isso não são limitados pelo comportamento dos agentes econômicos. Os agentes econômicos podem ser difíceis de parametrizar, acarretando em projeções energéticas bastante sensíveis às condições e aos parâmetros adotados inicialmente (EPE/ADENE, 2005). Os principais exemplos de modelos de simulação energética são: NEXUS e Stella.
  • 5. 2.1.3 MODELOS PARAMÉTRICOS Os modelos paramétricos, ou modelos contábeis, são utilizados para projeções energéticas fortemente baseadas em especificações determinadas pelo próprio usuário. Estes modelos têm a função de gerenciamento de dados e resultados, sendo úteis para identificar resultados de políticas energéticas (EPE/ADENE, 2005). Geralmente os modelos paramétricos são mais simples e flexíveis que os modelos apresentados anteriormente, entretanto, podem proporcionar soluções inconsistentes. Os principais exemplos de modelos paramétricos são: Leap, MIPE e MAED. 2.2 TOP- DOWN Os modelos “top-down”, também conhecidos como modelos econômicos, apresentam a economia de forma agregada, ou seja, representam de forma bem simplificada o consumo energético por meio de poucas equações, não levando em consideração a estrutura tecnológica do país. Por utilizarem análise estatística para encontrar as relações entre os indicadores utilizados, os modelos “top-down” são válidos apenas para grupos homogêneos de consumidores. Tais modelos se mostram eficientes quanto a apresentação de uma boa consistência entre oferta e demanda de energia (EPE/ADENE, 2005). Os principais exemplos de modelos “top-down” são SGM e IMACLIM. 2.3 PROJEÇÃO DE CENÁRIOS A projeção de um cenário energético requer um planejamento integrado do sistema envolvido. Um planejamento energético envolve estudos do lado da oferta, da demanda, ou de ambos, com abordagens micro ou macroeconômica. As relações e interdependências entre os diversos níveis de planejamento são complexas nos seus aspectos institucionais, econômicos e políticos. A otimização das interações entre os diversos níveis de planejamento é uma área em que o planejamento energético é de suma importância (BAJAY, 1989). Em um processo de planejamento, primeiramente é elaborado um plano. Para garantir o sucesso desse plano, além dos resultados obtidos serem analisados continuamente, deve-se analisar, também, a necessidade de reajustes devido a
  • 6. descoberta de erros ou falhas de avaliação durante o processo de planejamento ou devido ao aparecimento de novos fatos que podem ser pertinentes ao processo em andamento (SAMPAIO, 2007). Após a elaboração de um plano, o próximo passo é implementar um sistema de controle que permite (INSTITUTO DE ECONOMIA ENERGÉTICA, 1984):  Identificar os desvios no cumprimento das metas do plano;  Introduzir ajustes nas metas, em função dos desvios observados e dos previsíveis para o futuro;  Observar possíveis problemas na aplicação das políticas energéticas adotadas;  Identificar gargalos que possam colocar em risco o cumprimento do plano;  Recolher informações que permitam melhorar os dados a serem utilizados na formulação do próximo plano. As possíveis mudanças sugeridas em cenários de curto, médio e longo prazos podem causar impactos quantitativos que devem ser investigados por meio de modelos de previsão. Tais modelos utilizam técnicas econométricas e/ou de séries temporais para projetar o futuro. Todavia, há necessidade de rever a estrutura de aquisição de informações, uma vez que são comuns a obtenção de dados incompletos das séries temporais para avaliações locais (DEVADAS, 2001). O grau de autonomia com relação às opções tecnológicas e com a influência das políticas setoriais deve ser analisado, principalmente, nas áreas mais importantes, como a indústria, o transporte, a habitação, a classe rural, entre outras. Portanto, as hipóteses acerca da evolução do consumo energético devem ser compatíveis com as de evolução da economia e da sociedade (SAMPAIO, 2007). 2.3.1 PREMISSAS DE CENÁRIOS Uma questão fundamental para a elaboração de cenários de projeção energética é a especificação de um caso de referência. O caso de referência pode considerar a penetração de novas tecnologias, medidas de redução das emissões requeridas pela legislação existente e algumas medidas de conservação de energia que são considerados na previsão de demanda (BUNN & LARSEN, 1997).
  • 7. O caso de conservação é o caso de referência com penetração de novas medidas de conservação que são as opções para otimização, por exemplo, aparelhos domésticos mais eficientes (BUNN & LARSEN, 1997). Outro cenário é o ponto de partida para a introdução das restrições de emissão de CO2, por exemplo, no processo de otimização (BUNN & LARSEN, 1997). 3. EFOM – MODELO DE OTIMIZAÇÃO DE FLUXO DE ENERGIA O modelo de otimização de fluxo de energia denominado EFOM, Energy Flow Optimization Model em inglês, é um modelo energético de base tecnológica desenvolvido pela Comunidade Européia na década de 1970. Tal modelo descreve o sistema energético como uma rede de fluxos anuais de energia, com limites na capacidade de conversão e transporte dos energéticos. As demandas energéticas são projetadas exogenamente1 ao modelo, sendo por setores consumidores agregados ou desagregados, dependendo dos objetivos de cada estudo (CARVALHO, 2005). O EFOM foi desenvolvido para dar suporte às políticas de planejamento e promover o uso de fontes alternativas de energia, incluindo as restrições ambientais (CORMIO et al, 2003). Os principais objetivos de estudo para o uso desse modelo têm sido a inclusão de novas tecnologias, o impacto das mudanças do preço do combustível e as estratégias de redução emissões à níveis ideais (BUNN & LARSEN, 1997). O mesmo modelo de abordagem tem sido usado para o planejamento energético regional ou local, abrangendo o "sistema de energia" dentro de uma pequena área geográfica. A abordagem do modelo EFOM também é adequada para estudos setoriais. Essa modelagem tem sido útil para estudos sobre a escolha da tecnologia e avaliação das opções de investimento no setor de energia e nas indústrias de energia de grande consumo, como por exemplo, cimento, aço, celulose, papel, etc. A Figura 1 mostra o 1 Variáveis exógenas: Variáveis determinantes dos modelos econômicos. Os modelos econômicos são construídos com base nessas variáveis, supondo-se que seus valores não serão afetados por outras variáveis do modelo. Um exemplo comum de variável exógena é o nível de um imposto qualquer cobrado pelo governo. O valor do imposto, digamos, 10% sobre o preço da gasolina, só seria alterado caso o governo resolvesse mudar seu valor. Portanto, outras variáveis do modelo não são capazes de afetar essa variável. Por outro lado, ela é importante para determinar outras variáveis econômicas do modelo, como o valor do imposto coletado, a quantidade vendida de gasolina, entre outras. Choques ou mudanças na economia são representados por alterações nas variáveis exógenas. A partir desses choques, o modelo é resolvido matematicamente de forma a determinar o valor das variáveis endógenas, que, no exemplo acima, seriam a quantidade vendida de gasolina e o valor coletado de imposto. FONTE: http://www.iconebrasil.org.br/pt/?actA=16&areaID=14&secaoID=29&palavraID=299, consultado em 15/05/2011.
  • 8. princípio de um modelo setorial que produz dois ou mais produtos em produção combinada, ambos sujeitos à concorrência. As situações de mercado para os dois produtos são muito diferentes. A Figura 1 apresenta a estrutura geral do modelo EFOM. Figura 1. Estrutura Geral do Modelo EFOM. Fonte: (BUNN & LARSEN, 1997). O sistema de energia estruturado combina a extração de combustíveis primários por meio de tecnologias de conversão e transporte com a demanda por serviços de energia ou grandes consumidores. Alguns dos subsistemas apresentados contém tecnologias de redução de SO2 e NOx. Cada um dos subsistemas pode conter um grande número de links referentes à base de dados que contém as informações da rede e o conjunto de valores dos parâmetros estimados a partir de longas séries temporais de dados estatísticos nacionais. Os fluxos anuais de electricidade, aquecimento e gás natural são divididos em quatro fluxos diários, descrevendo variações sazonais ao longo do ano. Apenas os links representando combustíveis primários contém previsões de preços do combustível. O sistema de geração de energia é a parte central do sistema de energia descrito, incluindo a combinação aquecimento e eletricidade (CHP), tanto para a geração de vapor industrial como para aquecimento urbano (DH). O modelo também permite a substituição de tecnologia, que pode levar a diferentes demandas para eletricidade e aquecimento (BUNN & LARSEN, 1997).
  • 9. A principal característica da abordagem do modelo é que o sistema de energia é descrito por um número limitado de tecnologias de produção de uma única, ou poucas, saídas físicas, utilizando fontes de energia bem definidas como entradas. Cada tipo destas tecnologias deve ser descrito por alguns parâmetros:  Eficiência;  Disponibilidade;  Vida útil técnica;  Fatores de emissão;  Custo de investimento;  Operação e custo de manutenção;  Capacidade inicial e residual. O impacto das condições de um determinado mercado foi testado por cinco países (Dinamarca, Suécia, Finlândia, Letônia e Lituânia) usando a mesma opção de tecnologia para todos os países. Somente a estrutura inicial dos setores de energia elétrica dos vários países foi diferente. Esse método de comparação isola o impacto da estrutura inicial do desenvolvimento ideal do setor. A condição de mercado usada para o ensaio foi os preços de importação e importação fixados a longo-prazo marginal para usinas de carvão em modo de condensação (apenas produção de energia elétrica). Usando uma referência internacional desenvolvida ou uma simples versão do modelo EFOM com informações técnico-econômicas padrão é o primeiro passo para desenvolvimento de um modelo nacional. É o que foi feito na maioria dos países da União Européia durante os anos de 1980. Um modelo para ser usado como ferramenta de apóio as decisões para agências ou ministérios nacionais exige uma grande organização para aquisição de informações e elaboração de cenários. 3.1 APLICAÇÕES DO EFOM NA DINAMARCA O EFOM foi bastante utilizado na década de 1990 para gerar curvas de custo, para um dado sistema energético, associadas a restrições ambientais com diferentes graus de rigor, sobretudo referentes às emissões de CO2 (CARVALHO, 2005).
  • 10. Curvas de custo mostram o aumento do valor da função de interesse para uma série de cenários para a mesma descrição do sistema de energia, onde a restrição em um ou mais poluentes se torna mais apertada. As opções da análise de efetividade de custo para redução de CO2 da Comunidade Européia era parte de um estudo desenvolvido em 1991 no âmbito do programa Joule Energy Research, da Comissão das Comunidades Europeias, no que se refere a emissões de CO2. O método da curva de custo foi desenvolvido para um estudo anterior, em 1989, sobre estratégias de redução de emissões de SO2 e NO4. A abordagem da curva de custo tem sido usada desde então para vários estudos colaborativos internacionais, tal como o “UNEP Greenhouse Gas Custing study (realizado em 1994), que desenvolveu um conjunto de diretrizes para a construção das curvas de custo (BUNN & LARSEN, 1997). A definição central de “efetividade de custo” é o custo atualizado do sistema de energia dentro dos limites estabelecidos pelo modelo de descrição do sistema para qualquer redução viável do nível de um particular item emissão em um dado período. Um resultado importante que está em conformidade com a definição é mostrado na Figura 2. O valor da função de interesse do problema de programação linear (por exemplo, o custo atualizado da energia do sistema para o período de 1985 a 2010) é mostrado para valores específicos de redução de CO2 em 2005, comparado com o nível de 2008. 30%
  • 11. Figura 2. Redução da emissõa de CO2 e aumento dos descontos nos custos do sistema de energia na Dinamarca em 2005, taxa de desconto de 5% Fonte: (BUNN & LARSEN, 1997). 3.1.1 PREMISSAS PARA O ESTUDO DINAMARQUÊS A premissa relativa à evolução da procura por serviços de energia e preços de importação de combustível são aqueles do estudo multinacional harmonizado. Dados tecnicos-economicos para tecnologia de energia, incluindo as opções técnicas para redução de emissões foram baseadas em estudos multinacionais. Dados nacionais descrevendo a estrutura do sistema de energia e premissas detalhada para a demanda por serviços de energia foram especificados de modo compatível com as estatísticas nacionais e com as premissas usadas no plano nacional de energia que foram preparados ao mesmo tempo. As premissas mais importantes assumidas são:  Expansão das redes de aquecimento urbano ligado às estações de calor e energia, instalações de incineração de resíduos urbanos e de calor excedente industrial;  Posicionamento de todas novas usinas de energia de modo a estarem em conexão com os maiores mercados de aquecimento;  Construção de redes de gás natural;  Não construção de usinas nucleares num futuro previsível;  Política de Conservação de Energia, em particular isolamento térmico de edifícios. Além da exclusão da energia nuclear, foram evitadas políticas adicionais de restrições, a fim de se alcançar a mais confiável otimização de resultados. Consequentemente, não foram adotadas premissas como uso de fontes interna de energia, descentralização de calor e energia, ausência de limites para importação de gás natural e penetração de energias renováveis mais caras. Adicionalmente, às restrições que expressam importantes políticas de energia, outras restrições são necessárias para evitar resultados fora da realidade para o modelo. [m1] Comentário: Todo este item 3.1.1 também é preocupante, pois é pura tradução e não tem citação ao BUNN & LARSEN, 1997
  • 12. A maioria delas quantifica restrições de infraestrutura ou contratos de longa duração. As mais importantes são:  Máximo fornecimento de energia para aquecimento urbano e máximo fornecimento de aquecimento a partir de estações centrais de calor e energia;  Máximo fornecimento para aquecimento a partir de incineradores de lixo e máximo fornecimento de outros combustíveis de biomassa;  Níveis de extração de gás “off shore” e exportação de gás;  Importação e exportação de eletricidade;  Máxima capacidade de turbinas eólicas. Embora a penetração de novas tecnologias de energias renováveis e de combustíveis fósseis possam ser limitadas devido à imaturidade tecnológica e restricões sociais, não foram intruduzidas restrições arbitrárias para evitar que o modelo produza resultados fora da realidade. 3.1.2 O ESTUDO DINAMARQUES O sistema energético da Dinamarca é caracterizado por participações elevadas, em relação aos demais países europeus, de plantas industriais de cogeração e grandes centrais que geram, simultaneamente, energia elétrica e calor. Segundo Grohnheit (1997), o modelo EFOM é aplicado ao sistema energético da Dinamarca com ênfase no seu setor elétrico. Estas aplicações se deram no âmbito do projeto EURIO, da Comissão Européia, que versou sobre as interações entre o planejamento energético e a proteção ambiental, incluindo países do leste europeu. O projeto EURIO envolveu três modelos de projeção energética: projeção de demanda, modelos de oferta e modelos macroeconomicos. Por meio de outros estudos similares desenvolvidos em outros países, foi constatado que na Dinamarca também é possível diminuir substancialmente as emissões de CO2 por meio de programas de conservação de energia, uso intensivo do gás natural na geração de energia elétrica e emprego crescente de fontes renováveis de energia (CARVALHO, 2005).
  • 13. Bunn & Larsen (1997) apresentam alguns resultados de uma aplicação da abordagem do modelo EFOM para análise do sistema de eletricidade dinamarquês até o ano de 2010, enfatizando o impacto das condições de mudança de mercado na escolha de uma nova capacidade de geração e combustíveis. A Figura 3 apresenta as tecnologias de geração de energia elétrica na Dinamarca de 1995 a 2010. Figura 3. Tecnologias de geração de energia elétrica na Dinamarca – 1995 a 2010 Fonte: (BUNN & LARSEN, 1997). As variações dos parâmetros afetam:  Limites para importação e exportação de eletricidade;  Preços de importação e exportação;  Taxas de descontos. No cenário de referência, o sistema dinamarquês de eletricidade foi otimizado para o período de 1995-2010 assumindo apenas contrato de importação e exportação. Nessa
  • 14. versão do modelo os preços de importação e exportação foram fixados constantes ao longo dos anos. O preço de importação foi escolhido a 0,15 Dkr/kWh para todo o período, e o preço de exportação deveria refletir a longo prazo os custos marginais para a tecnologia de referência (0,28 – 0,32 Dkr/kWh). A função objetivo é o desconto total dos custos para o período com uma taxa de desconto de 5%. Um conjunto de restrições reflete na infra-estrutura do sistema dinamarquês de eletricidade e sistema combinado de calor e energia. O comércio internacional de eletricidade é limitado a um mínimo. No próximo cenário, a “importação”, o máximo importado é fixado na capacidade de transferência das linhas de 1994. O terceiro cenário, “mais comércio”, assume uma nova expansão da capacidade de expansão. No cenário “preço médio” o mesmo preço é fixado para ambos, importação e exportação. No último cenário é idêntico ao “preço médio”, mas a taxa de desconto é fixada a 10% a fim de refletir nas condições financeiras para investimento utilitário a um mercado competitivo para energia elétrica. A situação ideal para os volumes de comércio livre são muito sensíveis às mudanças nas premissas de preços de importação e exportação. Isso mostra que a maior parte da energia elétrica é gerada nas centrais térmicas, quer que combinado calor e energia ou apenas geração de energia elétrica. O volume deste último espelha nas variações dos volumes de importação e exportação. A Figura 4 mostra as despesas anuais, incluindo o investimento na capacidade em cada ano por kWh consumido ou produzido na Dinamarca para o melhor desenvolvimento, sob o pressuposto de vários cenários. Essas despesas normalmente são aumentadas, quando uma nova capacidade for requerida para um melhor desenvolvimento em longo prazo da indústria, pois não há despesas incluídas para cumprir as obrigações financeiras dos equipamentos existentes.
  • 15. Figura 4. Valores gastos para consumo de energia (a) e produção de energia (b) na Dinamarca, 1995 a 2010, para desenvolvimento ideal Fonte: (BUNN & LARSEN, 1997).
  • 16. Os resultados para o setor dinamarquês de energia elétrica sujeita às diferentes condições de mercado, mostram que o volume de importação é considerável no começo do segundo ou terceiro período, porque os preços de importação são baixos ou o investimento em novas capacidades é desestimulado pela alta taxa de desconto. No último período, tanto importação como exportação se tornaram muito sensíveis as condições de mercado, preços mais altos e o mercado internacional levará a mais exportações e investimentos a fim de atender essas exportações. O último resultado relativo ao investimento, entretanto, envolveria uma risco financeiro substancial. Isso pode ser explicado, porque a disponibilidade de um mercado aquecido, o qual pode ser alimentado por queima de gás natural combinado com plantas de ciclo de energia, oferece oportunidades de investimento, que podem ser bases para exportação, principalmente em períodos de pico e altas cargas. Em particular, essa versão do modelo não deveria permitir essa conclusão para ser traçada imediatamente. O preço de mercado é constante ao longo dos anos. Isso pode ser uma simplificação razoável, mas devia ser testado pela modificação desse modelo que permite preços diferentes durante os horários de pico e base. Essa extensão do uso dos parâmetros é possível dentro do software do modelo EFOM existente. Tal extensão da aplicação do modelo precisaria de um teste de validade da decomposição dos fluxos anuais. O método para tais testes é usar os pressupostos do modelo em um modelo que é mais detalhado sobre a repartição do tempo. O EFOM também foi aplicado na Dinamarca para diversos sistemas de energia elétrica municipais e regionais, com possibilidades de compra de eletricidade gerada fora do sistema a fim de simular estratégias de diversos agentes. O custo total das simulações efetuadas nesta condição se mostrou superior ao que se teria na situação tradicional, caracterizado por monopólios regionais operando com despacho central ótimo das plantas em um sistema nacional interligado (CARVALHO, 2005). Grohnheit (1997) também apresenta alguns resultados de simulações efetuadas com o mercado nórdico de energia elétrica, com o auxílio de dois modelos de equilíbrio setorial, um desenvolvido para modelar o mercado a curto prazo, com capacidades fixas das usinas geradoras e linhas de transmissão e quatro tipologias de carga ao longo do ano, e o outro a longo prazo, prevendo a instalação de novas usinas e linhas. Como na época das simulações havia um excesso de capacidade instalada na região, os preços de equilíbrio foram menores no primeiro caso. Os preços de equilíbrio obtidos em ambos
  • 17. os casos foram menores do que os adotados para as aplicações do modelo EFOM na região (CARVALHO, 2005). 4. CONSIDERAÇÕES FINAIS Existem vários modelos computacionais, utilizados e consolidados em vários países, para realizar projeções futuras da demanda e da oferta de energéticos, em função de cenários de desenvolvimento socioeconômicos, políticos e tecnológicos. A crescente preocupação sobre os impactos ambientais da energia tem ampliado significativamente o conjunto de metas políticas no setor energético. No passado, as escolhas entre as políticas energéticas em níveis regionais eram baseadas somente em minimização de custo e reprodução de aplicações de conceitos característicos de regiões desenvolvidas. O planejamento energético regional contempla problemas de multi- critérios e multi-ações, principalmente no caso de geração de energia em regiões que apresentam altas taxas de crescimento de demanda de energia, junto com um significante potencial de fontes renováveis de energia. Porém, diversos e freqüentes pontos de vista conflitantes devem ser considerados, tais como aspectos sociais,econômicos, ambientais, técnicos e políticos. A principal conclusão do estudo para a Dinamarca foi que seria possível otimizar o sistema de energia dinamarquês de modo a se atingir uma substancial redução na emissão de CO2 com um custo extra não maior do que aquele que poderia ser compensado por algumas medidas de economia do custo efetivo da energia. Os principais elementos na redução de CO2 devem ser a conservação de energia, o uso intensivo de gás natural na geração de eletricidade e a penetração de energias renováveis. Reduções adicionais de CO2 exigirão que o consumo de gás natural seja reduzido e, portanto, a substituição por combustível de tecnologia não fóssil. Os resultados encontrados para Dinamarca foram semelhantes àqueles encontrados para a maioria dos outros países da União Européia. No entanto, o uso destes resultado como uma política geral pode ser contraprodutivo para uma meta de custo efetivo de redução de emissão de CO2. Por este estudo, o ideal (considerando a efetiva redução de consumo de gás natural) implicaria uma massiva substituição do gás por carvão no setor de energia. Isto aconteceria de fato, particularmente em países onde o fornecimento de eletricidade às indústrias foi liberalizado. Cedo ou tarde, esta substituição pode levar os
  • 18. preços do gás a patamares superiores aos previstos no âmbito da otimização (BUNN & LARSEN, 1997). Deve ser enfatizado que o resultado de qualquer estudo de modelo é entendido como o comportamento do sistema sob condições especiais ao invés de recomendações a serem implementadas de acordo com uma solução considerada ótima. 5. REFERÊNCIAS BIBLIOGRÁFICAS BAJAY, S. V. Planejamento energético: necessidade, objetivo e metodologia. Revista Brasileira de Energia, Vol. l, n° l, 1989. BEN – Balanço Energético Nacional 2009. Resultados Preliminares – Ano Base 2008. Elaborado pelo MME – Ministério de Minas e Energia e pela EPE – Empresa de Pesquisa Energética, 48 p. Brasil, 2009. BUNN, D. W.; LARSEN, E.R. Systems Modelling for Energy Policy. Editora Wiley. Chapter 7 – Application and Limitations of Annual Models for Electricity Capacity Development, 1997. CARVALHO, C. B. Avaliação crítica do planejamento energético de longo prazo no Brasil, com ênfase no tratamento das incertezas e descentralização do processo. Tese de doutorado apresentada à comissão de Pós Graduação da Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas, como requisito para a obtenção do título de Doutor em Planejamento de Sistemas Energéticos. Campinas, 2005. CORMIO, C.; DICORATO, M.; MINOIA, A.; TROVATO, M. A regional energy planning methodology including renewable energy sources and environmental constraints, Renewable and Sustainable Energy Reviews, Volume 7, Issue 2, April 2003, Pages 99- 130. DEVADAS, V. Planning for rural energy system: part I, II, III. Renewable and Sustainable Energy Reviews, Volume 5, Issue 3, September 2001, Pages 203-297.
  • 19. EPE – Empresa de Pesquisa Energética / ADENE – Agência de Desenvolvimento do Nordeste. Aspectos Fundamentais de Planejamento Energético. Rio de Janeiro, 2005. GROHNHEIT, P. E. Application and limitations of annual models for electricity capacity development. In Bunn, D. W. & Larsen, E. R. (Editors) Systems Modelling for Energy Policy, John Wiley & Sons, New York, 1997, p.89-116. INSTITUTO DE ECONOMIA ENERGÉTICA. Lecturas sobre proceso de planeamiento energético. XVII Curso Latinoamericano de Economia y Planificación Energética, Bariloche. IDEE/Fundación Bariloche, 1984. JANNUZZI, G. M.; SWISHER, J. N. P. Planejamento integrado de recursos energéticos: meio ambiente, conservação de energia e fontes renováveis. Campinas/SP, Editora Autores Associados, 246p.1997. SAMPAIO, H.C. Planejamento e Otimização de Sistemas Energéticos para Gestão Econômica e Ambiental de Cidades. Tese apresentada à Faculdade de Engenharia do Campus de Guaratinguetá, Universidade Estadual Paulista, para a obtenção do título de Doutor em Engenharia Mecânica na área de Transmissão e Conversão de Energia. Guaratinguetá – São Paulo, 2007.