SlideShare uma empresa Scribd logo
Análise de Investimentos
Tomada de Decisão
Prof. Msc Luciano F. Rodrigues
Análise de
Investimentos
Matemática
Financeira
Fluxo de Caixa
Contabilidade
Problema
Oportunidade
Alternativas
Que caminho
tomar?
Modelagem Econômico Financeira Tomada de
Decisão
Consciente
Racional
Padronizada
Métodos de
Avaliação
Sistemas de
Financiamento
Subst. de Equip.
Leasing
Análise de Risco
CAPM / WACC
Prof. Msc Luciano F. Rodrigues
Capítulo 1- Introdução
• Definir Alternativas de Investimentos
• Algumas Perguntas a Serem Feitas
• Objetivos, Estimativas, Modelagem e Decisão
• Princípios Fundamentais de Aplicação de Capital
• Mecanismos de Capitalização
• Investimento
Prof. Msc Luciano F. Rodrigues
Definir Alternativas de
Investimento
• “Definir, tão precisamente quanto possível
alternativas de investimentos e prever
suas conseqüências, reduzidas a termos
monetários, elegendo-se um instante de
referência temporal e considerando o
valor do dinheiro no tempo.”
Prof. Msc Luciano F. Rodrigues
Algumas Perguntas a
Serem Feitas
• Por que, afinal, fazer este investimento?
• Por que agora? É possível adiá-lo?
• Por que fazê-lo desta forma?
– Software, Hardware, Humanware
– Flexibilidade vs Controle
Prof. Msc Luciano F. Rodrigues
Objetivos, Estimativas,
Modelagem e Decisão
• Definição de Objetivos
• Estimativas para custos, receitas e incertezas
• Modelagem Econômico-Financeiro
• Em casos de incerteza considerável
– Análise de Sensibilidade
– Análise de Cenários
– Análise de Riscos
Prof. Msc Luciano F. Rodrigues
Avaliação de Ativos
para Privatização
• Venda do BANESPA
– Valor do Ativo
Instituição R$ bilhões Ágio
Bradesco 1,860 0,53%
Unibanco 2,100 13,50%
Santander 7,000 281,00%
Preço Mínimo 1,850 0,00%
Valor Intrínseco
+ Valor do Controle
+ Valor Estratégico
Valor Total
Prof. Msc Luciano F. Rodrigues
Problema Central da
Alocação de Capital
• Oferta de Capital disponível não cobre a
demanda
24
20
16
12
8
4
0
Investimento (US$ Milhões)
Custo Marginal de Capital
A
C
D
E
F
B
Custo de Capital
e Rentabilidade
(% ao ano)
Rentabilidade
Prof. Msc Luciano F. Rodrigues
Princípios Fundamentais
de Aplicação de Capital1
1. Decisões serão tomadas a partir de alternativas
factíveis
2. Alternativas concorrentes deverão possuir um
denominador comum
3. Apenas as diferenças entre alternativas são
relevantes
4. Os critérios para decisões de investimentos devem
reconhecer o valor do dinheiro no tempo e os
problemas relativos ao racionamento de capital
1. Ref: Fleischer, 1973
Prof. Msc Luciano F. Rodrigues
Princípios Fundamentais
de Aplicação de Capital
5. Decisões separáveis deverão ser tomadas
isoladamente
6. Certo peso deve ser dado para os graus relativos de
incerteza associada com as várias previsões
7. Decisões devem considerar as conseqüências não
redutíveis a termos monetários
8. Eficácia dos procedimentos de orçamento de capital
é uma função de sua implantação nos vários níveis
dentro da organização
9. As análises a posteriori aperfeiçoam a qualidade das
decisões
Prof. Msc Luciano F. Rodrigues
Empréstimo e
Investimento
• “Considera-se empréstimo uma situação na qual se
espera que haja recuperação do valor emprestado
(quando o empréstimo é devidamente liquidado,
claro!), mais um pagamento pelo uso do dinheiro (um
espécie de "aluguel"), que são os juros.”
• “Considera-se investimento a situação na qual
ocorre inversão de capital de alguma forma,
buscando com isso criação de valor, ou seja,
recuperação do valor investido (principal), mais uma
rentabilidade do investimento (taxa de juros), em
determinado prazo.”
Prof. Msc Luciano F. Rodrigues
Matemática Financeira
• Capitalização por Juros Simples e Compostos
• Capitalização Contínua
• Pagamentos Simples e Múltiplos
• Pagamentos Simples
• Pagamentos Múltiplos - Série Uniforme
• Série Gradiente
• Taxas de Juros Nominal e Efetiva
• Inflação e Taxa de Juros
• Taxa de Juros e Política Macroeconômica
Prof. Msc Luciano F. Rodrigues
Juros e Taxa de Juros
• “Juro (J) é a diferença entre o que foi emprestado no
presente (P) e o que é cobrado no período de tempo
futuro (F), quer seja ano, mês ou dia
• “Taxa de Juros (i) é definida como:”
– Quantifica a remuneração de capital
– Geralmente apresentada em %
J = F - P (1)
i = J /P = (F-P) / P (2); e
J = P . i
Prof. Msc Luciano F. Rodrigues
Capitalização por
Juros Simples
• As parcelas adicionais são dadas por um valor
proporcional ao capital inicial e ao tempo de
aplicação
• Combinando as equações
Jn = P.i.n; (3)
F = P + Jn; (4)
F = P . ( 1+ i . n ) (5)
onde
P é o capital inicial;
F é o capital disponível ou exi-
gível no final do período n, ou
montante;
Jn são os juros acumulados
até o final de n períodos de
capitalização;
n é o número de períodos
capitalizados; e
i é a taxa de juros empregada
por período de capitalização.Prof. Msc Luciano F. Rodrigues
Capitalização por
Juros Simples - Exemplo
• Qual o montante equivalente a R$ 100,00
capitalizados a 50% ao ano em cinco anos?
Extrai-se do enunciado diretamente que P = 100, e i = 50% ao ano .
É possível calcular diretamente:
F = 100 × (1+0,50× 5) = R$ 350,00
De outra forma:
J = P. i. n = 100× 0,50× 5 = 250
F = P + J = 100 + 250 = 350
Período Valor início Juros Valor fim
(anos) período período período
0 0 0 100
1 100 50 150
2 150 50 200
3 200 50 250
4 250 50 300
5 300 50 350
Tabela 2.1
Note que os juros são iguais para todos os períodos!
Prof. Msc Luciano F. Rodrigues
Capitalização por
Juros Compostos
• Método mais empregado por instituições bancárias e
financiadoras
• Juros são incorporados ao capital, e os juros para o
próximo período calculados sobre o novo capital
C1 = C0 + C0.i = C0.(1+i)
C2 = C1+C1.i = [C0.(1+i)].(1+i)
= C0.(1+i)2
Cn = C0 .(1+i)n
(6)
Jn = C0 . [(1+i)n
–1] (7)
onde
C0 é o capital inicial;
Cn é o capital disponível ou
exigível no final do período n,
ou montante;
Jn são os juros acumulados
até o final de n períodos de
capitalização;Prof. Msc Luciano F. Rodrigues
Capitalização por
Juros Compostos -
Exemplo
• Qual o montante equivalente a R$ 100,00
capitalizados a 50% ao ano em cinco anos?
Período
( anos)
Saldo devedor
início período
Juros
período
Saldo devedor
fim período
0 0 0 100,00
1 100,00 50,00 150,00
2 150,00 75,00 225,00
3 225,00 112,50 337,50
4 337,50 168,75 506,25
5 506,25 253,12 759,37
Note que os juros em cada período eqüivalem a 50% do saldo
devedor no início do mesmo período
Prof. Msc Luciano F. Rodrigues
Capitalização Contínua
• Empregado em mercados financeiros e substituição
de equipamentos
• Capitalização se dá de forma contínua, em intervalos
infinitesimais de tempo
• Integrando a equação acima, obtemos:
dCt = Ct.i.dt (8)
onde:
dCt é o acréscimo do capital total entre t e t+dt;
Ct é o capital total em t;
i é a taxa de juros; e
dt é o acréscimo infinitesimal de tempo.
CT = C0. ei.T
(9)
onde:
T é o tempo decorrido para capitalização;
e é o número neperiano (2,718)Prof. Msc Luciano F. Rodrigues
Capitalização Contínua
Exemplo
• Dado um empréstimo de R$ 1.000,00 tomado com
juros de 5% ao mês capitalizados continuamente ao
longo do tempo, qual o montante equivalente para
um mês à frente? E para 40 dias?
Resolução: Aplicando a fórmula (9), tem-se para 30 dias:
C30 = 1.000 . e(0,05⋅ 30/30)
= 1.000 . e(0,05)
= 1.000 . 2,718(0,05)
= 1000 . 1,051
= R$ 1.051,27
Para o período de 40 dias, a solução é análoga:
C40 = 1.000 .⋅e(0,05⋅ 40/30)
= 1.000 . e(0,05⋅ 4/3)
= 1.000⋅. 2,718(0,067)
= R$ 1.068,94
Prof. Msc Luciano F. Rodrigues
Regimes de
Capitalização
• Valor de um empréstimo de R$ 100,00 com juros de
50% a.a.
Comparação entre regimes de juros
0
200
400
600
800
1000
1200
1400
0 1 2 3 4 5
Período
Valor
Juros simples Juros compostos Juros contínuos
Prof. Msc Luciano F. Rodrigues
Diagramas
Representativos de
Fluxo de Caixa
Tempon2 3 ...1
0
-$
+$ Receita ou Encaixe
Desembolso ou despesa
Prof. Msc Luciano F. Rodrigues
Pagamentos Simples
• Diagrama de Fluxo de Caixa
• Fórmulas:
P
0
1 2 3 4 n………..
F
F = P.(1+i)n
(10)
P = F/(1+ i)n
(11)
C0 = Cn/(1+i)n
(6*)
Prof. Msc Luciano F. Rodrigues
Pagamentos Múltiplos
Série Uniforme
• Diagrama de Fluxo de Caixa
• Fórmulas:
P
0
1 2 3 4 n
……
…..
A
P = A ⋅ [1- (1+i)-n
] / [i]
Prof. Msc Luciano F. Rodrigues
Exemplo - Pagamento
Simples e Múltiplo
• Um apartamento é vendido em 5 anos, com parcelas
mensais de R$ 1.000,00. Para pagamento a vista, o
total é de R$ 53.000,00. Sabendo-se que a taxa de
juros utilizada será de 0,50% ao mês, qual a opção,
se se dispõe do total a ser pago a vista? E se a taxa
de juros fosse de 0,40% ao mês?
Convertendo a série para o valor presente (P) só se necessita aplicar a fórmula (13),
sabendo que n = 12⋅ 5 = 60 meses;
i = 0,50% ao mês; e
A = R$ 1.000,00.
Aplicando a fórmula vem P = R$ 51.725,26.
Como R$ 51.725,26 < R$ 53.000,00, opta-se pela opção a prazo.
Usando a taxa de juros de 0,40% ao mês, encontra-se P = R$ 53.248,87
Como R$ 53.248,87 > R$ 53.000,00, opta-se pela compra a vista.Prof. Msc Luciano F. Rodrigues
Taxa de Juros Nominal
e Efetiva
• Taxa de juros nominal anual com capitalização
mensal
• Taxas efetivas são sempre maiores que as taxas
nominais, pois a capitalização é feita a intervalos
menores
(1+i)1
= (1+r/M)M
(18)
onde:
i é a taxa de juros efetiva anual;
r é a taxa de juros nominal anual;
Mé o número de meses (de períodos de
capitalização à taxa efetiva anual);
i = (1+r/M)M
-1 (19)
Prof. Msc Luciano F. Rodrigues
Taxa de Juros Nominal
e Efetiva - Exemplo
• Qual a taxa efetiva anual equivalente a uma
taxa nominal de 12% a.a. com capitalização
mensal?
Taxa nominal: 12% ao ano (r) com capitalização mensal,
ou seja M=12 (o ano tem 12 meses)
Taxa efetiva mensal = r/M, ou seja,
(12% a.a.) /12 meses por ano = 1% a.m.
Taxa efetiva anual
i = [1+(12%/12)]12
-1 = 12,68% ao ano.
Prof. Msc Luciano F. Rodrigues
Inflação e Taxa de
Juros
• Relação entre índices de preços em dois períodos
consecutivos
• Fundamental quando se avalia propostas em
diferentes países
• Considere a seguinte situação:
• A inflação é dada por:
I0 - Índice de Preços no período (0);
I1 - Índice de Preços no período (1);
θ = I1 / I0 – 1  I1 / I0 = (1+θ ) (20)
Prof. Msc Luciano F. Rodrigues
Inflação e Taxa de
Juros
• No caso de inflação nula (I1=I0), temos, entre dois
períodos consecutivos: F = P. (1+i)
• Utilizando os índices de preço, desenvolvemos:
• Chamando i’ de taxa de juros inflacionada, temos:
F/I1 = [P⋅ (1+ i )]/I0, ou
F=[P⋅ (1+ i )] ⋅{I1/I0 } (21)
F = P⋅ (1+θ )⋅ (1+ i ) (22)
i’={[(1+i) ⋅ (1+θ)]-1} (24)
F = P⋅(1+i’) (22a
)
(1+i’)=(1+i)⋅(1+θ) (23)
e
Prof. Msc Luciano F. Rodrigues
Inflação - Exemplo
• Taxa real de juros: 10% a.a.
• Taxa de inflação 15% a.m.
• Qual a taxa inflacionada?
A partir de (24), obtemos:
i’ = {(1+0,10) . (1+0,15) - 1} = {(1,10) . (1,15) - 1 }
= 1,265 - 1 = 26,5% a.a.
Logo, a taxa inflacionada é de 26,5% a.a.
De forma ilustrativa:
10% + 15% + 10%.15% = 26,5%
Prof. Msc Luciano F. Rodrigues
Funções do Excel
• Pagamentos Simples (VP, VF e TAXA)
• Pagamentos Múltiplos (VP, VF, TAXA e
PGTO)
• Séries Genéricas e Gradientes (VPL)
• Taxa de Juros (NOMINAL, EFETIVO)
Prof. Msc Luciano F. Rodrigues
Função VP
• Retorna o valor presente dados uma série de
pagamentos uniformes (e/ou) um valor futuro
equivalente, uma taxa de juros e um número de
períodos de capitalização
Prof. Msc Luciano F. Rodrigues
Função VF
• Retorna o valor futuro dados uma série de
pagamentos uniformes (e/ou) um valor presente
equivalente, uma taxa de juros e um número de
períodos de capitalização
Prof. Msc Luciano F. Rodrigues
Função TAXA
• Retorna a taxa de juros, dados um valor
presente e futuro e um número de períodos
de capitalização
Prof. Msc Luciano F. Rodrigues
Função PGTO
• Retorna o pagamento uniforme, dados um
valor presente e futuro e um número de
períodos de capitalização
Prof. Msc Luciano F. Rodrigues
Função EFETIVO e
NOMINAL
• Retornam as taxas efetivas ou nominais
através do número de períodos da
composição e da taxa nominal ou efetiva
Prof. Msc Luciano F. Rodrigues
Função VPL
• Retorna o valor presente líquido, dada uma
taxa de juros e uma série de pagamentos
Prof. Msc Luciano F. Rodrigues
Sistemas de
Financiamento
• Amortização de Empréstimos de Curto Prazo
– Postecipados e Antecipados
– Reciprocidade
• Amortização de Empréstimos de Longo Prazo
– Método Francês ou Tabela Price
– Sistema de Amortização Constante (SAC)
– Sistema Americano
• Sinking Fund
– Empréstimos com carência
– Empréstimos com “parcelas intermediárias”
– Cláusulas de Reajustamento
Prof. Msc Luciano F. Rodrigues
Introdução
• Nem sempre as empresas possuem capital próprio
para investir em um dado projeto
• Oportunidades não esperarão que a empresa poupe
o suficiente para investir
• Como conseqüência, as empresas terão de lançar
mão de empréstimos
Prof. Msc Luciano F. Rodrigues
Amortização a Juros
Simples (postecipados)
• Repagamento de principal e juros é realizado de uma
única vez, ao final do prazo do empréstimo
• Relembrando a fórmula:
• Exemplo: Empréstimo de R$ 100.000 com prazo de
5 meses, a 4% ao mês. Qual o valor devido?
F = P . ( 1+ i . n ) (5)
F = 100.000 (1+5.4%) =
F = 100.000 (1+20%) =
F = R$ 120.000
Prof. Msc Luciano F. Rodrigues
Amortização a Juros
Simples (antecipados)
• Na prática, bancos cobram antecipadamente os juros
do empréstimo, ou seja, torna-se necessário pedir
emprestado mais do que se necessita.
• Calculando i:
0 1 2 3 4
n
………..
F = E
J
E
P Recebido pelo tomador do
empréstimo
Fica com o banco
Devolvido
ao banco
Tem-se:
j é a taxa de juros (nominal) do financiamento;
n é o número de períodos;
P é a quantia emprestada efetivamente
J são os juros (E.j.n)
E é o valor de referência do empréstimo (P+J)
F é o repagamento do valor de referência
do empréstimo; e
i é a taxa real de juros simples.
P = (E – E.j.n) = E / (1+i.n) (25)
ou seja, i = j / (1-j.n) (26)
Prof. Msc Luciano F. Rodrigues
Juros Antecipados
(exemplo)Uma pessoa, necessitando de R$ 1.000,00 por 6 meses, tomou em-
prestado em um banco que cobra nesse tipo de financiamento juros
simples antecipados à taxa de 2,5% ao mês.Substituindo os valores
nos elementos da fórmula, pode-se responder às perguntas abaixo:
Dados: P = 1000 ; j= 2,5% ao mês; n = 6 meses
Qual a taxa real de juros a ser paga?
i = 0,025 / [1-(0,025.6)] = 0,025 / [1-0,15] = 0,025/0,85
i = 0,02941 ou 2,94% ao mês (taxa real de juros simples)
Qual o valor do empréstimo (E) a ser tomado?
E = P.(1+i.n) = 1000.(1+0,02941.6) = 1000.(1,1765) = R$ 1176,47
Qual o valor dos juros J pagos?
J = E.j.n = 1.176,47.(0,025.6)
J = 1.176,5.0,15 = R$ 176,47
Verificando-se os cálculos, tira-se o valor de P:
P = E – J = 1.176,47 – 176,47 = R$ 1.000,00
Prof. Msc Luciano F. Rodrigues
Amortização de
Empréstimos a longo prazo
• Juros compostos
• 3 métodos principais:
– Tabela Price: prestações constantes;
– Sistema Americano: juros constantes;
– Sistema de Amortização Constante (SAC): Amortização
constante;
• O saldo devedor no início do primeiro período é o
valor do empréstimo. Os juros devidos ao cabo de
cada período são iguais ao produto da taxa de juros
pelo saldo devedor no início daquele período,
sempre.
• A amortização depende do sistema ou método
acordado entre a instituição que concede o
financiamento e a empresa tomadora do empréstimo
Prof. Msc Luciano F. Rodrigues
Tabela Price
• Método mais empregado no Brasil
• Pagamento em Parcelas Constantes
• Cálculo da Parcela:
– Expressão da Série Anual Uniforme
– Amortização: Diferença entre Juros e Parcela
A = P ⋅ i ⋅ (1+i)n
/((1+i)n
– 1) (15*)
onde
ax é a amortização do
principal no ano x;
Jx são os juros no ano x e
Sx-1 é o saldo devedor ao
ax = A – Jx (29)
Jx = S(x-1).i (30)
Para x=1, S0 é o saldo devedor no início
do primeiro ano, isto é, é o valor
financiado (P).
Prof. Msc Luciano F. Rodrigues
Tabela Price - Exemplo
• Supor um empréstimo de R$ 5.000,00 pelo prazo de 10 anos, a
juros de 10% ao ano. A forma de amortização é a Tabela Price,
ou Sistema Francês. É pedido montar a tabela, calcular juros e
pagamentos anuais.
Por meio da fórmula (15) obtém-se:
A = 5000 . 10% . (1,10)10
/[(1,10) 10
-1] = 813,73.
Sabendo que P = 5.000, os juros no ano 1 (J1) são
J1 = 5.000.10% = R$ 500,00.
Assim, a amortização é
a1=(813,73 – 500,00) = R$ 313,73.
O saldo devedor no final do ano 1 reduz-se a
S1 = S0 - a1 =(5.000,00 - 313,73)=R$ 4.686,27.
Prosseguindo para os próximos anos da mesma forma,
compõe-se a seguinte tabela:Prof. Msc Luciano F. Rodrigues
Tabela Price - Exemplo
( A) ( B) ( C) ( D) ( E) ( F)
Par cela Pgto Jur os Am ort Acum Saldo
1 R$ 813,73 R$ 500,00 R$ 313,73 R$ 313,73 R$ 4.686,27
2 R$ 813,73 R$ 468,63 R$ 345,10 R$ 658,83 R$ 4.341,17
3 R$ 813,73 R$ 434,12 R$ 379,61 R$ 1.038,44 R$ 3.961,56
4 R$ 813,73 R$ 396,16 R$ 417,57 R$ 1.456,01 R$ 3.543,99
5 R$ 813,73 R$ 354,40 R$ 459,33 R$ 1.915,33 R$ 3.084,67
6 R$ 813,73 R$ 308,47 R$ 505,26 R$ 2.420,59 R$ 2.579,41
7 R$ 813,73 R$ 257,94 R$ 555,79 R$ 2.976,38 R$ 2.023,62
8 R$ 813,73 R$ 202,36 R$ 611,37 R$ 3.587,75 R$ 1.412,25
9 R$ 813,73 R$ 141,23 R$ 672,50 R$ 4.260,25 R$ 739,75
10 R$ 813,73 R$ 73,98 R$ 739,75 R$ 5.000,00 R$ 0,00
Tot ais 8.137,27 3.137,27 5.000,00
Prof. Msc Luciano F. Rodrigues
Tabela Price - Exemplo• Gráfico ilustrando pagamentos
Pagamentos - Tabela Price
R$ 0.00
R$ 200.00
R$ 400.00
R$ 600.00
R$ 800.00
R$ 1,000.00
1 2 3 4 5 6 7 8 9 10
Período
Valor
Pagamento Juros Amortização
Prof. Msc Luciano F. Rodrigues
Sistema de Amortização
Constante (SAC)
• Pelo fato de a amortização ser constante, a série de
pagamentos não é uniforme!
• O seguinte procedimento é tomado:
– Calculam-se as amortizações inicialmente:
– Calcula-se o saldo devedor em todos os anos
– Calcula-se os juros, sobre o saldo devedor:
Sj = Sj-1 - ai; j=1..n
aj = P / n; j = 1..n
Ji = Si-1 - ai; j=1..n
Prof. Msc Luciano F. Rodrigues
Sistema de Amortização
Constante - Exemplo
Supor que a mesma empresa do exemplo anterior faz um empréstimo
no mesmo valor, mas dessa vez, o banco ou a financeira em questão
estipula pagamento segundo o método de amortização constante.
Montar a tabela de pagamentos, e fazer gráfico semelhante ao do
exemplo anterior.
Relembrando: P = R$ 5.000,00; i= 10% a.a.; n= 10 anos.
nicialmente, a cada ano se atribui a amortização de R$ 500,00 do principal
ai = P/n, i variando de 1 a 10)
No ano 1, os juros incidentes serão: R$ 5.000.(10%) = R$ 500,00.
Com a amortização abatendo-se do principal, tem-se
S1=5.000 – 500 = R$ 4.500,00
No ano 2, os juros pagos serão: R$ 4.500.(10%) = R$ 450,00, conforme (30),
e assim por diante. A parcela total a ser paga no ano 1 é de R$ 1.000,00, no
ano 2 é de R$ 950,00 e assim por diante, até o ano 10Prof. Msc Luciano F. Rodrigues
Sistema de Amortização
Constante (SAC) - Exemplo
• Tabela de AmortizaçãoSistema de Amortização Constante ( SAC )
Período
( A)
Pgto
( B)
Jur os
( C)
Am ort ização
( D)
Amor tização Paga
Acumulada
( E)
Saldo Devedor
( F)
1 R$ 1,000.00 R$ 500.00 R$ 500.00 R$ 500.00 R$ 4,500.00
2 R$ 950.00 R$ 450.00 R$ 500.00 R$ 1,000.00 R$ 4,000.00
3 R$ 900.00 R$ 400.00 R$ 500.00 R$ 1,500.00 R$ 3,500.00
4 R$ 850.00 R$ 350.00 R$ 500.00 R$ 2,000.00 R$ 3,000.00
5 R$ 800.00 R$ 300.00 R$ 500.00 R$ 2,500.00 R$ 2,500.00
6 R$ 750.00 R$ 250.00 R$ 500.00 R$ 3,000.00 R$ 2,000.00
7 R$ 700.00 R$ 200.00 R$ 500.00 R$ 3,500.00 R$ 1,500.00
8 R$ 650.00 R$ 150.00 R$ 500.00 R$ 4,000.00 R$ 1,000.00
9 R$ 600.00 R$ 100.00 R$ 500.00 R$ 4,500.00 R$ 500.00
10 R$ 550.00 R$ 50.00 R$ 500.00 R$ 5,000.00 R$ -
Tot ais R$ 7,750.00 R$ 2,750.00 R$ 5,000.00
Prof. Msc Luciano F. Rodrigues
Sistema de Amortização
Constante (SAC) - Exemplo
SAC - Sistema de Amortização Constante
R$ -
R$ 200.00
R$ 400.00
R$ 600.00
R$ 800.00
R$ 1,000.00
R$ 1,200.00
1 2 3 4 5 6 7 8 9 10
Período
Valor
Pagamento Juros Amortização
Prof. Msc Luciano F. Rodrigues
Sistema Americano
• Pagamento referente apenas a juros, sem
amortização
• Principal é amortizado integralmente no final do
empréstimo
– Parcela de pagamento igual aos juros
– No último ano, a parcela é dada por juros + principal
Prof. Msc Luciano F. Rodrigues
Sistema Americano -
ExemploO financiamento do exemplo anterior foi realizado utilizando-se agora o
sistema americano. Calcular as tabelas e fazer o gráfico correspondente a
esse financiamento.
A parcela de juros em todos os anos será J = 5.000.10% = R$ 500,00.
A amortização está toda concentrada no último período.
Período
(A)
Pgto.
(B)
Juros
(C)
Amortização
(D)
Amortização Paga
Acumulada (E)
Saldo Devedor
(F)
1 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00
2 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00
3 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00
4 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00
5 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00
6 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00
7 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00
8 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00
9 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00
10 R$ 5.500,00 R$ 500,00 R$ 5.000,00 R$ 5.000,00 R$ -
Prof. Msc Luciano F. Rodrigues
Sistema Americano -
Exemplo
• Gráfico de Pagamentos
Sistema Americano
R$ -
R$ 1.000,00
R$ 2.000,00
R$ 3.000,00
R$ 4.000,00
R$ 5.000,00
R$ 6.000,00
1 2 3 4 5 6 7 8 9 10
Período
Valor
Pagamento
Juros
Amortização
Prof. Msc Luciano F. Rodrigues
Sinking Fund
• A empresa que opta por financiamentos via sistema
americano deve se preparar para, no último ano, ter
um desembolso alto (o valor do principal)
• É prática comum formar um fundo de reserva
(sinking fund), através de depósitos periódicos e
iguais durante o período de financiamento,
remunerados a uma taxa isf , com o objetivo de cobrir
o pagamento do principal no último ano.
• Se isf for maior que a taxa de financiamento, é mais
vantajoso ao tomador de empréstimo utilizar o
sistema americano.
• Se isf for menor que a taxa de financiamento, o
sistema francês será preferívelProf. Msc Luciano F. Rodrigues
Tabela Price vs Sinking
Fund Exemplo
• Para o exemplo de financiamento utilizado, comparar
a prestação pela tabela price com aquela obtida pelo
Sistema Americano com um sinking fund à taxa de
7,5%, 10% ou 12,5%
– Para calcular a parcela do sinking fund, podemos utilizar a
fórmula (14)
– Obtemos, então, para as três taxas (7,5%, 10% e 12,5%):
(F=5.000;i=7,5%;n=10); então A = R$ 353,43 = SF
(F=5.000;i=10%;n=10); então A = R$ 313,73 = SF
(F=5.000;i=12,5%;n=10); então A = R$ 278,11 = SF
A = F . i / [ (1+i)n
– 1 ] (14)
Prof. Msc Luciano F. Rodrigues
Tabela Price vs Sinking
Fund ComparaçãoTAXA DE JUROS (em prést im o)
Tabela Pr ice 10% 10% 10%
Prestação (constante) R$ 813,73 R$ 813,73 R$ 813,73
TAXA DE REMUNERAÇÃO ( Sinking Fund)
Sistema Americano 7,50% 10% 12,50%
Parcela Juros: cte R$ 500,00 R$ 500,00 R$ 500,00
Parcela Sinking fund R$ 353,43 R$ 313,73 R$ 278,11
Total (J+SF) R$ 853,43 R$ 813,73 R$ 778,11
Opção Pr ice I ndif erente Americano
Comparação Price x Americano
R$ 600.00
R$ 650.00
R$ 700.00
R$ 750.00
R$ 800.00
R$ 850.00
R$ 900.00
R$ 950.00
R$ 1,000.00
R$ 1,050.00
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%
Taxa de juros SF (isf)
Valor
Prestação - Tabela Price Sistema Americano + Sinking Fund
Prof. Msc Luciano F. Rodrigues
Carência
• Acordo entre tomador de empréstimo e financiador,
habilitando que, durante um certo período de tempo,
apenas os juros sejam cobrados, sem pagamento de
amortização
• Quando se atinge o fim da carência, o empréstimo é
quitado através de algum método pré-determinado
• Dois tipos de carência são abordados:
– Caso 1 - Durante o prazo de carência, apenas os juros sobre
o principal são devidos
– Caso 2 - Durante o prazo de carência, não há pagamento
nenhum; nem de juros sobre o saldo devedor, nem de
amortização do principal. Dessa forma, os juros são somados
ao saldo devedor, resultando um saldo devedor maior.
Prof. Msc Luciano F. Rodrigues
Carência - Exemplo
• Financiamento de 60% do valor total de um
investimento, no valor de R$ 10 milhões, prazo total
de 10 anos, com 2 anos de carência, a juros de 10%
ao ano.
• Fazer a projeção do financiamento utilizando-se o
método Francês (Tabela Price) para os casos 1 e 2,
anteriormente citados.
Prof. Msc Luciano F. Rodrigues
Carência - Exemplo
Caso 1
• Nos dois primeiros anos, há apenas pagamento de juros do
principal, de R$ 10.000.000,00 . (10%) = R$ 1.000.000,00
• Como se escolheu o Sistema Price para amortização, deve se
calcular a série uniforme para o principal em 8 anos
• Utilizando-se a fórmula (15), encontra-se
– A = R$ 1.874,44 mil
• Calculando-se os juros e a amortização, encontra-se a
seguinte tabela: Tabela Price (em $000)
(A) (B) (C) (D) (E) (F)
Parcela Pgto. Juros Amort Acum Saldo
1 R$ 1.000,00 R$ 1.000,00 R$ 0,00 R$ 0,00 R$ 10.000,00
2 R$ 1.000,00 R$ 1.000,00 R$ 0,00 R$ 0,00 R$ 10.000,00
3 R$ 1.874,44 R$ 1.000,00 R$ 874,44 R$ 874,44 R$ 9.125,56
4 R$ 1.874,44 R$ 912,56 R$ 961,88 R$ 1.836,32 R$ 8.163,68
5 R$ 1.874,44 R$ 816,37 R$ 1.058,07 R$ 2.894,40 R$ 7.105,60
6 R$ 1.874,44 R$ 710,56 R$ 1.163,88 R$ 4.058,28 R$ 5.941,72
7 R$ 1.874,44 R$ 594,17 R$ 1.280,27 R$ 5.338,54 R$ 4.661,46
8 R$ 1.874,44 R$ 466,15 R$ 1.408,29 R$ 6.746,84 R$ 3.253,16
9 R$ 1.874,44 R$ 325,32 R$ 1.549,12 R$ 8.295,96 R$ 1.704,04
10 R$ 1.874,44 R$ 170,40 R$ 1.704,04 R$ 10.000,00 R$ 0,00
Totais R$ 16.995,52 R$ 6.995,52 R$ 10.000,00
Prof. Msc Luciano F. Rodrigues
Carência - Exemplo
Caso 1Carência com Pgto. Juros
R$ 0,00
R$ 500,00
R$ 1.000,00
R$ 1.500,00
R$ 2.000,00
R$ 2.500,00
1 2 3 4 5 6 7 8 9 10
Período
Valor
Pagamento Juros Amortização
Prof. Msc Luciano F. Rodrigues
Carência - Exemplo
Tipo 2
• Como há ausência de pagamentos de juros nos dois primeiros
anos, estes são incorporados ao principal.
• Utilizando-se a fórmula (10) encontra-se
– F = 12,1 milhões
• A partir daí, a resolução é exatamente igual à anterior, obtendo-
se a tabela:
Tabela Price (Em $000)
(A) (B) (C) (D) (E) (F)
Parcela Pgto Juros Amort Acum Saldo
1 R$ 0,00 R$ 0,00 R$ 0,00 R$ 0,00 R$ 11.000,00
2 R$ 0,00 R$ 0,00 R$ 0,00 R$ 0,00 R$ 12.100,00
3 R$ 2.268,07 R$ 1.210,00 R$ 1.058,07 R$ 1.058,07 R$ 11.041,93
4 R$ 2.268,07 R$ 1.104,19 R$ 1.163,88 R$ 2.221,95 R$ 9.878,05
5 R$ 2.268,07 R$ 987,80 R$ 1.280,27 R$ 3.502,22 R$ 8.597,78
6 R$ 2.268,07 R$ 859,78 R$ 1.408,29 R$ 4.910,51 R$ 7.189,49
7 R$ 2.268,07 R$ 718,95 R$ 1.549,12 R$ 6.459,64 R$ 5.640,36
8 R$ 2.268,07 R$ 564,04 R$ 1.704,04 R$ 8.163,68 R$ 3.936,32
9 R$ 2.268,07 R$ 393,63 R$ 1.874,44 R$ 10.038,12 R$ 2.061,88
10 R$ 2.268,07 R$ 206,19 R$ 2.061,88 R$ 12.100,00 R$ 0,00
Totais R$ 18.144,58 R$ 6.044,58 R$ 12.100,00Prof. Msc Luciano F. Rodrigues
Carência - Exemplo
Tipo 2
Carência sem Pgto. Juros
R$ 0,00
R$ 500,00
R$ 1.000,00
R$ 1.500,00
R$ 2.000,00
R$ 2.500,00
1 2 3 4 5 6 7 8 9 10
Período
Valor
Pagamento Juros Amortização
Pagamentos
Maiores
decorrentes do
grace period
Prof. Msc Luciano F. Rodrigues
Amortização com
“parcelas intermediárias”
• Em compras de imóveis não é difícil, por exemplo, encontrar
situações como esta:
• Haverá sempre, de acordo com o sistema de financiamento,
abatimento de amortizações e pagamento de juros sobre o
saldo
• Dependendo do financiador, pode haver desconto para uma
amortização prematura do débito
• 30% de entrada;
• 4 intermediárias semestrais de 5% cada (=20%);
• 10% na entrega das chaves;
• Saldo (40%) financiado pela Caixa Econômica Federal em
15 anos à taxa de juros de 10% ao ano; e
• Prazo Total: 2 anos (4.6 meses) + 15 anos = 17 anos.
Prof. Msc Luciano F. Rodrigues
Funções do Excel
• Apesar de não haver nenhuma função
financeira a ser introduzida, exceto aquelas
que já foram, o Excel poderá ser utilizado de
forma ampla para gerar as tabelas de
amortização, utilizando referências a células
correspondentes a anos anteriores
• Transcrevendo as fórmulas introduzidas na
teoria, o Excel torna-se uma excelente
ferramenta de apoio à geração de tabelas de
amortização Prof. Msc Luciano F. Rodrigues
Prof. Msc Luciano F. Rodrigues
Métodos de Análise de
Investimentos
• Prazo De Recuperação Do Empréstimo Ou Payback
• Método Do Valor Presente Líquido Descontado (VPL)
• Taxa Interna De Retorno (TIR)
• Método Do Custo Anual Equivalente - CAE
• Discussão Dos Métodos De Análise De
Investimentos (TIR,VPL e CAE)
• Múltiplas Alternativas
• Utilizando A Planilha Excel
Prof. Msc Luciano F. Rodrigues
Payback
• Prazo de repagamento do empréstimo
• Referência para julgamento de atratividade
• Investimentos de indústrias de maior “peso”
geralmente possuem payback maior
• Representa o tempo no qual o projeto retorna o valor
investido, ou seja, o período no qual o fluxo de caixa
acumulado zera
Prof. Msc Luciano F. Rodrigues
Payback - Exemplo
• Aproximando a taxa de retorno por ELG/(I.n)
– Inv. A: (5.10)-20 = 30/(20.10) = 15% ao ano
– Inv. B: (6.4)-18 = 6/(18.4) = 8,33% ao ano
Fluxo de Caixa - Investimento "A"
-25
-20
-15
-10
-5
0
5
10
0 1 2 3 4 5 6 7 8 9 10
Período
Val
or
(R
$
Mil
hõ
es)
Fluxo de Caixa - Investimento "B"
-20
-15
-10
-5
0
5
10
0 1 2 3 4
Período
Valor(R$Milhões)
Investimento A: 20 / 5 = 4 anos, i = 25% aa
Investimento B: 18 / 6 = 3 anos, i = 33% aa
Apesar do indicativo
do Payback, o
investimento A
possui maior
rentabilidade
Prof. Msc Luciano F. Rodrigues
Payback e Taxa de
Retorno
• Se o fluxo de caixa é regular, o inverso do payback
nos dá uma idéia da taxa de retorno do investimento
– Payback = 4 anos; Rp = 1/4 = 25% ao ano
• Algumas outras aproximações podem ser feitas:
– Taxa de Retorno Contábil sobre o investimento total
• TRC = Lucro Líquido Anual / Investimento
• LLA = 150.000; Investimento = 1.000.000
• TRC = 15 % ao ano
– Regra prática para a mineração
• Taxa de Retorno = 60 / Payback em anos
• Se o payback = 4 anos, TR = 15% ao ano
Prof. Msc Luciano F. Rodrigues
Payback descontado
• Alguns analistas mencionam o payback no fluxo de
caixa descontado
• A expressão do payback period poder ser
generalizada, englobando o payback descontado,
como nesta fórmula:
onde
FCC (t) é o valor atual do capital, ou seja, o fluxo de caixa descontado
(para o valor presente) cumulativo até o instante t;
I é o investimento inicial (em módulo), ou seja, -I é o valor algébrico do
investimento, localizado no instante 0 (início do primeiro período);
Rj é a receita proveniente do ano j;
Cj é o custo proveniente do ano j; e
i é a taxa de juros empregada.
j é um índice genérico que representa os períodos j=1 a t.
t
FCC(t) = -I + Σj=1(Rj-Cj)/(1+i)j
; 1≤ t ≤ n, (32)
Prof. Msc Luciano F. Rodrigues
Payback descontado
Exemplo
• Calcule o payback descontado da série anterior,
utilizando uma taxa de desconto de 10% ao ano.
Cada fluxo de caixa deverá ser descontado, ou seja, dividido por (1+0,1)j
,
onde j é o ano de ocorrência deste fluxo. Uma vez fazendo este desconto para
toda a tabela, os valores do fluxo devem ser somados
Payback com desconto de 10% = 4,22 anos (encontrado pela regra de três)
Payback simples ou sem desconto = 3,375 anos.
Quanto maior for a taxa de desconto, maior será a diferença entre
payback simples e payback descontado.
Ano (t) 0 1 2 3 4 5 6 7
Fluxo de Caixa
Pontual
-20 5 4 8 8 5 5 5
Fluxo de Caixa
Cumulativo
-20 -15 -11 -3 5 10 15 20
Valor Presente
Descontado
(Rj-Cj)/ (1+ i)j
-20,00 4,55 3,31 6,01 5,46 3,10 2,82 2,57
Fluxo de Caixa
Cum. Desc. (10% )
-20 -15,45 -12,15 -6,14 -0,67 2,43 5,25 7,82
Ano (t) 0 1 2 3 4 5 6 7
Fluxo de Caixa
Pontual
-20 5 4 8 8 5 5 5
Fluxo de Caixa
Cumulativo
-20 -15 -11 -3 5 10 15 20
Valor Presente
Descontado
(Rj-Cj)/ (1+ i)j
-20,00 4,55 3,31 6,01 5,46 3,10 2,82 2,57
Fluxo de Caixa
Cum. Desc. (10% )
-20 -15,45 -12,15 -6,14 -0,67 2,43 5,25 7,82
Ano (t) 0 1 2 3 4 5 6 7
Fluxo de Caixa
Pontual
-20 5 4 8 8 5 5 5
Fluxo de Caixa
Cumulativo
-20 -15 -11 -3 5 10 15 20
Valor Presente
Descontado
(Rj-Cj)/ (1+ i)j
-20,00 4,55 3,31 6,01 5,46 3,10 2,82 2,57
Fluxo de Caixa
Cum. Desc. (10% )
-20 -15,45 -12,15 -6,14 -0,67 2,43 5,25 7,82
Prof. Msc Luciano F. Rodrigues
Valor Presente
Líquido
• Definição: Soma algébrica de todos os valores de
fluxo de caixa descontados para o instante presente,
a uma taxa de desconto i
• Fórmula:
• Notação:
– i é a taxa de desconto
– j é o período considerado
– FCj é um fluxo de caixa qualquer, genérico, para j=[ 0 ; n ]
( )
( )∑=






+
=
n
j
j
j
i
FC
iVPL
1 1
Prof. Msc Luciano F. Rodrigues
Valor Presente Líquido
Aplicação
• Sejam duas alternativas A e B.
– Se VPLA(i) > VPLB(i), A é dominante em relação a B.
– Se VPLA(i) < VPLB(i) B é dominante em relação a A.
– Se VPLA(i) = VPLB(i), as alternativas são equivalentes.
• Seja uma só alternativa de investimento, dada a uma
taxa de desconto (i), utilizada pela empresa ou setor.
– Se VPLC(i) > 0, a alternativa é viável, economicamente
– Se VPLC(i) < 0, a alternativa é inviável, economicamente.
– Se VPLC(i) = 0, é indiferente investir-se ou não nesta
alternativa, mas ela ainda é viável economicamente.
Prof. Msc Luciano F. Rodrigues
Uma ilustração
• Supondo que se invista durante 10 anos em um
investimento que rende 10% ao ano. Qual o valor
presente líquido a uma taxa de 10% ao ano?
• O investimento não rende nada?
• Não! Rende exatamente o valor que é base para sua
comparação (10% ao ano!)
Caso o valor presente aplicado fosse de R$ 10.000,00, o valor futuro
após 10 anos com uma taxa de juros de 10% ao ano (lembrando que
a capitalização é composta) seria de R$ 25.937,43.
O Valor Presente Líquido Descontado desse fluxo de caixa à taxa de
10% é: VPL(10%) = -10.000 + 25.937,43/(1+0,10)10
= -10.000 + 10.000 = 0! (zero)
Prof. Msc Luciano F. Rodrigues
Uma ilustração (cont.)
• O valor presente líquido descontado a uma taxa i
compara o investimento puro de todo o capital a esta
taxa i e a rentabilidade do fluxo de caixa projetado.
• Assim, o valor presente líquido corresponderá
ao excedente de capital em relação ao que
se encontraria investindo o dinheiro a i% por
período.
• A taxa i é denominada Taxa Mínima de Atratividade,
ou Custo de Oportunidade, ou ainda Custo de
Capital
• No caso de um investimento financiado, i pode ser a
taxa do empréstimo
Prof. Msc Luciano F. Rodrigues
Discussão sobre os
Métodos de Avaliação
• TIR
– Medida relativa, diretamente comparável a investimentos
– Raízes múltiplas, Taxa ponderada
• VPL
– Bom valor absoluto
– Depende da estimativa do custo de capital
– Não é comparável a outros investimentos (diverso da TIR)
– Horizonte comum
• CAE
– Equivalente ao VPL
– Pressupõe repetibilidade dos investimentos
Prof. Msc Luciano F. Rodrigues
Múltiplas Alternativas
• Diversidade de Projetos de Investimento
• Escassez de capital
• Alternativas podem ser mutuamente exclusivas:
– Financeiramente: Não há capital para abarcar as duas oportunidades
– Tecnicamente: Funcionalidade que se deseja atender é satisfeita com
apenas uma das oportunidades
• Alternativas independentes - Tecnicamente possível realizar
as duas, e uma não altera o fluxo de caixa da outra
• Alternativas dependentes
– Pré-requisito: A aceitação de um projeto está condicionada a
aceitação do outro
– Incompatibilidade: São mutuamente exclusivas e a aceitação de uma
veda a realização da outra
Prof. Msc Luciano F. Rodrigues
Utilizando o CAE para
seleção de alternativas
• Seleção de um equipamento de transporte
• Dados preliminares
• Considera-se TMA = 15 % ao ano
• Para todas as alternativas, o fluxo de caixa deve ser
montado e o CAE calculado
• Para a transportadora o CAE vem como dado direto
Alt er nativa Unidade Car reta Truck* Transpor tadora
I nvestimento R$ mil 100 30 0
Custos Oper acionais R$ mil 10 6 35
Cust os de Manutenção R$ mil 5 3 0
Valor Residual Líquido % 20% 10% 0
Tempo de Ser viço Esper ado(n) Anos 8 4 >8
* Serão necessários dois veículos deste tipo
Prof. Msc Luciano F. Rodrigues
• Carreta (Vida de 8 anos)
• Itens do fluxo de caixa:
– Investimento (momento
presente)
– Valor Residual
– Série Uniforme de
Manutenção
Utilizando o CAE para
seleção de alternativas
Fluxo de Caixa - Carreta
-120
-100
-80
-60
-40
-20
0
20
40
0 1 2 3 4 5 6 7 8
Período
Valor(R$Mil)
Investimento C.Op.+C.Manut. Valor Residual
• Valores presentes dos itens do
fluxo de caixa
– Investimento: - R$ 100 mil
– Valor Residual: R$ 6,54 mil
– Série Uniforme: - R$ 67,31 mil
• VPLCARRETA = - 160,77 mil
• Utilizando a fórmula (15), para
o horizonte de 8 anos,
encontra-se:
– CAE = - R$ 35,828 mil
Prof. Msc Luciano F. Rodrigues
• Truck (Vida de 4 anos,
estendida para 8)
• Itens do fluxo de caixa:
– Investimento (instante 0)
– Valor Residual
– Série Uniforme de
Manutenção
• Valores presentes, conside-
rando dois trucks para 4
anos:
– Investimento: - R$ 60 mil
– Série: - R$ 51,39 mil
– VResidual: R$ 3,43 mil
– VPLTRUCK: -R$ 107.96 mil
– Como no exemplo anterior
CAE = -R$ 37,81 mil
• Alternativamente, consideran-
do a série para 8 anos:
– Investimento: - R$ 94,31 mil
– Série: -R$ 80,77 mil
– Vresidual: R$ 5,39 mil
• Como resultado final,
Utilizando o CAE para
seleção de alternativas
Fluxo de Caixa - Truck
-70
-60
-50
-40
-30
-20
-10
0
10
0 1 2 3 4 5 6 7 8
Período
Valor(R$Mil)
Investimento C.Op+C.Manut Valor Residual
Prof. Msc Luciano F. Rodrigues
Sumário de Decisão
• VPL e CAE são ordenáveis e coerentes
• Análise de Sensibilidade à taxa de desconto
Opção VPL (R$ Mil) CAE (R$ Mil)
CAE(Carreta) $ -160,77 - $35,828
CAE(Truck) $ -169,69 - $37,814
CAE(Transportadora) $ -157,06 - $35,000
Análise de Sensibilidade a i
$20.00
$25.00
$30.00
$35.00
$40.00
$45.00
$50.00
0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24%
Taxas de Desconto
Valor(R$Mil)
Carreta Truck Transportadora
A
B
C
A. Entre truck ou carreta, para
taxas de desconto menores que
21% aa (ponto A), a melhor
opção é a carreta.
B. A carreta apresenta menor
CAE até 14% ao ano (ponto B).
Quando esta taxa é excedida, a
transportadora é dominante.
C. Considerando apenas truck e
transportadora, o truck domina
até 10% ao ano (ponto C)
Prof. Msc Luciano F. Rodrigues
Sumário de Decisão
• Decisão por cenários
ALTERNATI VA i Decisão
Só Equipamento Próprio < 21%
≥ 21%
Carreta
Truck
Todas as hipóteses < 14%
≥ 14%
Carreta
Transportadora
Truck ou Transportadora < 10%
≥ 10%
Truck
Transportadora
Prof. Msc Luciano F. Rodrigues
Método do VPL
• Um produto mineral pode ser transportado de duas
maneiras: usar uma ferrovia preexistente, mas que
exigirá investimento em vagões; ou construir um
mineroduto para cumprir a mesma finalidade, isto é,
transportar minério de ferro.
• Dados Preliminares
Ferrovia Mineroduto
Custo I nicial (R$ milhão) 100 200
Custo Operacional (R$ milhão) 35 15
Valor Residual 10% 10%
Horizonte de Planejamento (anos) 10 10
Taxa mín. de Atratividade (a.a.) 12% 12%
Prof. Msc Luciano F. Rodrigues
Fluxo de caixa - Ferrovia
-250
-200
-150
-100
-50
0
50
0 1 2 3 4 5 6 7 8 9 10
Período
Valor(R$Milhões)
Investimento C.Op Valor Residual
Opção da Ferrovia
• Valor Presente Líquido das
Parcelas Envolvidas:
– Investimento:
• VPLI = − R$ 100,00 milhões
– Custos Operacionais:
• VPLS= − R$ 197,76 milhões
– Valor Residual:
• VPLVR= R$ 3,22 milhões
• Somando as parcelas:
– VPLFerrovia=-100 + (-197,76) + 3,22
– VPLFerrovia=- R$ 294,54 milhões
• Fluxo de Caixa
Prof. Msc Luciano F. Rodrigues
Opção do Mineroduto
• Valor Presente Líquido das
Parcelas Envolvidas:
– Investimento:
• VPLI = − R$ 200,00 milhões
– Custos Operacionais:
• VPLS= − R$ 84,75 milhões
– Valor Residual:
• VPLVR= R$ 6,44 milhões
• Somando as parcelas:
– VPLMineroduto=-200 + (-84,75) + 6,44
– VPLFerrovia=- R$ 279,50 milhões
• Fluxo de Caixa
Fluxo de Caixa - Mineroduto
-250
-200
-150
-100
-50
0
50
0 1 2 3 4 5 6 7 8 9 10
Período
Valor(R$Mil)
Investimento C.Op Valor Residual
Prof. Msc Luciano F. Rodrigues
Sumário de Decisão
• Reunindo as duas alternativas:
• Devemos tomar o maior VPL (que também é o
menor, em valor absoluto), ou seja, a escolha é pelo
mineroduto
R$ Milhão
VPL(FERROVIA) (294,54)
VPL(MINERODUTO) (278,31)
Taxa de Desconto 12%a.a
Prof. Msc Luciano F. Rodrigues
Ferrovia e Mineroduto
Análise de Sensibilidade
• Sensibilidade com relação à taxa de juros
• Até 15% ao ano, melhor opção é o mineroduto.
• Para taxas mais altas, a ferrovia é beneficiada pelo
investimento inicial menor
Comparação - Ferrovia x Mineroduto
(500.00)
(450.00)
(400.00)
(350.00)
(300.00)
(250.00)
(200.00)
(150.00)
(100.00)
(50.00)
-
0% 3% 6% 9% 12% 15% 18% 21% 24%
Taxa de Juros (% a.a.)
Valor(R$Mil)
Ferrovia
Mineroduto
Prof. Msc Luciano F. Rodrigues
Soluções pela TIR e
VPL (Fluxo Diferencial)
• Deve-se selecionar apenas uma das seguintes
opções:
– Fábrica de tintas (FT); ou
– Revendedora de Automóveis (RA)
• Informações preliminares
Opção Fábrica de
Tintas (FT)
Revend.
Automóveis (RA)
I nvestimento (R$ Milhões) 9 3
Rec. An. Líquidas (R$ Milhões) 2 0,8
Valor Residual 10% 25%
Taxa Mín. Atrat. % a.a 10% 10%
Prof. Msc Luciano F. Rodrigues
Análise pelo VPL
• Fluxo de Caixa RA
• VPLRA = R$ 2,205
• Fluxo de Caixa FT
• VPLFT = R$ 3,636 milhões
Fluxo de Caixa - FT
-10
-8
-6
-4
-2
0
2
4
0 1 2 3 4 5 6 7 8 9 10
Período
Valor(R$Milhões)
Investimento Rec. Anuais Líquidas Valor Residual
Fluxo de Caixa - RA
-10
-8
-6
-4
-2
0
2
4
0 1 2 3 4 5 6 7 8 9 10
Período
Valor(R$Milhão)
Investimento Rec. Anuais Líquidas Valor Residual
Pelo critério do VPL descontado à TMA, a opção
da fábrica de tintas é a escolhida
Prof. Msc Luciano F. Rodrigues
TIR e Análise Conjunta
• Calculando as Taxas Internas de Retorno, e o fluxo
diferencial, temos:
• A TIR de RA é maior, mas seu VPL é menor
– Causa: Investimento em RA é menor
• Podemos calcular as rentabilidades ponderadas:
TI R (% a.a) VPL a 10% a.a.
(R$ milhões)
Fábrica de Tintas (FT) 18,49 3,64
Revend. Automóveis (RA) 24,34 2,20
FT-RA 15,26 1,44
TIRPFT = (9x(18,49%)+1x(10%))/(10) = 17,64%
TIRPRA = (3x(24,34%)+7x(10%))/(10) = 14,30%
Prof. Msc Luciano F. Rodrigues
Sensibilidade à TMA
• Gráfico Ilustrativo
Comparação FTxRA
($4.00)
($2.00)
$0.00
$2.00
$4.00
$6.00
$8.00
$10.00
$12.00
$14.00
0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30%
Taxa de Desconto (% a.a.)
Valor(R$Milhões)
FT RA FT-RA
• Uma TMA de até 15,26%
torna mais válido investir na
fábrica de tintas
• Acima desta taxa, a
revendedora é a melhor
opção
• Se um investidor possuísse
uma taxa mínima de
atratividade de 20% ao ano,
FT nem seria cogitada
• Se o investidor fosse ainda
mais ambicioso (30% ao
ano), nenhuma das duas
oportunidades seria
selecionada
Prof. Msc Luciano F. Rodrigues
Voltando ao caso base
• A TIR do investimento incremental é maior que a
TMA de 10% a.a
– Vale a pena aumentar o investimento de R$ 2 milhões (RA)
para R$ 9 milhões (FT)
– Estes R$ 7 milhões do investimento incremental são
remunerados a 15,26% a.a., acima da taxa mínima de
atratividade, que é de 10% a.a.
TI R (% a.a) VPL a 10% a.a.
(R$ milhões)
Fábrica de Tintas (FT) 18,49 3,64
Revend. Automóveis (RA) 24,34 2,20
FT-RA 15,26 1,44
Prof. Msc Luciano F. Rodrigues
Múltiplas Alternativas
Mais de duas opções
• 3 opções de investimento mutuamente exclusivas
tecnicamente, TMA de 6% ao ano e vida esperada
de 10 anos
• O VPL será maximizado optando por C e rejeitando-
se A e B
• No entanto, TIRC < TIRB < TIRA
• Pelo critério da TIR, a alternativa A seria escolhida
• Deve ser feita uma análise do fluxo de caixa
incremental
Opção I nvestimento
(R$)
Receita Líquida
Annual (R$)
VPL(TMA)
(R$)
TI R Pr ojeto
A 13.000 2.500 5.400,22 14,08%
B 25.000 4.500 8.120,39 12,41%
C 42.000 7.500 13.200,65 12,22%
TMA 6% a.a.
Prof. Msc Luciano F. Rodrigues
• Comparando B e A
– IB-A = R$ 25.000,00 - R$ 13.000,00 = R$ 12.000,00
– RB-A = R$ 4.500,00 - R$ 2.500,00 = R$ 2.000,00
– O VPL de RB-A é R$ 14.720,17
– VPL(6%)B-A = R$ 2.720,17 e TIRB-A = 10,56% a.a.
– Como TIRB-A > TMA, escolhe--se a alternativa B
• Comparando B e C
– IC-B = R$ 42.000,00 - R$ 25.000,00 = R$ 17.000,00
– RC-B= R$ 7.500,00 - R$ 4.500,00 = R$ 3.000,00
– VPL(6%)C-B = R$ 5.080,26 e TIRC-B = 11,93% a.a.
– Como TIRC-B > TMA, escolhe-se a alternativa C
Múltiplas Alternativas
Mais de duas opções
Prof. Msc Luciano F. Rodrigues
• Taxa de Retorno ponderada (considerando um
orçamento de R$ 75.000)
• A alternativa C é melhor, pois aloca um volume de
capital de R$ 42.000 a 12,22% ao ano
• Se as alternativas não fossem mutuamente
exclusivas tecnicamente, valeria selecionar as três
Múltiplas Alternativas
Mais de duas opções
A= (13.000.14,08% + 62.000.6%)/(75.000) = 7,40% a.a
B = (25.000.12,41% + 50.000.6%)/(75.000) = 8,14% a.a.
C = (42.000.12,22% + 33.000.6%)/(75.000) = 9,48% a.a.
Prof. Msc Luciano F. Rodrigues
Múltiplas Alternativas
Exclusividade Financeira
• Cada proposta, agora, possui funcionalidade distinta,
podendo ser selecionada juntamente às outras
• Orçamento = R$ 75 mil < Três opções (80 mil)
• Podemos formar pacotes orçamentários, em ordem
crescente de investimento necessário:
• Pelo VPL, seleciona-se o pacote VII
Alternativas de
I nvestimento
Projetos TI R Combinação I nvestimento
Necessário
VPL(TMA)
I TMA 6,00% 0 0
I I A 14,08% 13.000 $5.400,22
I I I B 12,41% 25.000 $8.120,39
I V A e B 12,98% 38.000 $13.520,61
V C 12,22% 42.000 $13.200,65
VI A e C 12,66% 55.000 $18.600,87
VI I B e C 12,29% 67.000 $21.321,04
VI I I A, B e C NÃO 80.000 $26.721,26
Prof. Msc Luciano F. Rodrigues
• Analisando através da TIR
• Note que o pacote V, por ter TIRincremental menor que a
TMA, é descartado
Múltiplas Alternativas
Exclusividade Financeira
Análise
I ncremental
I nvestimento
I ncremental
Receita
I ncremental
TI R do I nvestimento
I ncremental
Pacote
Selecionado
I I I 13.000 2.500 14,08% I I
I I I I I 12.000 2.000 10,56% I I I
I V I I I 13.000 2.500 14,08% I V
V I V 4.000 500 4,28% I V
VI I V 17.000 2.500 11,93% VI
VI I VI 12.000 2.000 10,56% VI I
VI I I VI I 13.000 2.500 14,08% I nviável
Prof. Msc Luciano F. Rodrigues
Metodologia1. Selecionar as alternativas viáveis.
2. Remover alternativas com TIR < TMA.
3. Montar os pacotes orçamentários.
4. Retirar pacotes que possuem TIR < TMA.
5. Para os pacotes restantes, ordenar por investimento.
6. Analisar o fluxo de caixa incremental entre os dois primeiros pacotes.
7. Se a TIR do fluxo incremental for maior do que a TMA, aceitar a segunda opção.
8. Se não, aceitar a primeira opção.
9. Prosseguir a comparação, até chegar ao último pacote, selecionando assim a opção ótima.
10. Observar a restrição orçamentária. No exemplo acima, é inviável a alternativa VIII, dentre os
pacotes orçamentários, por exceder R$ 75 mil, restrição orçamentária.
Prof. Msc Luciano F. Rodrigues
O problema da Seleção
Preliminar
• Exclusão prematura pode levar a estrutura subótima
de capital
• Isto ocorre:
– Quando uma alternativa é rejeitada em análises preliminares,
sem que haja uma visão global na hora de decidir
• Restrições Orçamentárias Locais vs Globais
– Quando alternativas mutuamente exclusivas por razões
técnicas são descartadas antes de se considerar a
competição por capital limitado do orçamento
Prof. Msc Luciano F. Rodrigues
Planilha Excel e suas
funções financeiras
• VPL ou NPV
– Formato: VPL (i,FC1..n)
– Argumentos
• i taxa de juros
• FC1..nfluxo de caixa observado nos anos de 1..n
– Observação: O primeiro fluxo deve ser somado ao fluxo
descontado
Prof. Msc Luciano F. Rodrigues
Planilha Excel e suas
funções financeiras
• TIR ou IRR
– Formato: TIR (FC0..n, est.)
– Argumentos:
• FC0..n, fluxo de caixa dos anos
• est: estimativa para a TIR
Prof. Msc Luciano F. Rodrigues
Planilha Excel e suas
funções financeiras
• PGTO (calcula fluxos uniformes equivalentes a um
determinado valor)
– Formato: PGTO (i,n,VP,VF,tipo)
– Argumentos:
• i é a taxa de juros
• n é o número de períodos para o qual se deseja converter o
valor
• vp (ou vf) é o valor total presente(ou futuro) que originará as
prestações
Prof. Msc Luciano F. Rodrigues
Exemplo
• Calcule a prestação equivalente ao pagamento em
vinte meses de um valor presente de R$ 10.000,00
sabendo que a taxa de juros mensal é de 2%.
Prestação: R$ 611,57
Total a Prazo:
R$ 611,57 . 20 =
R$ 12.231,34
Prof. Msc Luciano F. Rodrigues
Cálculo do CAE
• Calculamos o valor presente do fluxo de caixa
• Utilizamos a função PGTO para anualizá-lo
• Podemos utilizar a seguinte lógica
• Essa simplificação pode ser demonstrada
matematicamente, mas é também evidente pelo fato de o
valor de recuperação de capital ser derivado da perda no
valor do ativo ( P − VR ) + os juros advindos da parte VR
que não é perda.
CAE = PGTO ( i, n, ( P − VR, , 0 ) + VR ⋅ i
onde
P é o valor investido;
VR é o valor residual;
i é a taxa de juros; e
n é o número de períodos abordados.

Mais conteúdo relacionado

Mais procurados

60 Exercícios Resolvidos de Administração Financeira para Concursos
60 Exercícios Resolvidos de Administração Financeira para Concursos60 Exercícios Resolvidos de Administração Financeira para Concursos
60 Exercícios Resolvidos de Administração Financeira para Concursos
Milton Henrique do Couto Neto
 
Administração financeira
Administração financeiraAdministração financeira
Administração financeira
Francine Manhabosco
 
Introdução ao Mercado de Capitais
Introdução ao Mercado de CapitaisIntrodução ao Mercado de Capitais
Introdução ao Mercado de Capitais
Milton Henrique do Couto Neto
 
Fluxo de Caixa: teoria e prática
Fluxo de Caixa: teoria e práticaFluxo de Caixa: teoria e prática
Fluxo de Caixa: teoria e prática
Elmano Cavalcanti
 
Análise das Demonstrações Financeiras
Análise das Demonstrações FinanceirasAnálise das Demonstrações Financeiras
Análise das Demonstrações Financeiras
Milton Henrique do Couto Neto
 
Palestra: Gestão do fluxo de caixa
Palestra: Gestão do fluxo de caixaPalestra: Gestão do fluxo de caixa
Palestra: Gestão do fluxo de caixa
Universidade de Pernambuco
 
Palestra Educação e Planejamento Financeiro Pessoal
Palestra Educação e Planejamento Financeiro PessoalPalestra Educação e Planejamento Financeiro Pessoal
Palestra Educação e Planejamento Financeiro Pessoal
Benjamim Garcia Netto
 
Sistema financeiro nacional
Sistema financeiro nacionalSistema financeiro nacional
Sistema financeiro nacional
Paula Querino
 
Adm capital de giro - questões com respostas
Adm capital de giro - questões com respostasAdm capital de giro - questões com respostas
Adm capital de giro - questões com respostas
Leandro Trelesse Vieira
 
Sistema de Amortização Constante (SAC)--Matemática Financeira_un6_Edit.pdf
Sistema de Amortização Constante (SAC)--Matemática Financeira_un6_Edit.pdfSistema de Amortização Constante (SAC)--Matemática Financeira_un6_Edit.pdf
Sistema de Amortização Constante (SAC)--Matemática Financeira_un6_Edit.pdf
Luiz Avelar
 
Aula 1 introdução a adm financeira
Aula 1   introdução a adm financeiraAula 1   introdução a adm financeira
Aula 1 introdução a adm financeira
sscutrim
 
Cap 1 Fundamentos da gestao do capital de giro
Cap 1   Fundamentos da gestao do capital de giroCap 1   Fundamentos da gestao do capital de giro
Cap 1 Fundamentos da gestao do capital de giro
FEARP/USP
 
Aula Instituições e mercados financeiros 04.04
Aula   Instituições e mercados financeiros 04.04Aula   Instituições e mercados financeiros 04.04
Aula Instituições e mercados financeiros 04.04
Rafael Gonçalves
 
Introdução às Finanças Pessoais ]
Introdução às Finanças Pessoais ]Introdução às Finanças Pessoais ]
Introdução às Finanças Pessoais ]
Secretaria de Estado da Tributação do RN
 
Educação Financeira
Educação FinanceiraEducação Financeira
Educação Financeira
vitoriotomaz
 
INTRODUÇÃO AO MERCADO FINANCEIRO 2.pptx
INTRODUÇÃO AO MERCADO FINANCEIRO 2.pptxINTRODUÇÃO AO MERCADO FINANCEIRO 2.pptx
INTRODUÇÃO AO MERCADO FINANCEIRO 2.pptx
ThaynaSoares7
 
Orçamento de caixa
Orçamento de caixaOrçamento de caixa
Orçamento de caixa
Felipe Leo
 
Planejamento Financeiro na Prática
Planejamento Financeiro na PráticaPlanejamento Financeiro na Prática
Planejamento Financeiro na Prática
Conselho Regional de Administração de São Paulo
 
Tudo o que você sempre quis saber sobre Investimentos
Tudo o que você sempre quis saber sobre InvestimentosTudo o que você sempre quis saber sobre Investimentos
Tudo o que você sempre quis saber sobre Investimentos
Yupee
 
Gestão Financeira
Gestão FinanceiraGestão Financeira
Gestão Financeira
Cadernos PPT
 

Mais procurados (20)

60 Exercícios Resolvidos de Administração Financeira para Concursos
60 Exercícios Resolvidos de Administração Financeira para Concursos60 Exercícios Resolvidos de Administração Financeira para Concursos
60 Exercícios Resolvidos de Administração Financeira para Concursos
 
Administração financeira
Administração financeiraAdministração financeira
Administração financeira
 
Introdução ao Mercado de Capitais
Introdução ao Mercado de CapitaisIntrodução ao Mercado de Capitais
Introdução ao Mercado de Capitais
 
Fluxo de Caixa: teoria e prática
Fluxo de Caixa: teoria e práticaFluxo de Caixa: teoria e prática
Fluxo de Caixa: teoria e prática
 
Análise das Demonstrações Financeiras
Análise das Demonstrações FinanceirasAnálise das Demonstrações Financeiras
Análise das Demonstrações Financeiras
 
Palestra: Gestão do fluxo de caixa
Palestra: Gestão do fluxo de caixaPalestra: Gestão do fluxo de caixa
Palestra: Gestão do fluxo de caixa
 
Palestra Educação e Planejamento Financeiro Pessoal
Palestra Educação e Planejamento Financeiro PessoalPalestra Educação e Planejamento Financeiro Pessoal
Palestra Educação e Planejamento Financeiro Pessoal
 
Sistema financeiro nacional
Sistema financeiro nacionalSistema financeiro nacional
Sistema financeiro nacional
 
Adm capital de giro - questões com respostas
Adm capital de giro - questões com respostasAdm capital de giro - questões com respostas
Adm capital de giro - questões com respostas
 
Sistema de Amortização Constante (SAC)--Matemática Financeira_un6_Edit.pdf
Sistema de Amortização Constante (SAC)--Matemática Financeira_un6_Edit.pdfSistema de Amortização Constante (SAC)--Matemática Financeira_un6_Edit.pdf
Sistema de Amortização Constante (SAC)--Matemática Financeira_un6_Edit.pdf
 
Aula 1 introdução a adm financeira
Aula 1   introdução a adm financeiraAula 1   introdução a adm financeira
Aula 1 introdução a adm financeira
 
Cap 1 Fundamentos da gestao do capital de giro
Cap 1   Fundamentos da gestao do capital de giroCap 1   Fundamentos da gestao do capital de giro
Cap 1 Fundamentos da gestao do capital de giro
 
Aula Instituições e mercados financeiros 04.04
Aula   Instituições e mercados financeiros 04.04Aula   Instituições e mercados financeiros 04.04
Aula Instituições e mercados financeiros 04.04
 
Introdução às Finanças Pessoais ]
Introdução às Finanças Pessoais ]Introdução às Finanças Pessoais ]
Introdução às Finanças Pessoais ]
 
Educação Financeira
Educação FinanceiraEducação Financeira
Educação Financeira
 
INTRODUÇÃO AO MERCADO FINANCEIRO 2.pptx
INTRODUÇÃO AO MERCADO FINANCEIRO 2.pptxINTRODUÇÃO AO MERCADO FINANCEIRO 2.pptx
INTRODUÇÃO AO MERCADO FINANCEIRO 2.pptx
 
Orçamento de caixa
Orçamento de caixaOrçamento de caixa
Orçamento de caixa
 
Planejamento Financeiro na Prática
Planejamento Financeiro na PráticaPlanejamento Financeiro na Prática
Planejamento Financeiro na Prática
 
Tudo o que você sempre quis saber sobre Investimentos
Tudo o que você sempre quis saber sobre InvestimentosTudo o que você sempre quis saber sobre Investimentos
Tudo o que você sempre quis saber sobre Investimentos
 
Gestão Financeira
Gestão FinanceiraGestão Financeira
Gestão Financeira
 

Destaque

Métodos de Análise de Investimento
Métodos de Análise de InvestimentoMétodos de Análise de Investimento
Métodos de Análise de Investimento
Kenneth Corrêa
 
Exercícios+payback,tir,vpl+respostas
Exercícios+payback,tir,vpl+respostasExercícios+payback,tir,vpl+respostas
Exercícios+payback,tir,vpl+respostas
Carolina França
 
Aula sistema de amortização
Aula   sistema de amortizaçãoAula   sistema de amortização
Aula sistema de amortização
Thaiane Oliveira
 
Apostila analise de investimento
Apostila analise de investimentoApostila analise de investimento
Apostila analise de investimento
Tony Oliver
 
Análise de risco e retorno
Análise de  risco e retornoAnálise de  risco e retorno
Análise de risco e retorno
CIRINEU COSTA
 
The BIBLE is the LIVING WORD of GOD [Considered in the Light of Fulfilled PRO...
The BIBLE is the LIVING WORD of GOD [Considered in the Light of Fulfilled PRO...The BIBLE is the LIVING WORD of GOD [Considered in the Light of Fulfilled PRO...
The BIBLE is the LIVING WORD of GOD [Considered in the Light of Fulfilled PRO...
Linus Daniel
 
Empreendedorismo (parte 3), David Stephen
Empreendedorismo (parte 3), David StephenEmpreendedorismo (parte 3), David Stephen
Empreendedorismo (parte 3), David Stephen
David Stephen
 
Alfabetização Financeira: Um Guia para os Primeiros Passos
Alfabetização Financeira: Um Guia para os Primeiros Passos    Alfabetização Financeira: Um Guia para os Primeiros Passos
Alfabetização Financeira: Um Guia para os Primeiros Passos
Conselho Regional de Administração de São Paulo
 
Inciacion creacion de empresas
Inciacion creacion de empresasInciacion creacion de empresas
Inciacion creacion de empresas
Checkin Galicia
 
Dicas de excel (10): PAYBACK SIMPLES (PAYBACK PERIOD)
Dicas de excel (10): PAYBACK SIMPLES (PAYBACK PERIOD)Dicas de excel (10): PAYBACK SIMPLES (PAYBACK PERIOD)
Dicas de excel (10): PAYBACK SIMPLES (PAYBACK PERIOD)
Daniel Avelino
 
Ufcd 606.1 aa
Ufcd 606.1 aaUfcd 606.1 aa
Ufcd 606.1 aa
Gabriela Santos
 
Analise financeira
Analise financeiraAnalise financeira
Analise financeira
Erode Souza Leite
 
A Cauda Longa Resumo
A Cauda Longa ResumoA Cauda Longa Resumo
A Cauda Longa Resumo
Ney Queiroz
 
Aulas de matematica financeira (sistemas de amortizacao)
Aulas de matematica financeira (sistemas de amortizacao)Aulas de matematica financeira (sistemas de amortizacao)
Aulas de matematica financeira (sistemas de amortizacao)
Adriano Bruni
 
Analise de investimento
Analise de investimentoAnalise de investimento
Analise de investimento
Adriano Evaristo
 
Cálculo VPL, TIR e TIRM
Cálculo VPL, TIR e TIRMCálculo VPL, TIR e TIRM
Cálculo VPL, TIR e TIRM
Tailine Silva
 
TIR, VAL, PAYBACK
TIR, VAL, PAYBACKTIR, VAL, PAYBACK
TIR, VAL, PAYBACK
Universidade Pedagogica
 
3rd Dictionary & Guide Words
3rd Dictionary  & Guide Words3rd Dictionary  & Guide Words
3rd Dictionary & Guide Words
Ringgold Primary School
 
Viabilidade de Projetos
Viabilidade de ProjetosViabilidade de Projetos
Viabilidade de Projetos
Vinícius Luiz
 
Conceito Cauda Longa
Conceito Cauda LongaConceito Cauda Longa
Conceito Cauda Longa
PabloTupi
 

Destaque (20)

Métodos de Análise de Investimento
Métodos de Análise de InvestimentoMétodos de Análise de Investimento
Métodos de Análise de Investimento
 
Exercícios+payback,tir,vpl+respostas
Exercícios+payback,tir,vpl+respostasExercícios+payback,tir,vpl+respostas
Exercícios+payback,tir,vpl+respostas
 
Aula sistema de amortização
Aula   sistema de amortizaçãoAula   sistema de amortização
Aula sistema de amortização
 
Apostila analise de investimento
Apostila analise de investimentoApostila analise de investimento
Apostila analise de investimento
 
Análise de risco e retorno
Análise de  risco e retornoAnálise de  risco e retorno
Análise de risco e retorno
 
The BIBLE is the LIVING WORD of GOD [Considered in the Light of Fulfilled PRO...
The BIBLE is the LIVING WORD of GOD [Considered in the Light of Fulfilled PRO...The BIBLE is the LIVING WORD of GOD [Considered in the Light of Fulfilled PRO...
The BIBLE is the LIVING WORD of GOD [Considered in the Light of Fulfilled PRO...
 
Empreendedorismo (parte 3), David Stephen
Empreendedorismo (parte 3), David StephenEmpreendedorismo (parte 3), David Stephen
Empreendedorismo (parte 3), David Stephen
 
Alfabetização Financeira: Um Guia para os Primeiros Passos
Alfabetização Financeira: Um Guia para os Primeiros Passos    Alfabetização Financeira: Um Guia para os Primeiros Passos
Alfabetização Financeira: Um Guia para os Primeiros Passos
 
Inciacion creacion de empresas
Inciacion creacion de empresasInciacion creacion de empresas
Inciacion creacion de empresas
 
Dicas de excel (10): PAYBACK SIMPLES (PAYBACK PERIOD)
Dicas de excel (10): PAYBACK SIMPLES (PAYBACK PERIOD)Dicas de excel (10): PAYBACK SIMPLES (PAYBACK PERIOD)
Dicas de excel (10): PAYBACK SIMPLES (PAYBACK PERIOD)
 
Ufcd 606.1 aa
Ufcd 606.1 aaUfcd 606.1 aa
Ufcd 606.1 aa
 
Analise financeira
Analise financeiraAnalise financeira
Analise financeira
 
A Cauda Longa Resumo
A Cauda Longa ResumoA Cauda Longa Resumo
A Cauda Longa Resumo
 
Aulas de matematica financeira (sistemas de amortizacao)
Aulas de matematica financeira (sistemas de amortizacao)Aulas de matematica financeira (sistemas de amortizacao)
Aulas de matematica financeira (sistemas de amortizacao)
 
Analise de investimento
Analise de investimentoAnalise de investimento
Analise de investimento
 
Cálculo VPL, TIR e TIRM
Cálculo VPL, TIR e TIRMCálculo VPL, TIR e TIRM
Cálculo VPL, TIR e TIRM
 
TIR, VAL, PAYBACK
TIR, VAL, PAYBACKTIR, VAL, PAYBACK
TIR, VAL, PAYBACK
 
3rd Dictionary & Guide Words
3rd Dictionary  & Guide Words3rd Dictionary  & Guide Words
3rd Dictionary & Guide Words
 
Viabilidade de Projetos
Viabilidade de ProjetosViabilidade de Projetos
Viabilidade de Projetos
 
Conceito Cauda Longa
Conceito Cauda LongaConceito Cauda Longa
Conceito Cauda Longa
 

Semelhante a Aula 1- Analise de Investimento

Bizcool matemática financeira
Bizcool   matemática financeiraBizcool   matemática financeira
Bizcool matemática financeira
Bizcool | Escola Aceleradora
 
Liderança financ
Liderança financLiderança financ
Liderança financ
FABRÍCIO SANTOS
 
Cálculo Financeiro aula nº1.pdf
Cálculo Financeiro aula nº1.pdfCálculo Financeiro aula nº1.pdf
Cálculo Financeiro aula nº1.pdf
martinaoliveira1
 
Trobia livro
Trobia   livroTrobia   livro
Trobia livro
jtrobia
 
Mat financeira
Mat financeiraMat financeira
Mat financeira
prsimon
 
Mat Financeira
Mat FinanceiraMat Financeira
Mat Financeira
Carlos Castro
 
Plano de aula
Plano de aulaPlano de aula
Plano de aula
Thassi
 
10 copias modulo 2 - sistema juro composto.pptx
10 copias modulo 2 - sistema juro composto.pptx10 copias modulo 2 - sistema juro composto.pptx
10 copias modulo 2 - sistema juro composto.pptx
alcides265514
 
Gestão financeira introdução e matemática financeira - juros simples e comp...
Gestão financeira   introdução e matemática financeira - juros simples e comp...Gestão financeira   introdução e matemática financeira - juros simples e comp...
Gestão financeira introdução e matemática financeira - juros simples e comp...
Ueliton da Costa Leonidio
 
Módulo 1 - Taxa de Juros.pdf
Módulo 1 - Taxa de Juros.pdfMódulo 1 - Taxa de Juros.pdf
Módulo 1 - Taxa de Juros.pdf
Alejandro Angulo Valencia
 
GN302 - Mat Fin By Thiago Caldas
GN302 - Mat Fin By Thiago CaldasGN302 - Mat Fin By Thiago Caldas
GN302 - Mat Fin By Thiago Caldas
Thiago Caldas
 
Matemática
MatemáticaMatemática
Curso matem tica_financeira_com_hp_12c (1)
Curso matem tica_financeira_com_hp_12c (1)Curso matem tica_financeira_com_hp_12c (1)
Curso matem tica_financeira_com_hp_12c (1)
Francimar Batista
 
Matemática Financeira
Matemática FinanceiraMatemática Financeira
Matemática Financeira
lucasjatem
 
Apostila matematica-financeira-com-hp-12c
Apostila matematica-financeira-com-hp-12cApostila matematica-financeira-com-hp-12c
Apostila matematica-financeira-com-hp-12c
NicoleKrisleyAlvesNo
 
Matematica Financeira
Matematica FinanceiraMatematica Financeira
Matematica Financeira
Nyedson Barbosa
 
06 jurossimplesecompostos
06 jurossimplesecompostos06 jurossimplesecompostos
06 jurossimplesecompostos
Ricardo Colosimo
 
Apostila gestao financeira 2008
Apostila gestao financeira 2008Apostila gestao financeira 2008
Apostila gestao financeira 2008
custos contabil
 
Aula 1
Aula 1Aula 1
Aula 1
Cleber Renan
 
Engenharia economica
Engenharia economicaEngenharia economica
Engenharia economica
Augusto Coutinho
 

Semelhante a Aula 1- Analise de Investimento (20)

Bizcool matemática financeira
Bizcool   matemática financeiraBizcool   matemática financeira
Bizcool matemática financeira
 
Liderança financ
Liderança financLiderança financ
Liderança financ
 
Cálculo Financeiro aula nº1.pdf
Cálculo Financeiro aula nº1.pdfCálculo Financeiro aula nº1.pdf
Cálculo Financeiro aula nº1.pdf
 
Trobia livro
Trobia   livroTrobia   livro
Trobia livro
 
Mat financeira
Mat financeiraMat financeira
Mat financeira
 
Mat Financeira
Mat FinanceiraMat Financeira
Mat Financeira
 
Plano de aula
Plano de aulaPlano de aula
Plano de aula
 
10 copias modulo 2 - sistema juro composto.pptx
10 copias modulo 2 - sistema juro composto.pptx10 copias modulo 2 - sistema juro composto.pptx
10 copias modulo 2 - sistema juro composto.pptx
 
Gestão financeira introdução e matemática financeira - juros simples e comp...
Gestão financeira   introdução e matemática financeira - juros simples e comp...Gestão financeira   introdução e matemática financeira - juros simples e comp...
Gestão financeira introdução e matemática financeira - juros simples e comp...
 
Módulo 1 - Taxa de Juros.pdf
Módulo 1 - Taxa de Juros.pdfMódulo 1 - Taxa de Juros.pdf
Módulo 1 - Taxa de Juros.pdf
 
GN302 - Mat Fin By Thiago Caldas
GN302 - Mat Fin By Thiago CaldasGN302 - Mat Fin By Thiago Caldas
GN302 - Mat Fin By Thiago Caldas
 
Matemática
MatemáticaMatemática
Matemática
 
Curso matem tica_financeira_com_hp_12c (1)
Curso matem tica_financeira_com_hp_12c (1)Curso matem tica_financeira_com_hp_12c (1)
Curso matem tica_financeira_com_hp_12c (1)
 
Matemática Financeira
Matemática FinanceiraMatemática Financeira
Matemática Financeira
 
Apostila matematica-financeira-com-hp-12c
Apostila matematica-financeira-com-hp-12cApostila matematica-financeira-com-hp-12c
Apostila matematica-financeira-com-hp-12c
 
Matematica Financeira
Matematica FinanceiraMatematica Financeira
Matematica Financeira
 
06 jurossimplesecompostos
06 jurossimplesecompostos06 jurossimplesecompostos
06 jurossimplesecompostos
 
Apostila gestao financeira 2008
Apostila gestao financeira 2008Apostila gestao financeira 2008
Apostila gestao financeira 2008
 
Aula 1
Aula 1Aula 1
Aula 1
 
Engenharia economica
Engenharia economicaEngenharia economica
Engenharia economica
 

Último

Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Falcão Brasil
 
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Falcão Brasil
 
Desafio matemático - multiplicação e divisão.
Desafio matemático -  multiplicação e divisão.Desafio matemático -  multiplicação e divisão.
Desafio matemático - multiplicação e divisão.
Mary Alvarenga
 
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIALA GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
ArapiracaNoticiasFat
 
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdfA Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
Falcão Brasil
 
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdfEscola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
Falcão Brasil
 
Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024
Bibliotecas Escolares AEIDH
 
Fotossíntese e respiração: conceitos e trocas gasosas
Fotossíntese e respiração: conceitos e trocas gasosasFotossíntese e respiração: conceitos e trocas gasosas
Fotossíntese e respiração: conceitos e trocas gasosas
MariaJooSilva58
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
Mary Alvarenga
 
Introdução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdfIntrodução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdf
valdeci17
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
Falcão Brasil
 
Sistema Integrado de Monitoramento de Fronteiras - SISFRON.pdf
Sistema Integrado de Monitoramento de Fronteiras - SISFRON.pdfSistema Integrado de Monitoramento de Fronteiras - SISFRON.pdf
Sistema Integrado de Monitoramento de Fronteiras - SISFRON.pdf
Falcão Brasil
 
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsxOceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Luzia Gabriele
 
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdfAviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Falcão Brasil
 
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdfAPRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
portaladministradores
 
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdfPortfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Falcão Brasil
 
Marinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdfMarinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdf
Falcão Brasil
 
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
Manuais Formação
 
Análise dos resultados do desmatamento obtidos pelo SIAD.ppt
Análise dos resultados do desmatamento obtidos pelo SIAD.pptAnálise dos resultados do desmatamento obtidos pelo SIAD.ppt
Análise dos resultados do desmatamento obtidos pelo SIAD.ppt
Falcão Brasil
 

Último (20)

Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
 
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
Apresentação Institucional do Centro Gestor e Operacional do Sistema de Prote...
 
Desafio matemático - multiplicação e divisão.
Desafio matemático -  multiplicação e divisão.Desafio matemático -  multiplicação e divisão.
Desafio matemático - multiplicação e divisão.
 
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIALA GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
 
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdfA Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
 
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdfEscola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
 
Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024Boletim informativo - Contacto - julho de 2024
Boletim informativo - Contacto - julho de 2024
 
Fotossíntese e respiração: conceitos e trocas gasosas
Fotossíntese e respiração: conceitos e trocas gasosasFotossíntese e respiração: conceitos e trocas gasosas
Fotossíntese e respiração: conceitos e trocas gasosas
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
 
Introdução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdfIntrodução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdf
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
 
Sistema Integrado de Monitoramento de Fronteiras - SISFRON.pdf
Sistema Integrado de Monitoramento de Fronteiras - SISFRON.pdfSistema Integrado de Monitoramento de Fronteiras - SISFRON.pdf
Sistema Integrado de Monitoramento de Fronteiras - SISFRON.pdf
 
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsxOceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
 
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdfAviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
 
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdfAPRESENTAÇÃO  CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
APRESENTAÇÃO CURSO FORMAÇÃO EXPERT EM MODERAÇÃO DE FOCUS GROUP.pdf
 
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdfPortfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdf
 
FOTOS_AS CIÊNCIAS EM AÇÃO .
FOTOS_AS CIÊNCIAS EM AÇÃO                .FOTOS_AS CIÊNCIAS EM AÇÃO                .
FOTOS_AS CIÊNCIAS EM AÇÃO .
 
Marinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdfMarinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdf
 
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
 
Análise dos resultados do desmatamento obtidos pelo SIAD.ppt
Análise dos resultados do desmatamento obtidos pelo SIAD.pptAnálise dos resultados do desmatamento obtidos pelo SIAD.ppt
Análise dos resultados do desmatamento obtidos pelo SIAD.ppt
 

Aula 1- Analise de Investimento

  • 1. Análise de Investimentos Tomada de Decisão Prof. Msc Luciano F. Rodrigues
  • 2. Análise de Investimentos Matemática Financeira Fluxo de Caixa Contabilidade Problema Oportunidade Alternativas Que caminho tomar? Modelagem Econômico Financeira Tomada de Decisão Consciente Racional Padronizada Métodos de Avaliação Sistemas de Financiamento Subst. de Equip. Leasing Análise de Risco CAPM / WACC Prof. Msc Luciano F. Rodrigues
  • 3. Capítulo 1- Introdução • Definir Alternativas de Investimentos • Algumas Perguntas a Serem Feitas • Objetivos, Estimativas, Modelagem e Decisão • Princípios Fundamentais de Aplicação de Capital • Mecanismos de Capitalização • Investimento Prof. Msc Luciano F. Rodrigues
  • 4. Definir Alternativas de Investimento • “Definir, tão precisamente quanto possível alternativas de investimentos e prever suas conseqüências, reduzidas a termos monetários, elegendo-se um instante de referência temporal e considerando o valor do dinheiro no tempo.” Prof. Msc Luciano F. Rodrigues
  • 5. Algumas Perguntas a Serem Feitas • Por que, afinal, fazer este investimento? • Por que agora? É possível adiá-lo? • Por que fazê-lo desta forma? – Software, Hardware, Humanware – Flexibilidade vs Controle Prof. Msc Luciano F. Rodrigues
  • 6. Objetivos, Estimativas, Modelagem e Decisão • Definição de Objetivos • Estimativas para custos, receitas e incertezas • Modelagem Econômico-Financeiro • Em casos de incerteza considerável – Análise de Sensibilidade – Análise de Cenários – Análise de Riscos Prof. Msc Luciano F. Rodrigues
  • 7. Avaliação de Ativos para Privatização • Venda do BANESPA – Valor do Ativo Instituição R$ bilhões Ágio Bradesco 1,860 0,53% Unibanco 2,100 13,50% Santander 7,000 281,00% Preço Mínimo 1,850 0,00% Valor Intrínseco + Valor do Controle + Valor Estratégico Valor Total Prof. Msc Luciano F. Rodrigues
  • 8. Problema Central da Alocação de Capital • Oferta de Capital disponível não cobre a demanda 24 20 16 12 8 4 0 Investimento (US$ Milhões) Custo Marginal de Capital A C D E F B Custo de Capital e Rentabilidade (% ao ano) Rentabilidade Prof. Msc Luciano F. Rodrigues
  • 9. Princípios Fundamentais de Aplicação de Capital1 1. Decisões serão tomadas a partir de alternativas factíveis 2. Alternativas concorrentes deverão possuir um denominador comum 3. Apenas as diferenças entre alternativas são relevantes 4. Os critérios para decisões de investimentos devem reconhecer o valor do dinheiro no tempo e os problemas relativos ao racionamento de capital 1. Ref: Fleischer, 1973 Prof. Msc Luciano F. Rodrigues
  • 10. Princípios Fundamentais de Aplicação de Capital 5. Decisões separáveis deverão ser tomadas isoladamente 6. Certo peso deve ser dado para os graus relativos de incerteza associada com as várias previsões 7. Decisões devem considerar as conseqüências não redutíveis a termos monetários 8. Eficácia dos procedimentos de orçamento de capital é uma função de sua implantação nos vários níveis dentro da organização 9. As análises a posteriori aperfeiçoam a qualidade das decisões Prof. Msc Luciano F. Rodrigues
  • 11. Empréstimo e Investimento • “Considera-se empréstimo uma situação na qual se espera que haja recuperação do valor emprestado (quando o empréstimo é devidamente liquidado, claro!), mais um pagamento pelo uso do dinheiro (um espécie de "aluguel"), que são os juros.” • “Considera-se investimento a situação na qual ocorre inversão de capital de alguma forma, buscando com isso criação de valor, ou seja, recuperação do valor investido (principal), mais uma rentabilidade do investimento (taxa de juros), em determinado prazo.” Prof. Msc Luciano F. Rodrigues
  • 12. Matemática Financeira • Capitalização por Juros Simples e Compostos • Capitalização Contínua • Pagamentos Simples e Múltiplos • Pagamentos Simples • Pagamentos Múltiplos - Série Uniforme • Série Gradiente • Taxas de Juros Nominal e Efetiva • Inflação e Taxa de Juros • Taxa de Juros e Política Macroeconômica Prof. Msc Luciano F. Rodrigues
  • 13. Juros e Taxa de Juros • “Juro (J) é a diferença entre o que foi emprestado no presente (P) e o que é cobrado no período de tempo futuro (F), quer seja ano, mês ou dia • “Taxa de Juros (i) é definida como:” – Quantifica a remuneração de capital – Geralmente apresentada em % J = F - P (1) i = J /P = (F-P) / P (2); e J = P . i Prof. Msc Luciano F. Rodrigues
  • 14. Capitalização por Juros Simples • As parcelas adicionais são dadas por um valor proporcional ao capital inicial e ao tempo de aplicação • Combinando as equações Jn = P.i.n; (3) F = P + Jn; (4) F = P . ( 1+ i . n ) (5) onde P é o capital inicial; F é o capital disponível ou exi- gível no final do período n, ou montante; Jn são os juros acumulados até o final de n períodos de capitalização; n é o número de períodos capitalizados; e i é a taxa de juros empregada por período de capitalização.Prof. Msc Luciano F. Rodrigues
  • 15. Capitalização por Juros Simples - Exemplo • Qual o montante equivalente a R$ 100,00 capitalizados a 50% ao ano em cinco anos? Extrai-se do enunciado diretamente que P = 100, e i = 50% ao ano . É possível calcular diretamente: F = 100 × (1+0,50× 5) = R$ 350,00 De outra forma: J = P. i. n = 100× 0,50× 5 = 250 F = P + J = 100 + 250 = 350 Período Valor início Juros Valor fim (anos) período período período 0 0 0 100 1 100 50 150 2 150 50 200 3 200 50 250 4 250 50 300 5 300 50 350 Tabela 2.1 Note que os juros são iguais para todos os períodos! Prof. Msc Luciano F. Rodrigues
  • 16. Capitalização por Juros Compostos • Método mais empregado por instituições bancárias e financiadoras • Juros são incorporados ao capital, e os juros para o próximo período calculados sobre o novo capital C1 = C0 + C0.i = C0.(1+i) C2 = C1+C1.i = [C0.(1+i)].(1+i) = C0.(1+i)2 Cn = C0 .(1+i)n (6) Jn = C0 . [(1+i)n –1] (7) onde C0 é o capital inicial; Cn é o capital disponível ou exigível no final do período n, ou montante; Jn são os juros acumulados até o final de n períodos de capitalização;Prof. Msc Luciano F. Rodrigues
  • 17. Capitalização por Juros Compostos - Exemplo • Qual o montante equivalente a R$ 100,00 capitalizados a 50% ao ano em cinco anos? Período ( anos) Saldo devedor início período Juros período Saldo devedor fim período 0 0 0 100,00 1 100,00 50,00 150,00 2 150,00 75,00 225,00 3 225,00 112,50 337,50 4 337,50 168,75 506,25 5 506,25 253,12 759,37 Note que os juros em cada período eqüivalem a 50% do saldo devedor no início do mesmo período Prof. Msc Luciano F. Rodrigues
  • 18. Capitalização Contínua • Empregado em mercados financeiros e substituição de equipamentos • Capitalização se dá de forma contínua, em intervalos infinitesimais de tempo • Integrando a equação acima, obtemos: dCt = Ct.i.dt (8) onde: dCt é o acréscimo do capital total entre t e t+dt; Ct é o capital total em t; i é a taxa de juros; e dt é o acréscimo infinitesimal de tempo. CT = C0. ei.T (9) onde: T é o tempo decorrido para capitalização; e é o número neperiano (2,718)Prof. Msc Luciano F. Rodrigues
  • 19. Capitalização Contínua Exemplo • Dado um empréstimo de R$ 1.000,00 tomado com juros de 5% ao mês capitalizados continuamente ao longo do tempo, qual o montante equivalente para um mês à frente? E para 40 dias? Resolução: Aplicando a fórmula (9), tem-se para 30 dias: C30 = 1.000 . e(0,05⋅ 30/30) = 1.000 . e(0,05) = 1.000 . 2,718(0,05) = 1000 . 1,051 = R$ 1.051,27 Para o período de 40 dias, a solução é análoga: C40 = 1.000 .⋅e(0,05⋅ 40/30) = 1.000 . e(0,05⋅ 4/3) = 1.000⋅. 2,718(0,067) = R$ 1.068,94 Prof. Msc Luciano F. Rodrigues
  • 20. Regimes de Capitalização • Valor de um empréstimo de R$ 100,00 com juros de 50% a.a. Comparação entre regimes de juros 0 200 400 600 800 1000 1200 1400 0 1 2 3 4 5 Período Valor Juros simples Juros compostos Juros contínuos Prof. Msc Luciano F. Rodrigues
  • 21. Diagramas Representativos de Fluxo de Caixa Tempon2 3 ...1 0 -$ +$ Receita ou Encaixe Desembolso ou despesa Prof. Msc Luciano F. Rodrigues
  • 22. Pagamentos Simples • Diagrama de Fluxo de Caixa • Fórmulas: P 0 1 2 3 4 n……….. F F = P.(1+i)n (10) P = F/(1+ i)n (11) C0 = Cn/(1+i)n (6*) Prof. Msc Luciano F. Rodrigues
  • 23. Pagamentos Múltiplos Série Uniforme • Diagrama de Fluxo de Caixa • Fórmulas: P 0 1 2 3 4 n …… ….. A P = A ⋅ [1- (1+i)-n ] / [i] Prof. Msc Luciano F. Rodrigues
  • 24. Exemplo - Pagamento Simples e Múltiplo • Um apartamento é vendido em 5 anos, com parcelas mensais de R$ 1.000,00. Para pagamento a vista, o total é de R$ 53.000,00. Sabendo-se que a taxa de juros utilizada será de 0,50% ao mês, qual a opção, se se dispõe do total a ser pago a vista? E se a taxa de juros fosse de 0,40% ao mês? Convertendo a série para o valor presente (P) só se necessita aplicar a fórmula (13), sabendo que n = 12⋅ 5 = 60 meses; i = 0,50% ao mês; e A = R$ 1.000,00. Aplicando a fórmula vem P = R$ 51.725,26. Como R$ 51.725,26 < R$ 53.000,00, opta-se pela opção a prazo. Usando a taxa de juros de 0,40% ao mês, encontra-se P = R$ 53.248,87 Como R$ 53.248,87 > R$ 53.000,00, opta-se pela compra a vista.Prof. Msc Luciano F. Rodrigues
  • 25. Taxa de Juros Nominal e Efetiva • Taxa de juros nominal anual com capitalização mensal • Taxas efetivas são sempre maiores que as taxas nominais, pois a capitalização é feita a intervalos menores (1+i)1 = (1+r/M)M (18) onde: i é a taxa de juros efetiva anual; r é a taxa de juros nominal anual; Mé o número de meses (de períodos de capitalização à taxa efetiva anual); i = (1+r/M)M -1 (19) Prof. Msc Luciano F. Rodrigues
  • 26. Taxa de Juros Nominal e Efetiva - Exemplo • Qual a taxa efetiva anual equivalente a uma taxa nominal de 12% a.a. com capitalização mensal? Taxa nominal: 12% ao ano (r) com capitalização mensal, ou seja M=12 (o ano tem 12 meses) Taxa efetiva mensal = r/M, ou seja, (12% a.a.) /12 meses por ano = 1% a.m. Taxa efetiva anual i = [1+(12%/12)]12 -1 = 12,68% ao ano. Prof. Msc Luciano F. Rodrigues
  • 27. Inflação e Taxa de Juros • Relação entre índices de preços em dois períodos consecutivos • Fundamental quando se avalia propostas em diferentes países • Considere a seguinte situação: • A inflação é dada por: I0 - Índice de Preços no período (0); I1 - Índice de Preços no período (1); θ = I1 / I0 – 1  I1 / I0 = (1+θ ) (20) Prof. Msc Luciano F. Rodrigues
  • 28. Inflação e Taxa de Juros • No caso de inflação nula (I1=I0), temos, entre dois períodos consecutivos: F = P. (1+i) • Utilizando os índices de preço, desenvolvemos: • Chamando i’ de taxa de juros inflacionada, temos: F/I1 = [P⋅ (1+ i )]/I0, ou F=[P⋅ (1+ i )] ⋅{I1/I0 } (21) F = P⋅ (1+θ )⋅ (1+ i ) (22) i’={[(1+i) ⋅ (1+θ)]-1} (24) F = P⋅(1+i’) (22a ) (1+i’)=(1+i)⋅(1+θ) (23) e Prof. Msc Luciano F. Rodrigues
  • 29. Inflação - Exemplo • Taxa real de juros: 10% a.a. • Taxa de inflação 15% a.m. • Qual a taxa inflacionada? A partir de (24), obtemos: i’ = {(1+0,10) . (1+0,15) - 1} = {(1,10) . (1,15) - 1 } = 1,265 - 1 = 26,5% a.a. Logo, a taxa inflacionada é de 26,5% a.a. De forma ilustrativa: 10% + 15% + 10%.15% = 26,5% Prof. Msc Luciano F. Rodrigues
  • 30. Funções do Excel • Pagamentos Simples (VP, VF e TAXA) • Pagamentos Múltiplos (VP, VF, TAXA e PGTO) • Séries Genéricas e Gradientes (VPL) • Taxa de Juros (NOMINAL, EFETIVO) Prof. Msc Luciano F. Rodrigues
  • 31. Função VP • Retorna o valor presente dados uma série de pagamentos uniformes (e/ou) um valor futuro equivalente, uma taxa de juros e um número de períodos de capitalização Prof. Msc Luciano F. Rodrigues
  • 32. Função VF • Retorna o valor futuro dados uma série de pagamentos uniformes (e/ou) um valor presente equivalente, uma taxa de juros e um número de períodos de capitalização Prof. Msc Luciano F. Rodrigues
  • 33. Função TAXA • Retorna a taxa de juros, dados um valor presente e futuro e um número de períodos de capitalização Prof. Msc Luciano F. Rodrigues
  • 34. Função PGTO • Retorna o pagamento uniforme, dados um valor presente e futuro e um número de períodos de capitalização Prof. Msc Luciano F. Rodrigues
  • 35. Função EFETIVO e NOMINAL • Retornam as taxas efetivas ou nominais através do número de períodos da composição e da taxa nominal ou efetiva Prof. Msc Luciano F. Rodrigues
  • 36. Função VPL • Retorna o valor presente líquido, dada uma taxa de juros e uma série de pagamentos Prof. Msc Luciano F. Rodrigues
  • 37. Sistemas de Financiamento • Amortização de Empréstimos de Curto Prazo – Postecipados e Antecipados – Reciprocidade • Amortização de Empréstimos de Longo Prazo – Método Francês ou Tabela Price – Sistema de Amortização Constante (SAC) – Sistema Americano • Sinking Fund – Empréstimos com carência – Empréstimos com “parcelas intermediárias” – Cláusulas de Reajustamento Prof. Msc Luciano F. Rodrigues
  • 38. Introdução • Nem sempre as empresas possuem capital próprio para investir em um dado projeto • Oportunidades não esperarão que a empresa poupe o suficiente para investir • Como conseqüência, as empresas terão de lançar mão de empréstimos Prof. Msc Luciano F. Rodrigues
  • 39. Amortização a Juros Simples (postecipados) • Repagamento de principal e juros é realizado de uma única vez, ao final do prazo do empréstimo • Relembrando a fórmula: • Exemplo: Empréstimo de R$ 100.000 com prazo de 5 meses, a 4% ao mês. Qual o valor devido? F = P . ( 1+ i . n ) (5) F = 100.000 (1+5.4%) = F = 100.000 (1+20%) = F = R$ 120.000 Prof. Msc Luciano F. Rodrigues
  • 40. Amortização a Juros Simples (antecipados) • Na prática, bancos cobram antecipadamente os juros do empréstimo, ou seja, torna-se necessário pedir emprestado mais do que se necessita. • Calculando i: 0 1 2 3 4 n ……….. F = E J E P Recebido pelo tomador do empréstimo Fica com o banco Devolvido ao banco Tem-se: j é a taxa de juros (nominal) do financiamento; n é o número de períodos; P é a quantia emprestada efetivamente J são os juros (E.j.n) E é o valor de referência do empréstimo (P+J) F é o repagamento do valor de referência do empréstimo; e i é a taxa real de juros simples. P = (E – E.j.n) = E / (1+i.n) (25) ou seja, i = j / (1-j.n) (26) Prof. Msc Luciano F. Rodrigues
  • 41. Juros Antecipados (exemplo)Uma pessoa, necessitando de R$ 1.000,00 por 6 meses, tomou em- prestado em um banco que cobra nesse tipo de financiamento juros simples antecipados à taxa de 2,5% ao mês.Substituindo os valores nos elementos da fórmula, pode-se responder às perguntas abaixo: Dados: P = 1000 ; j= 2,5% ao mês; n = 6 meses Qual a taxa real de juros a ser paga? i = 0,025 / [1-(0,025.6)] = 0,025 / [1-0,15] = 0,025/0,85 i = 0,02941 ou 2,94% ao mês (taxa real de juros simples) Qual o valor do empréstimo (E) a ser tomado? E = P.(1+i.n) = 1000.(1+0,02941.6) = 1000.(1,1765) = R$ 1176,47 Qual o valor dos juros J pagos? J = E.j.n = 1.176,47.(0,025.6) J = 1.176,5.0,15 = R$ 176,47 Verificando-se os cálculos, tira-se o valor de P: P = E – J = 1.176,47 – 176,47 = R$ 1.000,00 Prof. Msc Luciano F. Rodrigues
  • 42. Amortização de Empréstimos a longo prazo • Juros compostos • 3 métodos principais: – Tabela Price: prestações constantes; – Sistema Americano: juros constantes; – Sistema de Amortização Constante (SAC): Amortização constante; • O saldo devedor no início do primeiro período é o valor do empréstimo. Os juros devidos ao cabo de cada período são iguais ao produto da taxa de juros pelo saldo devedor no início daquele período, sempre. • A amortização depende do sistema ou método acordado entre a instituição que concede o financiamento e a empresa tomadora do empréstimo Prof. Msc Luciano F. Rodrigues
  • 43. Tabela Price • Método mais empregado no Brasil • Pagamento em Parcelas Constantes • Cálculo da Parcela: – Expressão da Série Anual Uniforme – Amortização: Diferença entre Juros e Parcela A = P ⋅ i ⋅ (1+i)n /((1+i)n – 1) (15*) onde ax é a amortização do principal no ano x; Jx são os juros no ano x e Sx-1 é o saldo devedor ao ax = A – Jx (29) Jx = S(x-1).i (30) Para x=1, S0 é o saldo devedor no início do primeiro ano, isto é, é o valor financiado (P). Prof. Msc Luciano F. Rodrigues
  • 44. Tabela Price - Exemplo • Supor um empréstimo de R$ 5.000,00 pelo prazo de 10 anos, a juros de 10% ao ano. A forma de amortização é a Tabela Price, ou Sistema Francês. É pedido montar a tabela, calcular juros e pagamentos anuais. Por meio da fórmula (15) obtém-se: A = 5000 . 10% . (1,10)10 /[(1,10) 10 -1] = 813,73. Sabendo que P = 5.000, os juros no ano 1 (J1) são J1 = 5.000.10% = R$ 500,00. Assim, a amortização é a1=(813,73 – 500,00) = R$ 313,73. O saldo devedor no final do ano 1 reduz-se a S1 = S0 - a1 =(5.000,00 - 313,73)=R$ 4.686,27. Prosseguindo para os próximos anos da mesma forma, compõe-se a seguinte tabela:Prof. Msc Luciano F. Rodrigues
  • 45. Tabela Price - Exemplo ( A) ( B) ( C) ( D) ( E) ( F) Par cela Pgto Jur os Am ort Acum Saldo 1 R$ 813,73 R$ 500,00 R$ 313,73 R$ 313,73 R$ 4.686,27 2 R$ 813,73 R$ 468,63 R$ 345,10 R$ 658,83 R$ 4.341,17 3 R$ 813,73 R$ 434,12 R$ 379,61 R$ 1.038,44 R$ 3.961,56 4 R$ 813,73 R$ 396,16 R$ 417,57 R$ 1.456,01 R$ 3.543,99 5 R$ 813,73 R$ 354,40 R$ 459,33 R$ 1.915,33 R$ 3.084,67 6 R$ 813,73 R$ 308,47 R$ 505,26 R$ 2.420,59 R$ 2.579,41 7 R$ 813,73 R$ 257,94 R$ 555,79 R$ 2.976,38 R$ 2.023,62 8 R$ 813,73 R$ 202,36 R$ 611,37 R$ 3.587,75 R$ 1.412,25 9 R$ 813,73 R$ 141,23 R$ 672,50 R$ 4.260,25 R$ 739,75 10 R$ 813,73 R$ 73,98 R$ 739,75 R$ 5.000,00 R$ 0,00 Tot ais 8.137,27 3.137,27 5.000,00 Prof. Msc Luciano F. Rodrigues
  • 46. Tabela Price - Exemplo• Gráfico ilustrando pagamentos Pagamentos - Tabela Price R$ 0.00 R$ 200.00 R$ 400.00 R$ 600.00 R$ 800.00 R$ 1,000.00 1 2 3 4 5 6 7 8 9 10 Período Valor Pagamento Juros Amortização Prof. Msc Luciano F. Rodrigues
  • 47. Sistema de Amortização Constante (SAC) • Pelo fato de a amortização ser constante, a série de pagamentos não é uniforme! • O seguinte procedimento é tomado: – Calculam-se as amortizações inicialmente: – Calcula-se o saldo devedor em todos os anos – Calcula-se os juros, sobre o saldo devedor: Sj = Sj-1 - ai; j=1..n aj = P / n; j = 1..n Ji = Si-1 - ai; j=1..n Prof. Msc Luciano F. Rodrigues
  • 48. Sistema de Amortização Constante - Exemplo Supor que a mesma empresa do exemplo anterior faz um empréstimo no mesmo valor, mas dessa vez, o banco ou a financeira em questão estipula pagamento segundo o método de amortização constante. Montar a tabela de pagamentos, e fazer gráfico semelhante ao do exemplo anterior. Relembrando: P = R$ 5.000,00; i= 10% a.a.; n= 10 anos. nicialmente, a cada ano se atribui a amortização de R$ 500,00 do principal ai = P/n, i variando de 1 a 10) No ano 1, os juros incidentes serão: R$ 5.000.(10%) = R$ 500,00. Com a amortização abatendo-se do principal, tem-se S1=5.000 – 500 = R$ 4.500,00 No ano 2, os juros pagos serão: R$ 4.500.(10%) = R$ 450,00, conforme (30), e assim por diante. A parcela total a ser paga no ano 1 é de R$ 1.000,00, no ano 2 é de R$ 950,00 e assim por diante, até o ano 10Prof. Msc Luciano F. Rodrigues
  • 49. Sistema de Amortização Constante (SAC) - Exemplo • Tabela de AmortizaçãoSistema de Amortização Constante ( SAC ) Período ( A) Pgto ( B) Jur os ( C) Am ort ização ( D) Amor tização Paga Acumulada ( E) Saldo Devedor ( F) 1 R$ 1,000.00 R$ 500.00 R$ 500.00 R$ 500.00 R$ 4,500.00 2 R$ 950.00 R$ 450.00 R$ 500.00 R$ 1,000.00 R$ 4,000.00 3 R$ 900.00 R$ 400.00 R$ 500.00 R$ 1,500.00 R$ 3,500.00 4 R$ 850.00 R$ 350.00 R$ 500.00 R$ 2,000.00 R$ 3,000.00 5 R$ 800.00 R$ 300.00 R$ 500.00 R$ 2,500.00 R$ 2,500.00 6 R$ 750.00 R$ 250.00 R$ 500.00 R$ 3,000.00 R$ 2,000.00 7 R$ 700.00 R$ 200.00 R$ 500.00 R$ 3,500.00 R$ 1,500.00 8 R$ 650.00 R$ 150.00 R$ 500.00 R$ 4,000.00 R$ 1,000.00 9 R$ 600.00 R$ 100.00 R$ 500.00 R$ 4,500.00 R$ 500.00 10 R$ 550.00 R$ 50.00 R$ 500.00 R$ 5,000.00 R$ - Tot ais R$ 7,750.00 R$ 2,750.00 R$ 5,000.00 Prof. Msc Luciano F. Rodrigues
  • 50. Sistema de Amortização Constante (SAC) - Exemplo SAC - Sistema de Amortização Constante R$ - R$ 200.00 R$ 400.00 R$ 600.00 R$ 800.00 R$ 1,000.00 R$ 1,200.00 1 2 3 4 5 6 7 8 9 10 Período Valor Pagamento Juros Amortização Prof. Msc Luciano F. Rodrigues
  • 51. Sistema Americano • Pagamento referente apenas a juros, sem amortização • Principal é amortizado integralmente no final do empréstimo – Parcela de pagamento igual aos juros – No último ano, a parcela é dada por juros + principal Prof. Msc Luciano F. Rodrigues
  • 52. Sistema Americano - ExemploO financiamento do exemplo anterior foi realizado utilizando-se agora o sistema americano. Calcular as tabelas e fazer o gráfico correspondente a esse financiamento. A parcela de juros em todos os anos será J = 5.000.10% = R$ 500,00. A amortização está toda concentrada no último período. Período (A) Pgto. (B) Juros (C) Amortização (D) Amortização Paga Acumulada (E) Saldo Devedor (F) 1 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00 2 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00 3 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00 4 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00 5 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00 6 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00 7 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00 8 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00 9 R$ 500,00 R$ 500,00 R$ - R$ - R$ 5.000,00 10 R$ 5.500,00 R$ 500,00 R$ 5.000,00 R$ 5.000,00 R$ - Prof. Msc Luciano F. Rodrigues
  • 53. Sistema Americano - Exemplo • Gráfico de Pagamentos Sistema Americano R$ - R$ 1.000,00 R$ 2.000,00 R$ 3.000,00 R$ 4.000,00 R$ 5.000,00 R$ 6.000,00 1 2 3 4 5 6 7 8 9 10 Período Valor Pagamento Juros Amortização Prof. Msc Luciano F. Rodrigues
  • 54. Sinking Fund • A empresa que opta por financiamentos via sistema americano deve se preparar para, no último ano, ter um desembolso alto (o valor do principal) • É prática comum formar um fundo de reserva (sinking fund), através de depósitos periódicos e iguais durante o período de financiamento, remunerados a uma taxa isf , com o objetivo de cobrir o pagamento do principal no último ano. • Se isf for maior que a taxa de financiamento, é mais vantajoso ao tomador de empréstimo utilizar o sistema americano. • Se isf for menor que a taxa de financiamento, o sistema francês será preferívelProf. Msc Luciano F. Rodrigues
  • 55. Tabela Price vs Sinking Fund Exemplo • Para o exemplo de financiamento utilizado, comparar a prestação pela tabela price com aquela obtida pelo Sistema Americano com um sinking fund à taxa de 7,5%, 10% ou 12,5% – Para calcular a parcela do sinking fund, podemos utilizar a fórmula (14) – Obtemos, então, para as três taxas (7,5%, 10% e 12,5%): (F=5.000;i=7,5%;n=10); então A = R$ 353,43 = SF (F=5.000;i=10%;n=10); então A = R$ 313,73 = SF (F=5.000;i=12,5%;n=10); então A = R$ 278,11 = SF A = F . i / [ (1+i)n – 1 ] (14) Prof. Msc Luciano F. Rodrigues
  • 56. Tabela Price vs Sinking Fund ComparaçãoTAXA DE JUROS (em prést im o) Tabela Pr ice 10% 10% 10% Prestação (constante) R$ 813,73 R$ 813,73 R$ 813,73 TAXA DE REMUNERAÇÃO ( Sinking Fund) Sistema Americano 7,50% 10% 12,50% Parcela Juros: cte R$ 500,00 R$ 500,00 R$ 500,00 Parcela Sinking fund R$ 353,43 R$ 313,73 R$ 278,11 Total (J+SF) R$ 853,43 R$ 813,73 R$ 778,11 Opção Pr ice I ndif erente Americano Comparação Price x Americano R$ 600.00 R$ 650.00 R$ 700.00 R$ 750.00 R$ 800.00 R$ 850.00 R$ 900.00 R$ 950.00 R$ 1,000.00 R$ 1,050.00 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% Taxa de juros SF (isf) Valor Prestação - Tabela Price Sistema Americano + Sinking Fund Prof. Msc Luciano F. Rodrigues
  • 57. Carência • Acordo entre tomador de empréstimo e financiador, habilitando que, durante um certo período de tempo, apenas os juros sejam cobrados, sem pagamento de amortização • Quando se atinge o fim da carência, o empréstimo é quitado através de algum método pré-determinado • Dois tipos de carência são abordados: – Caso 1 - Durante o prazo de carência, apenas os juros sobre o principal são devidos – Caso 2 - Durante o prazo de carência, não há pagamento nenhum; nem de juros sobre o saldo devedor, nem de amortização do principal. Dessa forma, os juros são somados ao saldo devedor, resultando um saldo devedor maior. Prof. Msc Luciano F. Rodrigues
  • 58. Carência - Exemplo • Financiamento de 60% do valor total de um investimento, no valor de R$ 10 milhões, prazo total de 10 anos, com 2 anos de carência, a juros de 10% ao ano. • Fazer a projeção do financiamento utilizando-se o método Francês (Tabela Price) para os casos 1 e 2, anteriormente citados. Prof. Msc Luciano F. Rodrigues
  • 59. Carência - Exemplo Caso 1 • Nos dois primeiros anos, há apenas pagamento de juros do principal, de R$ 10.000.000,00 . (10%) = R$ 1.000.000,00 • Como se escolheu o Sistema Price para amortização, deve se calcular a série uniforme para o principal em 8 anos • Utilizando-se a fórmula (15), encontra-se – A = R$ 1.874,44 mil • Calculando-se os juros e a amortização, encontra-se a seguinte tabela: Tabela Price (em $000) (A) (B) (C) (D) (E) (F) Parcela Pgto. Juros Amort Acum Saldo 1 R$ 1.000,00 R$ 1.000,00 R$ 0,00 R$ 0,00 R$ 10.000,00 2 R$ 1.000,00 R$ 1.000,00 R$ 0,00 R$ 0,00 R$ 10.000,00 3 R$ 1.874,44 R$ 1.000,00 R$ 874,44 R$ 874,44 R$ 9.125,56 4 R$ 1.874,44 R$ 912,56 R$ 961,88 R$ 1.836,32 R$ 8.163,68 5 R$ 1.874,44 R$ 816,37 R$ 1.058,07 R$ 2.894,40 R$ 7.105,60 6 R$ 1.874,44 R$ 710,56 R$ 1.163,88 R$ 4.058,28 R$ 5.941,72 7 R$ 1.874,44 R$ 594,17 R$ 1.280,27 R$ 5.338,54 R$ 4.661,46 8 R$ 1.874,44 R$ 466,15 R$ 1.408,29 R$ 6.746,84 R$ 3.253,16 9 R$ 1.874,44 R$ 325,32 R$ 1.549,12 R$ 8.295,96 R$ 1.704,04 10 R$ 1.874,44 R$ 170,40 R$ 1.704,04 R$ 10.000,00 R$ 0,00 Totais R$ 16.995,52 R$ 6.995,52 R$ 10.000,00 Prof. Msc Luciano F. Rodrigues
  • 60. Carência - Exemplo Caso 1Carência com Pgto. Juros R$ 0,00 R$ 500,00 R$ 1.000,00 R$ 1.500,00 R$ 2.000,00 R$ 2.500,00 1 2 3 4 5 6 7 8 9 10 Período Valor Pagamento Juros Amortização Prof. Msc Luciano F. Rodrigues
  • 61. Carência - Exemplo Tipo 2 • Como há ausência de pagamentos de juros nos dois primeiros anos, estes são incorporados ao principal. • Utilizando-se a fórmula (10) encontra-se – F = 12,1 milhões • A partir daí, a resolução é exatamente igual à anterior, obtendo- se a tabela: Tabela Price (Em $000) (A) (B) (C) (D) (E) (F) Parcela Pgto Juros Amort Acum Saldo 1 R$ 0,00 R$ 0,00 R$ 0,00 R$ 0,00 R$ 11.000,00 2 R$ 0,00 R$ 0,00 R$ 0,00 R$ 0,00 R$ 12.100,00 3 R$ 2.268,07 R$ 1.210,00 R$ 1.058,07 R$ 1.058,07 R$ 11.041,93 4 R$ 2.268,07 R$ 1.104,19 R$ 1.163,88 R$ 2.221,95 R$ 9.878,05 5 R$ 2.268,07 R$ 987,80 R$ 1.280,27 R$ 3.502,22 R$ 8.597,78 6 R$ 2.268,07 R$ 859,78 R$ 1.408,29 R$ 4.910,51 R$ 7.189,49 7 R$ 2.268,07 R$ 718,95 R$ 1.549,12 R$ 6.459,64 R$ 5.640,36 8 R$ 2.268,07 R$ 564,04 R$ 1.704,04 R$ 8.163,68 R$ 3.936,32 9 R$ 2.268,07 R$ 393,63 R$ 1.874,44 R$ 10.038,12 R$ 2.061,88 10 R$ 2.268,07 R$ 206,19 R$ 2.061,88 R$ 12.100,00 R$ 0,00 Totais R$ 18.144,58 R$ 6.044,58 R$ 12.100,00Prof. Msc Luciano F. Rodrigues
  • 62. Carência - Exemplo Tipo 2 Carência sem Pgto. Juros R$ 0,00 R$ 500,00 R$ 1.000,00 R$ 1.500,00 R$ 2.000,00 R$ 2.500,00 1 2 3 4 5 6 7 8 9 10 Período Valor Pagamento Juros Amortização Pagamentos Maiores decorrentes do grace period Prof. Msc Luciano F. Rodrigues
  • 63. Amortização com “parcelas intermediárias” • Em compras de imóveis não é difícil, por exemplo, encontrar situações como esta: • Haverá sempre, de acordo com o sistema de financiamento, abatimento de amortizações e pagamento de juros sobre o saldo • Dependendo do financiador, pode haver desconto para uma amortização prematura do débito • 30% de entrada; • 4 intermediárias semestrais de 5% cada (=20%); • 10% na entrega das chaves; • Saldo (40%) financiado pela Caixa Econômica Federal em 15 anos à taxa de juros de 10% ao ano; e • Prazo Total: 2 anos (4.6 meses) + 15 anos = 17 anos. Prof. Msc Luciano F. Rodrigues
  • 64. Funções do Excel • Apesar de não haver nenhuma função financeira a ser introduzida, exceto aquelas que já foram, o Excel poderá ser utilizado de forma ampla para gerar as tabelas de amortização, utilizando referências a células correspondentes a anos anteriores • Transcrevendo as fórmulas introduzidas na teoria, o Excel torna-se uma excelente ferramenta de apoio à geração de tabelas de amortização Prof. Msc Luciano F. Rodrigues
  • 65. Prof. Msc Luciano F. Rodrigues Métodos de Análise de Investimentos • Prazo De Recuperação Do Empréstimo Ou Payback • Método Do Valor Presente Líquido Descontado (VPL) • Taxa Interna De Retorno (TIR) • Método Do Custo Anual Equivalente - CAE • Discussão Dos Métodos De Análise De Investimentos (TIR,VPL e CAE) • Múltiplas Alternativas • Utilizando A Planilha Excel
  • 66. Prof. Msc Luciano F. Rodrigues Payback • Prazo de repagamento do empréstimo • Referência para julgamento de atratividade • Investimentos de indústrias de maior “peso” geralmente possuem payback maior • Representa o tempo no qual o projeto retorna o valor investido, ou seja, o período no qual o fluxo de caixa acumulado zera
  • 67. Prof. Msc Luciano F. Rodrigues Payback - Exemplo • Aproximando a taxa de retorno por ELG/(I.n) – Inv. A: (5.10)-20 = 30/(20.10) = 15% ao ano – Inv. B: (6.4)-18 = 6/(18.4) = 8,33% ao ano Fluxo de Caixa - Investimento "A" -25 -20 -15 -10 -5 0 5 10 0 1 2 3 4 5 6 7 8 9 10 Período Val or (R $ Mil hõ es) Fluxo de Caixa - Investimento "B" -20 -15 -10 -5 0 5 10 0 1 2 3 4 Período Valor(R$Milhões) Investimento A: 20 / 5 = 4 anos, i = 25% aa Investimento B: 18 / 6 = 3 anos, i = 33% aa Apesar do indicativo do Payback, o investimento A possui maior rentabilidade
  • 68. Prof. Msc Luciano F. Rodrigues Payback e Taxa de Retorno • Se o fluxo de caixa é regular, o inverso do payback nos dá uma idéia da taxa de retorno do investimento – Payback = 4 anos; Rp = 1/4 = 25% ao ano • Algumas outras aproximações podem ser feitas: – Taxa de Retorno Contábil sobre o investimento total • TRC = Lucro Líquido Anual / Investimento • LLA = 150.000; Investimento = 1.000.000 • TRC = 15 % ao ano – Regra prática para a mineração • Taxa de Retorno = 60 / Payback em anos • Se o payback = 4 anos, TR = 15% ao ano
  • 69. Prof. Msc Luciano F. Rodrigues Payback descontado • Alguns analistas mencionam o payback no fluxo de caixa descontado • A expressão do payback period poder ser generalizada, englobando o payback descontado, como nesta fórmula: onde FCC (t) é o valor atual do capital, ou seja, o fluxo de caixa descontado (para o valor presente) cumulativo até o instante t; I é o investimento inicial (em módulo), ou seja, -I é o valor algébrico do investimento, localizado no instante 0 (início do primeiro período); Rj é a receita proveniente do ano j; Cj é o custo proveniente do ano j; e i é a taxa de juros empregada. j é um índice genérico que representa os períodos j=1 a t. t FCC(t) = -I + Σj=1(Rj-Cj)/(1+i)j ; 1≤ t ≤ n, (32)
  • 70. Prof. Msc Luciano F. Rodrigues Payback descontado Exemplo • Calcule o payback descontado da série anterior, utilizando uma taxa de desconto de 10% ao ano. Cada fluxo de caixa deverá ser descontado, ou seja, dividido por (1+0,1)j , onde j é o ano de ocorrência deste fluxo. Uma vez fazendo este desconto para toda a tabela, os valores do fluxo devem ser somados Payback com desconto de 10% = 4,22 anos (encontrado pela regra de três) Payback simples ou sem desconto = 3,375 anos. Quanto maior for a taxa de desconto, maior será a diferença entre payback simples e payback descontado. Ano (t) 0 1 2 3 4 5 6 7 Fluxo de Caixa Pontual -20 5 4 8 8 5 5 5 Fluxo de Caixa Cumulativo -20 -15 -11 -3 5 10 15 20 Valor Presente Descontado (Rj-Cj)/ (1+ i)j -20,00 4,55 3,31 6,01 5,46 3,10 2,82 2,57 Fluxo de Caixa Cum. Desc. (10% ) -20 -15,45 -12,15 -6,14 -0,67 2,43 5,25 7,82 Ano (t) 0 1 2 3 4 5 6 7 Fluxo de Caixa Pontual -20 5 4 8 8 5 5 5 Fluxo de Caixa Cumulativo -20 -15 -11 -3 5 10 15 20 Valor Presente Descontado (Rj-Cj)/ (1+ i)j -20,00 4,55 3,31 6,01 5,46 3,10 2,82 2,57 Fluxo de Caixa Cum. Desc. (10% ) -20 -15,45 -12,15 -6,14 -0,67 2,43 5,25 7,82 Ano (t) 0 1 2 3 4 5 6 7 Fluxo de Caixa Pontual -20 5 4 8 8 5 5 5 Fluxo de Caixa Cumulativo -20 -15 -11 -3 5 10 15 20 Valor Presente Descontado (Rj-Cj)/ (1+ i)j -20,00 4,55 3,31 6,01 5,46 3,10 2,82 2,57 Fluxo de Caixa Cum. Desc. (10% ) -20 -15,45 -12,15 -6,14 -0,67 2,43 5,25 7,82
  • 71. Prof. Msc Luciano F. Rodrigues Valor Presente Líquido • Definição: Soma algébrica de todos os valores de fluxo de caixa descontados para o instante presente, a uma taxa de desconto i • Fórmula: • Notação: – i é a taxa de desconto – j é o período considerado – FCj é um fluxo de caixa qualquer, genérico, para j=[ 0 ; n ] ( ) ( )∑=       + = n j j j i FC iVPL 1 1
  • 72. Prof. Msc Luciano F. Rodrigues Valor Presente Líquido Aplicação • Sejam duas alternativas A e B. – Se VPLA(i) > VPLB(i), A é dominante em relação a B. – Se VPLA(i) < VPLB(i) B é dominante em relação a A. – Se VPLA(i) = VPLB(i), as alternativas são equivalentes. • Seja uma só alternativa de investimento, dada a uma taxa de desconto (i), utilizada pela empresa ou setor. – Se VPLC(i) > 0, a alternativa é viável, economicamente – Se VPLC(i) < 0, a alternativa é inviável, economicamente. – Se VPLC(i) = 0, é indiferente investir-se ou não nesta alternativa, mas ela ainda é viável economicamente.
  • 73. Prof. Msc Luciano F. Rodrigues Uma ilustração • Supondo que se invista durante 10 anos em um investimento que rende 10% ao ano. Qual o valor presente líquido a uma taxa de 10% ao ano? • O investimento não rende nada? • Não! Rende exatamente o valor que é base para sua comparação (10% ao ano!) Caso o valor presente aplicado fosse de R$ 10.000,00, o valor futuro após 10 anos com uma taxa de juros de 10% ao ano (lembrando que a capitalização é composta) seria de R$ 25.937,43. O Valor Presente Líquido Descontado desse fluxo de caixa à taxa de 10% é: VPL(10%) = -10.000 + 25.937,43/(1+0,10)10 = -10.000 + 10.000 = 0! (zero)
  • 74. Prof. Msc Luciano F. Rodrigues Uma ilustração (cont.) • O valor presente líquido descontado a uma taxa i compara o investimento puro de todo o capital a esta taxa i e a rentabilidade do fluxo de caixa projetado. • Assim, o valor presente líquido corresponderá ao excedente de capital em relação ao que se encontraria investindo o dinheiro a i% por período. • A taxa i é denominada Taxa Mínima de Atratividade, ou Custo de Oportunidade, ou ainda Custo de Capital • No caso de um investimento financiado, i pode ser a taxa do empréstimo
  • 75. Prof. Msc Luciano F. Rodrigues Discussão sobre os Métodos de Avaliação • TIR – Medida relativa, diretamente comparável a investimentos – Raízes múltiplas, Taxa ponderada • VPL – Bom valor absoluto – Depende da estimativa do custo de capital – Não é comparável a outros investimentos (diverso da TIR) – Horizonte comum • CAE – Equivalente ao VPL – Pressupõe repetibilidade dos investimentos
  • 76. Prof. Msc Luciano F. Rodrigues Múltiplas Alternativas • Diversidade de Projetos de Investimento • Escassez de capital • Alternativas podem ser mutuamente exclusivas: – Financeiramente: Não há capital para abarcar as duas oportunidades – Tecnicamente: Funcionalidade que se deseja atender é satisfeita com apenas uma das oportunidades • Alternativas independentes - Tecnicamente possível realizar as duas, e uma não altera o fluxo de caixa da outra • Alternativas dependentes – Pré-requisito: A aceitação de um projeto está condicionada a aceitação do outro – Incompatibilidade: São mutuamente exclusivas e a aceitação de uma veda a realização da outra
  • 77. Prof. Msc Luciano F. Rodrigues Utilizando o CAE para seleção de alternativas • Seleção de um equipamento de transporte • Dados preliminares • Considera-se TMA = 15 % ao ano • Para todas as alternativas, o fluxo de caixa deve ser montado e o CAE calculado • Para a transportadora o CAE vem como dado direto Alt er nativa Unidade Car reta Truck* Transpor tadora I nvestimento R$ mil 100 30 0 Custos Oper acionais R$ mil 10 6 35 Cust os de Manutenção R$ mil 5 3 0 Valor Residual Líquido % 20% 10% 0 Tempo de Ser viço Esper ado(n) Anos 8 4 >8 * Serão necessários dois veículos deste tipo
  • 78. Prof. Msc Luciano F. Rodrigues • Carreta (Vida de 8 anos) • Itens do fluxo de caixa: – Investimento (momento presente) – Valor Residual – Série Uniforme de Manutenção Utilizando o CAE para seleção de alternativas Fluxo de Caixa - Carreta -120 -100 -80 -60 -40 -20 0 20 40 0 1 2 3 4 5 6 7 8 Período Valor(R$Mil) Investimento C.Op.+C.Manut. Valor Residual • Valores presentes dos itens do fluxo de caixa – Investimento: - R$ 100 mil – Valor Residual: R$ 6,54 mil – Série Uniforme: - R$ 67,31 mil • VPLCARRETA = - 160,77 mil • Utilizando a fórmula (15), para o horizonte de 8 anos, encontra-se: – CAE = - R$ 35,828 mil
  • 79. Prof. Msc Luciano F. Rodrigues • Truck (Vida de 4 anos, estendida para 8) • Itens do fluxo de caixa: – Investimento (instante 0) – Valor Residual – Série Uniforme de Manutenção • Valores presentes, conside- rando dois trucks para 4 anos: – Investimento: - R$ 60 mil – Série: - R$ 51,39 mil – VResidual: R$ 3,43 mil – VPLTRUCK: -R$ 107.96 mil – Como no exemplo anterior CAE = -R$ 37,81 mil • Alternativamente, consideran- do a série para 8 anos: – Investimento: - R$ 94,31 mil – Série: -R$ 80,77 mil – Vresidual: R$ 5,39 mil • Como resultado final, Utilizando o CAE para seleção de alternativas Fluxo de Caixa - Truck -70 -60 -50 -40 -30 -20 -10 0 10 0 1 2 3 4 5 6 7 8 Período Valor(R$Mil) Investimento C.Op+C.Manut Valor Residual
  • 80. Prof. Msc Luciano F. Rodrigues Sumário de Decisão • VPL e CAE são ordenáveis e coerentes • Análise de Sensibilidade à taxa de desconto Opção VPL (R$ Mil) CAE (R$ Mil) CAE(Carreta) $ -160,77 - $35,828 CAE(Truck) $ -169,69 - $37,814 CAE(Transportadora) $ -157,06 - $35,000 Análise de Sensibilidade a i $20.00 $25.00 $30.00 $35.00 $40.00 $45.00 $50.00 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24% Taxas de Desconto Valor(R$Mil) Carreta Truck Transportadora A B C A. Entre truck ou carreta, para taxas de desconto menores que 21% aa (ponto A), a melhor opção é a carreta. B. A carreta apresenta menor CAE até 14% ao ano (ponto B). Quando esta taxa é excedida, a transportadora é dominante. C. Considerando apenas truck e transportadora, o truck domina até 10% ao ano (ponto C)
  • 81. Prof. Msc Luciano F. Rodrigues Sumário de Decisão • Decisão por cenários ALTERNATI VA i Decisão Só Equipamento Próprio < 21% ≥ 21% Carreta Truck Todas as hipóteses < 14% ≥ 14% Carreta Transportadora Truck ou Transportadora < 10% ≥ 10% Truck Transportadora
  • 82. Prof. Msc Luciano F. Rodrigues Método do VPL • Um produto mineral pode ser transportado de duas maneiras: usar uma ferrovia preexistente, mas que exigirá investimento em vagões; ou construir um mineroduto para cumprir a mesma finalidade, isto é, transportar minério de ferro. • Dados Preliminares Ferrovia Mineroduto Custo I nicial (R$ milhão) 100 200 Custo Operacional (R$ milhão) 35 15 Valor Residual 10% 10% Horizonte de Planejamento (anos) 10 10 Taxa mín. de Atratividade (a.a.) 12% 12%
  • 83. Prof. Msc Luciano F. Rodrigues Fluxo de caixa - Ferrovia -250 -200 -150 -100 -50 0 50 0 1 2 3 4 5 6 7 8 9 10 Período Valor(R$Milhões) Investimento C.Op Valor Residual Opção da Ferrovia • Valor Presente Líquido das Parcelas Envolvidas: – Investimento: • VPLI = − R$ 100,00 milhões – Custos Operacionais: • VPLS= − R$ 197,76 milhões – Valor Residual: • VPLVR= R$ 3,22 milhões • Somando as parcelas: – VPLFerrovia=-100 + (-197,76) + 3,22 – VPLFerrovia=- R$ 294,54 milhões • Fluxo de Caixa
  • 84. Prof. Msc Luciano F. Rodrigues Opção do Mineroduto • Valor Presente Líquido das Parcelas Envolvidas: – Investimento: • VPLI = − R$ 200,00 milhões – Custos Operacionais: • VPLS= − R$ 84,75 milhões – Valor Residual: • VPLVR= R$ 6,44 milhões • Somando as parcelas: – VPLMineroduto=-200 + (-84,75) + 6,44 – VPLFerrovia=- R$ 279,50 milhões • Fluxo de Caixa Fluxo de Caixa - Mineroduto -250 -200 -150 -100 -50 0 50 0 1 2 3 4 5 6 7 8 9 10 Período Valor(R$Mil) Investimento C.Op Valor Residual
  • 85. Prof. Msc Luciano F. Rodrigues Sumário de Decisão • Reunindo as duas alternativas: • Devemos tomar o maior VPL (que também é o menor, em valor absoluto), ou seja, a escolha é pelo mineroduto R$ Milhão VPL(FERROVIA) (294,54) VPL(MINERODUTO) (278,31) Taxa de Desconto 12%a.a
  • 86. Prof. Msc Luciano F. Rodrigues Ferrovia e Mineroduto Análise de Sensibilidade • Sensibilidade com relação à taxa de juros • Até 15% ao ano, melhor opção é o mineroduto. • Para taxas mais altas, a ferrovia é beneficiada pelo investimento inicial menor Comparação - Ferrovia x Mineroduto (500.00) (450.00) (400.00) (350.00) (300.00) (250.00) (200.00) (150.00) (100.00) (50.00) - 0% 3% 6% 9% 12% 15% 18% 21% 24% Taxa de Juros (% a.a.) Valor(R$Mil) Ferrovia Mineroduto
  • 87. Prof. Msc Luciano F. Rodrigues Soluções pela TIR e VPL (Fluxo Diferencial) • Deve-se selecionar apenas uma das seguintes opções: – Fábrica de tintas (FT); ou – Revendedora de Automóveis (RA) • Informações preliminares Opção Fábrica de Tintas (FT) Revend. Automóveis (RA) I nvestimento (R$ Milhões) 9 3 Rec. An. Líquidas (R$ Milhões) 2 0,8 Valor Residual 10% 25% Taxa Mín. Atrat. % a.a 10% 10%
  • 88. Prof. Msc Luciano F. Rodrigues Análise pelo VPL • Fluxo de Caixa RA • VPLRA = R$ 2,205 • Fluxo de Caixa FT • VPLFT = R$ 3,636 milhões Fluxo de Caixa - FT -10 -8 -6 -4 -2 0 2 4 0 1 2 3 4 5 6 7 8 9 10 Período Valor(R$Milhões) Investimento Rec. Anuais Líquidas Valor Residual Fluxo de Caixa - RA -10 -8 -6 -4 -2 0 2 4 0 1 2 3 4 5 6 7 8 9 10 Período Valor(R$Milhão) Investimento Rec. Anuais Líquidas Valor Residual Pelo critério do VPL descontado à TMA, a opção da fábrica de tintas é a escolhida
  • 89. Prof. Msc Luciano F. Rodrigues TIR e Análise Conjunta • Calculando as Taxas Internas de Retorno, e o fluxo diferencial, temos: • A TIR de RA é maior, mas seu VPL é menor – Causa: Investimento em RA é menor • Podemos calcular as rentabilidades ponderadas: TI R (% a.a) VPL a 10% a.a. (R$ milhões) Fábrica de Tintas (FT) 18,49 3,64 Revend. Automóveis (RA) 24,34 2,20 FT-RA 15,26 1,44 TIRPFT = (9x(18,49%)+1x(10%))/(10) = 17,64% TIRPRA = (3x(24,34%)+7x(10%))/(10) = 14,30%
  • 90. Prof. Msc Luciano F. Rodrigues Sensibilidade à TMA • Gráfico Ilustrativo Comparação FTxRA ($4.00) ($2.00) $0.00 $2.00 $4.00 $6.00 $8.00 $10.00 $12.00 $14.00 0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30% Taxa de Desconto (% a.a.) Valor(R$Milhões) FT RA FT-RA • Uma TMA de até 15,26% torna mais válido investir na fábrica de tintas • Acima desta taxa, a revendedora é a melhor opção • Se um investidor possuísse uma taxa mínima de atratividade de 20% ao ano, FT nem seria cogitada • Se o investidor fosse ainda mais ambicioso (30% ao ano), nenhuma das duas oportunidades seria selecionada
  • 91. Prof. Msc Luciano F. Rodrigues Voltando ao caso base • A TIR do investimento incremental é maior que a TMA de 10% a.a – Vale a pena aumentar o investimento de R$ 2 milhões (RA) para R$ 9 milhões (FT) – Estes R$ 7 milhões do investimento incremental são remunerados a 15,26% a.a., acima da taxa mínima de atratividade, que é de 10% a.a. TI R (% a.a) VPL a 10% a.a. (R$ milhões) Fábrica de Tintas (FT) 18,49 3,64 Revend. Automóveis (RA) 24,34 2,20 FT-RA 15,26 1,44
  • 92. Prof. Msc Luciano F. Rodrigues Múltiplas Alternativas Mais de duas opções • 3 opções de investimento mutuamente exclusivas tecnicamente, TMA de 6% ao ano e vida esperada de 10 anos • O VPL será maximizado optando por C e rejeitando- se A e B • No entanto, TIRC < TIRB < TIRA • Pelo critério da TIR, a alternativa A seria escolhida • Deve ser feita uma análise do fluxo de caixa incremental Opção I nvestimento (R$) Receita Líquida Annual (R$) VPL(TMA) (R$) TI R Pr ojeto A 13.000 2.500 5.400,22 14,08% B 25.000 4.500 8.120,39 12,41% C 42.000 7.500 13.200,65 12,22% TMA 6% a.a.
  • 93. Prof. Msc Luciano F. Rodrigues • Comparando B e A – IB-A = R$ 25.000,00 - R$ 13.000,00 = R$ 12.000,00 – RB-A = R$ 4.500,00 - R$ 2.500,00 = R$ 2.000,00 – O VPL de RB-A é R$ 14.720,17 – VPL(6%)B-A = R$ 2.720,17 e TIRB-A = 10,56% a.a. – Como TIRB-A > TMA, escolhe--se a alternativa B • Comparando B e C – IC-B = R$ 42.000,00 - R$ 25.000,00 = R$ 17.000,00 – RC-B= R$ 7.500,00 - R$ 4.500,00 = R$ 3.000,00 – VPL(6%)C-B = R$ 5.080,26 e TIRC-B = 11,93% a.a. – Como TIRC-B > TMA, escolhe-se a alternativa C Múltiplas Alternativas Mais de duas opções
  • 94. Prof. Msc Luciano F. Rodrigues • Taxa de Retorno ponderada (considerando um orçamento de R$ 75.000) • A alternativa C é melhor, pois aloca um volume de capital de R$ 42.000 a 12,22% ao ano • Se as alternativas não fossem mutuamente exclusivas tecnicamente, valeria selecionar as três Múltiplas Alternativas Mais de duas opções A= (13.000.14,08% + 62.000.6%)/(75.000) = 7,40% a.a B = (25.000.12,41% + 50.000.6%)/(75.000) = 8,14% a.a. C = (42.000.12,22% + 33.000.6%)/(75.000) = 9,48% a.a.
  • 95. Prof. Msc Luciano F. Rodrigues Múltiplas Alternativas Exclusividade Financeira • Cada proposta, agora, possui funcionalidade distinta, podendo ser selecionada juntamente às outras • Orçamento = R$ 75 mil < Três opções (80 mil) • Podemos formar pacotes orçamentários, em ordem crescente de investimento necessário: • Pelo VPL, seleciona-se o pacote VII Alternativas de I nvestimento Projetos TI R Combinação I nvestimento Necessário VPL(TMA) I TMA 6,00% 0 0 I I A 14,08% 13.000 $5.400,22 I I I B 12,41% 25.000 $8.120,39 I V A e B 12,98% 38.000 $13.520,61 V C 12,22% 42.000 $13.200,65 VI A e C 12,66% 55.000 $18.600,87 VI I B e C 12,29% 67.000 $21.321,04 VI I I A, B e C NÃO 80.000 $26.721,26
  • 96. Prof. Msc Luciano F. Rodrigues • Analisando através da TIR • Note que o pacote V, por ter TIRincremental menor que a TMA, é descartado Múltiplas Alternativas Exclusividade Financeira Análise I ncremental I nvestimento I ncremental Receita I ncremental TI R do I nvestimento I ncremental Pacote Selecionado I I I 13.000 2.500 14,08% I I I I I I I 12.000 2.000 10,56% I I I I V I I I 13.000 2.500 14,08% I V V I V 4.000 500 4,28% I V VI I V 17.000 2.500 11,93% VI VI I VI 12.000 2.000 10,56% VI I VI I I VI I 13.000 2.500 14,08% I nviável
  • 97. Prof. Msc Luciano F. Rodrigues Metodologia1. Selecionar as alternativas viáveis. 2. Remover alternativas com TIR < TMA. 3. Montar os pacotes orçamentários. 4. Retirar pacotes que possuem TIR < TMA. 5. Para os pacotes restantes, ordenar por investimento. 6. Analisar o fluxo de caixa incremental entre os dois primeiros pacotes. 7. Se a TIR do fluxo incremental for maior do que a TMA, aceitar a segunda opção. 8. Se não, aceitar a primeira opção. 9. Prosseguir a comparação, até chegar ao último pacote, selecionando assim a opção ótima. 10. Observar a restrição orçamentária. No exemplo acima, é inviável a alternativa VIII, dentre os pacotes orçamentários, por exceder R$ 75 mil, restrição orçamentária.
  • 98. Prof. Msc Luciano F. Rodrigues O problema da Seleção Preliminar • Exclusão prematura pode levar a estrutura subótima de capital • Isto ocorre: – Quando uma alternativa é rejeitada em análises preliminares, sem que haja uma visão global na hora de decidir • Restrições Orçamentárias Locais vs Globais – Quando alternativas mutuamente exclusivas por razões técnicas são descartadas antes de se considerar a competição por capital limitado do orçamento
  • 99. Prof. Msc Luciano F. Rodrigues Planilha Excel e suas funções financeiras • VPL ou NPV – Formato: VPL (i,FC1..n) – Argumentos • i taxa de juros • FC1..nfluxo de caixa observado nos anos de 1..n – Observação: O primeiro fluxo deve ser somado ao fluxo descontado
  • 100. Prof. Msc Luciano F. Rodrigues Planilha Excel e suas funções financeiras • TIR ou IRR – Formato: TIR (FC0..n, est.) – Argumentos: • FC0..n, fluxo de caixa dos anos • est: estimativa para a TIR
  • 101. Prof. Msc Luciano F. Rodrigues Planilha Excel e suas funções financeiras • PGTO (calcula fluxos uniformes equivalentes a um determinado valor) – Formato: PGTO (i,n,VP,VF,tipo) – Argumentos: • i é a taxa de juros • n é o número de períodos para o qual se deseja converter o valor • vp (ou vf) é o valor total presente(ou futuro) que originará as prestações
  • 102. Prof. Msc Luciano F. Rodrigues Exemplo • Calcule a prestação equivalente ao pagamento em vinte meses de um valor presente de R$ 10.000,00 sabendo que a taxa de juros mensal é de 2%. Prestação: R$ 611,57 Total a Prazo: R$ 611,57 . 20 = R$ 12.231,34
  • 103. Prof. Msc Luciano F. Rodrigues Cálculo do CAE • Calculamos o valor presente do fluxo de caixa • Utilizamos a função PGTO para anualizá-lo • Podemos utilizar a seguinte lógica • Essa simplificação pode ser demonstrada matematicamente, mas é também evidente pelo fato de o valor de recuperação de capital ser derivado da perda no valor do ativo ( P − VR ) + os juros advindos da parte VR que não é perda. CAE = PGTO ( i, n, ( P − VR, , 0 ) + VR ⋅ i onde P é o valor investido; VR é o valor residual; i é a taxa de juros; e n é o número de períodos abordados.