SlideShare uma empresa Scribd logo
a)19041'52"
b)19041'08"

c)19040'52"
d)19040'08"

Solução:
330 53' 41"
- 140 12' 49"

0

01.(EsSA/1977)O ângulo de 2 08'25" equivale
a:
a)9.180"

b)2.825"

c)625"

Como 53’ = 52’ + 1’ = 52’ + 60”, vem:

d)7.705"

330 52’ 101”
-140 12’ 49”
190 40’ 52”

Solução:
20
x60
120’
+ 08’
128’
x60
7680”
+ 25”
7705”

Resposta:Alternativa C
04.(EEAR/2005)O
86°28’36’’ é igual a
a) 46°52’24’’.
b)346°54’24’’.

da

medida

c)345°52’24’’
d)345°54’24’’

Solução:

Resposta:Alternativa D

86°28’36’’
x4
0
344 112’144”

02.(EsSA/1979)Efetuando 14028' + 15047" +
38056'23", encontramos:
a)67024'10"
b)69011'23"

quádruplo

c)68024'10"
d)67025'10"

Como 144” = 120” + 24” = 2’ + 24” , vem:

Solução:

3440112’144” = 3440114’24”

140 28'
+ 150 47"
380 56' 23"
670 131’ 23”

Como 114’ = 60’ + 54’ = 10 + 54’ , vem:
3440114’24” = 345054’24”
Resposta:Alternativa D

Como 131’ = 120’ + 11’ = 20 + 11’, temos:
670131’23” = 69011’23”

05.(EsSA/1975)Dividindo o ângulo de 320 em 6
partes iguais, obtemos:

Resposta:Alternativa B

a)5030'

03.(EsSA/1981)Sendo A = 33053'41"
e
B = 14012'49", o resultado da operação A – B é:

Solução:

1

b)6020'

c)4020'

d)5020'
320 6
20 50200
x60
120’
00’

onde x =

 x = 40

Resposta:Alternativa D

06.(EEAR/2006)O
valor
da
expressão
(27°38'+18°42'20")●3 − 50°52'38" , na forma
mais simplificada possível, é
a)139°59'20" .
b)138°51'38" .

=> x = 20●

=> x =

0

Resposta:Alternativa B

08.(EEAR/2013)Ao expressar

rad. em

graus, obtém-se:
a)1700

c)88°51'38" .
d)88°8'22" .

b)2200

c)2800

d)3200

Solução:

Solução:

900 ----------- 

rad

(27°38'+ 18°42'20")●3 − 50°52'38"
rad.

x ----------

I) 27°38'+ 18°42'20" = 45080’20” = 46020’20”
II) 46020’20”x3 = 138060’60”
0

onde x =

0

III) 138 60’60”- 50°52'38" = 88 08’22”
Resposta:Alternativa D

x = 160●

07.(EEAR/2007)Dois ângulos medem

rad. e

b)40

c)50

Solução:

rad. =

rad.

<

 x = 320

a)142° 30'
b)142° 40'
c)142°

rad.,pois

rad. Sendo assim ,

d)141° 30'
e)141° 40'

Solução:

temos:

11

900 ----------- 

10

rad

x ----------

0

09.O ângulo convexo formado pelos ponteiros
das horas e dos minutos às 10 horas e 15
minutos é:

d)60

O menor desses dois ângulos é

=>

Resposta:Alternativa D

rad. O menor deles, em graus, mede:
a)30

=> x =

rad.

12
1
2
3

Se em 1 hora = 60 minutos o ponteiro das horas
anda 300 , em 15 minutos ele andará:

2
=

Como = 3x, vem:

= 7030min.

 = 3●400 

Logo, às 10 horas e 15 minutos o ângulo
formado pelos ponteiros das horas e dos
minutos é :

= 1200

Resposta:Alternativa C
11.(EEAR/2006)Dadas
duas
semi-retas
colineares opostas OA e OB , e um ponto C não
pertencente à reta AB, é correto afirmar que
os ângulos AÔC e CÔB são

5●300 – 7030’
1500 - 7030’
149060’ - 7030’

a) suplementares e não consecutivos.
b) consecutivos e não suplementares.
c) não consecutivos e não suplementares.
d) consecutivos e suplementares.

142030’
Resposta:Alternativa A

Solução:

10.(EEAR/2006)De acordo com a figura, é
falsa a afirmação:



A

a)> 100

0

b)<1500

0

B



12.(EEAR/2009)Dois ângulos são adjacentes
se eles forem consecutivos e

Solução:

a)os
lados
de
um
forem
semi-retas
coincidentes com os lados do outro.

Temos:
I)x + y = 2x – y => y + y = 2x – x
II) = 4x – 2y =>

b)os lados de um forem as semi-retas opostas
aos lados do outro.

 2y = x

 = 4x – x  = 3x

c)não possuírem pontos internos comuns
d)possuírem pontos internos comuns.

III) + x + y = 1800(●2)

Solução:

2 + 2x + 2y = 3600 => 2●3x + 2x + x = 3600

Dois ângulos são adjacentes quando têm o
mesmo vértice, um lado em comum e seus
interiores não se interceptam(não têm pontos
internos comuns).
Resposta:Alternativa C

6x + 2x + x = 3600 => 9x = 3600(÷9)

 x = 40

O

Resposta:Alternativa D

< <138
d)1120 < <1450

c)125

0

C

0

3
13.(EEAR/2009)Na figura , AOC é um ângulo
raso.O valor de x é

2x = 400(÷2)



x = 200

Portanto, o ângulo EOC mede:
900 + 200
1100
a)133032’
b) 133028’

Resposta:Alternativa D

c) 134032’
d) 134028’

Solução:

15.(EsSA/1976)A metade do complemento de
um ângulo é 30030'. Esse ângulo mede:

Da figura, temos:

a)270

x + 46028’ = 1800 . Logo, vem:

Solução:

x + 46028’ = 179060’

Sendo o ângulo em questão igual a x, temos:

x = 179060’ - 46028’



b)390

c)29030'

d)290

= 30030’

x = 133032’

Resposta:Alternativa A

900 – x = 2(30030’) => 900 – x = 60060’

14.(EEAR/2007)Na figura, OC é bissetriz de
BOD . Então o ângulo EOC mede

Como 60’ = 10 , vem:
900 – x = 610 => 900 – 610 = x

29

0

= x

Resposta:Alternativa D

a)140°

b)130°

c)120°

16.(EsSA/2003) O suplemento do ângulo
45º17’27” foi dividido em três partes iguais. A
medida de cada parte é:

d)110°

a)22º54’41”
b)44º54’11”
c)54º44’33”

Solução:
Como OC é bissetriz do ângulo BOD,temos:
Ângulo DOC = Ângulo COB =

d)34º42’33”
e)11º34’51”

Solução:





O suplemento do ângulo 45º17’27” é igual a:

Logo, vem:

1800 - 45º17’27”

900 + 2x = 1300 => 2x = 1300 - 900

179º60’ - 45º17’27”

4
179º59’60” - 45º17’27”

19.(EEAR/2008)A razão entre o complemento
e o suplemento de um ângulo é

134042’33”

mede

Dividindo este ângulo por 3, obtemos:

a) 28°

0

134 42’33” 3
140
44054’11”
20
x60
120’
+42’
162’
12’
0’
+ 33”
33”
0”

c)43°

d)54°

Sendo o ângulo igual a x, temos:
=
2(1800 – x) = 7(900 – x)
3600 – 2x = 6300 – 7x => -2x + 7x = 6300 - 3600
5x = 2700(÷5)

c)300

 x = 54

0

Resposta:Alternativa D

17.(EsSA/1978)O suplemento de um ângulo
excede o dobro do seu complemento de 30. A
medida desse ângulo é:
b)500

b)32°

Solução:

Resposta:Alternativa B

a)600

. Esse ângulo

20.(EEAR/2008)Se OP é bissetriz de AÔB,
então o valor de x é

d)450

Solução:
Sendo o ângulo igual a x, temos:
1800 – x = 2(900 – x) + 300
a) 10°.

1800 – x = 1800 – 2x + 300
- x + 2x = 30

0

 x = 30

c) 15°.

d) 18°.

Solução:
0

Como OP é bissetriz do ângulo AOB, temos:

Resposta:Alternativa C

3x – 50 = 2x + 100

18.(EsSA/1982)
Se
dois
ângulos
são
suplementares e a medida de um deles é triplo
da medida do outro, então as medidas dos
ângulos são:
a)20 e 60
b)25 e 75

b)12°.

3x – 2x = 100 + 50

 x = 15

Resposta:Alternativa C

c)30 e 90
d)45 e 135

5

0
21.(EEAR/2010)A bissetriz de um ângulo AOB
forma 600 com o lado OB.Assim,AOB pode ser
classificado como

a)80030’
b)74030’
c)35030’

a)reto

Solução:

b)raso

c)agudo

d)obtuso

d)24030’
e)16030’

Temos:

Solução:

B 60

C

0

600
A

O

=> 5a = 900 – a => 5a + a = 900

I)a =
6a = 900(÷6)

 a = 15

=> 9b = 1800 – b =>

II) b =

Como OC é bissetriz o ângulo AOB mede 120 0,
portanto ele é obtuso.

0

b = 18

Resposta:Alternativa D

9b + b = 1800 => 10b = 1800(÷10)

22.A medida do ângulo formado pelas
bissetrizes de dois ângulos adjacentes que
medem, respectivamente, 24º30’ e 105º30’ é
igual a:

A medida do ângulo formado pelas bissetrizes
de dois ângulos adjacentes é igual a semisoma das medidas dos mesmos.Sendo  o
ângulo em questão, temos:

a)760

b)650

c)580

d)860

e)590

0

=

Solução:

=

A medida do ângulo formado pelas bissetrizes
de dois ângulos adjacentes é igual a semisoma das medidas dos mesmos.Sendo x o ângulo
em questão, temos:

330 2
130 16030’
10
x60
60’
00’

x=

x=

=> x =

 x = 65

0

  = 16 30'
0

Resposta:Alternativa E


24.(EsSA/1981) Se dois ângulos â e b são

opostos pelo vértice, então â e b são
necessariamente:

Resposta:Alternativa B
23(EEAR/1997)Dois ângulos adjacentes a e b,
medem,
respectivamente,
1/5
do
seu
complemento e 1/9 do seu suplemento.Assim
sendo, a medida do ãngulo formado por suas
bissetrizes é:

a)suplementares
c)adjacentes

6

b)replementares
d)congruentes
Solução:

Resposta:Alternativa A

Se dois ângulos são opostos pelo vértice, eles
são congruentes.

26.O triplo do complemento de um ângulo é
igual
à terça parte do suplemento deste
ângulo. Este ângulo mede:

Resposta:Alternativa D

a)

a)620 13’ 20’’
b)710 23’ 10’’
c)420 53’ 30’’

rad

rad

e)

rad

Sendo x o ângulo em questão,temos:

Sendo x o ângulo em questão,temos:
2(900–x) +

(1800 -

4(900–x) + 1800 -

3(900 – x) =

) = 1300(●2)

3●3(900 – x) =1800 – x

= 2600 (●2)

Como 900 =

8(900–x) + 3600 - x = 5200
7200 – 8x + 3600 – x = 5200
10800 – 9x = 5200

9(

=> 10800 – 5200 = 9x

– x) =

=> 9(900 – x) =1800 – x

radianos e 1800 =

 – x =>

– 9x =

 radianos,vem:
 – x(●2)

x = 2x => 2x + 18x

5600 = 9x => x =



d)

Solução:

Solução:

5600
200
20
x60
120’
30’
3’
x60
180”
00”

rad

c)

d)540 18’ 24’’
e)630 13’ 23’’

rad

b)

25.O ângulo cujo dobro do seu complemento,
mais a metade do suplemento de sua metade é
igual a 130º,mede:

 = x =>

9
62013’20”

x

=

rad

Resposta:Alternativa A
27.A soma de dois ângulos explementares é
igual a 2350. A medida do menor desses ângulos
é:
a)360 11’
b)260 34’
c)270 30’
Solução:

0

x = 62 13’20”

7

d)380 40’
e)540 48’
a)650

Dois ângulos são explementares quando a
diferença positiva entre as suas medidas é
igual a um ângulo raso.Sendo x e y os ângulos
em questão, temos:
I)x – y = 1800

 x = 180

0

=>

+y

1150 - 900
250

Resposta:Alternativa D

30.O ângulo cujo replemento do suplemento
do seu complemento é igual a oito vezes o valor
do mesmo, mede:

y=

550 2
150 27030’
10
x60
60’
00’

a)300

b)400

c)500

d)600

e)650

Solução:
O replemento do suplemento do complemento
de um ângulo x é dado por 2700 – x.Sendo
assim, temos:

 y = 27 30’
0

2700 – x = 8x

0

Como x = 180 + y,vem:
x = 1800 + 27030’

2700 = 8x + x => 2700 = 9x(÷9)

 x = 207 30’
0

0

= x

31.Na figura abaixo a = c = 300 e a + b + c =
1200.Então x é:

28.(EsSA/1976)O suplemento do complemento
de um ângulo de 30 é:
b)120

 30

Resposta:Alternativa A

Resposta:Alternativa C

a)60

d)250

O complemento do suplemento de um ângulo x é
dado por x - 900.Sendo assim, temos:

1800 + y + y = 2350 => 2y = 2350 - 1800
2y = 55

c)350

Solução:

II)x + y = 2350

0

b)1800

c)90

d)110

Solução:
O suplemento do complemento de um ângulo x é
dado por 900 + x.Sendo assim,temos:

a)agudo

900 + 300

Solução:

1200

b)obtuso

c)reto

d)raso

Temos:

Resposta:Alternativa B

a = c = 300.Logo, a + c = 600.Como
a + b + c = 1200, podemos concluir que b = 600.A

29.(EsSA/1979)O complemento do suplemento
de um ângulo de 115 mede:

8
medida do ângulo x é igual a a + b.Portanto, o
ângulo x mede:300 + 600 = 900

Resposta:Alternativa B
33.(EEAR/2010)Sejam
três
ângulos
adjacentes AOB, BOC e COD tais que AOB é o
triplo de COD, e este é a metade de BOC.Se
AOD é um ângulo raso,então a medida de AOB
é

Resposta:Alternativa C
32.(EsSA/1988) Na figura x e y são ângulos
retos. Então:

a)1200

b)900

c)600

d)450

Solução:
a
x
C
y

B



D

b



O

A

Sendo  e q, respectivamente, as medidas
dos ângulos AOB,BOC e COD, do
enunciado,temos:
a)a = 2b
b)a = b
c)a < b

d)b = 2a
e)b < a

e

=

 


Como AOD é um ângulo raso,vem:

Solução:

 = 1800

Da figura ,temos:

 = 1800 => 6 = 1800(÷6)

= 30

0

Como  = 3 , temos:
a

 = 3●300  = 900
900 – a = 900- b

x

Resposta:Alternativa B

y
b

“Sonhar é fazer planos.Viver é realizá-los.”

900 – a = 900- b => b = a

9

Mais conteúdo relacionado

Mais procurados

Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
P Valter De Almeida Gomes
 
Estudo de geometria plana corrigida
Estudo de geometria plana   corrigidaEstudo de geometria plana   corrigida
Estudo de geometria plana corrigida
Oswaldo Stanziola
 
Lista semelhança 2011
Lista semelhança 2011Lista semelhança 2011
Lista semelhança 2011
fernandanocchi
 
Matemática exercícios resolvidos - 01 m1 geometria métrica plana
Matemática   exercícios resolvidos - 01 m1 geometria métrica planaMatemática   exercícios resolvidos - 01 m1 geometria métrica plana
Matemática exercícios resolvidos - 01 m1 geometria métrica plana
evandrovv
 
Apostila de geometria plana exercícios resolvidos - crbrasil
Apostila de geometria plana   exercícios resolvidos - crbrasilApostila de geometria plana   exercícios resolvidos - crbrasil
Apostila de geometria plana exercícios resolvidos - crbrasil
Celso do Rozário Brasil Gonçalves
 
Mat relacoes trigonometricas nos triangulos
Mat relacoes trigonometricas nos triangulosMat relacoes trigonometricas nos triangulos
Mat relacoes trigonometricas nos triangulos
trigono_metria
 
Exercícios Trigonométria
Exercícios TrigonométriaExercícios Trigonométria
Exercícios Trigonométria
Carlos Claro Claro
 
Trigonometria – exercicios resolvidos ângulos de triângulos
Trigonometria – exercicios resolvidos ângulos de triângulosTrigonometria – exercicios resolvidos ângulos de triângulos
Trigonometria – exercicios resolvidos ângulos de triângulos
trigono_metria
 
2972270 matematica-exercicios-resolvidos-geometria-areas-i
2972270 matematica-exercicios-resolvidos-geometria-areas-i2972270 matematica-exercicios-resolvidos-geometria-areas-i
2972270 matematica-exercicios-resolvidos-geometria-areas-i
Nuno Cruz
 
Resolução da lista 1 quadriláteros
Resolução da lista 1   quadriláterosResolução da lista 1   quadriláteros
Resolução da lista 1 quadriláteros
Ariosvaldo Carvalho
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Secretaria de Estado de Educação do Pará
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
Clarice Leclaire
 
Solucoes comentadas matematica_uerj_univ
Solucoes comentadas matematica_uerj_univSolucoes comentadas matematica_uerj_univ
Solucoes comentadas matematica_uerj_univ
Oswaldo Stanziola
 
Trigonometria senos - cossenos e tangentes
Trigonometria   senos - cossenos e tangentesTrigonometria   senos - cossenos e tangentes
Trigonometria senos - cossenos e tangentes
André Luís Nogueira
 
Mat bas16 medidas de angulos
Mat bas16   medidas de angulosMat bas16   medidas de angulos
Mat bas16 medidas de angulos
CarolGuti
 
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
Vídeo Aulas Apoio
 
12 areas
12 areas12 areas
Geometria plana mestre_miyagi_editora_xyz
Geometria plana mestre_miyagi_editora_xyzGeometria plana mestre_miyagi_editora_xyz
Geometria plana mestre_miyagi_editora_xyz
imperador Bruno Lafaeti
 
Poligonos inscritos
Poligonos inscritosPoligonos inscritos
Poligonos inscritos
Antonio Carneiro
 
Ap matemática m3
Ap matemática m3Ap matemática m3
Ap matemática m3
trigono_metrico
 

Mais procurados (20)

Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
 
Estudo de geometria plana corrigida
Estudo de geometria plana   corrigidaEstudo de geometria plana   corrigida
Estudo de geometria plana corrigida
 
Lista semelhança 2011
Lista semelhança 2011Lista semelhança 2011
Lista semelhança 2011
 
Matemática exercícios resolvidos - 01 m1 geometria métrica plana
Matemática   exercícios resolvidos - 01 m1 geometria métrica planaMatemática   exercícios resolvidos - 01 m1 geometria métrica plana
Matemática exercícios resolvidos - 01 m1 geometria métrica plana
 
Apostila de geometria plana exercícios resolvidos - crbrasil
Apostila de geometria plana   exercícios resolvidos - crbrasilApostila de geometria plana   exercícios resolvidos - crbrasil
Apostila de geometria plana exercícios resolvidos - crbrasil
 
Mat relacoes trigonometricas nos triangulos
Mat relacoes trigonometricas nos triangulosMat relacoes trigonometricas nos triangulos
Mat relacoes trigonometricas nos triangulos
 
Exercícios Trigonométria
Exercícios TrigonométriaExercícios Trigonométria
Exercícios Trigonométria
 
Trigonometria – exercicios resolvidos ângulos de triângulos
Trigonometria – exercicios resolvidos ângulos de triângulosTrigonometria – exercicios resolvidos ângulos de triângulos
Trigonometria – exercicios resolvidos ângulos de triângulos
 
2972270 matematica-exercicios-resolvidos-geometria-areas-i
2972270 matematica-exercicios-resolvidos-geometria-areas-i2972270 matematica-exercicios-resolvidos-geometria-areas-i
2972270 matematica-exercicios-resolvidos-geometria-areas-i
 
Resolução da lista 1 quadriláteros
Resolução da lista 1   quadriláterosResolução da lista 1   quadriláteros
Resolução da lista 1 quadriláteros
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 
Solucoes comentadas matematica_uerj_univ
Solucoes comentadas matematica_uerj_univSolucoes comentadas matematica_uerj_univ
Solucoes comentadas matematica_uerj_univ
 
Trigonometria senos - cossenos e tangentes
Trigonometria   senos - cossenos e tangentesTrigonometria   senos - cossenos e tangentes
Trigonometria senos - cossenos e tangentes
 
Mat bas16 medidas de angulos
Mat bas16   medidas de angulosMat bas16   medidas de angulos
Mat bas16 medidas de angulos
 
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
 
12 areas
12 areas12 areas
12 areas
 
Geometria plana mestre_miyagi_editora_xyz
Geometria plana mestre_miyagi_editora_xyzGeometria plana mestre_miyagi_editora_xyz
Geometria plana mestre_miyagi_editora_xyz
 
Poligonos inscritos
Poligonos inscritosPoligonos inscritos
Poligonos inscritos
 
Ap matemática m3
Ap matemática m3Ap matemática m3
Ap matemática m3
 

Destaque

Ap geometria plana resolvidos
Ap geometria plana resolvidosAp geometria plana resolvidos
Ap geometria plana resolvidos
trigono_metrico
 
Gabarito do 2º teste de geometria
Gabarito do 2º teste de geometriaGabarito do 2º teste de geometria
Gabarito do 2º teste de geometria
Professor Carlinhos
 
Mat angulos
Mat angulosMat angulos
Mat angulos
trigono_metria
 
Fundamentos da Matematica Elementar 9 geometria plana
Fundamentos da Matematica Elementar 9 geometria planaFundamentos da Matematica Elementar 9 geometria plana
Fundamentos da Matematica Elementar 9 geometria plana
Pedro Santos
 
Aula 02 conjuntos
Aula 02   conjuntosAula 02   conjuntos
Aula 02 conjuntos
Professor Serginho
 
Exercícios contrução de bissetrizes
Exercícios   contrução de bissetrizesExercícios   contrução de bissetrizes
Exercícios contrução de bissetrizes
marina_cordova
 
Aula 02 polígonos - exercicios
Aula 02   polígonos - exerciciosAula 02   polígonos - exercicios
Aula 02 polígonos - exercicios
Jeane Carvalho
 
Lista de exercícios 1º em - áreas
Lista de exercícios   1º em - áreasLista de exercícios   1º em - áreas
Lista de exercícios 1º em - áreas
Colégio Parthenon
 
atividades áreas
atividades áreas atividades áreas
atividades áreas
Frank Junior
 
Questões resolvidas de matemática
Questões resolvidas de matemática  Questões resolvidas de matemática
Questões resolvidas de matemática
Celso do Rozário Brasil Gonçalves
 
Exercícios resolvidos de geometria plana triângulos retângulos - celso brasil
Exercícios resolvidos de geometria plana   triângulos retângulos - celso brasilExercícios resolvidos de geometria plana   triângulos retângulos - celso brasil
Exercícios resolvidos de geometria plana triângulos retângulos - celso brasil
Celso do Rozário Brasil Gonçalves
 
Soma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabaritoSoma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabarito
CIEP 456 - E.M. Milcah de Sousa
 

Destaque (12)

Ap geometria plana resolvidos
Ap geometria plana resolvidosAp geometria plana resolvidos
Ap geometria plana resolvidos
 
Gabarito do 2º teste de geometria
Gabarito do 2º teste de geometriaGabarito do 2º teste de geometria
Gabarito do 2º teste de geometria
 
Mat angulos
Mat angulosMat angulos
Mat angulos
 
Fundamentos da Matematica Elementar 9 geometria plana
Fundamentos da Matematica Elementar 9 geometria planaFundamentos da Matematica Elementar 9 geometria plana
Fundamentos da Matematica Elementar 9 geometria plana
 
Aula 02 conjuntos
Aula 02   conjuntosAula 02   conjuntos
Aula 02 conjuntos
 
Exercícios contrução de bissetrizes
Exercícios   contrução de bissetrizesExercícios   contrução de bissetrizes
Exercícios contrução de bissetrizes
 
Aula 02 polígonos - exercicios
Aula 02   polígonos - exerciciosAula 02   polígonos - exercicios
Aula 02 polígonos - exercicios
 
Lista de exercícios 1º em - áreas
Lista de exercícios   1º em - áreasLista de exercícios   1º em - áreas
Lista de exercícios 1º em - áreas
 
atividades áreas
atividades áreas atividades áreas
atividades áreas
 
Questões resolvidas de matemática
Questões resolvidas de matemática  Questões resolvidas de matemática
Questões resolvidas de matemática
 
Exercícios resolvidos de geometria plana triângulos retângulos - celso brasil
Exercícios resolvidos de geometria plana   triângulos retângulos - celso brasilExercícios resolvidos de geometria plana   triângulos retângulos - celso brasil
Exercícios resolvidos de geometria plana triângulos retângulos - celso brasil
 
Soma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabaritoSoma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabarito
 

Semelhante a Prof.calazans (geom.plana) questões resolvidas 01

Apostila mt maurion
Apostila mt maurionApostila mt maurion
Apostila mt maurion
Celso Berredo
 
Geometria Plana - Exercícios
Geometria Plana - ExercíciosGeometria Plana - Exercícios
Geometria Plana - Exercícios
Everton Moraes
 
CfSd 2016 matematica - 3
CfSd 2016   matematica - 3CfSd 2016   matematica - 3
CfSd 2016 matematica - 3
profNICODEMOS
 
Lista de Matemática 01
Lista de Matemática 01Lista de Matemática 01
Lista de Matemática 01
Arthur Prata
 
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
alexandrevipper04
 
âNgulos
âNgulosâNgulos
âNgulos
Janainee
 
Lei dos cossenos
Lei dos cossenosLei dos cossenos
Lei dos cossenos
nyltton
 
2ª lista de geometria
2ª lista de geometria2ª lista de geometria
2ª lista de geometria
Professor Carlinhos
 
1 ano trigonometria no triângulo retângulo - 2008
1 ano   trigonometria no triângulo retângulo - 20081 ano   trigonometria no triângulo retângulo - 2008
1 ano trigonometria no triângulo retângulo - 2008
Erick Fernandes
 
Td 7 matemática iii
Td 7   matemática iiiTd 7   matemática iii
Td 7 matemática iii
MatheusMesquitaMelo
 
Teste1t23uresol
Teste1t23uresolTeste1t23uresol
Teste1t23uresol
Wilson Freire
 
8º ano geometria
8º ano geometria8º ano geometria
8º ano geometria
Marisa Carnieto Santos
 
Lista01
Lista01Lista01
Gráficos das funções
Gráficos das funçõesGráficos das funções
Gráficos das funções
adalvo
 
Geometria plana
Geometria planaGeometria plana
Geometria plana
arianechaves
 
Gabarito da 8ª lista de geometria
Gabarito da 8ª lista de geometriaGabarito da 8ª lista de geometria
Gabarito da 8ª lista de geometria
Professor Carlinhos
 
Geometria plana areas
Geometria  plana areasGeometria  plana areas
Geometria plana areas
Alcides Cabral
 
Questões geom. plana
Questões geom. planaQuestões geom. plana
Questões geom. plana
Ana Paula Silva
 
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
Madjard de Sousa
 
M (1)
M (1)M (1)

Semelhante a Prof.calazans (geom.plana) questões resolvidas 01 (20)

Apostila mt maurion
Apostila mt maurionApostila mt maurion
Apostila mt maurion
 
Geometria Plana - Exercícios
Geometria Plana - ExercíciosGeometria Plana - Exercícios
Geometria Plana - Exercícios
 
CfSd 2016 matematica - 3
CfSd 2016   matematica - 3CfSd 2016   matematica - 3
CfSd 2016 matematica - 3
 
Lista de Matemática 01
Lista de Matemática 01Lista de Matemática 01
Lista de Matemática 01
 
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
 
âNgulos
âNgulosâNgulos
âNgulos
 
Lei dos cossenos
Lei dos cossenosLei dos cossenos
Lei dos cossenos
 
2ª lista de geometria
2ª lista de geometria2ª lista de geometria
2ª lista de geometria
 
1 ano trigonometria no triângulo retângulo - 2008
1 ano   trigonometria no triângulo retângulo - 20081 ano   trigonometria no triângulo retângulo - 2008
1 ano trigonometria no triângulo retângulo - 2008
 
Td 7 matemática iii
Td 7   matemática iiiTd 7   matemática iii
Td 7 matemática iii
 
Teste1t23uresol
Teste1t23uresolTeste1t23uresol
Teste1t23uresol
 
8º ano geometria
8º ano geometria8º ano geometria
8º ano geometria
 
Lista01
Lista01Lista01
Lista01
 
Gráficos das funções
Gráficos das funçõesGráficos das funções
Gráficos das funções
 
Geometria plana
Geometria planaGeometria plana
Geometria plana
 
Gabarito da 8ª lista de geometria
Gabarito da 8ª lista de geometriaGabarito da 8ª lista de geometria
Gabarito da 8ª lista de geometria
 
Geometria plana areas
Geometria  plana areasGeometria  plana areas
Geometria plana areas
 
Questões geom. plana
Questões geom. planaQuestões geom. plana
Questões geom. plana
 
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
 
M (1)
M (1)M (1)
M (1)
 

Mais de ProfCalazans

prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
ProfCalazans
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentadoprof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
ProfCalazans
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 03
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 03prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 03
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 03
ProfCalazans
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
ProfCalazans
 
prof.Calazans(Mat. e suas tecnologias)-Simulado comentado 01
prof.Calazans(Mat. e suas tecnologias)-Simulado comentado 01prof.Calazans(Mat. e suas tecnologias)-Simulado comentado 01
prof.Calazans(Mat. e suas tecnologias)-Simulado comentado 01
ProfCalazans
 
Licores caseiros
Licores caseirosLicores caseiros
Licores caseiros
ProfCalazans
 
Global, regional, and national prevalence of overweight and obesity in childr...
Global, regional, and national prevalence of overweight and obesity in childr...Global, regional, and national prevalence of overweight and obesity in childr...
Global, regional, and national prevalence of overweight and obesity in childr...
ProfCalazans
 
Arte 3D na praia
Arte 3D na praiaArte 3D na praia
Arte 3D na praia
ProfCalazans
 
Belas fotos e uma carta
Belas fotos e uma cartaBelas fotos e uma carta
Belas fotos e uma carta
ProfCalazans
 
Conhece o sr. Viriato?
Conhece o sr. Viriato?Conhece o sr. Viriato?
Conhece o sr. Viriato?
ProfCalazans
 
O amor segundo paulo de tarso
O amor segundo paulo de tarsoO amor segundo paulo de tarso
O amor segundo paulo de tarso
ProfCalazans
 
Pensar e voar (autores diversos)
Pensar e voar (autores diversos)Pensar e voar (autores diversos)
Pensar e voar (autores diversos)
ProfCalazans
 
prof.Calazans(Col.Sta.Joana) - Aulão ENEM
prof.Calazans(Col.Sta.Joana) - Aulão ENEMprof.Calazans(Col.Sta.Joana) - Aulão ENEM
prof.Calazans(Col.Sta.Joana) - Aulão ENEM
ProfCalazans
 
Significado do dia do seu nascimento
Significado do dia do seu nascimentoSignificado do dia do seu nascimento
Significado do dia do seu nascimento
ProfCalazans
 
Significado do dia do seu nascimento
Significado do dia do seu nascimentoSignificado do dia do seu nascimento
Significado do dia do seu nascimento
ProfCalazans
 
A páscoa está chegando...
A páscoa está chegando...A páscoa está chegando...
A páscoa está chegando...
ProfCalazans
 
Lição de perseverança
Lição de perseverançaLição de perseverança
Lição de perseverança
ProfCalazans
 
Esta semana
Esta semanaEsta semana
Esta semana
ProfCalazans
 
Caminho de luz
Caminho de luzCaminho de luz
Caminho de luz
ProfCalazans
 
As três peneiras
As três peneirasAs três peneiras
As três peneiras
ProfCalazans
 

Mais de ProfCalazans (20)

prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentadoprof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 03
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 03prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 03
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 03
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
 
prof.Calazans(Mat. e suas tecnologias)-Simulado comentado 01
prof.Calazans(Mat. e suas tecnologias)-Simulado comentado 01prof.Calazans(Mat. e suas tecnologias)-Simulado comentado 01
prof.Calazans(Mat. e suas tecnologias)-Simulado comentado 01
 
Licores caseiros
Licores caseirosLicores caseiros
Licores caseiros
 
Global, regional, and national prevalence of overweight and obesity in childr...
Global, regional, and national prevalence of overweight and obesity in childr...Global, regional, and national prevalence of overweight and obesity in childr...
Global, regional, and national prevalence of overweight and obesity in childr...
 
Arte 3D na praia
Arte 3D na praiaArte 3D na praia
Arte 3D na praia
 
Belas fotos e uma carta
Belas fotos e uma cartaBelas fotos e uma carta
Belas fotos e uma carta
 
Conhece o sr. Viriato?
Conhece o sr. Viriato?Conhece o sr. Viriato?
Conhece o sr. Viriato?
 
O amor segundo paulo de tarso
O amor segundo paulo de tarsoO amor segundo paulo de tarso
O amor segundo paulo de tarso
 
Pensar e voar (autores diversos)
Pensar e voar (autores diversos)Pensar e voar (autores diversos)
Pensar e voar (autores diversos)
 
prof.Calazans(Col.Sta.Joana) - Aulão ENEM
prof.Calazans(Col.Sta.Joana) - Aulão ENEMprof.Calazans(Col.Sta.Joana) - Aulão ENEM
prof.Calazans(Col.Sta.Joana) - Aulão ENEM
 
Significado do dia do seu nascimento
Significado do dia do seu nascimentoSignificado do dia do seu nascimento
Significado do dia do seu nascimento
 
Significado do dia do seu nascimento
Significado do dia do seu nascimentoSignificado do dia do seu nascimento
Significado do dia do seu nascimento
 
A páscoa está chegando...
A páscoa está chegando...A páscoa está chegando...
A páscoa está chegando...
 
Lição de perseverança
Lição de perseverançaLição de perseverança
Lição de perseverança
 
Esta semana
Esta semanaEsta semana
Esta semana
 
Caminho de luz
Caminho de luzCaminho de luz
Caminho de luz
 
As três peneiras
As três peneirasAs três peneiras
As três peneiras
 

Prof.calazans (geom.plana) questões resolvidas 01

  • 1. a)19041'52" b)19041'08" c)19040'52" d)19040'08" Solução: 330 53' 41" - 140 12' 49" 0 01.(EsSA/1977)O ângulo de 2 08'25" equivale a: a)9.180" b)2.825" c)625" Como 53’ = 52’ + 1’ = 52’ + 60”, vem: d)7.705" 330 52’ 101” -140 12’ 49” 190 40’ 52” Solução: 20 x60 120’ + 08’ 128’ x60 7680” + 25” 7705” Resposta:Alternativa C 04.(EEAR/2005)O 86°28’36’’ é igual a a) 46°52’24’’. b)346°54’24’’. da medida c)345°52’24’’ d)345°54’24’’ Solução: Resposta:Alternativa D 86°28’36’’ x4 0 344 112’144” 02.(EsSA/1979)Efetuando 14028' + 15047" + 38056'23", encontramos: a)67024'10" b)69011'23" quádruplo c)68024'10" d)67025'10" Como 144” = 120” + 24” = 2’ + 24” , vem: Solução: 3440112’144” = 3440114’24” 140 28' + 150 47" 380 56' 23" 670 131’ 23” Como 114’ = 60’ + 54’ = 10 + 54’ , vem: 3440114’24” = 345054’24” Resposta:Alternativa D Como 131’ = 120’ + 11’ = 20 + 11’, temos: 670131’23” = 69011’23” 05.(EsSA/1975)Dividindo o ângulo de 320 em 6 partes iguais, obtemos: Resposta:Alternativa B a)5030' 03.(EsSA/1981)Sendo A = 33053'41" e B = 14012'49", o resultado da operação A – B é: Solução: 1 b)6020' c)4020' d)5020'
  • 2. 320 6 20 50200 x60 120’ 00’ onde x =  x = 40 Resposta:Alternativa D 06.(EEAR/2006)O valor da expressão (27°38'+18°42'20")●3 − 50°52'38" , na forma mais simplificada possível, é a)139°59'20" . b)138°51'38" . => x = 20● => x = 0 Resposta:Alternativa B 08.(EEAR/2013)Ao expressar rad. em graus, obtém-se: a)1700 c)88°51'38" . d)88°8'22" . b)2200 c)2800 d)3200 Solução: Solução: 900 -----------  rad (27°38'+ 18°42'20")●3 − 50°52'38" rad. x ---------- I) 27°38'+ 18°42'20" = 45080’20” = 46020’20” II) 46020’20”x3 = 138060’60” 0 onde x = 0 III) 138 60’60”- 50°52'38" = 88 08’22” Resposta:Alternativa D x = 160● 07.(EEAR/2007)Dois ângulos medem rad. e b)40 c)50 Solução: rad. = rad. <  x = 320 a)142° 30' b)142° 40' c)142° rad.,pois rad. Sendo assim , d)141° 30' e)141° 40' Solução: temos: 11 900 -----------  10 rad x ---------- 0 09.O ângulo convexo formado pelos ponteiros das horas e dos minutos às 10 horas e 15 minutos é: d)60 O menor desses dois ângulos é => Resposta:Alternativa D rad. O menor deles, em graus, mede: a)30 => x = rad. 12 1 2 3 Se em 1 hora = 60 minutos o ponteiro das horas anda 300 , em 15 minutos ele andará: 2
  • 3. = Como = 3x, vem: = 7030min.  = 3●400  Logo, às 10 horas e 15 minutos o ângulo formado pelos ponteiros das horas e dos minutos é : = 1200 Resposta:Alternativa C 11.(EEAR/2006)Dadas duas semi-retas colineares opostas OA e OB , e um ponto C não pertencente à reta AB, é correto afirmar que os ângulos AÔC e CÔB são 5●300 – 7030’ 1500 - 7030’ 149060’ - 7030’ a) suplementares e não consecutivos. b) consecutivos e não suplementares. c) não consecutivos e não suplementares. d) consecutivos e suplementares. 142030’ Resposta:Alternativa A Solução: 10.(EEAR/2006)De acordo com a figura, é falsa a afirmação:   A a)> 100 0 b)<1500 0 B  12.(EEAR/2009)Dois ângulos são adjacentes se eles forem consecutivos e Solução: a)os lados de um forem semi-retas coincidentes com os lados do outro. Temos: I)x + y = 2x – y => y + y = 2x – x II) = 4x – 2y => b)os lados de um forem as semi-retas opostas aos lados do outro.  2y = x  = 4x – x  = 3x c)não possuírem pontos internos comuns d)possuírem pontos internos comuns. III) + x + y = 1800(●2) Solução: 2 + 2x + 2y = 3600 => 2●3x + 2x + x = 3600 Dois ângulos são adjacentes quando têm o mesmo vértice, um lado em comum e seus interiores não se interceptam(não têm pontos internos comuns). Resposta:Alternativa C 6x + 2x + x = 3600 => 9x = 3600(÷9)  x = 40 O Resposta:Alternativa D < <138 d)1120 < <1450 c)125 0 C 0 3
  • 4. 13.(EEAR/2009)Na figura , AOC é um ângulo raso.O valor de x é 2x = 400(÷2)  x = 200 Portanto, o ângulo EOC mede: 900 + 200 1100 a)133032’ b) 133028’ Resposta:Alternativa D c) 134032’ d) 134028’ Solução: 15.(EsSA/1976)A metade do complemento de um ângulo é 30030'. Esse ângulo mede: Da figura, temos: a)270 x + 46028’ = 1800 . Logo, vem: Solução: x + 46028’ = 179060’ Sendo o ângulo em questão igual a x, temos: x = 179060’ - 46028’  b)390 c)29030' d)290 = 30030’ x = 133032’ Resposta:Alternativa A 900 – x = 2(30030’) => 900 – x = 60060’ 14.(EEAR/2007)Na figura, OC é bissetriz de BOD . Então o ângulo EOC mede Como 60’ = 10 , vem: 900 – x = 610 => 900 – 610 = x 29 0 = x Resposta:Alternativa D a)140° b)130° c)120° 16.(EsSA/2003) O suplemento do ângulo 45º17’27” foi dividido em três partes iguais. A medida de cada parte é: d)110° a)22º54’41” b)44º54’11” c)54º44’33” Solução: Como OC é bissetriz do ângulo BOD,temos: Ângulo DOC = Ângulo COB = d)34º42’33” e)11º34’51” Solução:   O suplemento do ângulo 45º17’27” é igual a: Logo, vem: 1800 - 45º17’27” 900 + 2x = 1300 => 2x = 1300 - 900 179º60’ - 45º17’27” 4
  • 5. 179º59’60” - 45º17’27” 19.(EEAR/2008)A razão entre o complemento e o suplemento de um ângulo é 134042’33” mede Dividindo este ângulo por 3, obtemos: a) 28° 0 134 42’33” 3 140 44054’11” 20 x60 120’ +42’ 162’ 12’ 0’ + 33” 33” 0” c)43° d)54° Sendo o ângulo igual a x, temos: = 2(1800 – x) = 7(900 – x) 3600 – 2x = 6300 – 7x => -2x + 7x = 6300 - 3600 5x = 2700(÷5) c)300  x = 54 0 Resposta:Alternativa D 17.(EsSA/1978)O suplemento de um ângulo excede o dobro do seu complemento de 30. A medida desse ângulo é: b)500 b)32° Solução: Resposta:Alternativa B a)600 . Esse ângulo 20.(EEAR/2008)Se OP é bissetriz de AÔB, então o valor de x é d)450 Solução: Sendo o ângulo igual a x, temos: 1800 – x = 2(900 – x) + 300 a) 10°. 1800 – x = 1800 – 2x + 300 - x + 2x = 30 0  x = 30 c) 15°. d) 18°. Solução: 0 Como OP é bissetriz do ângulo AOB, temos: Resposta:Alternativa C 3x – 50 = 2x + 100 18.(EsSA/1982) Se dois ângulos são suplementares e a medida de um deles é triplo da medida do outro, então as medidas dos ângulos são: a)20 e 60 b)25 e 75 b)12°. 3x – 2x = 100 + 50  x = 15 Resposta:Alternativa C c)30 e 90 d)45 e 135 5 0
  • 6. 21.(EEAR/2010)A bissetriz de um ângulo AOB forma 600 com o lado OB.Assim,AOB pode ser classificado como a)80030’ b)74030’ c)35030’ a)reto Solução: b)raso c)agudo d)obtuso d)24030’ e)16030’ Temos: Solução: B 60 C 0 600 A O => 5a = 900 – a => 5a + a = 900 I)a = 6a = 900(÷6)  a = 15 => 9b = 1800 – b => II) b = Como OC é bissetriz o ângulo AOB mede 120 0, portanto ele é obtuso. 0 b = 18 Resposta:Alternativa D 9b + b = 1800 => 10b = 1800(÷10) 22.A medida do ângulo formado pelas bissetrizes de dois ângulos adjacentes que medem, respectivamente, 24º30’ e 105º30’ é igual a: A medida do ângulo formado pelas bissetrizes de dois ângulos adjacentes é igual a semisoma das medidas dos mesmos.Sendo  o ângulo em questão, temos: a)760 b)650 c)580 d)860 e)590 0 = Solução: = A medida do ângulo formado pelas bissetrizes de dois ângulos adjacentes é igual a semisoma das medidas dos mesmos.Sendo x o ângulo em questão, temos: 330 2 130 16030’ 10 x60 60’ 00’ x= x= => x =  x = 65 0   = 16 30' 0 Resposta:Alternativa E  24.(EsSA/1981) Se dois ângulos â e b são  opostos pelo vértice, então â e b são necessariamente: Resposta:Alternativa B 23(EEAR/1997)Dois ângulos adjacentes a e b, medem, respectivamente, 1/5 do seu complemento e 1/9 do seu suplemento.Assim sendo, a medida do ãngulo formado por suas bissetrizes é: a)suplementares c)adjacentes 6 b)replementares d)congruentes
  • 7. Solução: Resposta:Alternativa A Se dois ângulos são opostos pelo vértice, eles são congruentes. 26.O triplo do complemento de um ângulo é igual à terça parte do suplemento deste ângulo. Este ângulo mede: Resposta:Alternativa D a) a)620 13’ 20’’ b)710 23’ 10’’ c)420 53’ 30’’ rad rad e) rad Sendo x o ângulo em questão,temos: Sendo x o ângulo em questão,temos: 2(900–x) + (1800 - 4(900–x) + 1800 - 3(900 – x) = ) = 1300(●2) 3●3(900 – x) =1800 – x = 2600 (●2) Como 900 = 8(900–x) + 3600 - x = 5200 7200 – 8x + 3600 – x = 5200 10800 – 9x = 5200 9( => 10800 – 5200 = 9x – x) = => 9(900 – x) =1800 – x radianos e 1800 =  – x => – 9x =  radianos,vem:  – x(●2) x = 2x => 2x + 18x 5600 = 9x => x =  d) Solução: Solução: 5600 200 20 x60 120’ 30’ 3’ x60 180” 00” rad c) d)540 18’ 24’’ e)630 13’ 23’’ rad b) 25.O ângulo cujo dobro do seu complemento, mais a metade do suplemento de sua metade é igual a 130º,mede:  = x => 9 62013’20” x = rad Resposta:Alternativa A 27.A soma de dois ângulos explementares é igual a 2350. A medida do menor desses ângulos é: a)360 11’ b)260 34’ c)270 30’ Solução: 0 x = 62 13’20” 7 d)380 40’ e)540 48’
  • 8. a)650 Dois ângulos são explementares quando a diferença positiva entre as suas medidas é igual a um ângulo raso.Sendo x e y os ângulos em questão, temos: I)x – y = 1800  x = 180 0 => +y 1150 - 900 250 Resposta:Alternativa D 30.O ângulo cujo replemento do suplemento do seu complemento é igual a oito vezes o valor do mesmo, mede: y= 550 2 150 27030’ 10 x60 60’ 00’ a)300 b)400 c)500 d)600 e)650 Solução: O replemento do suplemento do complemento de um ângulo x é dado por 2700 – x.Sendo assim, temos:  y = 27 30’ 0 2700 – x = 8x 0 Como x = 180 + y,vem: x = 1800 + 27030’ 2700 = 8x + x => 2700 = 9x(÷9)  x = 207 30’ 0 0 = x 31.Na figura abaixo a = c = 300 e a + b + c = 1200.Então x é: 28.(EsSA/1976)O suplemento do complemento de um ângulo de 30 é: b)120  30 Resposta:Alternativa A Resposta:Alternativa C a)60 d)250 O complemento do suplemento de um ângulo x é dado por x - 900.Sendo assim, temos: 1800 + y + y = 2350 => 2y = 2350 - 1800 2y = 55 c)350 Solução: II)x + y = 2350 0 b)1800 c)90 d)110 Solução: O suplemento do complemento de um ângulo x é dado por 900 + x.Sendo assim,temos: a)agudo 900 + 300 Solução: 1200 b)obtuso c)reto d)raso Temos: Resposta:Alternativa B a = c = 300.Logo, a + c = 600.Como a + b + c = 1200, podemos concluir que b = 600.A 29.(EsSA/1979)O complemento do suplemento de um ângulo de 115 mede: 8
  • 9. medida do ângulo x é igual a a + b.Portanto, o ângulo x mede:300 + 600 = 900 Resposta:Alternativa B 33.(EEAR/2010)Sejam três ângulos adjacentes AOB, BOC e COD tais que AOB é o triplo de COD, e este é a metade de BOC.Se AOD é um ângulo raso,então a medida de AOB é Resposta:Alternativa C 32.(EsSA/1988) Na figura x e y são ângulos retos. Então: a)1200 b)900 c)600 d)450 Solução: a x C y B   D b  O A Sendo  e q, respectivamente, as medidas dos ângulos AOB,BOC e COD, do enunciado,temos: a)a = 2b b)a = b c)a < b d)b = 2a e)b < a e =    Como AOD é um ângulo raso,vem: Solução:  = 1800 Da figura ,temos:  = 1800 => 6 = 1800(÷6) = 30 0 Como  = 3 , temos: a  = 3●300  = 900 900 – a = 900- b x Resposta:Alternativa B y b “Sonhar é fazer planos.Viver é realizá-los.” 900 – a = 900- b => b = a 9