SlideShare uma empresa Scribd logo
1 de 51
Ciclo Trigonométrico eCiclo Trigonométrico e
Razões TrigonométricasRazões Trigonométricas
ConceitosConceitos
anterioresanteriores
Círculo TrigonométricoCírculo Trigonométrico
OO ciclo trigonométricociclo trigonométrico é representado por umé representado por um
círculocírculo que apresentaque apresenta raioraio igual aigual a 11 e cujae cuja
circunferênciacircunferência éé orientadaorientada..
xx
yy
xx
yy
º180
º90
º270
º0
º360
Procuramos a localização de um ângulo, em
ordem crescente, no sentido anti-horário.
O que significa aO que significa a
representação de umrepresentação de um ânguloângulo
negativonegativo??
Significa que aSignifica que a localizaçãolocalização dele deve serdele deve ser
procurada noprocurada no sentidosentido contrário (contrário (horáriohorário).).
Exemplos:Exemplos:
xx
yy
º30−
º30
Determinação de quadrantesDeterminação de quadrantes
AsAs retasretas xx ee yy dividemdividem oo círculocírculo trigonométricotrigonométrico
emem 44 partes, chamadaspartes, chamadas quadrantesquadrantes..
4º Q4º Q3º Q3º Q
2º Q2º Q 1º Q1º Q
Os quadrantes apresentamOs quadrantes apresentam
sempre a mesma posiçãosempre a mesma posição
no círculo trigonométrico.no círculo trigonométrico.
CicloCiclo
TrigonométricoTrigonométrico
círculocírculo r = 1r = 1
PropriedadePropriedade
ss
4 quadrantes4 quadrantes
sentidosentido
anti-horárioanti-horário
circunferênciacircunferência orientadaorientada
Unidades de medidas de umUnidades de medidas de um
ânguloângulo
 GrauGrau
Exemplos: 30º, 60º, 180ºExemplos: 30º, 60º, 180º
rad
2
,rad
5
4
,rad
4
3 πππ
 RadianoRadiano
Exemplos:Exemplos:
Como passar de grau paraComo passar de grau para
radiano?radiano?
xx
yy
π≅º180
2
º90
π
≅
2
3
º270
π
≅
π2º360 ≅
Basta fazer umaBasta fazer uma
regra de trêsregra de três,,
sabendo que:sabendo que:
π≅º180
Exemplo:Exemplo:
Passar 30º para radianos.Passar 30º para radianos.
π º180
º30x
6º180
º30
30º180
ππ
π
==
=
x
x
6
30ºLogo,
π
≅
Como passar de radiano paraComo passar de radiano para
grau?grau?
Ou fazemos umaOu fazemos uma regra de trêsregra de três, ou procedemos, ou procedemos
como no exemplo abaixo:como no exemplo abaixo:
º270
2
180.3
2
180.3
grau.pararad
2
3
Passar
==
π
90º
unidadeunidade
radianoradiano radrad
graugrau ºº
CicloCiclo
TrigonométricoTrigonométrico
círculocírculo r = 1r = 1
PropriedadePropriedade
ss
4 quadrantes4 quadrantes
sentidosentido
anti-horárioanti-horário
circunferênciacircunferência orientadaorientada
arcosarcos
ExercícioExercício
1) Apresente o quadrante onde estão localizados1) Apresente o quadrante onde estão localizados
os seguintes arcos:os seguintes arcos:
280º-c)
5
7
b)138ºa)
π
SoluçãoSolução
quadrante1º280º-c)
quadrante3º252º
5
180.7
5
7
b)
quadrante2º138ºa)
⇒
⇒=⇒
⇒
π
xx
yy
º180
º90
º270
º0
º360
º138
5
7π
º280−
Arcos ou Ângulos CôngruosArcos ou Ângulos Côngruos
(Congruentes)(Congruentes)
Ângulos côngruosÂngulos côngruos sãosão ângulosângulos que apresentam aque apresentam a
mesma extremidademesma extremidade e número dee número de voltas diferentesvoltas diferentes..
Exemplo:Exemplo:
...º960º600º240 ≅≅≅
...º780º420º60 ≅≅≅...º840º480º120 ≅≅≅
...º1020º660º300 ≅≅≅
OsOs ângulos côngruosângulos côngruos que distam 60ºque distam 60º
do ângulo de 0º, são:do ângulo de 0º, são:
ouou
...º780º420º60 ≅≅≅
º60º360. +K
Fórmula GeralFórmula Geral
Para medidas emPara medidas em grausgraus..
Para medidas emPara medidas em radianosradianos..
KK  número de voltasnúmero de voltas
 menor determinação positivamenor determinação positiva
α+Kº.360
απ +K.2
α
congruênciacongruência
número denúmero de
voltas diferentesvoltas diferentes
mesmamesma
extremidadeextremidade
definiçãodefinição
απ +K.2
α+Kº.360
fórmulafórmula
geralgeral
unidadeunidade
radianoradiano radrad
graugrau ºº
CicloCiclo
TrigonométricoTrigonométrico
círculocírculo r = 1r = 1
PropriedadePropriedade
ss
4 quadrantes4 quadrantes
sentidosentido
anti-horárioanti-horário
circunferênciacircunferência orientadaorientada
arcosarcos
Menor DeterminaçãoMenor Determinação
PositivaPositiva
Menor determinação positivaMenor determinação positiva é oé o ânguloângulo queque
apresenta oapresenta o menor módulomenor módulo em um conjunto deem um conjunto de
arcos côngruos.arcos côngruos.
Exemplo:Exemplo:
A menor determinação positiva é 60º.A menor determinação positiva é 60º.
...º780º420º60 ≅≅≅
ParaPara calcular a MDPcalcular a MDP de umde um
ângulo, bastaângulo, basta
dividirdividir esse ânguloesse ângulo por 360ºpor 360º. O. O restoresto dessadessa
divisão é adivisão é a MDPMDP..
Exemplo:Exemplo:
A MDP de 1117º é 37º.A MDP de 1117º é 37º.
Logo, a fórmula geral desses arcos éLogo, a fórmula geral desses arcos é
11171117 360360
333737
º37º360 +K
Menor determinaçãoMenor determinação
negativanegativa
MDN = MDP – 360ºMDN = MDP – 360º
Exemplo:Exemplo:
Menor determinação negativa de 1117ºMenor determinação negativa de 1117º
MDP = 37ºMDP = 37º
MDN = 37º - 360º = -323ºMDN = 37º - 360º = -323º
ExercícioExercício
2) Apresente a fórmula geral, em graus,2) Apresente a fórmula geral, em graus,
dos arcos côngruos a :dos arcos côngruos a :
5
35π
SoluçãoSolução
º1260
5
180.35
5
35
==
π
12601260 360360
33180180
º180º.360 +⇒ K
Lembrando:Lembrando:
Seno de um arcoSeno de um arco
''
1
'
OyMx
Mx
hipotenusa
opostocateto
sena ====
sensen
Dependendo do quadrante, oDependendo do quadrante, o
sinalsinal dodo senoseno
pode serpode ser positivo ou negativopositivo ou negativo..
Exemplo 1: 30º , 150º , 210º , 330ºExemplo 1: 30º , 150º , 210º , 330º
2
1
º30 =sen
2
1
º150 =sen
2
1
º210 −=sen
2
1
º330 −=sen
30º30º150º150º
210º210º 330º330º
sensen
Exemplo 2: 45º , 135º , 225º , 315ºExemplo 2: 45º , 135º , 225º , 315º
2
2
º45 =sen
2
2
º135 =sen
2
2
º225 −=sen
2
2
º315 −=sen
45º45º135º135º
225º225º 315º315º
sensen
sensen
60º60º120º120º
240º240º 300º300º
Exemplo 3: 60º , 120º , 240º , 300ºExemplo 3: 60º , 120º , 240º , 300º
2
3
º60 =sen
2
3
º120 =sen
2
3
º240 −=sen 2
3
º300 −=sen
ExercícioExercício
3) (EEAR-SP) O seno de é igual a:3) (EEAR-SP) O seno de é igual a:
9
122π
9
4
sen-d)
9
5
sen-c)
9
4
senb)
9
5
sena)
π
π
π
π
SoluçãoSolução
280º2440ºMDP
º2440
9
180.122
9
122
=
==
π
xx
yy
º180
º90
º270
º0
º360
º280
º80
9
180.4
9
4
º100
9
180.5
9
5
==
==
π
π
24402440 360360
66280280
D.Letra
9
4
sen
9
122
senLogo,
ππ
−=
Cosseno de um arcoCosseno de um arco
'
1
'
cos Ox
Ox
hipotenusa
adjacentecateto
a ===
coscos
Dependendo do quadrante, oDependendo do quadrante, o sinalsinal dodo
cossenocosseno
também pode sertambém pode ser positivo oupositivo ou negativonegativo..
Exemplo 1: 30º , 150º , 210º , 330ºExemplo 1: 30º , 150º , 210º , 330º
2
3
º30cos =2
3
º150cos −=
2
3
º210cos −=
2
3
º330cos =
30º30º150º150º
210º210º 330º330º
sensen
coscos
Exemplo 2: 45º , 135º , 225º , 315ºExemplo 2: 45º , 135º , 225º , 315º
2
2
º45cos =
2
2
º135cos −=
2
2
º225cos −=
2
2
º315cos =
45º45º135º135º
225º225º 315º315º
sensen
coscos
Exemplo 3: 60º , 120º , 240º , 300ºExemplo 3: 60º , 120º , 240º , 300º
2
1
º60cos =
2
1
º120cos −=
2
1
º240cos −=
2
1
º300cos =
sensen
60º60º120º120º
240º240º 300º300º
coscos
Importante saber!Importante saber!
xx
yy
π≅º180
2
º90
π
≅
2
3
º270
π
≅
π2º360 ≅
10ºcos
00ºsen
=
=
0270ºcos
1-270ºsen
=
=
1180ºcos
0180ºsen
−=
=
090ºcos
190ºsen
=
=
ExercícioExercício
2
3
e)
2
13
d)
0c)
3-b)
2-a)
:aigualé
6
29
cos3720ºsensomaASE)-(Unit4)
+
−
+
π
SoluçãoSolução
2
3
60ºsen120ºsen ==⇒
º870
6
180.29
6
29
==
π
cletra0
2
3
2
3
6
29
cos3720ºsen ⇒=−=+
π
37203720 360360
1010120120
870870 360360
22150150 2
3
-30ºcos-150ºcos ==⇒
ExercícioExercício
324e)
24-3d)
423c)
23-4b)
423a)
:éº3015cos
2-m
1m
sentençaasatisfazquemrealnúmeroOCE)-(Unifor5)
+
−
+
=
+
SoluçãoSolução
2
2
-45ºcos-135ºcos ==⇒
( )
( )
c.Letra
423
2
826
24
424224
22
22
22
222
−=
−
=
=
−
−++−
=
=
−
−
+
+−
=
m
m
m
30153015 360360
88135135
( )
22
222
22222
22222
22222
2
2
2
1
+
+−
=
+−=+
+−=+
+−=+
−=
−
+
m
m
mm
mm
m
m
Tangente de um arcoTangente de um arco
adjacentecateto
opostocateto
a
asen
tga ==
cos
xx
yy
sen +sen +
cos +cos +
tg +tg +
sen -sen -
cos +cos +
tg -tg -
sen -sen -
cos -cos -
tg +tg +
sen +sen +
cos -cos -
tg -tg -
ExercícioExercício
x?cosovalequanto,1,5xtg
equadrante1ºdoénãoxSe6)
=
SoluçãoSolução
⇒==
10
15
1,5xtg
13
132
13.5
1310
13
13
135
10
cos
135
10
cos
===
=
x
x
135
325
100225
1015
2
2
222
=
=
+=⇒
+=
y
y
y
y
xx
1515
1010
yy
Cotangente de um arcoCotangente de um arco
asen
acos
atg
1
acotg ==
3
4
−=xtg
Exemplo:Exemplo:
Sendo um arco x do 2º quadrante. Se ,Sendo um arco x do 2º quadrante. Se ,
entãoentão
Apresenta o mesmo sinal da tangente!
4
3
−=xtg
Exemplo:Exemplo:
Sendo um arco x do 3º quadrante. Se ,Sendo um arco x do 3º quadrante. Se ,
entãoentão
Secante de um arcoSecante de um arco
acos
1
asec =
5
3
cos −=x
Apresenta o mesmo sinal do
cosseno!
3
5
sec −=x
Exemplo:Exemplo:
Sendo um arco x do 4º quadrante. Se ,Sendo um arco x do 4º quadrante. Se ,
entãoentão
Cossecante de um arcoCossecante de um arco
asen
1
acossec =
5
4
cos =x
Apresenta o mesmo sinal do seno!
4
5
seccos =x
cosseccossec
RazõesRazões
TrigonométricasTrigonométricas
sese
cc
sensen
cotgcotg
tgtg
coco
ss
congruênciacongruência
número denúmero de
voltas diferentesvoltas diferentes
mesmamesma
extremidadeextremidade
definiçãodefinição
απ +K.2
α+Kº.360
fórmulafórmula
geralgeral
unidadeunidade
radianoradiano radrad
graugrau ºº
CicloCiclo
TrigonométricoTrigonométrico
círculocírculo r = 1r = 1
PropriedadePropriedade
ss
4 quadrantes4 quadrantes
sentidosentido
anti-horárioanti-horário
circunferênciacircunferência orientadaorientada
arcosarcos
ExercícioExercício
?tgE?cossecvalequanto
,
11
60
cotge
2
3
Se7)
αα
α
π
απ =<<
SoluçãoSolução
11
61
cossec
61
11
sen =⇒= αα
α
α
sen
1
cossec =
⇒=
60
11
xtg
61
3721
3600121
6011
2
2
222
=
=
+=⇒
+=
x
x
x
x
1111
6060
xx
α
60
11
tg
11
60
cotg =⇒= αα
BibliografiaBibliografia
 Dante, Luiz Roberto – MatemáticaDante, Luiz Roberto – Matemática
Contexto e Aplicações. 3ª edição – 2008.Contexto e Aplicações. 3ª edição – 2008.
Editora Ática – SP. Páginas: 28 a 51.Editora Ática – SP. Páginas: 28 a 51.
 Iezzi, Gelson; Dolce, Osvaldo; Périgo,Iezzi, Gelson; Dolce, Osvaldo; Périgo,
Roberto; Degenszajn, David – MatemáticaRoberto; Degenszajn, David – Matemática
(volume único). 4ª edição – 2007. Editora(volume único). 4ª edição – 2007. Editora
Atual – SP. Páginas: 236 a 241.Atual – SP. Páginas: 236 a 241.
 Imagens: google imagensImagens: google imagens

Mais conteúdo relacionado

Mais procurados

Exercícios sobre balanço patrimonial
Exercícios sobre balanço patrimonialExercícios sobre balanço patrimonial
Exercícios sobre balanço patrimonial
capitulocontabil
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
betencourt
 
Relatório lei de hooke turma t5
Relatório lei de hooke   turma t5Relatório lei de hooke   turma t5
Relatório lei de hooke turma t5
Roberto Leao
 
Aula do 6º ano - Formas Geométricas
Aula do 6º ano - Formas GeométricasAula do 6º ano - Formas Geométricas
Aula do 6º ano - Formas Geométricas
Adriano Capilupe
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
Raquel1966
 
Gráfico de uma função
Gráfico de uma funçãoGráfico de uma função
Gráfico de uma função
Helena Borralho
 

Mais procurados (20)

Revisão ENADE ADMINISTRAÇÃO - Matemática e Matemática Financeira
Revisão ENADE ADMINISTRAÇÃO - Matemática e Matemática FinanceiraRevisão ENADE ADMINISTRAÇÃO - Matemática e Matemática Financeira
Revisão ENADE ADMINISTRAÇÃO - Matemática e Matemática Financeira
 
Lista01 hiperestatica-metodo carga-unitaria_gab
Lista01 hiperestatica-metodo carga-unitaria_gabLista01 hiperestatica-metodo carga-unitaria_gab
Lista01 hiperestatica-metodo carga-unitaria_gab
 
Elementos de Matemática Básica - Equações e Inequações
Elementos de Matemática Básica - Equações e InequaçõesElementos de Matemática Básica - Equações e Inequações
Elementos de Matemática Básica - Equações e Inequações
 
Exercícios sobre balanço patrimonial
Exercícios sobre balanço patrimonialExercícios sobre balanço patrimonial
Exercícios sobre balanço patrimonial
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 
Plano de aula
Plano de aulaPlano de aula
Plano de aula
 
Relatório pêndulo simples turma t5
Relatório pêndulo simples   turma t5Relatório pêndulo simples   turma t5
Relatório pêndulo simples turma t5
 
Lista 01- 8º Série (Transformação de Unidades)
Lista 01- 8º Série (Transformação de Unidades)Lista 01- 8º Série (Transformação de Unidades)
Lista 01- 8º Série (Transformação de Unidades)
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Palestra capital de giro
Palestra capital de giroPalestra capital de giro
Palestra capital de giro
 
Monômios
MonômiosMonômios
Monômios
 
Relatório lei de hooke turma t5
Relatório lei de hooke   turma t5Relatório lei de hooke   turma t5
Relatório lei de hooke turma t5
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
Aula do 6º ano - Formas Geométricas
Aula do 6º ano - Formas GeométricasAula do 6º ano - Formas Geométricas
Aula do 6º ano - Formas Geométricas
 
Função afim
Função afimFunção afim
Função afim
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
 
Exemplo calculo de deslocamentos
Exemplo calculo de deslocamentosExemplo calculo de deslocamentos
Exemplo calculo de deslocamentos
 
Gráfico de uma função
Gráfico de uma funçãoGráfico de uma função
Gráfico de uma função
 
AULA DE TRIGONOMETRIA
AULA DE TRIGONOMETRIAAULA DE TRIGONOMETRIA
AULA DE TRIGONOMETRIA
 

Destaque

Circulo trigonométrico
Circulo trigonométricoCirculo trigonométrico
Circulo trigonométrico
António Gomes
 
Ciclo trigonometrico-exercicios
Ciclo trigonometrico-exerciciosCiclo trigonometrico-exercicios
Ciclo trigonometrico-exercicios
con_seguir
 

Destaque (10)

www.TutoresReforcoEscolar.Com.Br - Matemática - Ciclo Trigonométrico
www.TutoresReforcoEscolar.Com.Br - Matemática -  Ciclo Trigonométricowww.TutoresReforcoEscolar.Com.Br - Matemática -  Ciclo Trigonométrico
www.TutoresReforcoEscolar.Com.Br - Matemática - Ciclo Trigonométrico
 
Aula pitágoras
Aula pitágorasAula pitágoras
Aula pitágoras
 
Arco trigonometrico
Arco trigonometricoArco trigonometrico
Arco trigonometrico
 
Noções de geometria
Noções de geometriaNoções de geometria
Noções de geometria
 
Circulo trigonométrico
Circulo trigonométricoCirculo trigonométrico
Circulo trigonométrico
 
Ciclo Trigonometrico
Ciclo TrigonometricoCiclo Trigonometrico
Ciclo Trigonometrico
 
www.CentroApoio.com - Geometria - Razões Trigonométricas e Ciclo Trigonométr...
 www.CentroApoio.com - Geometria - Razões Trigonométricas e Ciclo Trigonométr... www.CentroApoio.com - Geometria - Razões Trigonométricas e Ciclo Trigonométr...
www.CentroApoio.com - Geometria - Razões Trigonométricas e Ciclo Trigonométr...
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 
Ciclo trigonometrico
Ciclo trigonometricoCiclo trigonometrico
Ciclo trigonometrico
 
Ciclo trigonometrico-exercicios
Ciclo trigonometrico-exerciciosCiclo trigonometrico-exercicios
Ciclo trigonometrico-exercicios
 

Semelhante a Ciclo trigonométrico e razões trigonométricas

1 ano trigonometria no triângulo retângulo - 2008
1 ano   trigonometria no triângulo retângulo - 20081 ano   trigonometria no triângulo retângulo - 2008
1 ano trigonometria no triângulo retângulo - 2008
Erick Fernandes
 
Doc matematica _1182035541
Doc matematica _1182035541Doc matematica _1182035541
Doc matematica _1182035541
Rodrigo Lima
 
Trigonometria ponteiros relogio
Trigonometria ponteiros relogioTrigonometria ponteiros relogio
Trigonometria ponteiros relogio
trigono_metria
 
Mat relacoes trigonometricas nos triangulos
Mat relacoes trigonometricas nos triangulosMat relacoes trigonometricas nos triangulos
Mat relacoes trigonometricas nos triangulos
trigono_metria
 
Revisao geometria-plana-1º ano
Revisao geometria-plana-1º anoRevisao geometria-plana-1º ano
Revisao geometria-plana-1º ano
Eduaardo Mendes
 
Revisao geometria-plana-1º ano
Revisao geometria-plana-1º anoRevisao geometria-plana-1º ano
Revisao geometria-plana-1º ano
Eduaardo Mendes
 

Semelhante a Ciclo trigonométrico e razões trigonométricas (20)

ÂNGULOS
ÂNGULOSÂNGULOS
ÂNGULOS
 
1 ano trigonometria no triângulo retângulo - 2008
1 ano   trigonometria no triângulo retângulo - 20081 ano   trigonometria no triângulo retângulo - 2008
1 ano trigonometria no triângulo retângulo - 2008
 
www.aulasapoio.com - Matemática - Ciclo Trigonométrico
www.aulasapoio.com - Matemática - Ciclo Trigonométricowww.aulasapoio.com - Matemática - Ciclo Trigonométrico
www.aulasapoio.com - Matemática - Ciclo Trigonométrico
 
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
 
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdfAula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
 
Doc matematica _1182035541
Doc matematica _1182035541Doc matematica _1182035541
Doc matematica _1182035541
 
Ciclo trigo
Ciclo trigoCiclo trigo
Ciclo trigo
 
Geo jeca plana
Geo jeca planaGeo jeca plana
Geo jeca plana
 
Estudo de geometria plana corrigida
Estudo de geometria plana   corrigidaEstudo de geometria plana   corrigida
Estudo de geometria plana corrigida
 
www.aulaparticularonline.net.br - Matemática - Ciclo Trigonométrico e Razões...
www.aulaparticularonline.net.br - Matemática -  Ciclo Trigonométrico e Razões...www.aulaparticularonline.net.br - Matemática -  Ciclo Trigonométrico e Razões...
www.aulaparticularonline.net.br - Matemática - Ciclo Trigonométrico e Razões...
 
www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...
www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...
www.AulasDeMatematicanoRJ.com.br -Matemática - Ciclo Trigonométrico e Razões ...
 
Funções trigonométricas
Funções trigonométricasFunções trigonométricas
Funções trigonométricas
 
Introdução a mecânica i 10 dias de mecânica
Introdução a mecânica i   10 dias de mecânicaIntrodução a mecânica i   10 dias de mecânica
Introdução a mecânica i 10 dias de mecânica
 
Trigonometria ponteiros relogio
Trigonometria ponteiros relogioTrigonometria ponteiros relogio
Trigonometria ponteiros relogio
 
Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
 
Mat relacoes trigonometricas nos triangulos
Mat relacoes trigonometricas nos triangulosMat relacoes trigonometricas nos triangulos
Mat relacoes trigonometricas nos triangulos
 
CfSd 2016 matematica - 3
CfSd 2016   matematica - 3CfSd 2016   matematica - 3
CfSd 2016 matematica - 3
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
 
Revisao geometria-plana-1º ano
Revisao geometria-plana-1º anoRevisao geometria-plana-1º ano
Revisao geometria-plana-1º ano
 
Revisao geometria-plana-1º ano
Revisao geometria-plana-1º anoRevisao geometria-plana-1º ano
Revisao geometria-plana-1º ano
 

Mais de AulasEnsinoMedio

Mais de AulasEnsinoMedio (20)

www.AulasEnsinoMedio.com.br- Física - Exercícios Reslvidos de Equilíbrio de u...
www.AulasEnsinoMedio.com.br- Física - Exercícios Reslvidos de Equilíbrio de u...www.AulasEnsinoMedio.com.br- Física - Exercícios Reslvidos de Equilíbrio de u...
www.AulasEnsinoMedio.com.br- Física - Exercícios Reslvidos de Equilíbrio de u...
 
www.AulasEnsinoMedio.com.br - Física - Lentes Esféricas
www.AulasEnsinoMedio.com.br - Física - Lentes Esféricaswww.AulasEnsinoMedio.com.br - Física - Lentes Esféricas
www.AulasEnsinoMedio.com.br - Física - Lentes Esféricas
 
www.AulasEnsinoMedio.com.br - Física - Exercícios resolvidos de Leis de Newton
www.AulasEnsinoMedio.com.br - Física - Exercícios resolvidos de Leis de Newtonwww.AulasEnsinoMedio.com.br - Física - Exercícios resolvidos de Leis de Newton
www.AulasEnsinoMedio.com.br - Física - Exercícios resolvidos de Leis de Newton
 
www.AulasEnsinoMedio.com.br - Física - Exercício calorimetria
www.AulasEnsinoMedio.com.br - Física - Exercício calorimetriawww.AulasEnsinoMedio.com.br - Física - Exercício calorimetria
www.AulasEnsinoMedio.com.br - Física - Exercício calorimetria
 
www.AulasEnsinoMedio.com.br - Física - Trabalho e Energia Mecânica
www.AulasEnsinoMedio.com.br - Física -  Trabalho e Energia Mecânicawww.AulasEnsinoMedio.com.br - Física -  Trabalho e Energia Mecânica
www.AulasEnsinoMedio.com.br - Física - Trabalho e Energia Mecânica
 
www.AulasEnsinoMedio.com.br - Física - Dinâmica e Movimento
www.AulasEnsinoMedio.com.br - Física -  Dinâmica e Movimentowww.AulasEnsinoMedio.com.br - Física -  Dinâmica e Movimento
www.AulasEnsinoMedio.com.br - Física - Dinâmica e Movimento
 
www.AulasEnsinoMedio.com.br - Física - Colisão
www.AulasEnsinoMedio.com.br - Física -  Colisãowww.AulasEnsinoMedio.com.br - Física -  Colisão
www.AulasEnsinoMedio.com.br - Física - Colisão
 
www.AulasEnsinoMedio.com.br - Biologia – Origem da Vida
www.AulasEnsinoMedio.com.br -  Biologia – Origem da Vidawww.AulasEnsinoMedio.com.br -  Biologia – Origem da Vida
www.AulasEnsinoMedio.com.br - Biologia – Origem da Vida
 
www.AulasEnsinoMedio.com.br - Biologia - Genética
www.AulasEnsinoMedio.com.br - Biologia - Genéticawww.AulasEnsinoMedio.com.br - Biologia - Genética
www.AulasEnsinoMedio.com.br - Biologia - Genética
 
www.AulasEnsinoMedio.com.br - Biologia - Evolução
www.AulasEnsinoMedio.com.br - Biologia -  Evoluçãowww.AulasEnsinoMedio.com.br - Biologia -  Evolução
www.AulasEnsinoMedio.com.br - Biologia - Evolução
 
www.AulasEnsinoMedio.com.br - Biologia - Teia Alimentar e Cadeia Alimentar
www.AulasEnsinoMedio.com.br - Biologia -  Teia Alimentar e Cadeia Alimentarwww.AulasEnsinoMedio.com.br - Biologia -  Teia Alimentar e Cadeia Alimentar
www.AulasEnsinoMedio.com.br - Biologia - Teia Alimentar e Cadeia Alimentar
 
www.AulasEnsinoMedio.com.br - Química - Química Orgânica
www.AulasEnsinoMedio.com.br - Química -  Química Orgânicawww.AulasEnsinoMedio.com.br - Química -  Química Orgânica
www.AulasEnsinoMedio.com.br - Química - Química Orgânica
 
www.AulasEnsinoMedio.com.br - Química - Cálculo Estequimétrico (Parte 1)
www.AulasEnsinoMedio.com.br - Química -  Cálculo Estequimétrico (Parte 1)www.AulasEnsinoMedio.com.br - Química -  Cálculo Estequimétrico (Parte 1)
www.AulasEnsinoMedio.com.br - Química - Cálculo Estequimétrico (Parte 1)
 
www.AulasEnsinoMedio.com.br - Português - Sujeito e Vozes do Verbo
www.AulasEnsinoMedio.com.br - Português -  Sujeito e Vozes do Verbowww.AulasEnsinoMedio.com.br - Português -  Sujeito e Vozes do Verbo
www.AulasEnsinoMedio.com.br - Português - Sujeito e Vozes do Verbo
 
www.AulasEnsinoMedio.com.br - Português - Novo Acordo Ortográfico
www.AulasEnsinoMedio.com.br - Português -  Novo Acordo Ortográficowww.AulasEnsinoMedio.com.br - Português -  Novo Acordo Ortográfico
www.AulasEnsinoMedio.com.br - Português - Novo Acordo Ortográfico
 
www.AulasEnsinoMedio.com.br - Português - Contos e Crônicas
www.AulasEnsinoMedio.com.br - Português -  Contos e Crônicaswww.AulasEnsinoMedio.com.br - Português -  Contos e Crônicas
www.AulasEnsinoMedio.com.br - Português - Contos e Crônicas
 
www.AulasEnsinoMedio.com.br - Matemática - Probabilidade
www.AulasEnsinoMedio.com.br - Matemática -  Probabilidadewww.AulasEnsinoMedio.com.br - Matemática -  Probabilidade
www.AulasEnsinoMedio.com.br - Matemática - Probabilidade
 
www.AulasEnsinoMedio.com.br - Matemática - Prismas e Cilindros
www.AulasEnsinoMedio.com.br - Matemática -  Prismas e Cilindroswww.AulasEnsinoMedio.com.br - Matemática -  Prismas e Cilindros
www.AulasEnsinoMedio.com.br - Matemática - Prismas e Cilindros
 
www.AulasEnsinoMedio.com.br - Matemática - Números Complexos
www.AulasEnsinoMedio.com.br - Matemática -  Números Complexoswww.AulasEnsinoMedio.com.br - Matemática -  Números Complexos
www.AulasEnsinoMedio.com.br - Matemática - Números Complexos
 
www.AulasEnsinoMedio.com.br - Matemática - Matrizes
www.AulasEnsinoMedio.com.br - Matemática -  Matrizeswww.AulasEnsinoMedio.com.br - Matemática -  Matrizes
www.AulasEnsinoMedio.com.br - Matemática - Matrizes
 

Ciclo trigonométrico e razões trigonométricas