SlideShare uma empresa Scribd logo
Relatório Teórico
Biologia Molecular e Celular
Aula 4
Química Industrial 1º Ano
2017/2018
GUSTAVO PINHO MAIA 2
Índice
Estrutura De Ribossomas Em Procariotas e Eucariotas ................................................................ 3
Inicio Da Tradução Em Eucariotas .......................................................................................................... 4
Inicio da Tradução .................................................................................................................................... 5
Alongamento Da Cadeia Peptídica..................................................................................................... 7
Finalização Da Tradução Em Eucariotas.......................................................................................... 8
Funções Da Membrana Plasmática.................................................................................................10
Constituição Da Membrana Plasmática.........................................................................................11
Composição Da Membrana Plasmática .........................................................................................12
Fosfoglicerídios..................................................................................................................................16
Esfingolipidos .....................................................................................................................................17
Mobilidade Dos Lípidos Na Membrana Plasmática....................................................................19
Tipos De Movimentos Apresentados Pelas Proteínas Na Membrana Plasmática......19
Proteínas...................................................................................................................................................20
Primária................................................................................................................................................21
Secundária...........................................................................................................................................21
Estrutura Terciária............................................................................................................................24
Estrutura Quaternária.....................................................................................................................25
Sistema De Transporte De Moléculas E Iões Através De Membranas ................................25
Difusão Simples .................................................................................................................................26
Difusão Facilitada..............................................................................................................................27
Transporte Ativo ................................................................................................................................28
Difusão De Iões Através Da Membrana......................................................................................28
Quatro Classes De Proteínas De Transporte ATP-pumps...................................................30
Modelo Da 𝑵𝒂 +/𝑲 + ATPase Na Membrana Citoplasmática............................................32
GUSTAVO PINHO MAIA 3
Estrutura De Ribossomas Em Procariotas e
Eucariotas
Os ribossomos são as estruturas nas quais são produzidas as proteínas das células.
Encontram-se livres do citoplasma tanto nas células eucariontes como nas procariontes. Nas
eucariontes, eles também podem estar aderidos ao retículo endoplasmático. São organelas
celulares constituídos por proteínas e ácido ribonucleico (RNA) presentes no citoplasma
celular, nas mitocôndrias, nos cloroplastos e na parte superficial do retículo endoplasmático,
formando o retículo endoplasmático rugoso (granular). Trata-se de um complexo
macromolecular que asseguram a síntese proteica através da informação genética que lhes
chega do ADN transcrito na forma de RNA mensageiro.
É o organelo que contém mais RNA e proteínas na célula. Conduz o alongamento da cadeia
peptídica a uma velocidade de 3 a 5 aminoácidos por segundo. A proteínas com 100-200
aminoácidos são sintetizadas em cerca de 1 minuto. Proteínas grandes (3000 resíduos de
aminoácidos) entre 2 a 3 horas.
O ribossoma é constituído por 3 (nas
células procarióticas) ou 4 (nas células
eucarióticas) moléculas de rRNA
diferentes e proteínas. O ribossoma
organiza-se em 2 subunidades, uma
grande e uma pequena.
As subunidades do ribossoma são classificadas em unidades de Svedberg (S). A
subunidade pequena tem uma única molécula de rRNA.
GUSTAVO PINHO MAIA 4
A subunidade grande contém uma molécula grande de rRNA e uma molécula de 5S rRNA.
Nos vertebrados ainda tem mais uma molécula de rRNA 5.8S. O ribossoma completo de
bactérias tem 70S. Em vertebrados tem 80S. Durante o processo de tradução o ribossoma
move-se ao longo do mRNA, interatuando com vários fatores proteicos e com tRNAs.
Inicio Da Tradução Em Eucariotas
A tradução pode ser dividida em:
• Iniciação
• Alongamento
• Terminação
O processo de tradução ocorre posterior ao de transcrição (síntese do RNA), onde em
eucariotas o RNA é formado e amadurecido, sendo assim importantíssimo para a síntese
de proteínas. Para que inicie o processo da tradução a subunidade menor do ribossomo
reconhece a região 5’ do mRNA através do Quepe 5’ (uma das etapas do processo de
amadurecimento do RNA, devido ao acréscimo de uma molécula de guanilato de metila).
Pós o reconhecimento a subunidade menor desloca-se até o códão de iniciação
representado pelas bases AUG, na maioria das vezes, onde ao mesmo tempo a subunidade
maior e o tRNA carregado (Aminoacyl tRNA) com o aminoácido metionina também se
juntam ao processo. Geralmente quando o tRNA chega carregado com o aminoácido ele é
reconhecido pelo sítio A (Aminoacyl), porém nesse caso como é necessário a formação de
uma longa cadeia polipeptídica o primeiro tRNA é reconhecido pelo sítio P (Peptidil) e outro
GUSTAVO PINHO MAIA 5
motivo para isso acontecer é a presença de fatores de iniciação (IF-1, IF-3) no sítio A, que
impede a presença do primeiro tRNA no mesmo e por isso ocorre o reconhecimento pelo
sítio P.
Quer as procariotas quer as eucariotas, possuem tRNAs que se ligam á metionina:
• 𝑡𝑅𝑁𝐴𝑖
𝑀𝑒𝑡
: Responsável pelo inicio da síntese
• 𝑡𝑅𝑁𝐴 𝑀𝑒𝑡
: Incorpora a metionina numa proteína que está a ser sintetizada
Apenas o 𝑡𝑅𝑁𝐴𝑖
𝑀𝑖𝑡
ao local P da pequena subunidade do ribossoma, e desta forma dá
inicio á síntese de proteínas. O 𝑡𝑅𝑁𝐴 𝑀𝑖𝑡
liga-se ao local A do ribossoma.
Inicio da Tradução
Durante a 1ª fase da tradução, o ribossoma
forma-se e liga-se a um mRNA e a um tRNA
iniciador, que está corretamente colocado no
codão de iniciação. As subunidades (grande e
pequena) que não estão envolvidas na
tradução estão ligadas a dois fatores de
iniciação (eIF3 e eIF6). O complexo de pré-
iniciação da tradução forma-se quando o
complexo 40S-eIF3 está ligado ao eIF1A e a
um complexo ternário (Met-𝑡𝑅𝑁𝐴𝑖
𝑀𝑒𝑡
, eIF2 e
GTP)
GUSTAVO PINHO MAIA 6
As células podem regular a síntese proteica por
fosforilação de uma serina do eIF2 ligada ao GDP.
Este complexo não tem a capacidade de trocar o
GDP pelo GTP e não pode ligar o Met-𝑡𝑅𝑁𝐴𝑖
𝑀𝑒𝑡
,
inibindo a síntese proteica.
Durante a iniciação da tradução o eIF4 liga-se ao 5’
cap do mRNA. O complexo mRNA-eIF4 associa-se
ao complexo de pré-iniciação através da interação
do eIF4 com o eIF3, formando o complexo de
iniciação. O complexo de iniciação faz o scan do
mRNA. O scanning é interrompido quando é
encontrado o codão de iniciação. A eIF4A possui
atividade de helicase. Utiliza ATP para desemparelhar o mRNA.
O reconhecimento do codão de iniciação leva a que ocorra a hidrólise de GTP. Esta hidrólise
evita que se continue a fazer o scanning do mRNA,
A seleção do codão de iniciação é facilitada por
nucleótidos que estão á volta deste codão. A
sequencia é conhecida por sequência de Kozak
(ACCAUGG). Após a subunidade pequena estar
corretamente ligada no codão de iniciação dá-se a
ligação da grande subunidade (60S) formando-se o
ribossoma 80S. Este passo requer o eIF5 e a hidrólise de GTP. As subunidades do
ribossoma só se dissociam quando termina a síntese da proteína.
GUSTAVO PINHO MAIA 7
Nota: O inicio da síntese de proteínas codificadas por células procarióticas ocorre no Shine
Delgarno Site.
A extremidade 5’ dos mRNAs de procariotas contêm um local de ligação para os ribossomas
que se designa por Shine Delgarno Site, localizado upstream do codão AUG e que é
complementar á extremidade 3’ do 16S rRNA.
Alongamento Da Cadeia Peptídica
Durante a elongação (alongamento) da cadeia
polipeptídica, cada aminoácido aminoacyl-tRNA
move-se ao longo de 3 locais (E, P e A) do
ribossoma. Tal como no processo de iniciação da
tradução, também aqui são necessários fatores de
alongamento (EFs)
Os passos chave na elongação da cadeia
polipeptídica são:
• Entrada dos aminoacyl-tRNA
• Formação da ligação peptídica
GUSTAVO PINHO MAIA 8
• Translocação do ribossoma, um codão, de cada vez, ao longo do mRNA.
No final da iniciação temos o Met-𝑡𝑅𝑁𝐴𝑖
𝑀𝑒𝑡
ligado ao local P do ribossoma 80S. o 2º
aminoacyl-tRNA chega ao ribossoma associado com o EF1a.GTP e liga-se ao local A do
ribossoma. Se o anti códão do tRNA emparelhar corretamente com o codão do mRNA o
GTP do EF1a.GTP é hidrolisado.
Finalização Da Tradução Em Eucariotas
A repetição do ciclo de alongamento faz com que os aminoácidos sejam adicionados, um a
um, ao C-terminal do polipéptido. Nos ciclos subsequentes as alterações conformacionais
no passo 2 fazem com o tRNA que se encontra no local E seja libertado.
A terminação da tradução dá-se pela libertação de fatores quando se encontra o codão
stop. Dois tipos específicos de release factos (RFs) forma descobertos:
• O eRF1 tem uma forma similar aos tRNAs. Liga-se ao local A do ribossoma e
reconhece o codão stop.
GUSTAVO PINHO MAIA 9
• O eRF3-GTP (GTP-biding protein) em
conjunto com o eRF1 promove a clivagem do
peptidyl-tRNA.
Após a sua libertação do ribossoma, a proteína
adquire a sua conformação tridimensional nativa. Este
processo é facilitado por outras proteínas designadas
por chaperones. Outros fatores promovem
posteriormente a dissociação dos ribossomas, do
mRNA e do tRNA.
Nota: Polirribossomas ou polissomas
A tradução simultânea de um mRNA pode ser feita
por múltiplos ribossomas e uma rápida reciclagem
das subunidades após se libertarem do terminal 3’
do mRNA. As subunidades separadas do
ribossoma vão reagrupar-se junto ao terminal 5’ e
reiniciam a síntese
GUSTAVO PINHO MAIA 10
Membrana Plasmática
A membrana plasmática ou citoplasmática é a estrutura que delimita todas as células vivas,
tanto as procarióticas como as eucarióticas. Ela estabelece a fronteira entre o meio
intracelular, o citoplasma, e o ambiente extracelular, que pode ser a matriz dos diversos
tecidos. A membrana celular não é uma barreira, mas uma “porta” seletiva que a célula
utiliza para captar os elementos do meio exterior que lhe são necessários para o seu
metabolismo e para libertar as substâncias que a célula produz e que devem ser enviadas
para o exterior (sejam elas produtos de excreção, das quais deve se libertar, ou secreções
que a célula utiliza para várias funções relacionadas com o meio).
Funções Da Membrana Plasmática
A membrana plasmática tem as seguintes funções:
• Compartimentação
• Barreira Seletiva
• Transporte de Solutos
• Resposta a Estímulos Externos
• Interação Intercelular
• Atividades Bioquímicas
• Conversão Energética
A membrana plasmática é permeável á água e muito pouco permeável a sais, açúcares e
aminoácidos.
GUSTAVO PINHO MAIA 11
Nota: Osmose
A água move-se através de uma membrana semipermeável, de uma solução pouco
concentrada para uma muito concentrada. A movimentação de água ocorre até que as
concentrações de solutos e água seja igual em ambos os lados da membrana.
Constituição Da Membrana Plasmática
Se efetuarmos uma aproximação na membrana verificamos que ela é constituída por duas
camadas denominadas bicamada lipídica. Essa bicamada lipídica permite que nós façamos
a separação do meio extracelular do meio intracelular.
Resumidamente, a membrana celular é uma bicamada lipídica responsável por delimitar a
estrutura da célula no meio, bem como sua composição química. Toda a estrutura da célula,
seja ela cilíndrica, cónica é delimitada pela bicamada lipídica. Além disso permite que a
célula escolha os tipos de substancias ou moléculas que entram/saiam da célula.
GUSTAVO PINHO MAIA 12
Como dito, a membrana plasmática é constituída por uma bicamada fosfolipídica. Os
fosfolípidos presentes nas células formam espontaneamente as bicamadas de fosfolípidos.
AS cadeias de hidrocarbonetos formam uma camada hidrofóbica que possui entre 3-4 nm
de espessura na maior +arte das bio membranas.
A camada lipídica possui duas propriedades importantes:
• A parte hidrofóbica previne que os solutos hidrofílicos atravessem a membrana. No
entanto existem proteínas de membrana que medeiam o transporte de solutos
específicos através desta barreira impermeável.
• A segunda propriedade da bicamada é a sua estabilidade.
Composição Da Membrana Plasmática
De um modo geral, estão presentes os seguintes componentes:
• Fosfoglicerídios
• Esfingolipidos
• Esteróides
GUSTAVO PINHO MAIA 13
Todos estes lípidos/fosfolipídeos podem ser representados pela figura seguinte. São
constituídos por uma cabeça polar, ou seja, uma região que tem carga, denominada fosfato,
hidrofílica, ou seja que interage com compostos aquosos, ou que solubiliza em água, e por
uma cadeia de hidrocarboneto (carbono-hidrogénio), denominada de cauda apolares, que
interagem com regiões hidrofílicas, mas é uma região hidrofóbica. Podemos verificar que
existem duas cadeias de hidrocarbonetos adjacentes ao grupo fosfato.
Mas nem todos têm esta estrutura. Existem fosfolipídeos que possuem insaturações que
nada mais são que uma ligação dupla entre carbonos.
GUSTAVO PINHO MAIA 14
Esta dupla ligação, faz com que a cadeia de hidrocarbonetos, sofra um deslocamento, seja
para a direita, seja para a esquerda. Concluindo existem duas formas de fosfolipídeos: os
saturados e os insaturados. Eles associam-se desta forma para formar a bicamada lipídica:
Existe uma camada superior de uma cadeia de fosfolipídeos e uma camada inferior de uma
cadeia de fosfolipídeos. Acima desta camada, corresponde o meio extracelular e abaixo
desta camada corresponde o meio intracelular.
GUSTAVO PINHO MAIA 15
Podemos identificar na figura de cima duas regiões importantes. A região da cabeça
(grupamentos fosfatos) ou região polar e a região da cauda (grupamento hidrocarboneto)
ou região apolar. Como visualizado, os fosfolipídeos não ficam estáticos, ou seja, eles
conseguem-se mover entre eles fazendo com que sejam extramente dinâmicos. Outro tipo
de movimentação que já não é tao comum assim é a movimentação de um fosfolipídeo da
cadeia superior para a cadeia inferior e vice-versa, denominada flip-flop dos fosfolipídeos.
Também é possível ter uma estrutura que possui fosfolipídeos insaturados.
Como podemos visualizar, quando na membrana, estão presentes fosfolipídeos insaturados,
ocorre uma desorganização na parta hidrofóbica da cadeia, ou seja, na parte apolar. Essa
desorganização permite que a membrana tenha algum tipo de fluidez, como podemos
visualizar na figura abaixo.
GUSTAVO PINHO MAIA 16
Devido a essa fluidez na parta apolar, as moléculas presentes na membrana, transitam, ou
seja, movem-se com mais facilidade.
Nota:
A característica apolar da membrana faz com que haja alta seletividade para a entrada e
saída de moléculas polares (hidrofílicas), pois as mesmas bloqueiam a sua passagem. Já
as moléculas apolares (hidrofóbicas) passam livremente pela membrana plasmática.
Fosfoglicerídios
Os Fosfoglicerídios são os mais abundantes na maior parte das membranas- São lípidos
derivados do 3-fosfato de glicerol. A maior parte dos Fosfoglicerídios são derivados de 3-
fosfato de glicerol, contendo duas cadeias de ácidos graxos esterificados (cauda
hidrofóbica) e uma cabeça polar esterificada com o fosfato do glicerol.
A cabeça polar pode ser, por exemplo, constituída por Fosfatidilcolina PC),
fosfatidietanolamina (PE), Fosfatidilserina (PS) e fosfatidilinositol (PI).
GUSTAVO PINHO MAIA 17
Esfingolipidos
Os Esfingolipidos são derivados a esfingosina. Existem vários ácidos gordos que se podem
ligar á esfingosina através de uma ligação amina. Como exemplos de Esfingolipidos temos:
• Esfingomielina (SM) – tem fosfocolina como cabeça polar.
• “Glucosylcerebroside” (GlcCer) – tem a glucose ligado ao fosfato na cabeça polar
Nota
Como a estrutura da Esfingomielina é similar á dos Fosfoglicerídios, estes dois lípidos
podem formar bicamadas
Tal como os outros lípidos da membrana, o colesterol, que faz parte dos esteroides é um
lípido anfipático. O seu grupo hidroxilo é equivalente á cabeça polar dos outros lípidos. Os
4 anéis e a pequena cadeia hidrocarbonada formam a cauda hidrofóbica.
A composição lipídica da membrana influencia as propriedades da membrana. Enquanto
os Fosfoglicerídios são sintetizados no reticulo endoplasmático, os Esfingolipidos são
sintetizados no complexo de Golgi. Uma elevada concentração de Esfingolipidos na
membrana faz com que haja um aumento da estabilidade da membrana.
GUSTAVO PINHO MAIA 18
Os lípidos na membrana têm a capacidade de
se difundir lateralmente, o que contribui para
a fluidez da membrana. A fluidez da
membrana depende da composição lipídica,
estrutura das caudas hidrofóbicas (as caudas
saturadas têm tendência a agregar) e da
temperatura.
Quando uma bicamada lipídica altamente ordenada é aquecida, há um aumento das
movimentações moleculares nas caudas dos ácidos gordos, tal causa um aumento da
fluidez da membrana. O colesterol é importante na manutenção da fluidez das membranas
o que é essencial para o normal crescimento e reprodução da célula.
Além disso, a membrana plasmática é constituída por proteínas membranares:
• Distribuição especifica na membrana
• Orientação e localização especifica e depende do tipo celular
• Conferem propriedades especificas a cada face da membrana (assimetria
membranar)
Existem diversos tipos de proteínas:
• Proteínas Integrais – São proteínas transmembranares, constituídas por 3
segmentos. Os domínios citoplasmáticos têm superfícies hidrofílicas que interagem
com soluções aquosas. O domínio que se estende ao longo da membrana contém
muitos aminoácidos hidrofóbicos.
GUSTAVO PINHO MAIA 19
• Proteínas Ancoradas Á Membrana – São proteínas que estão covalentemente
ligadas á cadeia hidrocarbonada. A cadeia polipeptídica não entra no interior da
bicamada lipídica.
• Proteínas Periféricas – Estão associadas ás proteínas integrais ou ás cabeças dos
lípidos das membranas através de ligações não covalentes.
Mobilidade Dos Lípidos Na Membrana Plasmática
As moléculas de lípido estão num estado fluido e têm capacidade de se movimentar:
• Mobilidade Lateral – movimento rápido (10−6
𝑠)
• Rotação – movimento rápido (10−9
𝑠)
• Mobilidade Transversal – movimento lento (10−5
𝑠, movimento mais restrito)
• Flipase – movem fosfolípidos. Importantes para manter a assimetria da membrana
Tipos De Movimentos Apresentados Pelas Proteínas Na Membrana Plasmática
A- Arbitrário
B- Imóvel
C- Direcionado
D- Imobilizado
E- Arbitrário e restrito a
uma área
As proteínas membranares movem-se mais lentamente na membrana plasmática do que
em bicamadas contendo apenas lípidos. O movimentos das proteínas é limitado por
interações com o citoesqueleto, outras proteínas e materiais extracelulares.
GUSTAVO PINHO MAIA 20
Proteínas
Proteínas são macromoléculas biológicas constituídas por uma ou mais cadeias de
aminoácidos. As proteínas estão presentes em todos os seres vivos e participam de
praticamente todos os processos celulares, desempenhando um vasto conjunto de funções
no organismo, como a replicação de ADN, a resposta a estímulos e o transporte de
moléculas. Muitas proteínas são enzimas que catalisam reações bioquímicas vitais para o
metabolismo. As proteínas têm também funções estruturais ou mecânicas, como é o caso
da actina e da miosina nos músculos e das proteínas no citoesqueleto, as quais formam
um sistema de andaimes que mantém a forma celular. Outras proteínas são importantes
na sinalização celular, resposta imunitária e no ciclo celular.
As proteínas diferem entre si fundamentalmente na sua sequência de aminoácidos, que é
determinada pela sua sequência genética e que geralmente provoca o seu enovelamento
numa estrutura tridimensional específica que determina a sua atividade.
Os grupos R laterias, ou seja, os grupos variáveis, podem se associar por ligações não-
covalentes e formar estruturas tridimensionais.
Existem quatro tipos de estruturas que os aminoácidos podem formar entre si:
1. Primária
2. Secundária
3. Terciária
4. Quaternária
Á medida que se desce na estrutura, aumenta a complexidade da estrutura.
GUSTAVO PINHO MAIA 21
Primária
A estrutura primária é representada apenas pela cadeia linear de aminoácidos. Na figura
seguinte está representada uma cadeia de ligação de seis aminoácidos, sem interação de
grupos laterais.
Secundária
Nota:
Como dito anteriormente, os grupamentos R laterais, ou seja, os grupamentos variáveis,
podem interagir através de ligações não covalentes, o que resulta no dobramento da
sequência de aminoácidos. Existe uma exceção que é a cisteína, que é capaz de fazer uma
ligação covalente através de dois enxofres entre duas cisteínas onde se forma a molécula
cistina.
Esta associação não covalente permite que a sequência de aminoácidos se enovele, ou
seja, se dobre para formar estruturas tridimensionais. Existe dois tipos de estruturas
secundárias que são muito presentes:
• Alfa-Hélice
• Folhas beta pregueada
GUSTAVO PINHO MAIA 22
Alfa-Hélice
A Alfa Hélice é uma estrutura helicoidal formada pelas pontes de hidrogénio intra-cadeia
dos grupamentos amino e carboxila dos aminoácidos.
Podemos visualizar na imagem ao lado, como se forma
um alfa-hélice. A ponte de hidrogénio se forma com o
oxigénio da carbonila com o hidrogénio da amida do 4º
aminoácido subsequente. Verificando a figura, podemos
visualizar o carbono 𝛼 no canto inferior esquerdo, que
está ligado a um carbono que por sua vez está ligado a
um oxigénio através de uma ligação dupla. Esse oxigénio,
como podemos visualizar, estabelece uma ponte de
hidrogénio, com o hidrogénio da “segunda hélice” que por
sua vez está ligado ao nitrogénio. Se olharmos
atentamente, conseguimos perceber que a ponte de
hidrogénio, acontece no 4º carbono 𝛼.
Concluindo, a alfas-hélice é uma interação intra-cadeia,
ou seja, elas estão voltadas para a face interior da hélice.
Em termos de orientação da alfa-hélice, ela pode fazer uma rotação:
• Giro levogiro Rotação para a esquerda
• Giro dextrogiro Rotação para a direita
O que determina o tipo de giro, ou seja, para que lado gira a hélice depende da isomeria
ótica, falado recentemente. Se os aminoácidos utilizados para formar a alfa hélice forem do
GUSTAVO PINHO MAIA 23
tipo L (levogiro) a rotação será para a esquerda. Caso os aminoácidos sejam utilizados para
a produção dos aminoácidos do tipo D (dextrogiro) a rotação será para a direita.
Folha Beta Pregueada
A folha beta pregueada é uma estrutura linear pregueada (na forma de ziguezague) formada
pelos pontos de hidrogénio entre-cadeia dos grupamentos amino e carboxila dos
aminoácidos.
Na figura seguinte está representada uma folha beta pregueada. Nessa figura conseguimos
visualizar três cadeias lineares de aminoácidos. Conseguimos visualizar que, existe uma
ligação de hidrogénio ou seja uma ponte de hidrogénio da amina para o oxigénio da
carboxila. Conseguimos visualizar também que não é sempre entre a mesma cadeia, mas
sim cadeias diferentes.
Devido a essa interação não covalente entre cadeias, formam-se as “dobras” na distribuição
espacial dos átomos dos aminoácidos, formando a estrutura em ziguezague.
GUSTAVO PINHO MAIA 24
Em termos de orientação da folha beta pregueada, pode ser:
• Paralela Folhas no mesmo sentido
• Antiparalela Folhas no sentido oposto
Estrutura Terciária
É a combinação entre várias alfas hélice e folhas beta, podendo ser somente alfa-hélice,
folhas beta ou ambas.
Na figura ao lado podemos verificar que
existe uma combinação de alfa hélice
(cadeia a azul escuro) e folha beta
(cadeia a laranja). Quando esta
combinação ocorre, denominamos este
tipo de estrutura de estrutura terciária
de uma proteína.
Nota:
Existem zonas na estrutura, onde nem são alfa hélice nem são folha beta (representado na
figura como um fio verde). Essas regiões não possuem nomenclatura, pois são porções
variáveis da estrutura, que não assume nem forma de alfa hélice nem forma de folha beta.
GUSTAVO PINHO MAIA 25
Estrutura Quaternária
É a combinação entre várias estruturas terciárias, formando estruturas diméricas, trimérias,
tetraméricas, etc.
Representada nesta imagem está a hemoglobina. Podemos
visualizar na figura que existem subunidades individuais
(duas subunidades amarelas e duas subunidades verdes).
Estas subunidades representam estruturas terciárias.
Quando estas estruturas terciárias se associam entre si
através de ligações não covalentes, formam o que
chamamos de estrutura quaternária.
Neste caso, como temos quatro estruturas terciárias diferentes, nós temos um que
chamamos de tetrâmero.
• Homo Estruturas terciárias idênticas (Homo tetrâmero)
• Hétero Estruturas terciárias diferentes (Hétero tetrâmero)
Sistema De Transporte De Moléculas E Iões Através De Membranas
• A maquinaria de transporte membranar permite á célula acumular substâncias
necessárias ao seu metabolismo
• Criar gradientes iónicos
• Permite responder ao seu ambiente
GUSTAVO PINHO MAIA 26
Existem diversos tipos de transportes membranares:
• Difusão Simples - Movimento espontâneo
de moléculas ou iões de acordo com o
gradiente químico de concentração
• Difusão Facilitada – Transporte de água,
iões específicos ou pequenas moléculas
hidrofílicas (a favor do se gradiente de
concentração ou de potencial elétrico)
assistido por proteínas
• Transporte Ativo - Movimento contra um gradiente
químico ou de concentração. Em que há gasto de
energia
Difusão Simples
A difusão simples é um tipo de transporte passivo (não há gasto de energia celular) de um
soluto através da membrana a fim de estabelecer a isotonia, ou seja, alcançarem a mesma
concentração, pois o movimento é a favor de um gradiente de concentração.
Ela é feita através de um soluto apolar pequeno que penetra através da membrana, pois
assim possui afinidade com a camada polar da membrana fosfolipídica. Através da
bicamada lipídica da membrana, sem envolver proteínas carregadoras.
GUSTAVO PINHO MAIA 27
Difusão Facilitada
É uma modalidade de difusão em que não ocorre gasto de energia. O transporte ocorre a
favor do gradiente de concentração (do meio mais concentrado para o meio menos
concentrado). O soluto atravessa a membrana com a assistência de um carreador proteico
específico localizado na superfície da membrana - a permease. Assim, este tipo de difusão
diferencia-se dos demais uma vez que a sua velocidade de difusão tende a atingir uma
velocidade máxima constante à medida que se aumenta a concentração da substância a
ser difundida.
O mecanismo responsável por limitar a velocidade da difusão facilitada se embasa no facto
de a substância transportada ligar-se a uma parte específica (um sítio específico) da
proteína transportadora. Dessa forma, quando todos esses sítios estiverem "ocupados", não
adianta aumentar a concentração da substância a ser transportada. É premente, para o
aumento da velocidade, que tais sítios sejam antes desocupados, para que a proteína tenha
atividade.
Resumindo, quanto mais permeases (proteínas transportadoras) existirem, maior será a sua
velocidade; mas se a concentração aumentar, a velocidade aumenta até chegar a um ponto
em que estabiliza por não ser possível "inserir" mais permeases na membrana plasmática.
Entre as substâncias que atravessam as membranas biológicas por difusão facilitada,
destacam-se a glicose e grande parte dos aminoácidos. ECP.
GUSTAVO PINHO MAIA 28
Transporte Ativo
O transporte ativo é o nome dado ao tráfego de moléculas através da membrana plasmática,
contra o gradiente de concentração, mediado por proteínas específicas transportadores e
com a mobilização de energia celular geralmente resultante da hidrólise de ATP (trifosfato
de adenosina). A membrana pode expulsar ou absorver alguma substância que esteja em
excesso ou em falta, bombeando-a para dentro ou para fora da célula. O transporte ativo é
realizado principalmente pelas enzimas de ATP (denominadas ATPases), o exemplo da
importante Bomba sódio-potássio, que tem a função de manter o potencial eletroquímico
das células.
Difusão De Iões Através Da Membrana
Canais Iónicos (Proteínas Integrais):
• Permitem o fluxo de iões entre as células adjacentes sem atravessar o espaço
extracelular – “gap junctions”.
• A deslocação dos iões ocorre no local de maior concentração para o de menor
concentração.
• A deslocação dos iões ocorre no maior estado para o menor estado energético.
• Bidirecionais (dependentes do gradiente eletroquímico).
• Seletivos para cada tipo de ião.
• Permitem o fluxo de iões a alta velocidade através da membrana sem consumo de
energia. O fluxo é mediado por repulsão electroestática entre iões.
• Os canais iónicos podem ser artificialmente criados em membranas por tratamento
das células com pequenas proteínas hidrofóbicas designadas por ionóforos.
GUSTAVO PINHO MAIA 29
Existem dois tipos de canais iónicos:
1- Canais dependentes da voltagem – Estado conformacional depende da carga iónica
dos dois lados da membrana.
2- Canais dependentes de ligandos – Estado conformacional depende da ligação de
uma molécula especifica (ligando), a qual não é geralmente o soluto que passa pelo
canal.
Canais Dependentes de Voltagem
Dependem de alterações de potencial de membrana. São canais de abertura rápida.
Canais Dependentes de Ligandos
Recetor de acetilcolina – responsável pelo sinal elétrico
entre um nervo motor e uma fibra muscular. Abertura por
ligação reversível de um ligando.
GUSTAVO PINHO MAIA 30
Na figura acima verificamos, diversos transportadores membranares
Quatro Classes De Proteínas De Transporte ATP-pumps
Existem 4 tipos de proteínas de transporte, que envolve o gasto de ATP:
• Bombas de Classe P
• Bombas de Protões Classe V
• Bombas de Protões de Classe F
• Superfamília ABC
Bombas Classe P
• Membranas de plantas, fungos e bactérias (bombeiam 𝑯+
)
• Membranas de alguns eucariotas (bombas 𝑵𝒂+
/𝑲+
)
• Membranas do estomago de mamíferos (bombas 𝑯+
/𝑲+
)
• Membrana de todas as células eucarióticas (bomba 𝑪𝒂 𝟐+
)
• Membranas do reticulo sarcoplasmático nas células do músculo (bomba 𝑪𝒂 𝟐+
)
GUSTAVO PINHO MAIA 31
Bombas De Protões Classe V
• Membranas de vacúolos de plantas e fungos
• Membranas de lisossomas e endossomas de células
animais
• Membranas de células do rim
Bombas De Protões Classe F
• Membranas de Bactérias
• Membrana interna do mitocôndrio
• Membrana tilacoide de cloroplastos
Superfamília ABC
• Membranas de bactérias (envolvidas no transporte de
aminoácidos, glícidos e peptídios)
• Membranas de mamíferos (envolvidos no transporte de
fosfolípidos, de drogas lipossolúveis pequenas, colesterol e
outras moléculas pequenas).
GUSTAVO PINHO MAIA 32
Modelo Da 𝑵𝒂+
/𝑲+
ATPase Na Membrana Citoplasmática
GUSTAVO PINHO MAIA 33
Resumindo:

Mais conteúdo relacionado

Mais procurados

Regulação da expressão gênica em procariotos e eucariotos
Regulação da expressão gênica em procariotos e  eucariotosRegulação da expressão gênica em procariotos e  eucariotos
Regulação da expressão gênica em procariotos e eucariotos
Priscila Rodrigues
 
Biologia proteinas
Biologia proteinasBiologia proteinas
Biologia proteinas
Gonçalo Oliveira
 
Processamento rna
Processamento rnaProcessamento rna
Processamento rna
Adila Trubat
 
Ppt 7 SíNtese Proteica
Ppt 7   SíNtese ProteicaPpt 7   SíNtese Proteica
Ppt 7 SíNtese Proteica
Nuno Correia
 
Aula de Biologia Molecular sobre Síntese de Proteínas
Aula de Biologia Molecular sobre Síntese de ProteínasAula de Biologia Molecular sobre Síntese de Proteínas
Aula de Biologia Molecular sobre Síntese de Proteínas
Jaqueline Almeida
 
Estrutura do gene
Estrutura do geneEstrutura do gene
Estrutura do gene
Mateus Mondin
 
Transcrição
TranscriçãoTranscrição
Transcrição
Wellington Oliveira
 
9 regulação do material genético2
9 regulação do material genético29 regulação do material genético2
9 regulação do material genético2
Sabina Tique
 
Aula 2 replicação, transcrição e tradução
Aula 2   replicação, transcrição e traduçãoAula 2   replicação, transcrição e tradução
Aula 2 replicação, transcrição e tradução
Fabio Artesanatos
 
2016 Frente 1 módulo 7 síntese de proteínas
2016 Frente 1 módulo 7 síntese de proteínas2016 Frente 1 módulo 7 síntese de proteínas
2016 Frente 1 módulo 7 síntese de proteínas
Colégio Batista de Mantena
 
Sintese de proteina 2
Sintese de proteina 2Sintese de proteina 2
Sintese de proteina 2
Janaina Leitinho
 
Bioquímica síntese de proteínas
Bioquímica   síntese de proteínasBioquímica   síntese de proteínas
Bioquímica síntese de proteínas
amandaaangelina
 
A síntese de proteínas
A síntese de proteínasA síntese de proteínas
A síntese de proteínas
Alpha Colégio e Vestibulares
 
Síntese de proteínas
Síntese de proteínasSíntese de proteínas
Síntese de proteínas
Natalia Beatriz
 
Bg 10 síntese proteica
Bg 10   síntese proteicaBg 10   síntese proteica
Bg 10 síntese proteica
Nuno Correia
 
Síntese proteica
Síntese proteicaSíntese proteica
Síntese proteica
Diogo Costa
 
Ppt 6 O CóDigo GenéTico
Ppt 6   O CóDigo GenéTicoPpt 6   O CóDigo GenéTico
Ppt 6 O CóDigo GenéTico
Nuno Correia
 
Síntese de proteínas
Síntese de proteínasSíntese de proteínas
Síntese de proteínas
letyap
 
Transcrição gênica
Transcrição gênicaTranscrição gênica
Transcrição gênica
Alpha Colégio e Vestibulares
 
Regulação gênica em Leishmania
Regulação gênica em LeishmaniaRegulação gênica em Leishmania
Regulação gênica em Leishmania
Livio Figueiredo
 

Mais procurados (20)

Regulação da expressão gênica em procariotos e eucariotos
Regulação da expressão gênica em procariotos e  eucariotosRegulação da expressão gênica em procariotos e  eucariotos
Regulação da expressão gênica em procariotos e eucariotos
 
Biologia proteinas
Biologia proteinasBiologia proteinas
Biologia proteinas
 
Processamento rna
Processamento rnaProcessamento rna
Processamento rna
 
Ppt 7 SíNtese Proteica
Ppt 7   SíNtese ProteicaPpt 7   SíNtese Proteica
Ppt 7 SíNtese Proteica
 
Aula de Biologia Molecular sobre Síntese de Proteínas
Aula de Biologia Molecular sobre Síntese de ProteínasAula de Biologia Molecular sobre Síntese de Proteínas
Aula de Biologia Molecular sobre Síntese de Proteínas
 
Estrutura do gene
Estrutura do geneEstrutura do gene
Estrutura do gene
 
Transcrição
TranscriçãoTranscrição
Transcrição
 
9 regulação do material genético2
9 regulação do material genético29 regulação do material genético2
9 regulação do material genético2
 
Aula 2 replicação, transcrição e tradução
Aula 2   replicação, transcrição e traduçãoAula 2   replicação, transcrição e tradução
Aula 2 replicação, transcrição e tradução
 
2016 Frente 1 módulo 7 síntese de proteínas
2016 Frente 1 módulo 7 síntese de proteínas2016 Frente 1 módulo 7 síntese de proteínas
2016 Frente 1 módulo 7 síntese de proteínas
 
Sintese de proteina 2
Sintese de proteina 2Sintese de proteina 2
Sintese de proteina 2
 
Bioquímica síntese de proteínas
Bioquímica   síntese de proteínasBioquímica   síntese de proteínas
Bioquímica síntese de proteínas
 
A síntese de proteínas
A síntese de proteínasA síntese de proteínas
A síntese de proteínas
 
Síntese de proteínas
Síntese de proteínasSíntese de proteínas
Síntese de proteínas
 
Bg 10 síntese proteica
Bg 10   síntese proteicaBg 10   síntese proteica
Bg 10 síntese proteica
 
Síntese proteica
Síntese proteicaSíntese proteica
Síntese proteica
 
Ppt 6 O CóDigo GenéTico
Ppt 6   O CóDigo GenéTicoPpt 6   O CóDigo GenéTico
Ppt 6 O CóDigo GenéTico
 
Síntese de proteínas
Síntese de proteínasSíntese de proteínas
Síntese de proteínas
 
Transcrição gênica
Transcrição gênicaTranscrição gênica
Transcrição gênica
 
Regulação gênica em Leishmania
Regulação gênica em LeishmaniaRegulação gênica em Leishmania
Regulação gênica em Leishmania
 

Semelhante a Biologia Molecular e Celular - Aula 4

Aula05BioqII-Qui_Tradução.pdf
Aula05BioqII-Qui_Tradução.pdfAula05BioqII-Qui_Tradução.pdf
Aula05BioqII-Qui_Tradução.pdf
PorkoDio
 
Biologia Molecular e Celular - Aula 3
Biologia Molecular e Celular - Aula 3Biologia Molecular e Celular - Aula 3
Biologia Molecular e Celular - Aula 3
Gustavo Maia
 
ribossomos e síntese proteica.pptx
ribossomos e síntese proteica.pptxribossomos e síntese proteica.pptx
ribossomos e síntese proteica.pptx
Ana Jullya Calado
 
Apresentação2.pdf
Apresentação2.pdfApresentação2.pdf
Apresentação2.pdf
LinoReis1
 
2 - Biossíntese de proteínas.pptx
2 - Biossíntese de proteínas.pptx2 - Biossíntese de proteínas.pptx
2 - Biossíntese de proteínas.pptx
Isaura Mourão
 
Iv sinteseproteica-111013090643-phpapp02
Iv sinteseproteica-111013090643-phpapp02Iv sinteseproteica-111013090643-phpapp02
Iv sinteseproteica-111013090643-phpapp02
Éricka Rocha
 
Síntese proteica
Síntese proteicaSíntese proteica
Síntese proteica
Ana Arsénio
 
Biologia molecular texto04 (8)final
Biologia molecular texto04 (8)finalBiologia molecular texto04 (8)final
Biologia molecular texto04 (8)final
Lilianm11
 
Ppt 7 SíNtese Proteica
Ppt 7   SíNtese ProteicaPpt 7   SíNtese Proteica
Ppt 7 SíNtese Proteica
Nuno Correia
 
Biologia Molecular e Celular - Aula 8
Biologia Molecular e Celular - Aula 8Biologia Molecular e Celular - Aula 8
Biologia Molecular e Celular - Aula 8
Gustavo Maia
 
Correcção de fichas da aula sobre regulação genica
Correcção de fichas da aula sobre regulação genicaCorrecção de fichas da aula sobre regulação genica
Correcção de fichas da aula sobre regulação genica
Cidalia Aguiar
 
4.1.2.mod.a4.1. sintese proteica
4.1.2.mod.a4.1. sintese proteica4.1.2.mod.a4.1. sintese proteica
4.1.2.mod.a4.1. sintese proteica
Leonor Vaz Pereira
 
Aula sintese proteica romero brandao - 2013
Aula   sintese proteica romero brandao - 2013Aula   sintese proteica romero brandao - 2013
Aula sintese proteica romero brandao - 2013
karinemc18
 
DNA e síntese proteica II.pptx
DNA e síntese proteica II.pptxDNA e síntese proteica II.pptx
DNA e síntese proteica II.pptx
mariagrave
 
Transcrição gênica
Transcrição gênicaTranscrição gênica
Transcrição gênica
Alpha Colégio e Vestibulares
 
Biologia celular nº 8- Prof. Amilcar Sousa
Biologia celular nº 8- Prof. Amilcar Sousa Biologia celular nº 8- Prof. Amilcar Sousa
Biologia celular nº 8- Prof. Amilcar Sousa
Amilcar Sousa
 
Tradução gênica 2009.1 vera 2
Tradução gênica 2009.1 vera 2Tradução gênica 2009.1 vera 2
Tradução gênica 2009.1 vera 2
djvillela
 
Proteínas aminoácidos
Proteínas  aminoácidosProteínas  aminoácidos
Proteínas aminoácidos
Fábio Santos
 
Síntese de proteínas: transcrição / tradução
Síntese de proteínas: transcrição / traduçãoSíntese de proteínas: transcrição / tradução
Síntese de proteínas: transcrição / tradução
Gian Zelada
 
Questoes para 1 s respondidas
Questoes para 1 s respondidasQuestoes para 1 s respondidas
Questoes para 1 s respondidas
CotucaAmbiental
 

Semelhante a Biologia Molecular e Celular - Aula 4 (20)

Aula05BioqII-Qui_Tradução.pdf
Aula05BioqII-Qui_Tradução.pdfAula05BioqII-Qui_Tradução.pdf
Aula05BioqII-Qui_Tradução.pdf
 
Biologia Molecular e Celular - Aula 3
Biologia Molecular e Celular - Aula 3Biologia Molecular e Celular - Aula 3
Biologia Molecular e Celular - Aula 3
 
ribossomos e síntese proteica.pptx
ribossomos e síntese proteica.pptxribossomos e síntese proteica.pptx
ribossomos e síntese proteica.pptx
 
Apresentação2.pdf
Apresentação2.pdfApresentação2.pdf
Apresentação2.pdf
 
2 - Biossíntese de proteínas.pptx
2 - Biossíntese de proteínas.pptx2 - Biossíntese de proteínas.pptx
2 - Biossíntese de proteínas.pptx
 
Iv sinteseproteica-111013090643-phpapp02
Iv sinteseproteica-111013090643-phpapp02Iv sinteseproteica-111013090643-phpapp02
Iv sinteseproteica-111013090643-phpapp02
 
Síntese proteica
Síntese proteicaSíntese proteica
Síntese proteica
 
Biologia molecular texto04 (8)final
Biologia molecular texto04 (8)finalBiologia molecular texto04 (8)final
Biologia molecular texto04 (8)final
 
Ppt 7 SíNtese Proteica
Ppt 7   SíNtese ProteicaPpt 7   SíNtese Proteica
Ppt 7 SíNtese Proteica
 
Biologia Molecular e Celular - Aula 8
Biologia Molecular e Celular - Aula 8Biologia Molecular e Celular - Aula 8
Biologia Molecular e Celular - Aula 8
 
Correcção de fichas da aula sobre regulação genica
Correcção de fichas da aula sobre regulação genicaCorrecção de fichas da aula sobre regulação genica
Correcção de fichas da aula sobre regulação genica
 
4.1.2.mod.a4.1. sintese proteica
4.1.2.mod.a4.1. sintese proteica4.1.2.mod.a4.1. sintese proteica
4.1.2.mod.a4.1. sintese proteica
 
Aula sintese proteica romero brandao - 2013
Aula   sintese proteica romero brandao - 2013Aula   sintese proteica romero brandao - 2013
Aula sintese proteica romero brandao - 2013
 
DNA e síntese proteica II.pptx
DNA e síntese proteica II.pptxDNA e síntese proteica II.pptx
DNA e síntese proteica II.pptx
 
Transcrição gênica
Transcrição gênicaTranscrição gênica
Transcrição gênica
 
Biologia celular nº 8- Prof. Amilcar Sousa
Biologia celular nº 8- Prof. Amilcar Sousa Biologia celular nº 8- Prof. Amilcar Sousa
Biologia celular nº 8- Prof. Amilcar Sousa
 
Tradução gênica 2009.1 vera 2
Tradução gênica 2009.1 vera 2Tradução gênica 2009.1 vera 2
Tradução gênica 2009.1 vera 2
 
Proteínas aminoácidos
Proteínas  aminoácidosProteínas  aminoácidos
Proteínas aminoácidos
 
Síntese de proteínas: transcrição / tradução
Síntese de proteínas: transcrição / traduçãoSíntese de proteínas: transcrição / tradução
Síntese de proteínas: transcrição / tradução
 
Questoes para 1 s respondidas
Questoes para 1 s respondidasQuestoes para 1 s respondidas
Questoes para 1 s respondidas
 

Mais de Gustavo Maia

Biologia Molecular e Celular - Aula 11
Biologia Molecular e Celular - Aula 11Biologia Molecular e Celular - Aula 11
Biologia Molecular e Celular - Aula 11
Gustavo Maia
 
Biologia Molecular e Celular - Aula 10
Biologia Molecular e Celular - Aula 10Biologia Molecular e Celular - Aula 10
Biologia Molecular e Celular - Aula 10
Gustavo Maia
 
Biologia Molecular e Celular - Aula 9
Biologia Molecular e Celular - Aula 9Biologia Molecular e Celular - Aula 9
Biologia Molecular e Celular - Aula 9
Gustavo Maia
 
Biologia Molecular e Celular - Aula 7
Biologia Molecular e Celular - Aula 7Biologia Molecular e Celular - Aula 7
Biologia Molecular e Celular - Aula 7
Gustavo Maia
 
Biologia Molecular e Celular - Aula 6
Biologia Molecular e Celular - Aula 6Biologia Molecular e Celular - Aula 6
Biologia Molecular e Celular - Aula 6
Gustavo Maia
 
Biologia Molecular e Celular - Aula 5
Biologia Molecular e Celular - Aula 5Biologia Molecular e Celular - Aula 5
Biologia Molecular e Celular - Aula 5
Gustavo Maia
 
Biologia Molecular e Celular - Aula 2
Biologia Molecular e Celular - Aula 2Biologia Molecular e Celular - Aula 2
Biologia Molecular e Celular - Aula 2
Gustavo Maia
 
Biologia Molecular e Celular - Aula 1
Biologia Molecular e Celular - Aula 1Biologia Molecular e Celular - Aula 1
Biologia Molecular e Celular - Aula 1
Gustavo Maia
 

Mais de Gustavo Maia (8)

Biologia Molecular e Celular - Aula 11
Biologia Molecular e Celular - Aula 11Biologia Molecular e Celular - Aula 11
Biologia Molecular e Celular - Aula 11
 
Biologia Molecular e Celular - Aula 10
Biologia Molecular e Celular - Aula 10Biologia Molecular e Celular - Aula 10
Biologia Molecular e Celular - Aula 10
 
Biologia Molecular e Celular - Aula 9
Biologia Molecular e Celular - Aula 9Biologia Molecular e Celular - Aula 9
Biologia Molecular e Celular - Aula 9
 
Biologia Molecular e Celular - Aula 7
Biologia Molecular e Celular - Aula 7Biologia Molecular e Celular - Aula 7
Biologia Molecular e Celular - Aula 7
 
Biologia Molecular e Celular - Aula 6
Biologia Molecular e Celular - Aula 6Biologia Molecular e Celular - Aula 6
Biologia Molecular e Celular - Aula 6
 
Biologia Molecular e Celular - Aula 5
Biologia Molecular e Celular - Aula 5Biologia Molecular e Celular - Aula 5
Biologia Molecular e Celular - Aula 5
 
Biologia Molecular e Celular - Aula 2
Biologia Molecular e Celular - Aula 2Biologia Molecular e Celular - Aula 2
Biologia Molecular e Celular - Aula 2
 
Biologia Molecular e Celular - Aula 1
Biologia Molecular e Celular - Aula 1Biologia Molecular e Celular - Aula 1
Biologia Molecular e Celular - Aula 1
 

Último

Licao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptxLicao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptx
jetroescola
 
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
Sandra Pratas
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdfHistória das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
LeideLauraCenturionL
 
Noite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsxNoite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsx
Luzia Gabriele
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
LeilaVilasboas
 
Caderno 1 - Módulo Água JMS 2024 (1).pdf
Caderno 1 -  Módulo Água JMS 2024 (1).pdfCaderno 1 -  Módulo Água JMS 2024 (1).pdf
Caderno 1 - Módulo Água JMS 2024 (1).pdf
SupervisoEMAC
 
Temática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores LocaisTemática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores Locais
Colaborar Educacional
 
Aprendizagem Imersiva: Conceitos e Caminhos
Aprendizagem Imersiva: Conceitos e CaminhosAprendizagem Imersiva: Conceitos e Caminhos
Aprendizagem Imersiva: Conceitos e Caminhos
Leonel Morgado
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Centro Jacques Delors
 
oficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdfoficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdf
marcos oliveira
 
Apostila em LIBRAS - Curso Básico ENAP 2019.pdf
Apostila em LIBRAS - Curso Básico ENAP 2019.pdfApostila em LIBRAS - Curso Básico ENAP 2019.pdf
Apostila em LIBRAS - Curso Básico ENAP 2019.pdf
pattyhsilva271204
 
Infografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UEInfografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UE
Centro Jacques Delors
 
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptxA perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
marcos oliveira
 
IV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptxIV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptx
Ligia Galvão
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
Mary Alvarenga
 
Relatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdfRelatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdf
Falcão Brasil
 
apresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacionalapresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacional
shirleisousa9166
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
Mary Alvarenga
 
Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
Mary Alvarenga
 

Último (20)

Licao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptxLicao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptx
 
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdfHistória das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
 
Noite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsxNoite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsx
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
 
Caderno 1 - Módulo Água JMS 2024 (1).pdf
Caderno 1 -  Módulo Água JMS 2024 (1).pdfCaderno 1 -  Módulo Água JMS 2024 (1).pdf
Caderno 1 - Módulo Água JMS 2024 (1).pdf
 
Temática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores LocaisTemática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores Locais
 
Aprendizagem Imersiva: Conceitos e Caminhos
Aprendizagem Imersiva: Conceitos e CaminhosAprendizagem Imersiva: Conceitos e Caminhos
Aprendizagem Imersiva: Conceitos e Caminhos
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
 
oficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdfoficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdf
 
Apostila em LIBRAS - Curso Básico ENAP 2019.pdf
Apostila em LIBRAS - Curso Básico ENAP 2019.pdfApostila em LIBRAS - Curso Básico ENAP 2019.pdf
Apostila em LIBRAS - Curso Básico ENAP 2019.pdf
 
Infografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UEInfografia | Presidência húngara do Conselho da UE
Infografia | Presidência húngara do Conselho da UE
 
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptxA perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
A perspectiva colaborativa e as novas práticas de inclusão. (1).pptx
 
IV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptxIV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptx
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
 
Relatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdfRelatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdf
 
apresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacionalapresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacional
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
 
Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
 

Biologia Molecular e Celular - Aula 4

  • 1. Relatório Teórico Biologia Molecular e Celular Aula 4 Química Industrial 1º Ano 2017/2018
  • 2. GUSTAVO PINHO MAIA 2 Índice Estrutura De Ribossomas Em Procariotas e Eucariotas ................................................................ 3 Inicio Da Tradução Em Eucariotas .......................................................................................................... 4 Inicio da Tradução .................................................................................................................................... 5 Alongamento Da Cadeia Peptídica..................................................................................................... 7 Finalização Da Tradução Em Eucariotas.......................................................................................... 8 Funções Da Membrana Plasmática.................................................................................................10 Constituição Da Membrana Plasmática.........................................................................................11 Composição Da Membrana Plasmática .........................................................................................12 Fosfoglicerídios..................................................................................................................................16 Esfingolipidos .....................................................................................................................................17 Mobilidade Dos Lípidos Na Membrana Plasmática....................................................................19 Tipos De Movimentos Apresentados Pelas Proteínas Na Membrana Plasmática......19 Proteínas...................................................................................................................................................20 Primária................................................................................................................................................21 Secundária...........................................................................................................................................21 Estrutura Terciária............................................................................................................................24 Estrutura Quaternária.....................................................................................................................25 Sistema De Transporte De Moléculas E Iões Através De Membranas ................................25 Difusão Simples .................................................................................................................................26 Difusão Facilitada..............................................................................................................................27 Transporte Ativo ................................................................................................................................28 Difusão De Iões Através Da Membrana......................................................................................28 Quatro Classes De Proteínas De Transporte ATP-pumps...................................................30 Modelo Da 𝑵𝒂 +/𝑲 + ATPase Na Membrana Citoplasmática............................................32
  • 3. GUSTAVO PINHO MAIA 3 Estrutura De Ribossomas Em Procariotas e Eucariotas Os ribossomos são as estruturas nas quais são produzidas as proteínas das células. Encontram-se livres do citoplasma tanto nas células eucariontes como nas procariontes. Nas eucariontes, eles também podem estar aderidos ao retículo endoplasmático. São organelas celulares constituídos por proteínas e ácido ribonucleico (RNA) presentes no citoplasma celular, nas mitocôndrias, nos cloroplastos e na parte superficial do retículo endoplasmático, formando o retículo endoplasmático rugoso (granular). Trata-se de um complexo macromolecular que asseguram a síntese proteica através da informação genética que lhes chega do ADN transcrito na forma de RNA mensageiro. É o organelo que contém mais RNA e proteínas na célula. Conduz o alongamento da cadeia peptídica a uma velocidade de 3 a 5 aminoácidos por segundo. A proteínas com 100-200 aminoácidos são sintetizadas em cerca de 1 minuto. Proteínas grandes (3000 resíduos de aminoácidos) entre 2 a 3 horas. O ribossoma é constituído por 3 (nas células procarióticas) ou 4 (nas células eucarióticas) moléculas de rRNA diferentes e proteínas. O ribossoma organiza-se em 2 subunidades, uma grande e uma pequena. As subunidades do ribossoma são classificadas em unidades de Svedberg (S). A subunidade pequena tem uma única molécula de rRNA.
  • 4. GUSTAVO PINHO MAIA 4 A subunidade grande contém uma molécula grande de rRNA e uma molécula de 5S rRNA. Nos vertebrados ainda tem mais uma molécula de rRNA 5.8S. O ribossoma completo de bactérias tem 70S. Em vertebrados tem 80S. Durante o processo de tradução o ribossoma move-se ao longo do mRNA, interatuando com vários fatores proteicos e com tRNAs. Inicio Da Tradução Em Eucariotas A tradução pode ser dividida em: • Iniciação • Alongamento • Terminação O processo de tradução ocorre posterior ao de transcrição (síntese do RNA), onde em eucariotas o RNA é formado e amadurecido, sendo assim importantíssimo para a síntese de proteínas. Para que inicie o processo da tradução a subunidade menor do ribossomo reconhece a região 5’ do mRNA através do Quepe 5’ (uma das etapas do processo de amadurecimento do RNA, devido ao acréscimo de uma molécula de guanilato de metila). Pós o reconhecimento a subunidade menor desloca-se até o códão de iniciação representado pelas bases AUG, na maioria das vezes, onde ao mesmo tempo a subunidade maior e o tRNA carregado (Aminoacyl tRNA) com o aminoácido metionina também se juntam ao processo. Geralmente quando o tRNA chega carregado com o aminoácido ele é reconhecido pelo sítio A (Aminoacyl), porém nesse caso como é necessário a formação de uma longa cadeia polipeptídica o primeiro tRNA é reconhecido pelo sítio P (Peptidil) e outro
  • 5. GUSTAVO PINHO MAIA 5 motivo para isso acontecer é a presença de fatores de iniciação (IF-1, IF-3) no sítio A, que impede a presença do primeiro tRNA no mesmo e por isso ocorre o reconhecimento pelo sítio P. Quer as procariotas quer as eucariotas, possuem tRNAs que se ligam á metionina: • 𝑡𝑅𝑁𝐴𝑖 𝑀𝑒𝑡 : Responsável pelo inicio da síntese • 𝑡𝑅𝑁𝐴 𝑀𝑒𝑡 : Incorpora a metionina numa proteína que está a ser sintetizada Apenas o 𝑡𝑅𝑁𝐴𝑖 𝑀𝑖𝑡 ao local P da pequena subunidade do ribossoma, e desta forma dá inicio á síntese de proteínas. O 𝑡𝑅𝑁𝐴 𝑀𝑖𝑡 liga-se ao local A do ribossoma. Inicio da Tradução Durante a 1ª fase da tradução, o ribossoma forma-se e liga-se a um mRNA e a um tRNA iniciador, que está corretamente colocado no codão de iniciação. As subunidades (grande e pequena) que não estão envolvidas na tradução estão ligadas a dois fatores de iniciação (eIF3 e eIF6). O complexo de pré- iniciação da tradução forma-se quando o complexo 40S-eIF3 está ligado ao eIF1A e a um complexo ternário (Met-𝑡𝑅𝑁𝐴𝑖 𝑀𝑒𝑡 , eIF2 e GTP)
  • 6. GUSTAVO PINHO MAIA 6 As células podem regular a síntese proteica por fosforilação de uma serina do eIF2 ligada ao GDP. Este complexo não tem a capacidade de trocar o GDP pelo GTP e não pode ligar o Met-𝑡𝑅𝑁𝐴𝑖 𝑀𝑒𝑡 , inibindo a síntese proteica. Durante a iniciação da tradução o eIF4 liga-se ao 5’ cap do mRNA. O complexo mRNA-eIF4 associa-se ao complexo de pré-iniciação através da interação do eIF4 com o eIF3, formando o complexo de iniciação. O complexo de iniciação faz o scan do mRNA. O scanning é interrompido quando é encontrado o codão de iniciação. A eIF4A possui atividade de helicase. Utiliza ATP para desemparelhar o mRNA. O reconhecimento do codão de iniciação leva a que ocorra a hidrólise de GTP. Esta hidrólise evita que se continue a fazer o scanning do mRNA, A seleção do codão de iniciação é facilitada por nucleótidos que estão á volta deste codão. A sequencia é conhecida por sequência de Kozak (ACCAUGG). Após a subunidade pequena estar corretamente ligada no codão de iniciação dá-se a ligação da grande subunidade (60S) formando-se o ribossoma 80S. Este passo requer o eIF5 e a hidrólise de GTP. As subunidades do ribossoma só se dissociam quando termina a síntese da proteína.
  • 7. GUSTAVO PINHO MAIA 7 Nota: O inicio da síntese de proteínas codificadas por células procarióticas ocorre no Shine Delgarno Site. A extremidade 5’ dos mRNAs de procariotas contêm um local de ligação para os ribossomas que se designa por Shine Delgarno Site, localizado upstream do codão AUG e que é complementar á extremidade 3’ do 16S rRNA. Alongamento Da Cadeia Peptídica Durante a elongação (alongamento) da cadeia polipeptídica, cada aminoácido aminoacyl-tRNA move-se ao longo de 3 locais (E, P e A) do ribossoma. Tal como no processo de iniciação da tradução, também aqui são necessários fatores de alongamento (EFs) Os passos chave na elongação da cadeia polipeptídica são: • Entrada dos aminoacyl-tRNA • Formação da ligação peptídica
  • 8. GUSTAVO PINHO MAIA 8 • Translocação do ribossoma, um codão, de cada vez, ao longo do mRNA. No final da iniciação temos o Met-𝑡𝑅𝑁𝐴𝑖 𝑀𝑒𝑡 ligado ao local P do ribossoma 80S. o 2º aminoacyl-tRNA chega ao ribossoma associado com o EF1a.GTP e liga-se ao local A do ribossoma. Se o anti códão do tRNA emparelhar corretamente com o codão do mRNA o GTP do EF1a.GTP é hidrolisado. Finalização Da Tradução Em Eucariotas A repetição do ciclo de alongamento faz com que os aminoácidos sejam adicionados, um a um, ao C-terminal do polipéptido. Nos ciclos subsequentes as alterações conformacionais no passo 2 fazem com o tRNA que se encontra no local E seja libertado. A terminação da tradução dá-se pela libertação de fatores quando se encontra o codão stop. Dois tipos específicos de release factos (RFs) forma descobertos: • O eRF1 tem uma forma similar aos tRNAs. Liga-se ao local A do ribossoma e reconhece o codão stop.
  • 9. GUSTAVO PINHO MAIA 9 • O eRF3-GTP (GTP-biding protein) em conjunto com o eRF1 promove a clivagem do peptidyl-tRNA. Após a sua libertação do ribossoma, a proteína adquire a sua conformação tridimensional nativa. Este processo é facilitado por outras proteínas designadas por chaperones. Outros fatores promovem posteriormente a dissociação dos ribossomas, do mRNA e do tRNA. Nota: Polirribossomas ou polissomas A tradução simultânea de um mRNA pode ser feita por múltiplos ribossomas e uma rápida reciclagem das subunidades após se libertarem do terminal 3’ do mRNA. As subunidades separadas do ribossoma vão reagrupar-se junto ao terminal 5’ e reiniciam a síntese
  • 10. GUSTAVO PINHO MAIA 10 Membrana Plasmática A membrana plasmática ou citoplasmática é a estrutura que delimita todas as células vivas, tanto as procarióticas como as eucarióticas. Ela estabelece a fronteira entre o meio intracelular, o citoplasma, e o ambiente extracelular, que pode ser a matriz dos diversos tecidos. A membrana celular não é uma barreira, mas uma “porta” seletiva que a célula utiliza para captar os elementos do meio exterior que lhe são necessários para o seu metabolismo e para libertar as substâncias que a célula produz e que devem ser enviadas para o exterior (sejam elas produtos de excreção, das quais deve se libertar, ou secreções que a célula utiliza para várias funções relacionadas com o meio). Funções Da Membrana Plasmática A membrana plasmática tem as seguintes funções: • Compartimentação • Barreira Seletiva • Transporte de Solutos • Resposta a Estímulos Externos • Interação Intercelular • Atividades Bioquímicas • Conversão Energética A membrana plasmática é permeável á água e muito pouco permeável a sais, açúcares e aminoácidos.
  • 11. GUSTAVO PINHO MAIA 11 Nota: Osmose A água move-se através de uma membrana semipermeável, de uma solução pouco concentrada para uma muito concentrada. A movimentação de água ocorre até que as concentrações de solutos e água seja igual em ambos os lados da membrana. Constituição Da Membrana Plasmática Se efetuarmos uma aproximação na membrana verificamos que ela é constituída por duas camadas denominadas bicamada lipídica. Essa bicamada lipídica permite que nós façamos a separação do meio extracelular do meio intracelular. Resumidamente, a membrana celular é uma bicamada lipídica responsável por delimitar a estrutura da célula no meio, bem como sua composição química. Toda a estrutura da célula, seja ela cilíndrica, cónica é delimitada pela bicamada lipídica. Além disso permite que a célula escolha os tipos de substancias ou moléculas que entram/saiam da célula.
  • 12. GUSTAVO PINHO MAIA 12 Como dito, a membrana plasmática é constituída por uma bicamada fosfolipídica. Os fosfolípidos presentes nas células formam espontaneamente as bicamadas de fosfolípidos. AS cadeias de hidrocarbonetos formam uma camada hidrofóbica que possui entre 3-4 nm de espessura na maior +arte das bio membranas. A camada lipídica possui duas propriedades importantes: • A parte hidrofóbica previne que os solutos hidrofílicos atravessem a membrana. No entanto existem proteínas de membrana que medeiam o transporte de solutos específicos através desta barreira impermeável. • A segunda propriedade da bicamada é a sua estabilidade. Composição Da Membrana Plasmática De um modo geral, estão presentes os seguintes componentes: • Fosfoglicerídios • Esfingolipidos • Esteróides
  • 13. GUSTAVO PINHO MAIA 13 Todos estes lípidos/fosfolipídeos podem ser representados pela figura seguinte. São constituídos por uma cabeça polar, ou seja, uma região que tem carga, denominada fosfato, hidrofílica, ou seja que interage com compostos aquosos, ou que solubiliza em água, e por uma cadeia de hidrocarboneto (carbono-hidrogénio), denominada de cauda apolares, que interagem com regiões hidrofílicas, mas é uma região hidrofóbica. Podemos verificar que existem duas cadeias de hidrocarbonetos adjacentes ao grupo fosfato. Mas nem todos têm esta estrutura. Existem fosfolipídeos que possuem insaturações que nada mais são que uma ligação dupla entre carbonos.
  • 14. GUSTAVO PINHO MAIA 14 Esta dupla ligação, faz com que a cadeia de hidrocarbonetos, sofra um deslocamento, seja para a direita, seja para a esquerda. Concluindo existem duas formas de fosfolipídeos: os saturados e os insaturados. Eles associam-se desta forma para formar a bicamada lipídica: Existe uma camada superior de uma cadeia de fosfolipídeos e uma camada inferior de uma cadeia de fosfolipídeos. Acima desta camada, corresponde o meio extracelular e abaixo desta camada corresponde o meio intracelular.
  • 15. GUSTAVO PINHO MAIA 15 Podemos identificar na figura de cima duas regiões importantes. A região da cabeça (grupamentos fosfatos) ou região polar e a região da cauda (grupamento hidrocarboneto) ou região apolar. Como visualizado, os fosfolipídeos não ficam estáticos, ou seja, eles conseguem-se mover entre eles fazendo com que sejam extramente dinâmicos. Outro tipo de movimentação que já não é tao comum assim é a movimentação de um fosfolipídeo da cadeia superior para a cadeia inferior e vice-versa, denominada flip-flop dos fosfolipídeos. Também é possível ter uma estrutura que possui fosfolipídeos insaturados. Como podemos visualizar, quando na membrana, estão presentes fosfolipídeos insaturados, ocorre uma desorganização na parta hidrofóbica da cadeia, ou seja, na parte apolar. Essa desorganização permite que a membrana tenha algum tipo de fluidez, como podemos visualizar na figura abaixo.
  • 16. GUSTAVO PINHO MAIA 16 Devido a essa fluidez na parta apolar, as moléculas presentes na membrana, transitam, ou seja, movem-se com mais facilidade. Nota: A característica apolar da membrana faz com que haja alta seletividade para a entrada e saída de moléculas polares (hidrofílicas), pois as mesmas bloqueiam a sua passagem. Já as moléculas apolares (hidrofóbicas) passam livremente pela membrana plasmática. Fosfoglicerídios Os Fosfoglicerídios são os mais abundantes na maior parte das membranas- São lípidos derivados do 3-fosfato de glicerol. A maior parte dos Fosfoglicerídios são derivados de 3- fosfato de glicerol, contendo duas cadeias de ácidos graxos esterificados (cauda hidrofóbica) e uma cabeça polar esterificada com o fosfato do glicerol. A cabeça polar pode ser, por exemplo, constituída por Fosfatidilcolina PC), fosfatidietanolamina (PE), Fosfatidilserina (PS) e fosfatidilinositol (PI).
  • 17. GUSTAVO PINHO MAIA 17 Esfingolipidos Os Esfingolipidos são derivados a esfingosina. Existem vários ácidos gordos que se podem ligar á esfingosina através de uma ligação amina. Como exemplos de Esfingolipidos temos: • Esfingomielina (SM) – tem fosfocolina como cabeça polar. • “Glucosylcerebroside” (GlcCer) – tem a glucose ligado ao fosfato na cabeça polar Nota Como a estrutura da Esfingomielina é similar á dos Fosfoglicerídios, estes dois lípidos podem formar bicamadas Tal como os outros lípidos da membrana, o colesterol, que faz parte dos esteroides é um lípido anfipático. O seu grupo hidroxilo é equivalente á cabeça polar dos outros lípidos. Os 4 anéis e a pequena cadeia hidrocarbonada formam a cauda hidrofóbica. A composição lipídica da membrana influencia as propriedades da membrana. Enquanto os Fosfoglicerídios são sintetizados no reticulo endoplasmático, os Esfingolipidos são sintetizados no complexo de Golgi. Uma elevada concentração de Esfingolipidos na membrana faz com que haja um aumento da estabilidade da membrana.
  • 18. GUSTAVO PINHO MAIA 18 Os lípidos na membrana têm a capacidade de se difundir lateralmente, o que contribui para a fluidez da membrana. A fluidez da membrana depende da composição lipídica, estrutura das caudas hidrofóbicas (as caudas saturadas têm tendência a agregar) e da temperatura. Quando uma bicamada lipídica altamente ordenada é aquecida, há um aumento das movimentações moleculares nas caudas dos ácidos gordos, tal causa um aumento da fluidez da membrana. O colesterol é importante na manutenção da fluidez das membranas o que é essencial para o normal crescimento e reprodução da célula. Além disso, a membrana plasmática é constituída por proteínas membranares: • Distribuição especifica na membrana • Orientação e localização especifica e depende do tipo celular • Conferem propriedades especificas a cada face da membrana (assimetria membranar) Existem diversos tipos de proteínas: • Proteínas Integrais – São proteínas transmembranares, constituídas por 3 segmentos. Os domínios citoplasmáticos têm superfícies hidrofílicas que interagem com soluções aquosas. O domínio que se estende ao longo da membrana contém muitos aminoácidos hidrofóbicos.
  • 19. GUSTAVO PINHO MAIA 19 • Proteínas Ancoradas Á Membrana – São proteínas que estão covalentemente ligadas á cadeia hidrocarbonada. A cadeia polipeptídica não entra no interior da bicamada lipídica. • Proteínas Periféricas – Estão associadas ás proteínas integrais ou ás cabeças dos lípidos das membranas através de ligações não covalentes. Mobilidade Dos Lípidos Na Membrana Plasmática As moléculas de lípido estão num estado fluido e têm capacidade de se movimentar: • Mobilidade Lateral – movimento rápido (10−6 𝑠) • Rotação – movimento rápido (10−9 𝑠) • Mobilidade Transversal – movimento lento (10−5 𝑠, movimento mais restrito) • Flipase – movem fosfolípidos. Importantes para manter a assimetria da membrana Tipos De Movimentos Apresentados Pelas Proteínas Na Membrana Plasmática A- Arbitrário B- Imóvel C- Direcionado D- Imobilizado E- Arbitrário e restrito a uma área As proteínas membranares movem-se mais lentamente na membrana plasmática do que em bicamadas contendo apenas lípidos. O movimentos das proteínas é limitado por interações com o citoesqueleto, outras proteínas e materiais extracelulares.
  • 20. GUSTAVO PINHO MAIA 20 Proteínas Proteínas são macromoléculas biológicas constituídas por uma ou mais cadeias de aminoácidos. As proteínas estão presentes em todos os seres vivos e participam de praticamente todos os processos celulares, desempenhando um vasto conjunto de funções no organismo, como a replicação de ADN, a resposta a estímulos e o transporte de moléculas. Muitas proteínas são enzimas que catalisam reações bioquímicas vitais para o metabolismo. As proteínas têm também funções estruturais ou mecânicas, como é o caso da actina e da miosina nos músculos e das proteínas no citoesqueleto, as quais formam um sistema de andaimes que mantém a forma celular. Outras proteínas são importantes na sinalização celular, resposta imunitária e no ciclo celular. As proteínas diferem entre si fundamentalmente na sua sequência de aminoácidos, que é determinada pela sua sequência genética e que geralmente provoca o seu enovelamento numa estrutura tridimensional específica que determina a sua atividade. Os grupos R laterias, ou seja, os grupos variáveis, podem se associar por ligações não- covalentes e formar estruturas tridimensionais. Existem quatro tipos de estruturas que os aminoácidos podem formar entre si: 1. Primária 2. Secundária 3. Terciária 4. Quaternária Á medida que se desce na estrutura, aumenta a complexidade da estrutura.
  • 21. GUSTAVO PINHO MAIA 21 Primária A estrutura primária é representada apenas pela cadeia linear de aminoácidos. Na figura seguinte está representada uma cadeia de ligação de seis aminoácidos, sem interação de grupos laterais. Secundária Nota: Como dito anteriormente, os grupamentos R laterais, ou seja, os grupamentos variáveis, podem interagir através de ligações não covalentes, o que resulta no dobramento da sequência de aminoácidos. Existe uma exceção que é a cisteína, que é capaz de fazer uma ligação covalente através de dois enxofres entre duas cisteínas onde se forma a molécula cistina. Esta associação não covalente permite que a sequência de aminoácidos se enovele, ou seja, se dobre para formar estruturas tridimensionais. Existe dois tipos de estruturas secundárias que são muito presentes: • Alfa-Hélice • Folhas beta pregueada
  • 22. GUSTAVO PINHO MAIA 22 Alfa-Hélice A Alfa Hélice é uma estrutura helicoidal formada pelas pontes de hidrogénio intra-cadeia dos grupamentos amino e carboxila dos aminoácidos. Podemos visualizar na imagem ao lado, como se forma um alfa-hélice. A ponte de hidrogénio se forma com o oxigénio da carbonila com o hidrogénio da amida do 4º aminoácido subsequente. Verificando a figura, podemos visualizar o carbono 𝛼 no canto inferior esquerdo, que está ligado a um carbono que por sua vez está ligado a um oxigénio através de uma ligação dupla. Esse oxigénio, como podemos visualizar, estabelece uma ponte de hidrogénio, com o hidrogénio da “segunda hélice” que por sua vez está ligado ao nitrogénio. Se olharmos atentamente, conseguimos perceber que a ponte de hidrogénio, acontece no 4º carbono 𝛼. Concluindo, a alfas-hélice é uma interação intra-cadeia, ou seja, elas estão voltadas para a face interior da hélice. Em termos de orientação da alfa-hélice, ela pode fazer uma rotação: • Giro levogiro Rotação para a esquerda • Giro dextrogiro Rotação para a direita O que determina o tipo de giro, ou seja, para que lado gira a hélice depende da isomeria ótica, falado recentemente. Se os aminoácidos utilizados para formar a alfa hélice forem do
  • 23. GUSTAVO PINHO MAIA 23 tipo L (levogiro) a rotação será para a esquerda. Caso os aminoácidos sejam utilizados para a produção dos aminoácidos do tipo D (dextrogiro) a rotação será para a direita. Folha Beta Pregueada A folha beta pregueada é uma estrutura linear pregueada (na forma de ziguezague) formada pelos pontos de hidrogénio entre-cadeia dos grupamentos amino e carboxila dos aminoácidos. Na figura seguinte está representada uma folha beta pregueada. Nessa figura conseguimos visualizar três cadeias lineares de aminoácidos. Conseguimos visualizar que, existe uma ligação de hidrogénio ou seja uma ponte de hidrogénio da amina para o oxigénio da carboxila. Conseguimos visualizar também que não é sempre entre a mesma cadeia, mas sim cadeias diferentes. Devido a essa interação não covalente entre cadeias, formam-se as “dobras” na distribuição espacial dos átomos dos aminoácidos, formando a estrutura em ziguezague.
  • 24. GUSTAVO PINHO MAIA 24 Em termos de orientação da folha beta pregueada, pode ser: • Paralela Folhas no mesmo sentido • Antiparalela Folhas no sentido oposto Estrutura Terciária É a combinação entre várias alfas hélice e folhas beta, podendo ser somente alfa-hélice, folhas beta ou ambas. Na figura ao lado podemos verificar que existe uma combinação de alfa hélice (cadeia a azul escuro) e folha beta (cadeia a laranja). Quando esta combinação ocorre, denominamos este tipo de estrutura de estrutura terciária de uma proteína. Nota: Existem zonas na estrutura, onde nem são alfa hélice nem são folha beta (representado na figura como um fio verde). Essas regiões não possuem nomenclatura, pois são porções variáveis da estrutura, que não assume nem forma de alfa hélice nem forma de folha beta.
  • 25. GUSTAVO PINHO MAIA 25 Estrutura Quaternária É a combinação entre várias estruturas terciárias, formando estruturas diméricas, trimérias, tetraméricas, etc. Representada nesta imagem está a hemoglobina. Podemos visualizar na figura que existem subunidades individuais (duas subunidades amarelas e duas subunidades verdes). Estas subunidades representam estruturas terciárias. Quando estas estruturas terciárias se associam entre si através de ligações não covalentes, formam o que chamamos de estrutura quaternária. Neste caso, como temos quatro estruturas terciárias diferentes, nós temos um que chamamos de tetrâmero. • Homo Estruturas terciárias idênticas (Homo tetrâmero) • Hétero Estruturas terciárias diferentes (Hétero tetrâmero) Sistema De Transporte De Moléculas E Iões Através De Membranas • A maquinaria de transporte membranar permite á célula acumular substâncias necessárias ao seu metabolismo • Criar gradientes iónicos • Permite responder ao seu ambiente
  • 26. GUSTAVO PINHO MAIA 26 Existem diversos tipos de transportes membranares: • Difusão Simples - Movimento espontâneo de moléculas ou iões de acordo com o gradiente químico de concentração • Difusão Facilitada – Transporte de água, iões específicos ou pequenas moléculas hidrofílicas (a favor do se gradiente de concentração ou de potencial elétrico) assistido por proteínas • Transporte Ativo - Movimento contra um gradiente químico ou de concentração. Em que há gasto de energia Difusão Simples A difusão simples é um tipo de transporte passivo (não há gasto de energia celular) de um soluto através da membrana a fim de estabelecer a isotonia, ou seja, alcançarem a mesma concentração, pois o movimento é a favor de um gradiente de concentração. Ela é feita através de um soluto apolar pequeno que penetra através da membrana, pois assim possui afinidade com a camada polar da membrana fosfolipídica. Através da bicamada lipídica da membrana, sem envolver proteínas carregadoras.
  • 27. GUSTAVO PINHO MAIA 27 Difusão Facilitada É uma modalidade de difusão em que não ocorre gasto de energia. O transporte ocorre a favor do gradiente de concentração (do meio mais concentrado para o meio menos concentrado). O soluto atravessa a membrana com a assistência de um carreador proteico específico localizado na superfície da membrana - a permease. Assim, este tipo de difusão diferencia-se dos demais uma vez que a sua velocidade de difusão tende a atingir uma velocidade máxima constante à medida que se aumenta a concentração da substância a ser difundida. O mecanismo responsável por limitar a velocidade da difusão facilitada se embasa no facto de a substância transportada ligar-se a uma parte específica (um sítio específico) da proteína transportadora. Dessa forma, quando todos esses sítios estiverem "ocupados", não adianta aumentar a concentração da substância a ser transportada. É premente, para o aumento da velocidade, que tais sítios sejam antes desocupados, para que a proteína tenha atividade. Resumindo, quanto mais permeases (proteínas transportadoras) existirem, maior será a sua velocidade; mas se a concentração aumentar, a velocidade aumenta até chegar a um ponto em que estabiliza por não ser possível "inserir" mais permeases na membrana plasmática. Entre as substâncias que atravessam as membranas biológicas por difusão facilitada, destacam-se a glicose e grande parte dos aminoácidos. ECP.
  • 28. GUSTAVO PINHO MAIA 28 Transporte Ativo O transporte ativo é o nome dado ao tráfego de moléculas através da membrana plasmática, contra o gradiente de concentração, mediado por proteínas específicas transportadores e com a mobilização de energia celular geralmente resultante da hidrólise de ATP (trifosfato de adenosina). A membrana pode expulsar ou absorver alguma substância que esteja em excesso ou em falta, bombeando-a para dentro ou para fora da célula. O transporte ativo é realizado principalmente pelas enzimas de ATP (denominadas ATPases), o exemplo da importante Bomba sódio-potássio, que tem a função de manter o potencial eletroquímico das células. Difusão De Iões Através Da Membrana Canais Iónicos (Proteínas Integrais): • Permitem o fluxo de iões entre as células adjacentes sem atravessar o espaço extracelular – “gap junctions”. • A deslocação dos iões ocorre no local de maior concentração para o de menor concentração. • A deslocação dos iões ocorre no maior estado para o menor estado energético. • Bidirecionais (dependentes do gradiente eletroquímico). • Seletivos para cada tipo de ião. • Permitem o fluxo de iões a alta velocidade através da membrana sem consumo de energia. O fluxo é mediado por repulsão electroestática entre iões. • Os canais iónicos podem ser artificialmente criados em membranas por tratamento das células com pequenas proteínas hidrofóbicas designadas por ionóforos.
  • 29. GUSTAVO PINHO MAIA 29 Existem dois tipos de canais iónicos: 1- Canais dependentes da voltagem – Estado conformacional depende da carga iónica dos dois lados da membrana. 2- Canais dependentes de ligandos – Estado conformacional depende da ligação de uma molécula especifica (ligando), a qual não é geralmente o soluto que passa pelo canal. Canais Dependentes de Voltagem Dependem de alterações de potencial de membrana. São canais de abertura rápida. Canais Dependentes de Ligandos Recetor de acetilcolina – responsável pelo sinal elétrico entre um nervo motor e uma fibra muscular. Abertura por ligação reversível de um ligando.
  • 30. GUSTAVO PINHO MAIA 30 Na figura acima verificamos, diversos transportadores membranares Quatro Classes De Proteínas De Transporte ATP-pumps Existem 4 tipos de proteínas de transporte, que envolve o gasto de ATP: • Bombas de Classe P • Bombas de Protões Classe V • Bombas de Protões de Classe F • Superfamília ABC Bombas Classe P • Membranas de plantas, fungos e bactérias (bombeiam 𝑯+ ) • Membranas de alguns eucariotas (bombas 𝑵𝒂+ /𝑲+ ) • Membranas do estomago de mamíferos (bombas 𝑯+ /𝑲+ ) • Membrana de todas as células eucarióticas (bomba 𝑪𝒂 𝟐+ ) • Membranas do reticulo sarcoplasmático nas células do músculo (bomba 𝑪𝒂 𝟐+ )
  • 31. GUSTAVO PINHO MAIA 31 Bombas De Protões Classe V • Membranas de vacúolos de plantas e fungos • Membranas de lisossomas e endossomas de células animais • Membranas de células do rim Bombas De Protões Classe F • Membranas de Bactérias • Membrana interna do mitocôndrio • Membrana tilacoide de cloroplastos Superfamília ABC • Membranas de bactérias (envolvidas no transporte de aminoácidos, glícidos e peptídios) • Membranas de mamíferos (envolvidos no transporte de fosfolípidos, de drogas lipossolúveis pequenas, colesterol e outras moléculas pequenas).
  • 32. GUSTAVO PINHO MAIA 32 Modelo Da 𝑵𝒂+ /𝑲+ ATPase Na Membrana Citoplasmática
  • 33. GUSTAVO PINHO MAIA 33 Resumindo: