SlideShare uma empresa Scribd logo
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Enunciado
É necessário realizar o projeto básico para um aterro rodoviário
sobre solo mole na costa do Estado do Rio de Janeiro. O depósito
de argila mole tem 10m de espessura, nível d´água é coincidente
com o nível do terreno (cota +0,0) e peso específico da argila
γ = 13,5 kN/m3
. Dispõe-se apenas de ensaios SPT com medidas de
umidade w. Observou-se que uma reta com w = 200% na superfície (z
= 0,0 m) e w = 150% na profundidade z = 10,0 m ajusta-se bem aos
dados obtidos.
Sabe-se também que para este depósito pode-se adotar nos cálculos
de estabilidade uma variação de resistência não drenada fornecida
pela equação Su/σ´vo = 0,3(OCR)0,85. O perfil de OCR estimado pelo
banco de dados das argilas do Rio de Janeiro conforme figura
abaixo (artigo Soils & Rocks - Almeida e outros 2008) indicou que
o limite inferior de OCR pode ser fornecido por:
 OCR = 7,5/z para z < 5,0 m
 OCR = 1,5 para z > 5,0 m.
Conforme este mesmo artigo e figura abaixo, o índice de compressão
Cc da argila pode ser estimado por Cc = 0.013w, (w = umidade %).
Outros parâmetros representativos de toda a camada são:
Cs/Cc = 0,15 e o coeficiente de adensamento vertical médio
(normalmente adensado) cv = 4 x 10-8
m2
/s.
Sobre a camada de argila definida acima é necessário executar em
24 meses um aterro (γ = 17,5 kN/m3
) com plataforma de 10 m de
largura, de forma que atinja a cota +3,0 m, sem recalques por
adensamento primário e secundários remanescentes.
Os cálculos de recalques e de estabilidade devem ser realizados
independentemente, ainda que na prática sejam realizados em
paralelo.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
1. PREVISÃO DE RECALQUES
1.1 Recalques por adensamento primário
A magnitude do recalque por adensamento primário foi calculada
separando a camada de fundação em 10 subcamadas de 1 m de
espessura em vista da possibilidade de obter parâmetros para cada
profundidade.
Os parâmetros necessários para o cálculo dos recalques são
apresentados a seguir:
H i z(m) OCR w (%) Cc Cs
1 0,5 15,00 197,5 2,57 0,39
1 1,5 5,00 192,5 2,50 0,38
1 2,5 3,00 187,5 2,44 0,37
1 3,5 2,14 182,5 2,37 0,36
1 4,5 1,67 177,5 2,31 0,35
1 5,5 1,50 172,5 2,24 0,34
1 6,5 1,50 167,5 2,18 0,33
1 7,5 1,50 162,5 2,11 0,32
1 8,5 1,50 157,5 2,05 0,31
1 9,5 1,50 152,5 1,98 0,30
Tabela 1. Parâmetros do solo de fundação do aterro
Onde,
Hi, espessura da subcamada i
Z, profundidade da metade da altura de cada subcamada.
OCR, calculado em função da profundidade (enunciado do problema).
W(%), porcentagem de umidade que varia em função da profundidade.
Cs, Cs, parâmetros calculados em função da umidade (enunciado do
problema).
O recalque do aterro deve ser estabilizado em uma cota fixa, por
tanto, é preciso efetuar um cálculo iterativo para determinar a
altura do aterro necessária para atingir aquela cota fixa
(+3,0 m).
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
A equação para o cálculo do recalque por adensamento primário num
solo sobreadensado como é o caso do problema que se está estudando
é a seguinte:
∆ℎ = ℎ 𝑎𝑟𝑔 [
𝐶𝑠
1 + 𝑒 𝑣𝑜
𝑙𝑜𝑔 (
𝜎′ 𝑣𝑚
𝜎′ 𝑣𝑜
) +
𝐶𝑐
1 + 𝑒 𝑣𝑜
𝑙𝑜𝑔 (
𝜎′ 𝑣𝑜 + Δ𝜎𝑣
𝜎′ 𝑣𝑚
)] (1)
Onde,
Δ𝜎𝑣 = 𝐼(𝛾 𝑎𝑡ℎ 𝑎𝑡) + 𝛾′
Δℎ (2)
O acréscimo de carga é calculado em função da geometria do
problema, além disso, é preciso obter o fator de influência I da
eq. (2) a partir do ábaco de Osterberg (Poulos, Davis, 1974).
Figura 1. Fator de influência I para carregamento trapezoidal (Poulos,
Davis, 1974).
O valor de a, foi definido para um talude 3:1, por tanto os
parâmetros para o cálculo do fator de influência em função da
profundidade são:
Talude 3:1
b1 5 m
a 9 m
Altura do aterro 3 m
Tabela 2. Geometria do aterro
1
Metade do comprimento da plataforma
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Os resultados deste procedimento iterativo são os seguintes:
Recalque - Cota Fixa (m)
H i z(m)
σ'vo
(KPa)
σ'vm
(KPa)
σ'vf
(KPa) Gs eo It 1 It 2 It 3 It 4 It 5 a/z b/z I 2I
1 0,5 1,75 26,25 54,25 2,6 5,14 0,21 0,24 0,25 0,25 0,25 18,00 10,00 0,50 1,00
1 1,5 5,25 26,25 57,75 2,6 5,01 0,19 0,22 0,22 0,23 0,23 6,00 3,33 0,50 1,00
1 2,5 8,75 26,25 61,25 2,6 4,88 0,18 0,21 0,22 0,22 0,22 3,60 2,00 0,49 0,98
1 3,5 12,25 26,25 64,75 2,6 4,75 0,18 0,21 0,21 0,21 0,21 2,57 1,43 0,48 0,96
1 4,5 15,75 26,25 68,25 2,6 4,62 0,18 0,20 0,21 0,21 0,21 2,00 1,11 0,47 0,94
1 5,5 19,25 28,88 71,75 2,6 4,49 0,16 0,19 0,19 0,19 0,19 1,64 0,91 0,46 0,92
1 6,5 22,75 34,13 75,25 2,6 4,36 0,13 0,16 0,17 0,17 0,17 1,38 0,77 0,44 0,88
1 7,5 26,25 39,38 78,75 2,6 4,23 0,11 0,14 0,14 0,14 0,14 1,20 0,67 0,42 0,84
1 8,5 29,75 44,63 82,25 2,6 4,10 0,10 0,12 0,13 0,13 0,13 1,06 0,59 0,41 0,82
1 9,5 33,25 49,88 85,75 2,6 3,97 0,08 0,10 0,11 0,11 0,11 0,95 0,53 0,39 0,78
SOMA 1,51 1,79 1,84 1,85 1,85 m
Tabela 3. Recalque por adensamento primário
Portanto, o recalque total calculado por adensamento primário foi
de 1,85 m.
Na Figura 2, se apresentam os resultados gráficos do cálculo
iterativo para a camada de argila sobreadensada do problema,
mediante o procedimento de cota fixa.
Figura 2. Variação do recalque em função das iterações
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
1.2 Recalques por compressão secundária
Para o cálculo das deformações que ocorrem ao fim do adensamento
primário e que não estão atribuídas à dissipação dos excessos de
poropressão, são calculadas mediante um procedimento baseado em
evidências experimentais de laboratório. Martins (2005) propõe que
o recalque máximo por adensamento secundário é aquele
correspondente à variação da deformação vertical da condição de
fim do primário (OCR=1) para a reta OCR=1,5, para uma tensão
efetiva vertical atuante na argila mole.
Figura 3. Linha do adensamento secundário
Da Figura 3, para 𝐶𝑅 =
𝐶 𝑣
1+𝑒 𝑜
, e uma relação
𝐶 𝑠
𝐶 𝑐
= 0,15,
∆ℎ 𝑠𝑒𝑐 = ℎ 𝑎𝑟𝑔 𝐶𝑅𝑙𝑜𝑔 (
1,5𝜎′ 𝑣𝑓
𝜎′ 𝑣𝑓
) − ℎ 𝑎𝑟𝑔(0,15𝐶𝑅)𝑙𝑜𝑔 (
1,5𝜎′
𝑣𝑓
𝜎′
𝑣𝑓
) (3)
∆ℎ 𝑠𝑒𝑐
ℎ 𝑎𝑟𝑔
= 0,15𝐶𝑅 (4)
Na Tabela 4, se apresentam os resultados dos cálculos das
deformações por compressão secundária.
1,5 σ’vfσ’vf
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
H i (m) z(m) OCR w (%) Cc eo CR Δhsec (m)
1 0,5 15,00 197,5 2,57 5,14 0,46 0,069
1 1,5 5,00 192,5 2,50 5,01 0,45 0,068
1 2,5 3,00 187,5 2,44 4,88 0,44 0,066
1 3,5 2,14 182,5 2,37 4,75 0,43 0,064
1 4,5 1,67 177,5 2,31 4,62 0,42 0,062
1 5,5 1,50 172,5 2,24 4,49 0,40 0,061
1 6,5 1,50 167,5 2,18 4,36 0,39 0,059
1 7,5 1,50 162,5 2,11 4,23 0,38 0,057
1 8,5 1,50 157,5 2,05 4,10 0,37 0,055
1 9,5 1,50 152,5 1,98 3,97 0,36 0,054
SOMA 0,61 m
Tabela 4. Recalque por compressão secundária
Dos resultados pode se observar que o valor do CR, varia entre
0,36 e 0,46 e o recalque total por compressão secundária foi de
0,61 m.
1.3 Recalque total
A estimativa do recalque total foi baseada em dois cálculos:
adensamento primário e compressão secundária, na Tabela 5 se
apresenta um resumo dos resultados.
Adensamento primário (cota fixa) 1,85 m
Compressão Secundária (OCR =1,5) 0,61 m
Total 2,46 m
Tabela 5. Resumo dos resultados da estimativa de recalques
1.4 Variação do recalque por adensamento primário com o
tempo
Para conhecer a variação do recalque no tempo, é necessário
empregar a teoria de Terzaghi. O cálculo do recalque em um tempo t
é efetuado multiplicando o recalque por adensamento primário pela
porcentagem média de adensamento U, da seguinte maneira:
∆ℎ(𝑡) = 𝑈 ∗ ∆ℎ (5)
Onde U é função do fator tempo T, na Tabela 6, são apresentados
diferentes valores da função U(T).
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Tabela 6. Valores de U(T), Martins
(Notas de aula do curso de Adensamento).
Conhecido o Fator Tempo, é possível calcular os tempos necessários
para atingir as diferentes porcentagens de adensamento, empregando
a seguinte expressão que é função do coeficiente de
adensamento, Cv:
𝑇𝑣 =
𝐶 𝑣 𝑡
ℎ 𝑑
2 (6)
No caso do problema estudado no presente trabalho, foi assumida
uma condição de drenagem dupla, portanto, ℎ 𝑑 =
ℎ 𝑎𝑟𝑔
2
. O coeficiente
de adensamento vertical médio do projeto é Cv=4X10-8
m2
/s.
Na Tabela 7, se apresentam os resultados das análises do
adensamento em função do tempo.
U(%) Tv t(meses) t(anos) Δh(t)
0 0 0 0 0
10 0,008 2 0 0,19
20 0,031 7 1 0,37
30 0,071 17 1 0,56
40 0,126 30 3 0,74
50 0,197 48 4 0,93
60 0,287 69 6 1,11
70 0,405 98 8 1,30
80 0,565 136 11 1,48
90 0,848 204 17 1,67
95 1,129 272 23 1,76
Tabela 7. Variação do grau de adensamento e recalque em função do tempo
Dos resultados mostrados na Tabela 7, pode-se observar que para
atingir um grau de adensamento de 95%, é preciso aguardar 272
meses ou 23 anos.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Figura 4, se apresenta a variação do recalque em função do
tempo para uma análise de cota fixa.
Figura 4. Variação dos recalques com o tempo para um aterro de 3,0 m de
espessura.
Dos resultados das análises do recalque em função do tempo, pode-
se concluir que para fins práticos do projeto do aterro (tempo de
execução de 24 meses) é necessário empregar técnicas que permitam
acelerar os recalques (drenos verticais, sobrecarga, etc.).
2. Soluções para aceleração dos recalques
2.1 Sobrecarga temporária
A sobrecarga temporária tem como objetivo a aceleração dos
recalques por adensamento primário e a compensação dos recalques
por compressão secundária. Uma parcela desta sobrecarga vai ser
permanente em vista de que vai fazer parte da configuração do
aterro uma vez recalcado e outra parte dela vai ser removida a fim
de atingir a cota do projeto.
A primeira análise efetuada no presente trabalho foi considerando
sobrecarga em termos de diferentes espessuras de aterro e
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
observando quais são os tempos necessários para estabilizar os
recalques primários.
Na figura 5, se apresenta um resumo dos resultados desta análise
na qual foram calculados os recalques para espessuras totais de
aterro que atuariam como sobrecarga de 5m, 7m e 8m.
Figura 5. Uso de sobrecarga sem drenos verticais
Na Tabela 8, se apresenta um resumo comparativo dos tempos
necessários para estabilizar o 95 % do recalque por adensamento
primário2
e assim observar os efeitos desta solução.
Espessura de aterro t para 95%*Δh primário (meses)
3 m 272
5 m 200
7 m 98
8 m 90
Tabela 8. Tempos para atingir o 95 % do recalque por adensamento primário
2 O cálculo dos recalques para as espessuras de 5m, 7m e 8m, foi efetuado
mediante a metodologia de submersão e assim manter uma espessura do
aterro constante para efetuar desta maneira as comparações.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Dos resultados apresentados pode-se concluir que a sobrecarga tem
um efeito importante na aceleração dos recalques, no entanto, sem
uma medida adicional (como seria o caso de drenos verticais), a
sobrecarga não seria suficiente para atender as condições do
projeto.
2.2 Drenos Verticais
Os drenos verticais são uma técnica que permite a aceleração dos
recalques, baseada no fato de que o caminho de drenagem dentro da
massa de solo é diminuído para cerca da metade da distância
horizontal entre drenos.
A instalação dos drenos vai fazer com que a água tenha uma
movimentação predominantemente horizontal. Ao ser coletada pelo
dreno, a água é conduzida na vertical até as camadas drenantes das
extremidades da camada de solo mole, na Figura 6 se apresenta um
esquema deste mecanismo.
Figura 5. Percolação da água em drenos verticais
2.2.1 Dimensionamento
O primeiro aspecto a considerar é determinar o diâmetro de
influência do dreno, que é função da disposição em um sistema de
malha quadrada ou triangular de lado l(Figura 6). Para o presente
trabalho foi adotada uma disposição triangular em vista de que é
mais eficiente em termos de drenagem.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 6. Disposição geométrica dos drenos em arranjo quadrado e
triangular
No caso de malha triangular o diâmetro de influência esta definido
como:
𝑑 𝑒 = 1,05 𝑙 (7)
Onde l corresponde ao espaçamento entre os drenos, no caso do
presente projeto l=1,75 m e de= 1,84 m.
Uma vez definido o diâmetro de influência, se define o diâmetro
equivalente do dreno com a seguinte expressão:
𝑑 𝑤 =
2(𝑎 + 𝑏)
𝜋
(8)
Onde a e b são dimensões do dreno. No presente trabalho foram
adotadas3
a=10 cm e b = 0,5 cm, portanto, dw = 6,68 cm.
O passo a seguir é a determinação do grau de adensamento em função
do tempo para drenagem radial pura4. Empregando a solução de Barron
(1948), o grau de adensamento médio da camada é expresso como:
𝑈ℎ = 1 − 𝑒
−[
8𝑇ℎ
𝐹(𝑛)⁄ ]
(9)
Onde,
3 ALMEIDA, M. S. S. Aterros sobre solos moles projeto e desempenho. 2010.
P 110.
4 Os cálculos do grau de adensamento considerando somente drenagem radial
são conservativos para fins práticos do presente trabalho permitem maior
simplicidade nos cálculos.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
𝑇ℎ =
𝑐ℎ . 𝑡
𝑑 𝑒
2 (10)
𝐹(𝑛) ≅ ln(𝑛) − 0,75 (11)
𝑛 =
𝑑 𝑒
𝑑 𝑤
(12)
Onde,
𝑑 𝑒= diâmetro de influência de um dreno
𝑑 𝑤= diâmetro do dreno ou diâmetro equivalente de um geodreno com
seção retangular.
Th= Fator tempo para drenagem horizontal
F(n)= função de densidade de drenos.
𝑐ℎ = coeficiente de adensamento horizontal, no presente trabalho
foi assumido igual a Cv, portanto, não se considera um
comportamento anisotópico.
O processo de cravação faz com que seja produzido um efeito de
amolgamento da argila (Smear), diminuindo a permeabilidade do solo
no seu entorno e, consequentemente, reduza velocidade do
adensamento e a eficiência dos geodrenos, além de aumentar o
recalque total.
No presente trabalho, serão consideradas umas dimensões externas
do mandril de 6cmx12cm, segundo recomendação da norma DNER/PRO
381/98- “Projeto de Aterros Sobre Solos Moles Para Obras Viárias”
do DNIT.
Considerando este efeito, a equação (9), pode ser rescrita como:
𝑈ℎ = 1 − 𝑒
−[
8𝑇ℎ
𝐹(𝑛)+𝐹𝑠
⁄ ]
= 1 − 𝑒
−
[
8𝑇ℎ
(ln(𝑛)−0,75)+((
𝑘ℎ
𝑘´ℎ
−1)ln(
𝑑 𝑠
𝑑 𝑤
))
] (13)
Onde,
𝑑 𝑚 = √
4
𝜋
𝑤 ∗ 𝑙 (14)
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
W, l, dimensões do mandril.
𝑑 𝑠 = 2𝑑 𝑚
Kh= permeabilidade horizontal.
K’h= permeabilidade horizontal da área afetada pelo amolgamento.
Foram adotadas uma relação Kh/K’h=2,5 e uma relação ds/dm=1,6,
segundo as recomendações apresentadas na Tabela 4,1 do livro
“Aterros sobre solos moles projeto e desempenho”(2010).
Na Figura 7, se apresenta a evolução dos recalques do aterro
estudado no presente trabalho sem drenos espaçados cada 1,5 m e
com drenos.
Figura 7. Evolução dos recalques do um aterro com drenos espaçados cada
1,5 m e sem drenos.
Da Figura 7, pode-se observar que os drenos aceleram o grau de
adensamento para um tempo de 24 meses, a porcentagem média de
adensamento nesse caso é de 88% e sem drenos é de 35%. No entanto,
é necessária uma medida adicional para acelerar os recalques ainda
mais e assim cumprir o tempo de construção da obra, uma proposta é
o emprego de uma combinação do sistema de drenos com sobrecarga.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
O efeito do amolgamento influência nos cálculos do recalque em
função do tempo, na Tabela 9, se apresenta uma comparação dos
graus de adensamento sem considerar e considerando o efeito do
amolgamento.
U(%)
Tempo Sem amolgamento Com amolgamento
12 meses 81% 66%
24 meses 96% 88%
Tabela 9. Influência do amolgamento nos cálculos
Estes efeitos têm uma influência importante na determinação do
espaçamento dos drenos, a hipótese de não considerar a influência
do amolgamento no desempenho do dreno, pode levar a determinar
espaçamentos maiores dos drenos.
2.3 Construção em etapas, sobrecarga e drenos verticais
No caso de que o a terro não for estável para a construção numa
etapa, uma solução é a construção em etapas, de esta maneira o
solo vai ganhar resistência no tempo antes da colocação da camada
seguinte.
O procedimento para o cálculo dos recalques no tempo para o aterro
construído em etapas é o seguinte:
 Calcular o recalque total para a primeira altura do aterro,
neste caso vai se implementar uma medida de sobrecarga, por
tanto a altura total do aterro considerando sobrecarga vai
ser de 8 m e na primeira etapa a altura é de 4 m.
Neste caso é empregado o procedimento de aterro com
submersão, haterro= constante e a equação de recalque para solo
sobreadensado.
∆ℎ = ℎ 𝑎𝑟𝑔 [
𝐶𝑠
1 + 𝑒 𝑣𝑜
𝑙𝑜𝑔 (
𝜎′ 𝑣𝑚
𝜎′ 𝑣𝑜
) +
𝐶𝑐
1 + 𝑒 𝑣𝑜
𝑙𝑜𝑔 (
𝜎′ 𝑣𝑜 + Δ𝜎𝑣
𝜎′ 𝑣𝑚
)] (15)
Onde,
Δ𝜎𝑣 = (𝛾 𝑎𝑡ℎ1) + 𝛾′
𝑎𝑡Δℎ (16)
h1= trecho não submerso do aterro
h2=Dh = trecho recalcado e submerso do aterro
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Os resultados do procedimento iterativo para o cálculo do
recalque por submersão se apresentam na Tabela 10 e na Figura
8.
Recalque por Submersão (m)
H i
(m) z(m) OCR w (%) It 1 It 2 It 3 It 4 It 5 It 6 It 7
1 0,5 15,00 197,5 0,26 0,20 0,21 0,21 0,21 0,21 0,21
1 1,5 5,00 192,5 0,23 0,18 0,19 0,19 0,19 0,19 0,19
1 2,5 3,00 187,5 0,23 0,17 0,19 0,18 0,19 0,19 0,19
1 3,5 2,14 182,5 0,23 0,17 0,19 0,18 0,19 0,19 0,19
1 4,5 1,67 177,5 0,22 0,18 0,19 0,19 0,19 0,19 0,19
1 5,5 1,50 172,5 0,21 0,17 0,18 0,17 0,18 0,17 0,17
1 6,5 1,50 167,5 0,19 0,14 0,16 0,15 0,15 0,15 0,15
1 7,5 1,50 162,5 0,17 0,13 0,14 0,13 0,13 0,13 0,13
1 8,5 1,50 157,5 0,15 0,11 0,12 0,12 0,12 0,12 0,12
1 9,5 1,50 152,5 0,14 0,10 0,11 0,11 0,11 0,11 0,11
SOMA 2,02 1,55 1,67 1,64 1,65 1,64 1,65
Tabela 10. Recalques da primeira etapa do aterro
Figura 8. Variação do recalque em função das iterações
 Calcular a variação do recalque em função do tempo até o
tempo t1, que corresponde ao início da segunda etapa, no caso
do presente trabalho, 12 meses.
Na Tabela 11, se apresentam os resultados da variação do
recalque em função do tempo para a primeira etapa com uma
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
altura inicial de 4 m, durante os 12 primeiros meses do
projeto.
Recalques no tempo
Uh(%) Th t(meses) Δh(t)
0,00 0,000 0 0,00
0,09 0,031 1 0,14
0,17 0,061 2 0,28
0,24 0,092 3 0,40
0,31 0,123 4 0,50
0,37 0,154 5 0,60
0,42 0,184 6 0,70
0,47 0,215 7 0,78
0,52 0,246 8 0,85
0,56 0,276 9 0,92
0,60 0,307 10 0,99
0,63 0,338 11 1,04
0,67 0,368 12 1,10
Tabela 11. Recalques da primeira etapa do aterro
Dos resultados, se observa que para um tempo de 12 meses, uma
medida combinada de sobrecarga e drenos espaçados cada 1,5 m
considerando a hipótese do amolgamento que diminui a
eficiência do sistema de drenos, foi atingido um grau de
adensamento de U1=66%.
 Calcular os recalques após o tempo t1, atualizando os valores
de cada subcamada, segundo o procedimento a seguir:
Calcular as novas espessuras da camada:
ℎ 𝑎𝑟𝑔1 = ℎ 𝑎𝑟𝑔 − ∆ℎ1 𝑈1 (17)
Onde:
U1=U1(t1)
t1= 12 meses para o projeto
∆ℎ1= recalque da primeira etapa no período inicial de 12
meses
 Calcular as tensões efetivas no tempo t1, assumindo
submersão:
𝜎𝑣1
´
= 𝜎𝑣0
´
+ (ℎ1 − ∆ℎ1 ∗ 𝑈1)𝛾 𝑎𝑡 + ∆ℎ1 ∗ 𝑈1 ∗ 𝛾 𝑎𝑡
´
(18)
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Calcular os recalques após a instalação da segunda camada,
tendo em consideração que a argila passa a ser normalmente
adensada, atualizando os índices de vazios:
∆ℎ𝑗+1 = ℎ 𝑎𝑟𝑔 ∗
𝐶𝑐
(1 + 𝑒 𝑣1)
∗ 𝑙𝑜𝑔 (
𝜎𝑣1
´
+ 𝛾 𝑎𝑡ℎ2 + 𝛾 𝑎𝑡
´
∆ℎ𝑗
𝜎𝑣1
´
) (19)
Onde,
ev1= nova relação de vazios correspondente a tensão 𝜎𝑣1
´
𝑒 𝑣1 = 𝑒0 − [𝐶𝑠 ∗ (log(𝜎𝑣𝑚
´
) − log(𝜎𝑣0
´
))] − [𝐶𝑐 ∗ (log(𝜎𝑣1
´
) − log(𝜎𝑣𝑚
´
))] (20)
Na tabela 12 Os resultados dos cálculos seguindo o
procedimento mencionado:
Recalque por Submersão (m)
σ´v1(KPa)
σ´vo
(KPa)
σ´vm
(KPa) eo
h1 arg
(m) e1 It 1 It 2 It 3 It 4 It 5 It 6
59,3 1,75 26,3 5,14 0,86 3,77 0,16 0,17 0,17 0,17 0,17 0,17
62,8 5,25 26,3 5,01 0,87 3,79 0,15 0,16 0,16 0,16 0,16 0,16
66,3 8,75 26,3 4,88 0,88 3,72 0,14 0,15 0,16 0,16 0,16 0,16
69,8 12,25 26,3 4,75 0,88 3,62 0,14 0,15 0,15 0,15 0,15 0,15
73,3 15,75 26,3 4,62 0,88 3,51 0,13 0,14 0,14 0,14 0,14 0,14
76,8 19,25 28,9 4,49 0,88 3,47 0,12 0,14 0,14 0,14 0,14 0,14
80,3 22,75 34,1 4,36 0,90 3,49 0,12 0,13 0,13 0,13 0,13 0,13
83,8 26,25 39,4 4,23 0,91 3,48 0,11 0,12 0,13 0,13 0,13 0,13
87,3 29,75 44,6 4,10 0,92 3,44 0,11 0,12 0,12 0,12 0,12 0,12
90,8 33,25 49,9 3,97 0,93 3,40 0,10 0,11 0,12 0,12 0,12 0,12
SOMA 1,28 1,41 1,42 1,42 1,49 1,49
Tabela 12. Recalques da segunda etapa do aterro
Na Figura 9, se apresenta o comportamento dos recalques em
função do tempo de construção (24 meses), para um aterro com
sobrecarga total de 8 m, dividida em duas etapas de 4 m cada
uma e com drenos verticais espaçados cada 1,5 m.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 9. Evolução dos recalques com o tempo
Desta maneira a espessura a retirar de aterro adicional aos 24
meses é 8,0m-2,47 m -3,0m=2,53 m.
Esta solução, precisa levar em consideração o volume de
terraplanagem quando se usa sobrecarga para a compensação do
recalque total, portanto, é preciso avaliar outras alternativas e
fazer uma comparação final de qual apresenta menores custos de
execução.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
3. ESTABILIDADE DO ATERRO NÃO REFORÇADO E REFORÇADO
3.1 Parâmetros de projeto
Resistência não drenada da argila
A resistência não drenada da argila pode ser definida em termos
da razão de sobreadensamento (OCR) e da tensão efetiva vertical:
𝑆 𝑢
𝜎´ 𝑣𝑜
= 0,3 ∗ 𝑂𝐶𝑅0,85
(1)
Na Tabela 1, se apresenta a variação da resistência não drenada
para diferentes profundidades.
H i z(m) OCR s'vo (Kpa) Su (Kpa)
1 0,1 75,0 0,4 4,1
1 0,5 15,0 1,8 5,2
1 1,0 7,5 3,5 5,8
1 1,5 5,0 5,3 6,2
1 2,0 3,8 7,0 6,5
1 2,5 3,0 8,8 6,7
1 3,0 2,5 10,5 6,9
1 3,5 2,1 12,3 7,0
1 4,0 1,9 14,0 7,2
1 4,5 1,7 15,8 7,3
1 5,0 1,5 17,5 7,4
1 5,5 1,5 19,3 8,2
1 6,0 1,5 21,0 8,9
1 6,5 1,5 22,8 9,6
1 7,0 1,5 24,5 10,4
1 7,5 1,5 26,3 11,1
1 8,0 1,5 28,0 11,9
1 8,5 1,5 29,8 12,6
1 9,0 1,5 31,5 13,3
1 9,5 1,5 33,3 14,1
1 10,0 1,5 35,0 14,8
Média 9,0
Tabela 1. Variação da resistência não drenada com a profundidade
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Figura 1, se apresenta a variação da resistência não drenada
em termos da profundidade, com o valor médio que será empregado
no cálculo da altura crítica assumindo Su constante na camada de
argila mole e o ajuste linear que será empregado para a obtenção
da altura crítica mediante o método dos ábacos desenvolvidos por
Pinto (1966) e nos cálculos da estabilidade global do aterro
para superfícies não circulares.
Figura 1. Variação da resistência não drenada com a profundidade e
ajuste linear dos dados calculados.
3.2 Ruptura da fundação: Altura crítica do aterro
Entendendo a ruptura da fundação como um problema de capacidade de
carga, o aterro participa como um carregamento sem considerar sua
resistência. No presente trabalho se empregam três metodologias no
cálculo da altura crítica das quais será escolhida a que apresente
o menor valor, este resultado será o parâmetro de entrada nos
cálculos da estabilidade global do sistema aterro-solo mole.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Equação derivada da expressão clássica de capacidade de carga
ℎ 𝑐𝑟 =
𝑁𝑐 ∗ 𝑆 𝑢
𝛾 𝑎𝑡
(2)
Onde,
Nc – Fator de capacidade de carga, 5,14 para Su constante
(Mandel e Saleçon, 1972).
Na Figura 2, se apresenta a variação do fator Nc em termos da
profundidade e da geometria do aterro, nesta primeira abordagem
é assumida uma relação B/D <1,5 (Figura 2b).
Figura2. Variação do fator Nc
Substituindo os correspondentes valores na equação (2), a altura
crítica do aterro é:
ℎ 𝑐𝑟 =
5,14 ∗ 9,0 𝐾𝑁/𝑚²
17,5 𝐾𝑁/𝑚³
= 2,65 𝑚
A altura admissível para um fator de segurança de 1,3, admitindo
uma condição temporária que implica também construção em etapas
é:
ℎ 𝑎𝑑𝑚 =
ℎ 𝑐𝑟
𝐹. 𝑆
=
2,65 𝑚
1,5
= 2,04 𝑚
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Ábaco de Pinto
A altura crítica pelo método do ábaco de Pinto para resistência
crescente com a profundidade foi obtida para um F.S =1,3 a seguir
se apresenta um resumo dos resultados:
Tabela 2. Altura admissível
Figura3. Ábaco de Pinto
 Programa de computador
Nesta abordagem, foram efetuadas análises de estabilidade
assumindo superfície de ruptura circular e o aterro como uma
sobrecarga a fim de observar qual altura é a necessária para
atingir um fator de segurança de 1,3 e assim estabelecer uma
comparação dos resultados.
q = Nco.co
Hcrit = Nco.co/gat
co 3,68 Kpa
c1 1,02 Kpa/m
D 10,0 m
H 3,0 m
m 3,0 m
d 9,0 m
c1*D/co 2,8
c1*d/co 2,5
Nco 12,0
Hcr 2,5 m
Had 1,9 m
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Para as análises foi empregado o software SLIDE da Rocscience, os
parâmetros de entrada são os seguintes:
Figura4. Parâmetros de resistência da argila mole
Para uma altura de 1 m, a sobrecarga equivalente do aterro é de
17,5 KN/m.
Figura5. Análise de estabilidade para um aterro sem resistência e
sobrecarga equivalente a 1 m de altura, método de Bishop.
3,07
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Para uma altura de 2 m, a sobrecarga equivalente do aterro é de
35 KN/m.
Figura6. Análise de estabilidade para um aterro sem resistência e
sobrecarga equivalente a 2 m de altura, método de Bishop.
Figura7. Análise de estabilidade para um aterro sem resistência e
sobrecarga equivalente a 3 m de altura, método de Bishop.
1,54
1,03
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Tabela 3, se apresenta um resumo dos resultados empregando
diferentes alturas e metodologias de análise de estabilidade.
Altura (m) Sobrecarga equivalente (KN/m) F.S (Spencer) F.S (Bishop)
1,0 17,5 3,07 3,07
2,0 35,0 1,54 1,54
2,2 38,5 1,36 1,36
2,4 41,1 1,31 1,30
3,0 52,5 1,02 1,03
Tabela 3. Análise de estabilidade para um aterro sem resistência
Para um F.S de 1,3, hcrit=2,4 m e Su=9,0 KPa, recalculando o fator Nc
da equação (2), tem-se que:
Nc=5,98 > 5,14
Que permite concluir que a metodologia das superfícies de ruptura
circulares tem relação com uma solução de limite superior.
Dos resultados das metodologias expostas, pode se observar que o
método do ábaco de Pinto fornece um menor valor da altura
admissível (hadm=1,9 m) em comparação com a metodologia da equação
de capacidade carga e a metodologia das superfícies de ruptura
circulares, nas quais foi assumida uma resistência não drenada
média e constante ao longo da camada. Na Tabela 4, se apresenta um
resumo dos resultados.
Metodologia hadm (m)
Equação de capacidade de carga 2,0
Ábaco de Pinto 1,9
Software de análise de estabilidade 2,4
Tabela 4. Altura admissível do aterro
3.3 Análise de estabilidade global do aterro sem reforço
 Superfícies de ruptura não circulares
Nesta análise foi desenvolvida uma planilha eletrônica que permite
compreender o mecanismo de ruptura de uma superfície não circular.
Este procedimento consiste em calcular o Fator de Segurança para
varias superfícies calculando a resistência não drenada para
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
diferentes profundidades na base da superfície de ruptura não
circular.
Na Figura 8, se mostram as forças atuantes na análise pelo método
de blocos.
Figura 8. Método dos blocos ou cunhas
A expressão geral no cálculo do Fator de Segurança pelo método de
blocos é a seguinte:
𝐹. 𝑆 =
𝐸 𝑝 + 𝑆 + 𝑇
𝐸 𝑎𝑡 + 𝐸 𝑎𝑟𝑔
(3)
Onde,
Ep - Empuxo passivo na argila:
𝐸 𝑝 =
1
2
𝛾𝑎𝑟𝑔 ∗ 𝑧2
∗ 𝐾 𝑝𝑎𝑟𝑔 + 2𝑆 𝑢 ∗ 𝑧 (4)
S - Força cisalhante mobilizada na argila mole:
𝑆 = 𝑆 𝑢 ∗ 𝐿 (5)
T - Força correspondente ao reforço
Eat – Empuxo ativo no aterro arenoso, sem considerar coesão:
𝐸 𝑎𝑡 =
1
2
𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡
2
∗ 𝐾 𝑎𝑎𝑡 (6)
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Earg – Empuxo ativo na camada de argila:
𝐸 𝑎𝑟𝑔 =
1
2
𝛾𝑎𝑟𝑔 ∗ 𝑧 𝑎𝑟𝑔
2
∗ 𝐾𝑎𝑎𝑟𝑔 − 2𝑆 𝑢 ∗ 𝑧 𝑎𝑟𝑔 ∗ √ 𝐾 𝑎𝑎𝑟𝑔 + 𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡 ∗ 𝑧 𝑎𝑟𝑔 ∗ 𝐾𝑎𝑎𝑟𝑔 (7)
Foi efetuada uma análise variando a profundidade cada 0,5 m e a
fim de efetuar uma verificação do procedimento “manual”, foram
obtidos os fatores de segurança para superfícies de ruptura com
geometrias como a apresentada na Figura 8 no software de análise
de estabilidade SLIDE. Na Tabela 5, se apresenta o cálculo do
empuxo ativo do aterro e na Tabela 6 se apresentam os resultados
das análises para cada profundidade estudada e os fatores de
segurança obtidos pelo software de análise de estabilidade.
γat 17,5 KN/m3
Hat 1,94 m
F´at 30 Graus
Ka 0,333
Eat 10,99 KN/m
γarg 13,5 KN/m3
m 3
Tabela 5. Empuxo ativo do aterro
z arg
(m)
Su f(z)
(Kpa)
Earg KN/m
(ativo)
Earg KN/m
(passivo)
S
(KN/m)
T
(KN/m)
F.S
(Blocos)
F.S
(Spencer)
F.S
(Morgenstern)
0,5 4,19 14,48 5,88 24,39 0 1,19 1,19 1,15
1,0 4,70 31,32 16,15 27,36 0 1,03 1,07 1,05
1,5 5,21 50,51 30,82 30,33 0 0,99 1,02 0,99
2,0 5,72 72,05 49,88 33,30 0 1,00 1,02 1,00
2,5 6,23 95,95 73,34 36,27 0 1,02 1,03 1,03
3,0 6,74 122,21 101,19 39,24 0 1,05 1,05 1,03
3,5 7,25 150,82 133,43 42,21 0 1,09 - -
4,0 7,76 181,78 170,08 45,18 0 1,12 - -
4,5 8,27 215,10 211,11 48,15 0 1,15 - -
5,0 8,78 250,78 256,55 51,12 0 1,18 - -
5,5 9,29 288,81 306,37 54,09 0 1,20 - -
6,0 9,80 329,20 360,59 57,06 0 1,23 - -
6,5 10,31 371,94 419,21 60,03 0 1,25 - -
7,0 10,82 417,03 482,22 63,00 0 1,27 - -
7,5 11,33 464,48 549,63 65,97 0 1,29 - -
8,0 11,84 514,29 621,43 68,94 0 1,31 - -
8,5 12,35 566,45 697,63 71,91 0 1,33 - -
9,0 12,86 620,96 778,22 74,88 0 1,35 - -
9,5 13,37 677,83 863,21 77,85 0 1,37 - -
10,0 13,88 737,06 952,59 80,81 0 1,38 - -
Tabela 6. Fatores de segurança – Superfície de ruptura não circular
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
No caso da análise no software SLIDE, foi considerada a
resistência variável da argila na profundidade, como apresentado
na Figura 9.
Figura 9. Parâmetros da argila mole – Superfície não circular
Na Figura 10, se apresenta um resumo dos resultados das análises
para superfícies não circulares com profundidades entre 0,5 m e
2,5 m.
Figura 10. Análise de estabilidade pelo método de Spencer
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Foi feita uma verificação da resistência na base das superfícies
de ruptura empregada no programa de análise de estabilidade, por
exemplo, para uma fatia aleatória cuja base esta a 2,5 m de
profundidade (ver Tabela 6), os resultados são os seguintes:
Figura 11. Verificação da análise de estabilidade
Dos resultados apresentados na Tabela 6, pode-se observar que os
três métodos coincidem em termos do menor Fator de Segurança que
corresponde à superfície cuja profundidade da base esta a 1,5 m.
A vantagem do método em planilha eletrônica é a possibilidade de
compreender o processo de cálculo do Fator de Segurança e a
facilidade de controlar as variáveis a fim de efetuar possíveis
análises de sensibilidade com parâmetros como o ângulo de atrito
do aterro, a altura do mesmo e a possibilidade de incluir
facilmente uma força T que corresponde ao reforço na base do
aterro no contato direto com a argila mole sem aterro de
conquista.
 Superfícies de ruptura circulares
Foi adotada uma abordagem com Su constante na profundidade (média
aritmética, Figura 1) e Su variando na profundidade para um aterro
com altura igual à hcrit.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Figura 12, se apresenta o F.S obtido pelo método de Spencer
para superfície de ruptura circular e Su constante na profundidade.
Figura 12. Análise de estabilidade para superfície circular
Na Figura 13, se apresenta o F.S obtido pelo método de Spencer
para superfície de ruptura circular e Su variável na profundidade.
Figura 13. Análise de estabilidade para superfície circular
Na Tabela 7, se apresenta um resumo dos resultados obtidos no
cálculo do F.S empregando as diferentes metodologias e hipóteses
de cálculo. Pode-se observar que dependendo da hipótese de cálculo
adotada o F.S apresenta variações, como se observa no caso de
adotar um valor médio constante de Su na profundidade no caso de
superfície de ruptura circular. Dos resultados das hipóteses
restantes se conclui que o aterro precisa de uma medida de reforço
que permita garantir a estabilidade durante a construção da
1,41
0,89
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
primeira etapa e observar como vai ser o comportamento do mesmo no
momento da construção das seguintes etapas, considerando o ganho
de resistência após o carregamento da argila mole.
haterro = hcrit = 1,94 m
Superfície de
ruptura
Método F.S Hipótese
Não circular
Planilha-
Blocos
0,99
Su variável na
profundidade
Spencer 1,03
Morgenstern -
Price
1,02
Circular
Spencer 0,89
Su variável na
profundidadeMorgenstern -
Price
0,89
Spencer 1,41
Su constante na
profundidadeMorgenstern -
Price
1,41
Tabela 7. Resumo dos métodos de análise de estabilidade
3.4 Dimensionamento do reforço
 Verificação da expulsão do solo mole
Na figura 14, se observam as forças atuantes que devem ser
consideradas no cálculo do F.S no caso da expulsão do solo mole.
Figura 14. Diagrama de forças para verificação de expulsão de solo mole
Onde,
Pp-Empuxo passivo na argila:
𝑃𝑝 =
1
2
𝛾𝑎𝑟𝑔 ∗ 𝑧2
∗ 𝐾 𝑝𝑎𝑟𝑔 + 2𝑆 𝑢 ∗ 𝑧 (8)
hat
L
m
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Rb - Força cisalhante na base do bloco:
𝑅 𝑏 = 𝑆 𝑢 𝑏𝑎𝑠𝑒 ∗ 𝐿 (9)
Rt - Força cisalhante no topo do bloco:
𝑅𝑡 = 𝑆 𝑢 𝑡𝑜𝑝𝑜 ∗ 𝐿 (10)
Pa – Empuxo ativo na camada de argila mole:
𝐸 𝑎𝑟𝑔 =
1
2
𝛾𝑎𝑟𝑔 ∗ 𝑧 𝑎𝑟𝑔
2
∗ 𝐾𝑎𝑎𝑟𝑔 − 2𝑆 𝑢 ∗ 𝑧 𝑎𝑟𝑔 ∗ √ 𝐾𝑎𝑎𝑟𝑔 + 𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡 ∗ 𝑧 𝑎𝑟𝑔 ∗ 𝐾𝑎𝑎𝑟𝑔 (11)
O Fator de Segurança nesta análise é calculado como:
𝐹. 𝑆 𝑒𝑥𝑝𝑢𝑙𝑠ã𝑜 =
𝑅 𝑇 + 𝑅 𝑏 + 𝑃𝑝
𝑃𝑎
(12)
zarg
(m)
Su f(z)
(Kpa)
Pa
(KN/m)
Pp
(KN/m)
Rt
(KN/m)
Rb
(KN/m)
F.S
0,0 3,7 - 21,4 - Topo da argila
0,5 4,2 14,5 5,9 21,4 24,4 3,57
1,0 4,7 31,3 16,1 21,4 27,4 2,07
1,5 5,2 50,5 30,8 21,4 30,3 1,63
2,0 5,7 72,1 49,9 21,4 33,3 1,45
2,5 6,2 96,0 73,3 21,4 36,3 1,37
3,0 6,7 122,2 101,2 21,4 39,2 1,32
3,5 7,2 150,8 133,4 21,4 42,2 1,31
4,0 7,8 181,8 170,1 21,4 45,2 1,30
4,5 8,3 215,1 211,1 21,4 48,1 1,30
5,0 8,8 250,8 256,5 21,4 51,1 1,31
5,5 9,3 288,8 306,4 21,4 54,1 1,32
6,0 9,8 329,2 360,6 21,4 57,1 1,33
6,5 10,3 371,9 419,2 21,4 60,0 1,35
7,0 10,8 417,0 482,2 21,4 63,0 1,36
7,5 11,3 464,5 549,6 21,4 66,0 1,37
8,0 11,8 514,3 621,4 21,4 68,9 1,38
8,5 12,3 566,4 697,6 21,4 71,9 1,40
9,0 12,9 621,0 778,2 21,4 74,9 1,41
9,5 13,4 677,8 863,2 21,4 77,8 1,42
10,0 13,9 737,1 952,6 21,4 80,8 1,43
Tabela 8. Análise da expulsão do solo mole
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Tabela 8, se observa que para a altura crítica previamente
calculada (hcrit = 1,94 m) e uma inclinação do talude do aterro m=3,
é possível atingir um F.S mínimo de 1,3 que é aceitável para uma
condição temporária como é o caso da construção da primeira etapa
do aterro.
Para diferentes inclinações do talude do aterro (m na Figura 14),
foi efetuada uma comparação a fim de analisar a influência deste
parâmetro no fator de segurança no caso da expulsão do solo, como
se mostra na Figura 15.
Figura 14. Influência da inclinação do talude do aterro no F.Sexpulsão
 Deformação y esforço permissível no reforço
Para o presente trabalho, se considera a resistência não drenada
da argila crescente com a profundidade, por tanto, é empregada a
metodologia de Hinchberger e Rowe (Geosynthetic reinforced
embankments on soft Clay foundations: predicting reinforcement
strains at failure, 2003). Na Figura 15, se apresenta a geometria
típica que será empregada nesta análise.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 15. Geometria do aterro (Hinchberger e Rowe, 2003).
Da Figura 15, Cuo corresponde a resistência não drenada do solo no
contato aterro – argila mole e rc é o incremento da resistência na
profundidade.
Segundo a metodologia proposta, é preciso multiplicar a
resistência do solo por um fator de redução equivalente ao Fator
de Segurança do projeto e assim obter uns parâmetros reduzidos
(Cuo* e rc*). Este fator parcial no presente trabalho será adotado
como PF=(1/1,3)=0,77, por tanto, os parâmetros reduzidos serão
Cuo*=PF x Cuo e rc*=PF x rc. No presente trabalho
Cuo*=0,77 x 3,68 KPa =2,84 KPa;rc*= 0,77 x 1,02 KPa/m=0,79 KPa/m
Definida a altura crítica do aterro (hcrit=1,94 m), e
rc*= 0,79 KPa/m a deformação permissível do reforço (εa)segundo a
Figura 16 é da ordem de 2,9 %.
Figura 16. Ábaco para projeto (Hinchberger e Rowe, 2003).
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Uma vez definida a altura crítica do aterro e a deformação
permissível admitindo resistência variável com a profundidade como
se mostra na Figura 15, é necessário definir a altura que pode
atingir o aterro perfeitamente reforçado (Perfectly reinforced
embankment), como de apresenta no artigo de Rowe e Myllevile
(1993). Novamente são adotados parâmetros de resistência reduzidos
e se assume que o reforço é suficiente para fazer com que o aterro
apresente comportamento de uma fundação rígida. A altura de
colapso Hu, é calculada empregando equações de capacidade de
suporte para sapatas rígidas adaptadas para a análise da carga e
geometria do aterro.
Se a altura requerida do projeto é maior do que a altura do aterro
perfeitamente reforçado, o reforço por si só não vai oferecer uma
adequada estabilidade e é preciso adotar medidas de estabilização
adicionais (aterros leves, drenos verticais, construção por
etapas, etc). Se a altura do projeto (haterro) é maior do que a
altura crítica (hcrit) e menor do que Hu, é necessário escolher o
reforço que vai fornecer a força estabilizante.
As variáveis definidas no cálculo da altura de um aterro
perfeitamente reforçado se apresentam na Figura 17.
Figura 17. Variáveis no cálculo da altura do aterro perfeitamente
reforçado (Rowe e Myllevile, 1993)
O procedimento de cálculo de Hu, é o seguinte:
Definir os parâmetros do solo multiplicados por um fator de
redução o amplificação.
Cuo*=0,77 x 3,68 KPa =2,84 KParc*= 0,77 x 1,02 KPa/m=0,79 KPa/m
γat*=17,5KN/m3
*1,2=21KN/m3
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Para H=3m e da Figura 17 e n definido como a inclinação da face do
aterro, nesta análise n=3.
ℎ =
(2 + 𝜋)𝐶 𝑢𝑜
∗
𝛾 𝑎𝑡 ∗
=
(2 + 𝜋)2,84 𝐾𝑃𝑎
20 𝐾𝑁
𝑚3⁄
= 0,7 𝑚
𝑏 = 𝐵 + 2𝑛(𝐻 − ℎ) = 10 + 2 ∗ 3(3 − 0,7) = 23,8 𝑚
𝑛ℎ = 3 ∗ 0,7 = 2,1 𝑚
𝜌𝑐
∗
𝑏
𝐶 𝑢𝑜
∗ =
0,79 ∗ 23,8
2,84
= 6,61
Da Figura 18, d/b=0,23
Figura 18. Efeito da não homogeneidade na profundidade da zona de ruptura
sob uma fundação rígida (Rowe e Myllevile, 1993).
Portanto, d = 0,23*23,8 = 5,7 m.
X=min(d;D)=min(5,7;10)=5,7 m >nh=2,1 m5
𝑞 𝑠 =
𝑛𝛾ℎ2
2𝑋
=
3 ∗ 20 ∗ 0,72
2 ∗ 5,7
= 2,6 𝐾𝑃𝑎
𝑏
𝐷
=
23,8
10
= 2,38
5 No caso de x<nh, pode-se consultar com maior detalhe o artigo de
RoweandMylleville, 1993.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Da Figura 19, Nc=12
Figura 19. Fator de capacidade de carga para solo não homogêneo (Rowe e
Myllevile, 1993).
𝑞 𝑢 = 𝑁𝑐 𝑐 𝑢𝑜
∗
+ 𝑞 𝑠 = 12 ∗ 2,84 + 2,6 = 36,6 𝐾𝑃𝑎
𝑞 𝑎 =
𝛾[𝐵𝐻 + 𝑛(𝐻2
− ℎ2
)]
𝑏
=
20[10(3) + 3(32
− 0,72
)]
23,8
= 37,27 𝐾𝑃𝑎
𝑞 𝑢
𝑞 𝑎
= 0,98
Em vista de que a relação qu/qa é menor do que 1,0 a altura
desejada para projeto não pode ser atingida empregando somente
reforço, por tanto, é preciso complementar com outras medidas
(aterro em etapas, colunas granulares, aterro leve, geodrenos,
etc).
A altura crítica que garante uma relação qu/qa=1,0 é Hu=2,5 m.
Este valor representa a altura do aterro na primeira etapa.
Empregando a metodologia de análise de blocos, foi calculada a
força T que permita garantir um F.S de 1,3 para uma altura do
aterro de 2,5 m. Na Tabela 9, se apresentam os resultados.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
z arg
(m)
Su f(z)
(Kpa)
Earg KN/m
(ativo)
Earg KN/m
(passivo)
S
(KN/m)
Tr
(KN/m) F.S
0,5 4,19 19,37 5,88 31,42 95 3,52
1,0 4,70 41,10 16,15 35,25 95 2,47
1,5 5,21 65,18 30,82 39,07 95 1,98
2,0 5,72 91,62 49,88 42,90 95 1,71
2,5 6,23 120,41 73,34 46,72 95 1,55
3,0 6,74 151,56 101,19 50,55 95 1,45
3,5 7,25 185,07 133,43 54,37 95 1,39
4,0 7,76 220,92 170,08 58,20 95 1,35
4,5 8,27 259,14 211,11 62,02 95 1,33
5,0 8,78 299,70 256,55 65,85 95 1,31
5,5 9,29 342,63 306,37 69,67 95 1,31
6,0 9,80 387,91 360,59 73,50 95 1,30
6,5 10,31 435,54 419,21 77,32 95 1,30
7,0 10,82 485,53 482,22 81,15 95 1,31
7,5 11,33 537,87 549,63 84,97 95 1,31
8,0 11,84 592,57 621,43 88,80 95 1,32
8,5 12,35 649,62 697,63 92,62 95 1,33
9,0 12,86 709,03 778,22 96,45 95 1,33
9,5 13,37 770,79 863,21 100,27 95 1,34
10,0 13,88 834,91 952,59 104,10 95 1,35
Tabela 9. Força T que garante a estabilidade do aterro com uma altura de
2,5 m
Definida a altura do aterro na primeira etapa, é preciso calcular
um fator de correção α (Tabela 10), que é função da altura que vai
ser atingida na primeira etapa e a altura critica do aterro:
ℎ − ℎ 𝑐𝑟𝑖𝑡
𝐻 𝑢 − ℎ 𝑐𝑟𝑖𝑡
=
2,5 − 1,9
2,5 − 1,9
= 1,0
Tabela 10. Fator de correção do reforço (Hinchberger e Rowe, 2003)
Por tanto, o módulo de rigidez mínimo do reforço é:
𝐽 𝑚𝑖𝑛 =
𝛼 𝑟 𝑇𝑟
𝜀 𝑎
=
2,0 ∗ 95
0,029
= 6550 𝐾𝑁/𝑚
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Para uma deformação admissível do reforço de 5%, tem-se que:
𝐽 𝑚𝑖𝑛 =
𝛼 𝑟 𝑇𝑟
𝜀 𝑎
=
2,0 ∗ 95
0,05
= 3800 𝐾𝑁/𝑚
Dos resultados se observa que a deformação admissível é um
parâmetro muito sensível na definição do módulo de rigidez do
reforço.
 Comprimento do reforço
Para a determinação do comprimento de ancoragem (Lanc), admitiu-se
Fanc=1,5 e Ci=0,8, já que a geogrelha do projeto possui malha
quadrada com abertura entre 20mm e 40mm, o valor de Lanc é:
𝐿 𝑎𝑛𝑐 =
𝐹𝑎𝑛𝑐 ∗ 𝑇
2 ∗ 𝐶𝑖 ∗ (𝑐 𝑎𝑡 + 𝛾 𝑎𝑡 ∗ 𝐻 ∗ 𝑡𝑎𝑛𝜙)
=
1,5 ∗ 95
2 ∗ 0,8 ∗ (0 + 17,5 ∗ 2,5 ∗ 𝑡𝑎𝑛30)
= 3,5 𝑚
Figura 20. Comprimento do reforço
A partir da superficie de ruptura crítica que se apresenta na
Figura 20, obtida pelo método de blocos cuja base está a 1,5 m de
profundidade, o comprimento total do reforço é:
𝐿 = 3,5 + 8,6 = 12,1 𝑚
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
3.5 Ganho de resistência ao longo do tempo
O aterro será construído em etapas para aproveitar o ganho de
resistência à medida que o aterro é executado. Foi efetuada uma
segunda análise em termos de recalques para 3 etapas cada 8 meses,
cada uma com altura de 2,5 m. Os resultados destes cálculos se
apresentam na Figura 21.
Figura 20. Aterro em 3 etapas
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
O ganho de resistência será estimado segundo a equação proposta
por Leroueil (1985):
𝑆 𝑢 (𝑐𝑎𝑚𝑎𝑑𝑎 𝑖)(𝑡) = 0,25 ∗ (𝜎𝑣(𝑥−1)(𝑐𝑎𝑚𝑎𝑑𝑎 𝑖 )
´
+ 𝑈𝑥(𝑡) ∗ ∆𝜎𝑣𝑥
´
)
Onde,
𝑆 𝑢 (𝑐𝑎𝑚𝑎𝑑𝑎 𝑖)(𝑡): Resistência não drenada da camada i ao final de um
tempo t, devido ao adensamento da etapa x.
𝑈𝑥(𝑡): Porcentagem de dissipação de poropressão que ocorreu em um
tempo t da etapa x.
𝜎𝑣(𝑥−1)(𝑐𝑎𝑚𝑎𝑑𝑎 𝑖 )
´
: Tensão vertical efetiva inicial da camada i antes da
construção da etapa x.
∆𝜎𝑣𝑥
´
: Acréscimo de carga da etapa x.
Na Tabela 11 e na Figura 21, se apresentam os valores da
resistência não drenada das etapas 2 e 3.
z arg
(m)
Su
(Kpa)
Etapa 2
Su (Kpa)
Etapa 3
0,5 3,88 12,63
1,0 5,56 14,31
1,5 7,25 16,00
2,0 8,94 17,69
2,5 10,63 19,38
3,0 12,31 21,06
3,5 14,00 22,75
4,0 15,69 24,44
4,5 17,38 26,13
5,0 19,06 27,81
5,5 20,75 29,50
6,0 22,44 31,19
6,5 24,13 32,88
7,0 25,81 34,56
7,5 27,50 36,25
8,0 29,19 37,94
8,5 30,88 39,63
9,0 32,56 41,31
9,5 34,25 43,00
10,0 35,94 44,69
Média 19,91 28,66
Tabela 11, Figura 21. Variação de Su na profundidade para as etapas 2 e 3
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Assumindo os valores médios da resistência não drenada das etapas
2 e 3, os resultados para superfícies de ruptura circulares sem
considerar a força fornecida pelo reforço são apresentados nas
Figuras 21 e 22:
Figura 22. Análise de estabilidade pelo método de Spencer para uma altura
de aterro haterro=5,0 m – Etapa 2 e resistência média constante.
Figura 23. Análise de estabilidade pelo método de Spencer para uma altura
de aterro haterro=7,5 m – Etapa 3 e resistência média constante.
1,34
1,35
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
A fim de estabelecer uma comparação dos resultados das análises
com superfícies não circulares, empregando o procedimento dos
blocos e as mesmas condições das análises anteriores, foram
obtidos os resultados que se apresentam na Tabela 12 e na
Tabela 13.
z arg
(m)
Su f(z)
(Kpa)
Earg KN/m
(ativo)
Earg KN/m
(passivo)
S
(KN/m)
T
(KN/m) F.S
0,5 19,91 25,53 21,60 298,65 0 3,25
1,0 19,91 54,43 46,57 298,65 0 2,71
1,5 19,91 86,71 74,92 298,65 0 2,34
2,0 19,91 122,36 106,64 298,65 0 2,08
2,5 19,91 161,39 141,74 298,65 0 1,88
3,0 19,91 203,79 180,21 298,65 0 1,73
3,5 19,91 249,57 222,06 298,65 0 1,61
4,0 19,91 298,72 267,28 298,65 0 1,52
4,5 19,91 351,25 315,88 298,65 0 1,45
5,0 19,91 407,15 367,85 298,65 0 1,39
5,5 19,91 466,43 423,20 298,65 0 1,34
6,0 19,91 529,08 481,92 298,65 0 1,30
6,5 19,91 595,11 544,02 298,65 0 1,26
7,0 19,91 664,51 609,49 298,65 0 1,23
7,5 19,91 737,29 678,34 298,65 0 1,21
8,0 19,91 813,44 750,56 298,65 0 1,18
8,5 19,91 892,97 826,16 298,65 0 1,16
9,0 19,91 975,87 905,13 298,65 0 1,15
9,5 19,91 1062,15 987,48 298,65 0 1,13
10,0 19,91 1151,80 1073,20 298,65 0 1,12
Tabela 12. Análise de estabilidade pelo método dos blocos para
haterro= 5,0 m – Etapa 2
z arg
(m)
Su f(z)
(Kpa)
Earg KN/m
(ativo)
Earg KN/m
(passivo)
S
(KN/m)
T
(KN/m) F.S
0,5 28,66 38,65 30,35 644,85 0 3,33
1,0 28,66 80,68 64,07 644,85 0 2,90
1,5 28,66 126,08 101,17 644,85 0 2,57
2,0 28,66 174,86 141,64 644,85 0 2,32
2,5 28,66 227,01 185,49 644,85 0 2,12
3,0 28,66 282,54 232,71 644,85 0 1,96
3,5 28,66 341,44 283,31 644,85 0 1,84
4,0 28,66 403,72 337,28 644,85 0 1,73
4,5 28,66 469,37 394,63 644,85 0 1,64
5,0 28,66 538,40 455,35 644,85 0 1,57
5,5 28,66 610,80 519,45 644,85 0 1,50
6,0 28,66 686,58 586,92 644,85 0 1,45
6,5 28,66 765,73 657,77 644,85 0 1,40
7,0 28,66 848,26 731,99 644,85 0 1,36
7,5 28,66 934,16 809,59 644,85 0 1,32
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
z arg
(m)
Su f(z)
(Kpa)
Earg KN/m
(ativo)
Earg KN/m
(passivo)
S
(KN/m)
T
(KN/m) F.S
8,0 28,66 1023,44 890,56 644,85 0 1,29
8,5 28,66 1116,09 974,91 644,85 0 1,27
9,0 28,66 1212,12 1062,63 644,85 0 1,24
9,5 28,66 1311,52 1153,73 644,85 0 1,22
10,0 28,66 1414,30 1248,20 644,85 0 1,20
Tabela 13. Análise de estabilidade pelo método dos blocos para
haterro= 7,5 m – Etapa 3
Na Tabela 14 e na Tabela 15, se observam os resultados da
metodologia dos blocos assumindo a influência da força T=95 KN/m
definida no item 3,4.
z arg
(m)
Su f(z)
(Kpa)
Earg KN/m
(ativo)
Earg KN/m
(passivo)
S
(KN/m)
T
(KN/m) F.S
0,5 19,91 25,53 21,60 298,65 95 4,22
1,0 19,91 54,43 46,57 298,65 95 3,46
1,5 19,91 86,71 74,92 298,65 95 2,94
2,0 19,91 122,36 106,64 298,65 95 2,56
2,5 19,91 161,39 141,74 298,65 95 2,29
3,0 19,91 203,79 180,21 298,65 95 2,07
3,5 19,91 249,57 222,06 298,65 95 1,91
4,0 19,91 298,72 267,28 298,65 95 1,78
4,5 19,91 351,25 315,88 298,65 95 1,67
5,0 19,91 407,15 367,85 298,65 95 1,59
5,5 19,91 466,43 423,20 298,65 95 1,51
6,0 19,91 529,08 481,92 298,65 95 1,45
6,5 19,91 595,11 544,02 298,65 95 1,40
7,0 19,91 664,51 609,49 298,65 95 1,36
7,5 19,91 737,29 678,34 298,65 95 1,32
8,0 19,91 813,44 750,56 298,65 95 1,29
8,5 19,91 892,97 826,16 298,65 95 1,26
9,0 19,91 975,87 905,13 298,65 95 1,24
9,5 19,91 1062,15 987,48 298,65 95 1,22
10,0 19,91 1151,80 1073,20 298,65 95 1,20
Tabela 14. Análise de estabilidade pelo método dos blocos para
haterro= 5,0 m – Etapa 2 – Incluindo Treforço
z arg
(m)
Su f(z)
(Kpa)
Earg KN/m
(ativo)
Earg KN/m
(passivo)
S
(KN/m)
T
(KN/m) F.S
0,5 28,66 38,65 30,35 644,85 95 3,80
1,0 28,66 80,68 64,07 644,85 95 3,28
1,5 28,66 126,08 101,17 644,85 95 2,90
2,0 28,66 174,86 141,64 644,85 95 2,60
2,5 28,66 227,01 185,49 644,85 95 2,37
3,0 28,66 282,54 232,71 644,85 95 2,18
3,5 28,66 341,44 283,31 644,85 95 2,02
4,0 28,66 403,72 337,28 644,85 95 1,90
4,5 28,66 469,37 394,63 644,85 95 1,79
5,0 28,66 538,40 455,35 644,85 95 1,70
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
5,5 28,66 610,80 519,45 644,85 95 1,63
6,0 28,66 686,58 586,92 644,85 95 1,56
6,5 28,66 765,73 657,77 644,85 95 1,50
7,0 28,66 848,26 731,99 644,85 95 1,45
7,5 28,66 934,16 809,59 644,85 95 1,41
8,0 28,66 1023,44 890,56 644,85 95 1,37
8,5 28,66 1116,09 974,91 644,85 95 1,34
9,0 28,66 1212,12 1062,63 644,85 95 1,31
9,5 28,66 1311,52 1153,73 644,85 95 1,28
10,0 28,66 1414,30 1248,20 644,85 95 1,26
Tabela 15. Análise de estabilidade pelo método dos blocos para
haterro= 7,5 m – Etapa 3 – Incluindo Treforço
Os resultados das análises permitem observar que os fatores de
segurança obtidos para superfícies circulares são maiores do que
os de superfícies não circulares. Além disso, a força resistente
do reforço necessária para garantir a estabilidade da primeira
etapa, não é suficiente nas seguintes etapas, portanto, é preciso
empregar um reforço de maior módulo. Na Tabela 16, se apresenta um
resumo dos resultados.
F.S
Etapa Espessura do Aterro (m) Circular Não Circular
1 (Reforçada) 2,5 1,64 1,30
2 5,0 1,34 1,12
3 7,5 1,35 1,20
Tabela 16. Fatores de segurança para superfícies circulares e não
circulares
REFERÊNCIAS BIBLIOGRÁFICAS
ALMEIDA, M.S.S; MARQUES, M.E.S. Aterros sobre solos moles –
Projeto e desempenho. Oficina de Textos, 2010.
DOMINONI, C.M, Análise de estabilidade e compressibilidade de um
aterro sobre solo mole no Porto de Suape, Região Metropolitana do
Recife. UFRJ, Escola Politécnica, 2011.
HINCHBERGER S.D; ROWE, R.K, Geosynthetic reinforced embankments on
soft clay foundations: predicting reinforcement strains at
failure. Geotextiles and Geomembranes v. 21, p 151-175, 2003.
ROWE, R.K; MYLLEVILLE B.L, The stability of embankments reinforced
with steel. Can, Geotech J.30, pp 768-180, 1993.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
4. ATERRO SOBRE COLUNAS GRANULARES TRADICIONAIS
O método das colunas granulares consiste em inserir no corpo do
material compressível um material de melhor qualidade que
permita aumentar a resistência do solo e diminuir os recalques,
portanto, representam uma técnica de melhoramento da massa de
solo (Figura 1).
As colunas granulares representam um material com um mínimo de
propriedades coesivas. As colunas granulares são construídas com
material que possui uma rigidez entre 5 a 10 vezes a rigidez do
solo ao redor delas.
Estas colunas são de forma cilíndrica e são instaladas,
analogamente ao caso de drenos verticais segundo um padrão
definido por uma malha retangular ou triangular.
Em termos das metodologias de construção, o procedimento
consiste em criar uma cavidade para a inserção do material
granular, a medida que a cavidade é preenchida, são empregados
mecanismos vibratórios que permitem densificar os materiais
granulares. Dependendo da técnica de instalação as o grau de
alteração das propriedades é variável.
Figura 1. Técnica de execução de colunas granulares
4.1 Princípios de projeto e análise
Definir o diâmetro das colunas e o espaçamento, para este fim,
foram empregadas recomendações da literatura (Almeida e Marques,
2010, pág. 173), definindo assim:
Espaçamento, l = 2,0 m; Diâmetro, d = 0,8 m
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Calcular o diâmetro equivalente, que depende da
distribuição das colunas em malha retangular ou quadrada,
para o presente trabalho foi adotada uma malha triangular
𝑑 𝑒 = 1,05 ∗ 𝑙 = 1,05 ∗ 2 = 2,10 𝑚
 Área da coluna granular
𝐴 𝑐 =
𝜋 ∗ 𝑑2
4
=
𝜋 ∗ 0,82
4
= 0,5 𝑚2
 Área total da célula:
𝐴 =
𝜋 ∗ 𝑑 𝑒
2
4
=
𝜋 ∗ 2,12
4
= 3,46 𝑚2
 Área total de solo mole
𝐴 𝑠 = 𝐴 − 𝐴 𝑐 = 3,46 − 0,5 = 2,96 𝑚2
 Razão de substituição
𝑎 𝑐 =
𝐴 𝑐
𝐴
=
0,5
3,46
= 0,15
 Razão de existencia de solo mole
𝑎 𝑠 =
𝐴 𝑠
𝐴
=
2,96
3,46
= 0,85
 Definição do fator de concentração de tensões
Segundo a recomendação de Han (2010), é adotada no presente
trabalho uma relação entre os módulos da coluna e da argila mole
Ec/Es=20, portanto empregando a equação de Han (2010), tem-se
que:
𝑛 =
∆𝜎𝑣𝑐
∆𝜎𝑣𝑠
= 1 + 0,217 (
𝐸𝑐
𝐸𝑠
− 1) = 1 + 0,217(20 − 1) ≅ 5
Na Figura 2, se observa como é esta distribuição de tensões na
coluna e no solo.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 2. Fator de concentração de tensões
 Acréscimo de tensão vertical média
Fazendo equilíbrio de forças na célula unitária da Figura 2,
o incremento de tensão vertical na coluna e no solo é
calculado como:
∆σvs =
∆𝜎
[1 + (𝑛 − 1)𝑎 𝑐]
=
17,5 ∗ 3
[1 + (5 − 1) ∗ 0,15]
= 32,81 𝐾𝑃𝑎
∆σvc =
𝑛 ∗ ∆𝜎
[1 + (𝑛 − 1)𝑎 𝑐]
=
5 ∗ 17,5 ∗ 3
[1 + (5 − 1) ∗ 0,15]
= 164,06 𝐾𝑃𝑎
Onde,
∆𝜎 = acréscimo de tensão vertical média igual ao peso
específico do aterro vezes a altura do aterro. Desta maneira
no cálculo do fator de redução de recalques, deve ser
empregado o recalque calculado por submersão.
 Fator de redução de recalques
O fator de redução de recalques está definido como:
𝛽 =
∆ℎ
∆ℎ 𝑠
Δσvc
ΔσvsΔσvs
Δσ
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Onde,
∆ℎ= recalque do solo nao melhorado
∆ℎ 𝑠= recalque do solo tratado
A questão esta em calcular o fator β, a primeira abordagem é
conhecida como homogeneização que descreve um sistema
perfeitamente elástico onde as tensões que recebe o solo e a
coluna granular estão em proporção direta com suas rigidezes
(Figura 3).
Figura 3. Cálculo do fator β
A equação de cálculo empregando esta abordagem é:
𝛽 = 1 + (𝑛 − 1)𝑎 𝑐 = 1 + (5 − 1) ∗ 0,15 = 1,6
O método de Priebe (1995) é outra abordagem do problema que
considera a coluna granular incompressível com comportamento
plástico e o solo apresentando comportamento elástico. Outra
hipótese de este método é que os recalques do solo e da coluna
são iguais.
A seguinte equação que resume as hipóteses do método de Priebe
(1995) é a seguinte:
𝛽 = 1 + 𝑎 𝑐 [
(5 − 𝑎 𝑐)
[4𝐾𝑎𝑐(1 − 𝑎 𝑐)]
− 1] = 1 + 0,15 [
(5 − 0,15)
[4 ∗ 0,22(1 − 0,15)]
− 1] = 1,8
Onde,
𝐾𝑎𝑐 = 𝑡𝑎𝑛2
(45 −
∅ 𝑐
2
) = 𝑡𝑎𝑛2
(45 −
40
2
) = 0,22
Assumindo um ângulo de atrito de o solo granular de 40 graus,
segundo as recomendações da literatura (Almeida e Marques, 2010,
pág. 173).
Δσ Δσ
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Por tanto, conhecido o recalque sem colunas do capítulo 16
do
presente trabalho, é possível estimar o recalque com colunas:
∆ℎ 𝑐 =
∆ℎ
1,8
=
1,19
1,8
= 0,66
4.2 Análises de estabilidade
Neste caso é necessário calcular os parâmetros do solo misturado
com o material granular (cm, φm, γm), que são calculados em
função dos parâmetros de resistência da argila mole (cs=Su, φs=0)
e da coluna granular (φc) e do parâmetro m, que é a parcela de
carga suportada pela coluna.
A brita utilizada nas análises do presente trabalho, possui as
seguintes propriedades:
Ângulo de atrito φc =40°.
Peso específico γ =18,0 KN/m3
Coesão c=0,0 KPa
Os valores ponderados pelo método de Priebe (1978, 1975), são
calculados da seguinte maneira:
𝑡𝑎𝑛∅ 𝑚 = 𝑚𝑡𝑎𝑛∅ 𝑐 + (1 − 𝑚)𝑡𝑎𝑛∅ 𝑠 = 0,47 tan(40) + (1 − 0,47) tan(0) = 0,39
∅ 𝑚 = 21,3°
𝑐 𝑚 = (1 − 𝑚)𝑐 𝑠 = (1 − 0,47) ∗ 9,01 = 4,78 𝐾𝑃𝑎 Cs média – Capitulo 3.1
𝛾 𝑚 = 𝛾𝑐 𝑎 𝑐 + 𝛾𝑠(1 − 𝑎 𝑐) = 18 ∗ 0,15 + 13,5(1 − 0,15) = 14,18
𝐾𝑁
𝑚3
Onde,
𝑚 =
𝑎 𝑐 𝑛
[1 + (𝑛 − 1)𝑎 𝑐]
=
0,15 ∗ 5
[1 + (5 − 1)0,15]
= 0,47
Para as diferentes profundidades a resistência do solo, e a
análise de estabilidade empregando o valor de m, o ângulo de
atrito calculado, a coesão ponderada e uma altura do aterro
Haterro = 3,0 m, se apresentam na Tabela 1.
6
Calculado assumindo submersão do aterro, um cálculo empregando cota fixa
implicaria que a altura do aterro é variável e, portanto o acréscimo de
tensão vertical média também seria variável no tempo.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
z arg
(m)
Su
f(z)
(Kpa)
m Cm Фm γm
Earg KN/m
(ativo)
Earg KN/m
(passivo)
S
(KN/m)
T
(KN/m)
F.S
0,5 4,19 0,47 1,97 21,30 14,18 11,74 12,82 37,71 0 1,33
1,0 4,70 0,47 2,21 21,30 14,18 24,81 35,43 42,30 0 1,52
1,5 5,21 0,47 2,45 21,30 14,18 39,21 67,82 46,89 0 1,75
2,0 5,72 0,47 2,69 21,30 14,18 54,94 110,00 51,48 0 1,99
2,5 6,23 0,47 2,93 21,30 14,18 72,00 161,97 56,07 0 2,22
3,0 6,74 0,47 3,17 21,30 14,18 90,38 223,73 60,66 0 2,44
3,5 7,25 0,47 3,41 21,30 14,18 110,09 295,27 65,25 0 2,64
4,0 7,76 0,47 3,65 21,30 14,18 131,13 376,60 69,84 0 2,84
4,5 8,27 0,47 3,89 21,30 14,18 153,50 467,72 74,43 0 3,02
5,0 8,78 0,47 4,13 21,30 14,18 177,20 568,63 79,02 0 3,18
5,5 9,29 0,47 4,37 21,30 14,18 202,22 679,32 83,61 0 3,34
6,0 9,80 0,47 4,61 21,30 14,18 228,58 799,80 88,20 0 3,48
6,5 10,31 0,47 4,85 21,30 14,18 256,26 930,06 92,79 0 3,62
7,0 10,82 0,47 5,09 21,30 14,18 285,27 1070,11 97,38 0 3,75
7,5 11,33 0,47 5,32 21,30 14,18 315,60 1219,95 101,97 0 3,87
8,0 11,84 0,47 5,56 21,30 14,18 347,27 1379,58 106,56 0 3,98
8,5 12,35 0,47 5,80 21,30 14,18 380,26 1549,00 111,15 0 4,08
9,0 12,86 0,47 6,04 21,30 14,18 414,58 1728,20 115,74 0 4,18
9,5 13,37 0,47 6,28 21,30 14,18 450,23 1917,19 120,33 0 4,28
10,0 13,88 0,47 6,52 21,30 14,18 487,21 2115,96 124,92 0 4,36
Tabela 1. Análise de estabilidade pelo método dos blocos empregando
parâmetros ponderados pelo método de Priebe (1878, 1995).
Na Figura 4, se apresenta a análise de estabilidade para o
aterro com uma altura Haterro = 3,0 m definindo a região das
colunas como um novo material com propriedades definidas pelos
parâmetros ponderados Figura 4, assumindo uma coesão equivalente
ao valor médio dos Cm da Tabela 1.
Figura 4. Parametros do material composto. SLIDE
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 5. Análise de estabilidade pelo método de Janbu
Na análise de estabilidade da Figura 5, foi assumindo um aterro
com resistência nula a fim de adotar um enfoque conservativo.
Dos resultados se observa que as colunas de brita melhoraram as
condições de resistência do solo de fundação.
Na Tabela 2, se apresenta um resumo dos resultados das análises.
Altura do aterro = 3 m
Método F.S min
Blocos 1.33
Janbu 1.42
4,3 Velocidade de recalques
Considerando a coluna granular como um dreno e empregando a
equação geral de cálculo do grau de adensamento no tempo e
adotando os parâmetros de entrada apresentados a seguir, foi
possível obter a curva apresentada na Figura 6 do recalque em
função do tempo a fim de observar o efeito que tem as colunas
granulares.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Parâmetros de entrada:
de=2,10 m
dw=0,8 m (diâmetro do dreno)
ds=1,6dw (área afetada pelo amolgamento)
Espaçamento=2,0 m.
𝑈ℎ = 1 − 𝑒
−[
8𝑇ℎ
𝐹(𝑛)+𝐹𝑠
⁄ ]
= 1 − 𝑒
−
[
8𝑇ℎ
(ln(𝑛)−0,75)+((
𝑘ℎ
𝑘´ℎ
−1)ln(
𝑑 𝑠
𝑑 𝑤
))
]
Onde,
Kh= permeabilidade horizontal.
K’h= permeabilidade horizontal da área afetada pelo
amolgamento.
Foram adotadas uma relação Kh/K’h=2,5 e uma relação ds/dm=1,6,
segundo as recomendações apresentadas na Tabela 4,1 do livro
“Aterros sobre solos moles projeto e desempenho” (2010).
Figura 5. Análise comparativa dos recalques sem drenos, com colunas
granulares espaçadas cada 2 m e drenos espaçados cada 1,5 m.
Dos resultados apresentados na Figura 6, se observa que as colunas
granulares representam uma solução que além de fornecer uma maior
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
resistência ao solo, permite acelerar os recalques por
adensamento.
REFERÊNCIAS BIBLIOGRÁFICAS
ALMEIDA, M.S.S; MARQUES, M.E.S. Aterros sobre solos moles –
Projeto e desempenho. Oficina de Textos, 2010.
PASHOALIN, J.A; VANZOLINI G; KENHITI D. Análise de estabilidade de
um aterro apoiado sobre estacas de brita executadas em solo mole.
BUSCHMEIER B; MASSE FREDERIC. Discusión sobre las diferencias de
la metodologia de diseno entre las inclusiones granulares y las
inclusiones rígidas. XXVI Reunión de Mecánica de Suelos e
Ingeniería Geotécnica, 2012.
5. ATERRO ESTRUTURADO COM PLATAFORMA DE GEOSSINTÉTICO
Na atualidade existe uma grande tendência para a utilização de
aterros estaqueados como técnica para transferir a carga às
camadas de solo mais resistente, porque esta técnica apresenta
grande adaptabilidade a terrenos difíceis, obras de espaço
reduzido e menores tempos de execução.
Em regiões de solo mole com pouca espessura, é possível adotar
soluções como a remoção e substituição por um material com
melhores propriedades. Em outras condições é possível empregar
bermas, drenos e reforço. Mas em situações nas quais as áreas de
empréstimos estão a grandes distâncias ou existem restrições de
espaço para a utilização de bermas ou o cronograma exige a
construção do aterro em tempos reduzidos, uma solução viável seria
a utilização de aterros estaqueados (Figura 1).
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 1. Aterro Estruturado x Aterro sobre drenos e reforço
(Almeida e Marques, 2004).
Nos aterros estruturados, as estacas suportam o peso do aterro e
transmitem a carga para uma camada mais resistente. As estacas são
menos deformáveis do que o solo, portanto, ocorrem recalques
diferenciais dentro do corpo do aterro e este movimento da origem
ao arqueamento que aumenta a carga nas estacas e alivia a tensão
atuante no solo mole. Os capitéis permitem aumentar a área de
influência das estacas e a incorporação de reforço de
geossintético permite o uso de estacas mais espaçadas e a
transmissão das cargas para as estacas que não foram transmitidas
pelo arqueamento (Figura 2).
Figura 2. Deformações num aterro estruturado sobre solo mole
(Hartmann, 2012).
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
5.1 Dimensionamento do aterro estruturado
Para o presente trabalho, foi definida a geometria do problema da
seguinte maneira (Figura 3):
Espaçamento, s= 2,5 m
Largura de capitel, b= 1,0 m
Altura de aterro, hat= 3,0 m
Figura 3. Capiteis quadrados em malha quadrada
(Almeida e Marques, 2010).
Verificando os critérios mencionados no livro Aterro sobre solos
moles, projeto e desempenho, pag.166(Almeida e Marques, 2010),
tem-se que:
(s-b)= (2,5-1,0) =1,5 m →(s-b)≤3,0 m
b/s=1,0/2,5=0,4 → b/s≥0,15
(s-b)= (2,5-1,0) =1,5 m → (s-b)≤1,4hat
(s-b)*= (1,5²+1,5²)0,5=2,12 m → (s-b)* ≤ hat
Para hat≥0,66(s-b)*, Φat=30°
A altura crítica do aterro, acima da qual os recalques
diferenciais são nulos, foi calculada com a seguinte expressão
(McGuire ET al. 2012):
hc> 1,15s* + 1,44b
Onde,
s*=(s-b)*/2 = 2,12/2 = 1,06 m
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Substituindo os valores:
1,15(1,06)+1,44(1)= 2,66 m ok
Esta altura crítica é menor do que a altura do aterro (hat=3,0m),
portanto, o aterro não apresentaria recalques diferenciais.
5.2 Tensões verticais atuantes no solo
A fim de avaliar as tensões atuantes no solo mole e assim definir
os esforços de tração no reforço, foram empregadas diferentes
metodologias de cálculo.
 Terzaghi, (1943)
A equação geral, baseada no efeito do arqueamento nos solos é a
seguinte:
Onde,
Cat = coesão do aterro (KN/m²)
Φat= ângulo de atrito interno do aterro
Kaat= coeficiente de empuxo ativo no aterro
S-b=distância entre capitéis (m)
γat= peso específico do material de aterro (KN/m³)
q= sobrecarga uniforme na superfície por unidade de área (KN/m²),
no presente trabalho equivale a zero.
hat= altura do aterro
Substituindo os valores na equação, para q=o KN/m² e c=o KN/m²,
tem-se que:
𝜎𝑣 =
(2,5 − 1,0) ∗ 17,5
𝑡𝑎𝑛2 (45 −
30
2 ) tan(30)
(1 − 𝑒
−𝑡𝑎𝑛2(45−
30
2
) tan(30)∗
3
2,5−1,0) = 43,57 𝐾𝑃𝑎
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Russell e Pierpoint, (1997)
Este método não considera a reação do solo mole subjacente ao
geossintético, que é uma hipótese adequada no caso de argilas
muito moles. A equação para o cálculo da tensão atuante na base do
aterro é a seguinte:
𝜎𝑣
(𝛾 𝑎𝑡ℎ 𝑎𝑡 + 𝑞)
=
𝑠2
− 𝑏2
4ℎ 𝑎𝑡 ∗ 𝑏 ∗ 𝐾𝑎𝑎𝑡 ∗ 𝑡𝑔∅ 𝑎𝑡
{1 − 𝑒
−4ℎ 𝑎𝑡∗𝑏∗𝐾 𝑎𝑎𝑡∗𝑡𝑔∅ 𝑎𝑡
𝑠2−𝑏2
}
As variáveis desta equação já foram definidas anteriormente,
substituindo, tem-se que:
𝜎𝑣
(17,5 ∗ 3,0 + 0)
=
2,5² − 1,02
4 ∗ 3 ∗ 1 ∗ 𝑡𝑎𝑛2 (45 −
30
2 ) ∗ 𝑡𝑔(30)
{1 − 𝑒
−4∗3∗1∗𝑡𝑎𝑛2(45−
30
2
)∗𝑡𝑔(30)
2,52−1,02
} = 0,81
→ 𝜎𝑣 = 0,81 ∗ 17,5 ∗ 3 = 42,53 𝐾𝑃𝑎
 Abusharar et al., (2009)
Este método foi proposto para análise de aterros granulares sobre
solos moles, suportados por uma malha retangular de estacas,
considerando a inclusão de geossintético. A equação para o cálculo
da tensão atuante na base do aterro é a seguinte:
𝜎𝑣 =
𝛾𝑠(𝑠 − 𝑎)(𝐾 𝑝 − 1)
2(𝐾 𝑝 − 2)
+ (
𝑠 − 𝑎
𝑠
)
𝐾 𝑝−1
[𝑞 + 𝛾𝑠 𝐻 𝑎𝑡 −
𝛾𝑠 ∗ 𝑠
2
(1 +
1
𝐾 𝑝 − 2
)]
Onde,
Kp = coeficiente de empuxo passivo no aterro
γs = peso específico do solo mole
Substituindo na equação:
𝜎𝑣 =
13,5(2,5 − 1)(𝑡𝑎𝑛2
(45 +
30
2
) − 1)
2(𝑡𝑎𝑛2(45 +
30
2
) − 2)
+ (
2,5 − 1
2,5
)
𝑡𝑎𝑛2(45+
30
2 )−1
[0 + 13,5 ∗ 3 −
13,5 ∗ 2,5
2
(1 +
1
𝑡𝑎𝑛2(45 +
30
2
) − 2
)]
→ 𝜎𝑣 = 32,4 𝐾𝑃𝑎
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Low et al., (1994)
Low et al., (1994) utilizaram para sua análise um arco
semicilíndrico bidimensional com espessura igual à metade da
dimensão do capitel. A equação para o cálculo da tensão atuante na
base do aterro é a seguinte:
𝜎𝑣
𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡
=
(𝐾 𝑝 − 1)(1 − 𝛿)𝑠
2ℎ 𝑎𝑡(𝐾 𝑝 − 2)
+ (1 − 𝛿) 𝐾 𝑝−1
[1 −
𝑠
2ℎ 𝑎𝑡
−
𝑠
2ℎ 𝑎𝑡(𝐾 𝑝 − 2)
]
Onde,
δ=b/s – Relação largura do capitel/espaçamento das estacas
Substituindo na equação:
𝜎𝑣
17,5 ∗ 3
=
(𝑡𝑎𝑛
2
(45 +
30
2
) − 1) (1 −
1
2,5
) 𝑠
2 ∗ 3 ∗ (𝑡𝑎𝑛2
(45 +
30
2
) − 2)
+ (1 −
1
2,5
)𝑡𝑎𝑛
2
(45+
30
2
)−1
[1 −
2,5
2 ∗ 3
−
2,5
2 ∗ 3(𝑡𝑎𝑛2
(45 +
30
2
) − 2)
]
→ 𝜎𝑣 = 29,4 𝐾𝑃𝑎
 Método de Kempfert et al., (2004)
Este método é baseado na teoria da elasticidade, para um ângulo de
atrito do material do aterro Fat=30º, foi empregado o ábaco da
Figura 4 a fim de calcular a tensão atuante na base do aterro.
Figura 4. Cálculo de tensões verticais sobre o reforço
(Adaptado de Kempfert et al., 2004)
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Onde,
Hat/s=3/2,5=1,2
b/s=1/2,5=0,4
𝜎𝑣
𝛾 𝑎𝑡 ∗ 𝐻 𝑎𝑡 + 𝑞
≅ 0,30 → 𝜎𝑣 ≅ 17,5 ∗ 3 ∗ 0,3 ≅ 15,75 𝐾𝑃𝑎
Na tabela 1, se apresenta um resumo dos resultados obtidos.
Metodologia 𝜎𝑣 (KPa)
Terzaghi, (1943) 43,57
Russell e Pierpoint, (1997) 42,53
Abusharar et al., (2009) 32,4
Low et al., (1994) 29,4
Kempfert et al., (2004) 15,75
Das tensões calculadas empregando as diferentes metodologias, foi
escolhida a calculada pelo método de Terzaghi, em vista de que é a
que apresenta um maior valor.
5.3 Cálculo do esforço de tração atuante no reforço
Os métodos que empregados no presente trabalho, serão apresentados
em função do valor de módulo de reforço J do geossintético e será
apresentado um cálculo efetuado em função da deformação específica
(ε), a fim de efetuar uma comparação entre metodologias.
 Método da parábola – BS 8006 (BSI,1995)
Neste método se calcula a tensão no reforço T, admitindo-se que a
deformação do reforço no vão (s-b) tem forma parabólica. O valor
de T é dado pela seguinte equação em função do módulo de reforço
que para o presente trabalho é J=3000 KN/m:
96𝑇3
− 6𝐾𝑔
2
𝑇 − 𝐾𝑔
2
𝐽 = 0
96T³-314039T-157019468=0
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Onde,
𝐾𝑔 =
𝜎𝑣(𝑠2
− 𝑏2
)
𝑏
S =2,5 m; b =1,0 m definidos anteriormente.
𝜎𝑣=43,57 KPa (Calculado pelo método de Terzaghi)
Resolvendo, tem-se que:
T=127,06 KN/m
 Método da membrana tensionada (Collin, 2004)
Conhecendo-se o valor do módulo J, o valor de T é definido pela
seguinte equação:
2√2 ∗ 𝑇 ∗ 𝐽
𝜎𝑣(𝑠 − 𝑏)
𝑠𝑒𝑛−1
[
𝜎𝑣(𝑠 − 𝑏)
2√2 ∗ 𝑇
] − 𝑇 − 𝐽 = 0
129,82*T*sen-1(23,11/T) –T –J =0
Onde,
S =2,5 m; b =1,0 m definidos anteriormente.
𝜎𝑣=43,57 KPa (Calculado pelo método de Terzaghi)
J=3000 KN/m
Resolvendo, tem-se que:
T=65,63 KN/m
 Método de Kempfert et al., (2004)
Este método apresenta um ábaco adimensional que considera a
contribuição favorável da reação do solo abaixo do reforço, mas
isto não é recomendável no caso de argilas muito moles. Portanto,
não considerar esta contribuição, se assume que o módulo de reação
da argila mole no contato aterro-solo (subgrade reaction), seja
zero, ks,k=0.
Sequência de cálculo
1. Com σv= σzo, calcula-se Fk, conforme abaixo:
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Onde,
d = 1,0 m - Largura do capitel
Substituindo,
𝐴𝑙 =
1
2
∗ (1,52) −
12
2
= 2,63 𝑚2
𝐹𝑘 = 2,63 ∗ 43,57 = 114,39 𝐾𝑁
2. Com Fk, Jk= 3000KN/m e a largura do capitel b = 1,0 m
determina-se ε e f/lw no ábaco.
𝐹𝑘/𝑏
𝐽 𝑘
=
114,39/1,0
3000
= 0,038
ks,k=0
Figura 4. Ábaco de cálculo
(Kempfert et al., 2004)
3. Com ε ≈ 5,2 % do ábaco, determina-se então a tração no
reforço:
T=ε*Jk=0,052*3000=156 KN/m
4. Com Lw = distância entre capitéis (s-b) e f/lw ≈ 0,15 (do
ábaco), estima-se o recalque f = deformação vertical da
geogrelha.
𝑓
𝑙 𝑤
= 0,15 → 𝑓 = 0,15 ∗ (2,5 − 1,0) = 0,225 𝑚
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Tabela 2, se apresenta uma lista das deformações máximas do
reforço no caso de aterros estruturados com geossintético a partir
de diversas fontes. Desta lista, se observa que as deformações
estão entre 3% e 6%. O valor obtido pelo método de Kempfert
ε ≈ 5,2 % está dentro da recomendação da BS8006-1:2010.
Tabela 2. Deformações máximas do reforço na base de aterros
estruturados (Lawson C.R)
 Calcular T a partir da deformação
No método da BS8006, se apresentam as seguintes equações que
permitem o cálculo da Tensão no geossintético em função da
deformação vertical da geogrelha:
𝜀 =
8𝑤 𝑚𝑎𝑥
2
3(𝑠 − 𝑏)2
=
8 ∗ 0,225²
3 ∗ (2,5 − 1,0)²
= 6%
Onde,
Wmax= deformação vertical da geogrelha, foi assumida a calculada
pelo método de Kempfert.
𝑇 =
𝑊𝑡(𝑠 − 𝑏)
2𝑏
√1 +
1
6𝜀
=
43,57(2,5 − 1,0)
2 ∗ 1,0
√1 +
1
6 ∗ 0,06
= 67,02 𝐾𝑁/𝑚
Onde,
Wt = carga distribuída por unidade de cumprimento, Wt = σv*b
Da anterior equação, uma diminuição da deformação de por exemplo,
6% para 3%, faz com que a carga no reforço seja aumentada em um
30%, portanto, é importante uma avaliação adequada da deformação
do reforço.
Na Tabela 3, se apresenta um resumo dos resultados obtidos.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Metodologia T (KN/m)
Método da parábola – BS 8006 127,06
Método da membrana tensionada 65,63
Método de Kempfert et al 156,00
T a partir da deformação 67,02
5.4 Análise de estabilidade do aterro
Finalmente, foi efetuada uma análise de estabilidade interna do
aterro, sem considerar a argila mole a fim de determinar a
inclinação do talude. Os resultados e as hipóteses adotadas se
apresentam a seguir, o talude adotado foi de 2,5:1.
Figura 5. Análise de estabilidade do aterro sem considerar a resistência
da argila (impenetrável) – Método de Bishop.
Na figura 5, se observa que as superfícies com menor Fator de
Segurança são aquelas que estão perto da face do talude, o mínimo
F.S calculado pelo método de Bishop, foi de 1,44.
6. CONSIDERAÇÕES FINAIS
No presente trabalho, foram abordadas as metodologias de cálculo
da magnitude dos recalques e sua variação no tempo, num problema
de solos moles, incluindo a estimativa do recalque por compressão
secundária. Foram efetuados cálculos empregando técnicas de
aceleração de recalques (geodrenos e sobrecarga) a fim de conhecer
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
os efeitos destas técnicas no comportamento em termos de recalques
do aterro. Efetivamente uma combinação de sobrecarga com geodrenos
adequadamente dimensionados com base em recomendações provenientes
da experiência e de fontes bibliográficas, faz com que possa ser
atingido o recalque (primário + secundário), no entanto, é
importante levar em consideração os volumes de terraplanagem.
No capítulo 3, foi abordado o problema da estabilidade do aterro
não reforçado e reforçado, incluindo a construção em etapas. A
ruptura global foi avaliada tendo em consideração superfícies
circulares e não circulares. O método dos blocos resulta ser de
fácil uso em vista de que é facilmente implantado em uma planilha
de cálculo e os resultados foram verificados com cálculos
efetuados em um software de análise de estabilidade. Em geral, os
fatores de segurança obtidos pelo método dos blocos resultaram
menores do que os calculados assumindo superfícies circulares.
No capítulo 4, foi a abordada a alternativa de colunas granulares
tradicionais definindo a geometria e distribuição destes elementos
empregando as recomendações da literatura. Dois aspectos
importantes desta alternativa nos resultados dos cálculos
efetuados foram: o ganho de resistência do solo quando se adotaram
parâmetros de material composto e os efeitos da aceleração dos
recalques no tempo que podem ser comparados ao efeito dos drenos.
Finalmente, no capítulo 5, se apresentaram os cálculos de um
aterro estruturado com capiteis e plataforma de geossintético,
empregando diferentes metodologias de cálculo da tensão na base do
aterro e diferentes metodologias no cálculo do esforço de tração
atuante no reforço. Alguns autores apresentam o valor de este
esforço em termos de uma deformação prescrita, mas para obter
valores consistentes é melhor uma abordagem em termos do valor do
módulo do reforço.
REFERÊNCIAS BIBLIOGRÁFICAS
ALMEIDA, M.S.S; MARQUES, M.E.S. Aterros sobre solos moles –
Projeto e desempenho. Oficina de Textos, 2010.
ECHEVARRÍA, S.P. Efeitos de Arqueamento em Aterros sobre solo
Estaqueado. Dissertação de Mestrado. Departamento de Engenharia
Civil e Ambiental. Universidade de Brasilia, 2006.
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
FEI, K; A Simplified Method for Analysis of Geosynthetic
Reinforcement Used in Pile Supported Embankments. Scientific World
Journal, 2014.
HARTMANN, D.A; Modelagem centrífuga de aterros estruturados com
reforço de geossintético. UFRJ/COPPE, 2012.
GHARPURE, A.D; KORULLA, M; JAYAKRISHNAN, P.V; SCOTTO, M;
NAUGHTON, P. Design methods for pile supported basal reinforced
embankments over soft clay. Proceeding of the 4th
Asian Regional
Conference on Geosynthetics. Shanghai-China, 2008.

Mais conteúdo relacionado

Mais procurados

Coleta de amostra deformada
Coleta de amostra deformadaColeta de amostra deformada
Coleta de amostra deformada
Mohara Nascimento
 
Relatório permeabilidade 2017-1
Relatório   permeabilidade 2017-1Relatório   permeabilidade 2017-1
Relatório permeabilidade 2017-1
Tiago Teles
 
Mod. 5 bases e sub-bases
Mod. 5   bases e sub-basesMod. 5   bases e sub-bases
Mod. 5 bases e sub-bases
Dalton Lara Stella
 
11 propriedades químicas do solo
11 propriedades químicas do solo11 propriedades químicas do solo
11 propriedades químicas do solo
Romulo Vinicius Tio Rominho
 
Agregados
AgregadosAgregados
Agregados
David Grubba
 
Propriedades das particulas sólidas
Propriedades das particulas sólidasPropriedades das particulas sólidas
Propriedades das particulas sólidas
engenhar
 
Manual de Geotecnia - Taludes de Rodovias - DER
Manual de Geotecnia - Taludes de Rodovias - DERManual de Geotecnia - Taludes de Rodovias - DER
Manual de Geotecnia - Taludes de Rodovias - DER
Marlon Drygalla
 
agregados
agregados agregados
agregados
Paulo Cabral
 
Compressibilidade e adensamento
Compressibilidade e adensamentoCompressibilidade e adensamento
Compressibilidade e adensamento
Bráulio Naya
 
Mecanica do solo. slide
Mecanica do solo. slideMecanica do solo. slide
Mecanica do solo. slide
engenhar
 
Ensaio de granulometria
Ensaio de granulometriaEnsaio de granulometria
Ensaio de granulometria
Ezequiel Borges
 
02 compactação dos solos
02 compactação dos solos02 compactação dos solos
02 compactação dos solos
thiagolf7
 
Relatório
RelatórioRelatório
Relatório
henriq23
 
Nbr 13441 rochas e solos
Nbr 13441   rochas e solosNbr 13441   rochas e solos
Nbr 13441 rochas e solos
Universidade Federal da Bahia
 
Puc geoi 02_cap1_origem e formação dos solos
Puc geoi 02_cap1_origem e formação dos solosPuc geoi 02_cap1_origem e formação dos solos
Puc geoi 02_cap1_origem e formação dos solos
Djair Felix
 
Aula 2 1-muros-de_arrimo
Aula 2 1-muros-de_arrimoAula 2 1-muros-de_arrimo
Aula 2 1-muros-de_arrimo
Guilherme Berlato
 
Fainor sapatas - estacas - tubulões
Fainor   sapatas - estacas - tubulõesFainor   sapatas - estacas - tubulões
Fainor sapatas - estacas - tubulões
Ramon Dutra Lobo Lobo
 
Classificac3a7c3a3o dos-solos-aashto-sucs
Classificac3a7c3a3o dos-solos-aashto-sucsClassificac3a7c3a3o dos-solos-aashto-sucs
Classificac3a7c3a3o dos-solos-aashto-sucs
Alexandre Soares
 
Permeabilidade do solo
Permeabilidade do soloPermeabilidade do solo
Permeabilidade do solo
MARCELO DOS OLIVEIRA
 
10 tensoes no-solo
10  tensoes no-solo10  tensoes no-solo
10 tensoes no-solo
Carla Barbosa
 

Mais procurados (20)

Coleta de amostra deformada
Coleta de amostra deformadaColeta de amostra deformada
Coleta de amostra deformada
 
Relatório permeabilidade 2017-1
Relatório   permeabilidade 2017-1Relatório   permeabilidade 2017-1
Relatório permeabilidade 2017-1
 
Mod. 5 bases e sub-bases
Mod. 5   bases e sub-basesMod. 5   bases e sub-bases
Mod. 5 bases e sub-bases
 
11 propriedades químicas do solo
11 propriedades químicas do solo11 propriedades químicas do solo
11 propriedades químicas do solo
 
Agregados
AgregadosAgregados
Agregados
 
Propriedades das particulas sólidas
Propriedades das particulas sólidasPropriedades das particulas sólidas
Propriedades das particulas sólidas
 
Manual de Geotecnia - Taludes de Rodovias - DER
Manual de Geotecnia - Taludes de Rodovias - DERManual de Geotecnia - Taludes de Rodovias - DER
Manual de Geotecnia - Taludes de Rodovias - DER
 
agregados
agregados agregados
agregados
 
Compressibilidade e adensamento
Compressibilidade e adensamentoCompressibilidade e adensamento
Compressibilidade e adensamento
 
Mecanica do solo. slide
Mecanica do solo. slideMecanica do solo. slide
Mecanica do solo. slide
 
Ensaio de granulometria
Ensaio de granulometriaEnsaio de granulometria
Ensaio de granulometria
 
02 compactação dos solos
02 compactação dos solos02 compactação dos solos
02 compactação dos solos
 
Relatório
RelatórioRelatório
Relatório
 
Nbr 13441 rochas e solos
Nbr 13441   rochas e solosNbr 13441   rochas e solos
Nbr 13441 rochas e solos
 
Puc geoi 02_cap1_origem e formação dos solos
Puc geoi 02_cap1_origem e formação dos solosPuc geoi 02_cap1_origem e formação dos solos
Puc geoi 02_cap1_origem e formação dos solos
 
Aula 2 1-muros-de_arrimo
Aula 2 1-muros-de_arrimoAula 2 1-muros-de_arrimo
Aula 2 1-muros-de_arrimo
 
Fainor sapatas - estacas - tubulões
Fainor   sapatas - estacas - tubulõesFainor   sapatas - estacas - tubulões
Fainor sapatas - estacas - tubulões
 
Classificac3a7c3a3o dos-solos-aashto-sucs
Classificac3a7c3a3o dos-solos-aashto-sucsClassificac3a7c3a3o dos-solos-aashto-sucs
Classificac3a7c3a3o dos-solos-aashto-sucs
 
Permeabilidade do solo
Permeabilidade do soloPermeabilidade do solo
Permeabilidade do solo
 
10 tensoes no-solo
10  tensoes no-solo10  tensoes no-solo
10 tensoes no-solo
 

Semelhante a Aterros sobre solo moles

Detetor Geiger-Müller
Detetor Geiger-MüllerDetetor Geiger-Müller
Detetor Geiger-Müller
Luís Rita
 
Molas coxins - Cálculos
Molas coxins - CálculosMolas coxins - Cálculos
Molas coxins - Cálculos
Borrachas
 
Diana kaue artigo4
Diana kaue artigo4Diana kaue artigo4
Diana kaue artigo4
Rodrigo Rocha de Lima
 
Lista ex resolvidos obras de terra
Lista ex resolvidos obras de terraLista ex resolvidos obras de terra
Lista ex resolvidos obras de terra
Sergio Silva
 
CIT04-0128
CIT04-0128CIT04-0128
Unicamp2007 2fase 3dia_parte_001
Unicamp2007 2fase 3dia_parte_001Unicamp2007 2fase 3dia_parte_001
Unicamp2007 2fase 3dia_parte_001
Thommas Kevin
 
Manual No.37 - Aterro – Assentamentos ao longo do tempo (consolidação)
Manual No.37 - Aterro – Assentamentos ao longo do tempo (consolidação)Manual No.37 - Aterro – Assentamentos ao longo do tempo (consolidação)
Manual No.37 - Aterro – Assentamentos ao longo do tempo (consolidação)
GEO5 Software - PT
 
9972 8
9972 89972 8
Dimensionamento de sistemas de gas
Dimensionamento de sistemas de gasDimensionamento de sistemas de gas
Dimensionamento de sistemas de gas
carlos
 
6 a distribuicao de ar_exemplos
6 a distribuicao de ar_exemplos6 a distribuicao de ar_exemplos
6 a distribuicao de ar_exemplos
jose costa
 
Blocos vazados modulares de concreto inovados com a adição de cinza do bagaço...
Blocos vazados modulares de concreto inovados com a adição de cinza do bagaço...Blocos vazados modulares de concreto inovados com a adição de cinza do bagaço...
Blocos vazados modulares de concreto inovados com a adição de cinza do bagaço...
Felipe Lima da Costa
 
Introdução evaristo
Introdução evaristoIntrodução evaristo
Introdução evaristo
Dennis Bek
 
Projeto de Drenagem Urbana utilizando Poços de Infiltração
Projeto de Drenagem Urbana utilizando Poços de InfiltraçãoProjeto de Drenagem Urbana utilizando Poços de Infiltração
Projeto de Drenagem Urbana utilizando Poços de Infiltração
Felipe Harano
 
Elemento terraplenagem
Elemento terraplenagemElemento terraplenagem
Elemento terraplenagem
Fabinho Juntá Tuxá
 
Tabelas concretos e_argamassas
Tabelas concretos e_argamassasTabelas concretos e_argamassas
Tabelas concretos e_argamassas
Diego Alves
 
4 capacidade de_suporte_cbr
4 capacidade de_suporte_cbr4 capacidade de_suporte_cbr
4 capacidade de_suporte_cbr
Adilson Leão
 
Relatório
RelatórioRelatório
Relatório
Gabriel Campos
 
Relatório de tração
Relatório de traçãoRelatório de tração
Relatório de tração
Almir Luis
 
Relatório p4 sedimentação
Relatório p4   sedimentaçãoRelatório p4   sedimentação
Relatório p4 sedimentação
Angela Guerra
 
Pre dimensionamento eesc
Pre dimensionamento eescPre dimensionamento eesc
Pre dimensionamento eesc
Allan Pereira
 

Semelhante a Aterros sobre solo moles (20)

Detetor Geiger-Müller
Detetor Geiger-MüllerDetetor Geiger-Müller
Detetor Geiger-Müller
 
Molas coxins - Cálculos
Molas coxins - CálculosMolas coxins - Cálculos
Molas coxins - Cálculos
 
Diana kaue artigo4
Diana kaue artigo4Diana kaue artigo4
Diana kaue artigo4
 
Lista ex resolvidos obras de terra
Lista ex resolvidos obras de terraLista ex resolvidos obras de terra
Lista ex resolvidos obras de terra
 
CIT04-0128
CIT04-0128CIT04-0128
CIT04-0128
 
Unicamp2007 2fase 3dia_parte_001
Unicamp2007 2fase 3dia_parte_001Unicamp2007 2fase 3dia_parte_001
Unicamp2007 2fase 3dia_parte_001
 
Manual No.37 - Aterro – Assentamentos ao longo do tempo (consolidação)
Manual No.37 - Aterro – Assentamentos ao longo do tempo (consolidação)Manual No.37 - Aterro – Assentamentos ao longo do tempo (consolidação)
Manual No.37 - Aterro – Assentamentos ao longo do tempo (consolidação)
 
9972 8
9972 89972 8
9972 8
 
Dimensionamento de sistemas de gas
Dimensionamento de sistemas de gasDimensionamento de sistemas de gas
Dimensionamento de sistemas de gas
 
6 a distribuicao de ar_exemplos
6 a distribuicao de ar_exemplos6 a distribuicao de ar_exemplos
6 a distribuicao de ar_exemplos
 
Blocos vazados modulares de concreto inovados com a adição de cinza do bagaço...
Blocos vazados modulares de concreto inovados com a adição de cinza do bagaço...Blocos vazados modulares de concreto inovados com a adição de cinza do bagaço...
Blocos vazados modulares de concreto inovados com a adição de cinza do bagaço...
 
Introdução evaristo
Introdução evaristoIntrodução evaristo
Introdução evaristo
 
Projeto de Drenagem Urbana utilizando Poços de Infiltração
Projeto de Drenagem Urbana utilizando Poços de InfiltraçãoProjeto de Drenagem Urbana utilizando Poços de Infiltração
Projeto de Drenagem Urbana utilizando Poços de Infiltração
 
Elemento terraplenagem
Elemento terraplenagemElemento terraplenagem
Elemento terraplenagem
 
Tabelas concretos e_argamassas
Tabelas concretos e_argamassasTabelas concretos e_argamassas
Tabelas concretos e_argamassas
 
4 capacidade de_suporte_cbr
4 capacidade de_suporte_cbr4 capacidade de_suporte_cbr
4 capacidade de_suporte_cbr
 
Relatório
RelatórioRelatório
Relatório
 
Relatório de tração
Relatório de traçãoRelatório de tração
Relatório de tração
 
Relatório p4 sedimentação
Relatório p4   sedimentaçãoRelatório p4   sedimentação
Relatório p4 sedimentação
 
Pre dimensionamento eesc
Pre dimensionamento eescPre dimensionamento eesc
Pre dimensionamento eesc
 

Último

AULA LEI DOS SENOS OU COSSENOS - parte final (3) (1).pdf
AULA LEI DOS SENOS OU COSSENOS - parte final (3) (1).pdfAULA LEI DOS SENOS OU COSSENOS - parte final (3) (1).pdf
AULA LEI DOS SENOS OU COSSENOS - parte final (3) (1).pdf
MaxwellBentodeOlivei1
 
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
Consultoria Acadêmica
 
Dimensionamento de eixo. estudo de caso.pdf
Dimensionamento de eixo. estudo de caso.pdfDimensionamento de eixo. estudo de caso.pdf
Dimensionamento de eixo. estudo de caso.pdf
RodrigoQuintilianode1
 
ÁREAS DE ATUAÇÃO DO ENGENHEIRO CIVIL.pdf
ÁREAS DE ATUAÇÃO DO ENGENHEIRO CIVIL.pdfÁREAS DE ATUAÇÃO DO ENGENHEIRO CIVIL.pdf
ÁREAS DE ATUAÇÃO DO ENGENHEIRO CIVIL.pdf
RoemirPeres
 
Aula Vigor de Sementes - Aula Vigor de Sementes
Aula Vigor de Sementes - Aula Vigor de SementesAula Vigor de Sementes - Aula Vigor de Sementes
Aula Vigor de Sementes - Aula Vigor de Sementes
WeltonAgostinhoDias1
 
Segurança nos trabalhos em altura, normas SST
Segurança nos trabalhos em altura, normas SSTSegurança nos trabalhos em altura, normas SST
Segurança nos trabalhos em altura, normas SST
ClaudioArez
 
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL EMPREENDEDORISMO CORPORATIVO UNICES...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL EMPREENDEDORISMO CORPORATIVO UNICES...AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL EMPREENDEDORISMO CORPORATIVO UNICES...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL EMPREENDEDORISMO CORPORATIVO UNICES...
Consultoria Acadêmica
 
AE03 - LOGISTICA EMPRESARIAL UNICESUMAR 52/2024
AE03 - LOGISTICA EMPRESARIAL UNICESUMAR 52/2024AE03 - LOGISTICA EMPRESARIAL UNICESUMAR 52/2024
AE03 - LOGISTICA EMPRESARIAL UNICESUMAR 52/2024
Consultoria Acadêmica
 
Simbologia e Terminologia de Instrumentação da Norma ISA 5.1 - Simbologia_ISA...
Simbologia e Terminologia de Instrumentação da Norma ISA 5.1 - Simbologia_ISA...Simbologia e Terminologia de Instrumentação da Norma ISA 5.1 - Simbologia_ISA...
Simbologia e Terminologia de Instrumentação da Norma ISA 5.1 - Simbologia_ISA...
pereiramarcossantos0
 
Apresentação concreto autodesempenho 123
Apresentação concreto autodesempenho 123Apresentação concreto autodesempenho 123
Apresentação concreto autodesempenho 123
GabrielGarcia356832
 
Elementos de Máquina aplicados na tornearia mecânica.ppt
Elementos de Máquina aplicados na tornearia mecânica.pptElementos de Máquina aplicados na tornearia mecânica.ppt
Elementos de Máquina aplicados na tornearia mecânica.ppt
Wagner Moraes
 

Último (11)

AULA LEI DOS SENOS OU COSSENOS - parte final (3) (1).pdf
AULA LEI DOS SENOS OU COSSENOS - parte final (3) (1).pdfAULA LEI DOS SENOS OU COSSENOS - parte final (3) (1).pdf
AULA LEI DOS SENOS OU COSSENOS - parte final (3) (1).pdf
 
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
 
Dimensionamento de eixo. estudo de caso.pdf
Dimensionamento de eixo. estudo de caso.pdfDimensionamento de eixo. estudo de caso.pdf
Dimensionamento de eixo. estudo de caso.pdf
 
ÁREAS DE ATUAÇÃO DO ENGENHEIRO CIVIL.pdf
ÁREAS DE ATUAÇÃO DO ENGENHEIRO CIVIL.pdfÁREAS DE ATUAÇÃO DO ENGENHEIRO CIVIL.pdf
ÁREAS DE ATUAÇÃO DO ENGENHEIRO CIVIL.pdf
 
Aula Vigor de Sementes - Aula Vigor de Sementes
Aula Vigor de Sementes - Aula Vigor de SementesAula Vigor de Sementes - Aula Vigor de Sementes
Aula Vigor de Sementes - Aula Vigor de Sementes
 
Segurança nos trabalhos em altura, normas SST
Segurança nos trabalhos em altura, normas SSTSegurança nos trabalhos em altura, normas SST
Segurança nos trabalhos em altura, normas SST
 
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL EMPREENDEDORISMO CORPORATIVO UNICES...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL EMPREENDEDORISMO CORPORATIVO UNICES...AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL EMPREENDEDORISMO CORPORATIVO UNICES...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL EMPREENDEDORISMO CORPORATIVO UNICES...
 
AE03 - LOGISTICA EMPRESARIAL UNICESUMAR 52/2024
AE03 - LOGISTICA EMPRESARIAL UNICESUMAR 52/2024AE03 - LOGISTICA EMPRESARIAL UNICESUMAR 52/2024
AE03 - LOGISTICA EMPRESARIAL UNICESUMAR 52/2024
 
Simbologia e Terminologia de Instrumentação da Norma ISA 5.1 - Simbologia_ISA...
Simbologia e Terminologia de Instrumentação da Norma ISA 5.1 - Simbologia_ISA...Simbologia e Terminologia de Instrumentação da Norma ISA 5.1 - Simbologia_ISA...
Simbologia e Terminologia de Instrumentação da Norma ISA 5.1 - Simbologia_ISA...
 
Apresentação concreto autodesempenho 123
Apresentação concreto autodesempenho 123Apresentação concreto autodesempenho 123
Apresentação concreto autodesempenho 123
 
Elementos de Máquina aplicados na tornearia mecânica.ppt
Elementos de Máquina aplicados na tornearia mecânica.pptElementos de Máquina aplicados na tornearia mecânica.ppt
Elementos de Máquina aplicados na tornearia mecânica.ppt
 

Aterros sobre solo moles

  • 1. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Enunciado É necessário realizar o projeto básico para um aterro rodoviário sobre solo mole na costa do Estado do Rio de Janeiro. O depósito de argila mole tem 10m de espessura, nível d´água é coincidente com o nível do terreno (cota +0,0) e peso específico da argila γ = 13,5 kN/m3 . Dispõe-se apenas de ensaios SPT com medidas de umidade w. Observou-se que uma reta com w = 200% na superfície (z = 0,0 m) e w = 150% na profundidade z = 10,0 m ajusta-se bem aos dados obtidos. Sabe-se também que para este depósito pode-se adotar nos cálculos de estabilidade uma variação de resistência não drenada fornecida pela equação Su/σ´vo = 0,3(OCR)0,85. O perfil de OCR estimado pelo banco de dados das argilas do Rio de Janeiro conforme figura abaixo (artigo Soils & Rocks - Almeida e outros 2008) indicou que o limite inferior de OCR pode ser fornecido por:  OCR = 7,5/z para z < 5,0 m  OCR = 1,5 para z > 5,0 m. Conforme este mesmo artigo e figura abaixo, o índice de compressão Cc da argila pode ser estimado por Cc = 0.013w, (w = umidade %). Outros parâmetros representativos de toda a camada são: Cs/Cc = 0,15 e o coeficiente de adensamento vertical médio (normalmente adensado) cv = 4 x 10-8 m2 /s. Sobre a camada de argila definida acima é necessário executar em 24 meses um aterro (γ = 17,5 kN/m3 ) com plataforma de 10 m de largura, de forma que atinja a cota +3,0 m, sem recalques por adensamento primário e secundários remanescentes. Os cálculos de recalques e de estabilidade devem ser realizados independentemente, ainda que na prática sejam realizados em paralelo.
  • 2. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 1. PREVISÃO DE RECALQUES 1.1 Recalques por adensamento primário A magnitude do recalque por adensamento primário foi calculada separando a camada de fundação em 10 subcamadas de 1 m de espessura em vista da possibilidade de obter parâmetros para cada profundidade. Os parâmetros necessários para o cálculo dos recalques são apresentados a seguir: H i z(m) OCR w (%) Cc Cs 1 0,5 15,00 197,5 2,57 0,39 1 1,5 5,00 192,5 2,50 0,38 1 2,5 3,00 187,5 2,44 0,37 1 3,5 2,14 182,5 2,37 0,36 1 4,5 1,67 177,5 2,31 0,35 1 5,5 1,50 172,5 2,24 0,34 1 6,5 1,50 167,5 2,18 0,33 1 7,5 1,50 162,5 2,11 0,32 1 8,5 1,50 157,5 2,05 0,31 1 9,5 1,50 152,5 1,98 0,30 Tabela 1. Parâmetros do solo de fundação do aterro Onde, Hi, espessura da subcamada i Z, profundidade da metade da altura de cada subcamada. OCR, calculado em função da profundidade (enunciado do problema). W(%), porcentagem de umidade que varia em função da profundidade. Cs, Cs, parâmetros calculados em função da umidade (enunciado do problema). O recalque do aterro deve ser estabilizado em uma cota fixa, por tanto, é preciso efetuar um cálculo iterativo para determinar a altura do aterro necessária para atingir aquela cota fixa (+3,0 m).
  • 3. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo A equação para o cálculo do recalque por adensamento primário num solo sobreadensado como é o caso do problema que se está estudando é a seguinte: ∆ℎ = ℎ 𝑎𝑟𝑔 [ 𝐶𝑠 1 + 𝑒 𝑣𝑜 𝑙𝑜𝑔 ( 𝜎′ 𝑣𝑚 𝜎′ 𝑣𝑜 ) + 𝐶𝑐 1 + 𝑒 𝑣𝑜 𝑙𝑜𝑔 ( 𝜎′ 𝑣𝑜 + Δ𝜎𝑣 𝜎′ 𝑣𝑚 )] (1) Onde, Δ𝜎𝑣 = 𝐼(𝛾 𝑎𝑡ℎ 𝑎𝑡) + 𝛾′ Δℎ (2) O acréscimo de carga é calculado em função da geometria do problema, além disso, é preciso obter o fator de influência I da eq. (2) a partir do ábaco de Osterberg (Poulos, Davis, 1974). Figura 1. Fator de influência I para carregamento trapezoidal (Poulos, Davis, 1974). O valor de a, foi definido para um talude 3:1, por tanto os parâmetros para o cálculo do fator de influência em função da profundidade são: Talude 3:1 b1 5 m a 9 m Altura do aterro 3 m Tabela 2. Geometria do aterro 1 Metade do comprimento da plataforma
  • 4. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Os resultados deste procedimento iterativo são os seguintes: Recalque - Cota Fixa (m) H i z(m) σ'vo (KPa) σ'vm (KPa) σ'vf (KPa) Gs eo It 1 It 2 It 3 It 4 It 5 a/z b/z I 2I 1 0,5 1,75 26,25 54,25 2,6 5,14 0,21 0,24 0,25 0,25 0,25 18,00 10,00 0,50 1,00 1 1,5 5,25 26,25 57,75 2,6 5,01 0,19 0,22 0,22 0,23 0,23 6,00 3,33 0,50 1,00 1 2,5 8,75 26,25 61,25 2,6 4,88 0,18 0,21 0,22 0,22 0,22 3,60 2,00 0,49 0,98 1 3,5 12,25 26,25 64,75 2,6 4,75 0,18 0,21 0,21 0,21 0,21 2,57 1,43 0,48 0,96 1 4,5 15,75 26,25 68,25 2,6 4,62 0,18 0,20 0,21 0,21 0,21 2,00 1,11 0,47 0,94 1 5,5 19,25 28,88 71,75 2,6 4,49 0,16 0,19 0,19 0,19 0,19 1,64 0,91 0,46 0,92 1 6,5 22,75 34,13 75,25 2,6 4,36 0,13 0,16 0,17 0,17 0,17 1,38 0,77 0,44 0,88 1 7,5 26,25 39,38 78,75 2,6 4,23 0,11 0,14 0,14 0,14 0,14 1,20 0,67 0,42 0,84 1 8,5 29,75 44,63 82,25 2,6 4,10 0,10 0,12 0,13 0,13 0,13 1,06 0,59 0,41 0,82 1 9,5 33,25 49,88 85,75 2,6 3,97 0,08 0,10 0,11 0,11 0,11 0,95 0,53 0,39 0,78 SOMA 1,51 1,79 1,84 1,85 1,85 m Tabela 3. Recalque por adensamento primário Portanto, o recalque total calculado por adensamento primário foi de 1,85 m. Na Figura 2, se apresentam os resultados gráficos do cálculo iterativo para a camada de argila sobreadensada do problema, mediante o procedimento de cota fixa. Figura 2. Variação do recalque em função das iterações
  • 5. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 1.2 Recalques por compressão secundária Para o cálculo das deformações que ocorrem ao fim do adensamento primário e que não estão atribuídas à dissipação dos excessos de poropressão, são calculadas mediante um procedimento baseado em evidências experimentais de laboratório. Martins (2005) propõe que o recalque máximo por adensamento secundário é aquele correspondente à variação da deformação vertical da condição de fim do primário (OCR=1) para a reta OCR=1,5, para uma tensão efetiva vertical atuante na argila mole. Figura 3. Linha do adensamento secundário Da Figura 3, para 𝐶𝑅 = 𝐶 𝑣 1+𝑒 𝑜 , e uma relação 𝐶 𝑠 𝐶 𝑐 = 0,15, ∆ℎ 𝑠𝑒𝑐 = ℎ 𝑎𝑟𝑔 𝐶𝑅𝑙𝑜𝑔 ( 1,5𝜎′ 𝑣𝑓 𝜎′ 𝑣𝑓 ) − ℎ 𝑎𝑟𝑔(0,15𝐶𝑅)𝑙𝑜𝑔 ( 1,5𝜎′ 𝑣𝑓 𝜎′ 𝑣𝑓 ) (3) ∆ℎ 𝑠𝑒𝑐 ℎ 𝑎𝑟𝑔 = 0,15𝐶𝑅 (4) Na Tabela 4, se apresentam os resultados dos cálculos das deformações por compressão secundária. 1,5 σ’vfσ’vf
  • 6. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo H i (m) z(m) OCR w (%) Cc eo CR Δhsec (m) 1 0,5 15,00 197,5 2,57 5,14 0,46 0,069 1 1,5 5,00 192,5 2,50 5,01 0,45 0,068 1 2,5 3,00 187,5 2,44 4,88 0,44 0,066 1 3,5 2,14 182,5 2,37 4,75 0,43 0,064 1 4,5 1,67 177,5 2,31 4,62 0,42 0,062 1 5,5 1,50 172,5 2,24 4,49 0,40 0,061 1 6,5 1,50 167,5 2,18 4,36 0,39 0,059 1 7,5 1,50 162,5 2,11 4,23 0,38 0,057 1 8,5 1,50 157,5 2,05 4,10 0,37 0,055 1 9,5 1,50 152,5 1,98 3,97 0,36 0,054 SOMA 0,61 m Tabela 4. Recalque por compressão secundária Dos resultados pode se observar que o valor do CR, varia entre 0,36 e 0,46 e o recalque total por compressão secundária foi de 0,61 m. 1.3 Recalque total A estimativa do recalque total foi baseada em dois cálculos: adensamento primário e compressão secundária, na Tabela 5 se apresenta um resumo dos resultados. Adensamento primário (cota fixa) 1,85 m Compressão Secundária (OCR =1,5) 0,61 m Total 2,46 m Tabela 5. Resumo dos resultados da estimativa de recalques 1.4 Variação do recalque por adensamento primário com o tempo Para conhecer a variação do recalque no tempo, é necessário empregar a teoria de Terzaghi. O cálculo do recalque em um tempo t é efetuado multiplicando o recalque por adensamento primário pela porcentagem média de adensamento U, da seguinte maneira: ∆ℎ(𝑡) = 𝑈 ∗ ∆ℎ (5) Onde U é função do fator tempo T, na Tabela 6, são apresentados diferentes valores da função U(T).
  • 7. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Tabela 6. Valores de U(T), Martins (Notas de aula do curso de Adensamento). Conhecido o Fator Tempo, é possível calcular os tempos necessários para atingir as diferentes porcentagens de adensamento, empregando a seguinte expressão que é função do coeficiente de adensamento, Cv: 𝑇𝑣 = 𝐶 𝑣 𝑡 ℎ 𝑑 2 (6) No caso do problema estudado no presente trabalho, foi assumida uma condição de drenagem dupla, portanto, ℎ 𝑑 = ℎ 𝑎𝑟𝑔 2 . O coeficiente de adensamento vertical médio do projeto é Cv=4X10-8 m2 /s. Na Tabela 7, se apresentam os resultados das análises do adensamento em função do tempo. U(%) Tv t(meses) t(anos) Δh(t) 0 0 0 0 0 10 0,008 2 0 0,19 20 0,031 7 1 0,37 30 0,071 17 1 0,56 40 0,126 30 3 0,74 50 0,197 48 4 0,93 60 0,287 69 6 1,11 70 0,405 98 8 1,30 80 0,565 136 11 1,48 90 0,848 204 17 1,67 95 1,129 272 23 1,76 Tabela 7. Variação do grau de adensamento e recalque em função do tempo Dos resultados mostrados na Tabela 7, pode-se observar que para atingir um grau de adensamento de 95%, é preciso aguardar 272 meses ou 23 anos.
  • 8. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Figura 4, se apresenta a variação do recalque em função do tempo para uma análise de cota fixa. Figura 4. Variação dos recalques com o tempo para um aterro de 3,0 m de espessura. Dos resultados das análises do recalque em função do tempo, pode- se concluir que para fins práticos do projeto do aterro (tempo de execução de 24 meses) é necessário empregar técnicas que permitam acelerar os recalques (drenos verticais, sobrecarga, etc.). 2. Soluções para aceleração dos recalques 2.1 Sobrecarga temporária A sobrecarga temporária tem como objetivo a aceleração dos recalques por adensamento primário e a compensação dos recalques por compressão secundária. Uma parcela desta sobrecarga vai ser permanente em vista de que vai fazer parte da configuração do aterro uma vez recalcado e outra parte dela vai ser removida a fim de atingir a cota do projeto. A primeira análise efetuada no presente trabalho foi considerando sobrecarga em termos de diferentes espessuras de aterro e
  • 9. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo observando quais são os tempos necessários para estabilizar os recalques primários. Na figura 5, se apresenta um resumo dos resultados desta análise na qual foram calculados os recalques para espessuras totais de aterro que atuariam como sobrecarga de 5m, 7m e 8m. Figura 5. Uso de sobrecarga sem drenos verticais Na Tabela 8, se apresenta um resumo comparativo dos tempos necessários para estabilizar o 95 % do recalque por adensamento primário2 e assim observar os efeitos desta solução. Espessura de aterro t para 95%*Δh primário (meses) 3 m 272 5 m 200 7 m 98 8 m 90 Tabela 8. Tempos para atingir o 95 % do recalque por adensamento primário 2 O cálculo dos recalques para as espessuras de 5m, 7m e 8m, foi efetuado mediante a metodologia de submersão e assim manter uma espessura do aterro constante para efetuar desta maneira as comparações.
  • 10. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Dos resultados apresentados pode-se concluir que a sobrecarga tem um efeito importante na aceleração dos recalques, no entanto, sem uma medida adicional (como seria o caso de drenos verticais), a sobrecarga não seria suficiente para atender as condições do projeto. 2.2 Drenos Verticais Os drenos verticais são uma técnica que permite a aceleração dos recalques, baseada no fato de que o caminho de drenagem dentro da massa de solo é diminuído para cerca da metade da distância horizontal entre drenos. A instalação dos drenos vai fazer com que a água tenha uma movimentação predominantemente horizontal. Ao ser coletada pelo dreno, a água é conduzida na vertical até as camadas drenantes das extremidades da camada de solo mole, na Figura 6 se apresenta um esquema deste mecanismo. Figura 5. Percolação da água em drenos verticais 2.2.1 Dimensionamento O primeiro aspecto a considerar é determinar o diâmetro de influência do dreno, que é função da disposição em um sistema de malha quadrada ou triangular de lado l(Figura 6). Para o presente trabalho foi adotada uma disposição triangular em vista de que é mais eficiente em termos de drenagem.
  • 11. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 6. Disposição geométrica dos drenos em arranjo quadrado e triangular No caso de malha triangular o diâmetro de influência esta definido como: 𝑑 𝑒 = 1,05 𝑙 (7) Onde l corresponde ao espaçamento entre os drenos, no caso do presente projeto l=1,75 m e de= 1,84 m. Uma vez definido o diâmetro de influência, se define o diâmetro equivalente do dreno com a seguinte expressão: 𝑑 𝑤 = 2(𝑎 + 𝑏) 𝜋 (8) Onde a e b são dimensões do dreno. No presente trabalho foram adotadas3 a=10 cm e b = 0,5 cm, portanto, dw = 6,68 cm. O passo a seguir é a determinação do grau de adensamento em função do tempo para drenagem radial pura4. Empregando a solução de Barron (1948), o grau de adensamento médio da camada é expresso como: 𝑈ℎ = 1 − 𝑒 −[ 8𝑇ℎ 𝐹(𝑛)⁄ ] (9) Onde, 3 ALMEIDA, M. S. S. Aterros sobre solos moles projeto e desempenho. 2010. P 110. 4 Os cálculos do grau de adensamento considerando somente drenagem radial são conservativos para fins práticos do presente trabalho permitem maior simplicidade nos cálculos.
  • 12. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 𝑇ℎ = 𝑐ℎ . 𝑡 𝑑 𝑒 2 (10) 𝐹(𝑛) ≅ ln(𝑛) − 0,75 (11) 𝑛 = 𝑑 𝑒 𝑑 𝑤 (12) Onde, 𝑑 𝑒= diâmetro de influência de um dreno 𝑑 𝑤= diâmetro do dreno ou diâmetro equivalente de um geodreno com seção retangular. Th= Fator tempo para drenagem horizontal F(n)= função de densidade de drenos. 𝑐ℎ = coeficiente de adensamento horizontal, no presente trabalho foi assumido igual a Cv, portanto, não se considera um comportamento anisotópico. O processo de cravação faz com que seja produzido um efeito de amolgamento da argila (Smear), diminuindo a permeabilidade do solo no seu entorno e, consequentemente, reduza velocidade do adensamento e a eficiência dos geodrenos, além de aumentar o recalque total. No presente trabalho, serão consideradas umas dimensões externas do mandril de 6cmx12cm, segundo recomendação da norma DNER/PRO 381/98- “Projeto de Aterros Sobre Solos Moles Para Obras Viárias” do DNIT. Considerando este efeito, a equação (9), pode ser rescrita como: 𝑈ℎ = 1 − 𝑒 −[ 8𝑇ℎ 𝐹(𝑛)+𝐹𝑠 ⁄ ] = 1 − 𝑒 − [ 8𝑇ℎ (ln(𝑛)−0,75)+(( 𝑘ℎ 𝑘´ℎ −1)ln( 𝑑 𝑠 𝑑 𝑤 )) ] (13) Onde, 𝑑 𝑚 = √ 4 𝜋 𝑤 ∗ 𝑙 (14)
  • 13. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo W, l, dimensões do mandril. 𝑑 𝑠 = 2𝑑 𝑚 Kh= permeabilidade horizontal. K’h= permeabilidade horizontal da área afetada pelo amolgamento. Foram adotadas uma relação Kh/K’h=2,5 e uma relação ds/dm=1,6, segundo as recomendações apresentadas na Tabela 4,1 do livro “Aterros sobre solos moles projeto e desempenho”(2010). Na Figura 7, se apresenta a evolução dos recalques do aterro estudado no presente trabalho sem drenos espaçados cada 1,5 m e com drenos. Figura 7. Evolução dos recalques do um aterro com drenos espaçados cada 1,5 m e sem drenos. Da Figura 7, pode-se observar que os drenos aceleram o grau de adensamento para um tempo de 24 meses, a porcentagem média de adensamento nesse caso é de 88% e sem drenos é de 35%. No entanto, é necessária uma medida adicional para acelerar os recalques ainda mais e assim cumprir o tempo de construção da obra, uma proposta é o emprego de uma combinação do sistema de drenos com sobrecarga.
  • 14. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo O efeito do amolgamento influência nos cálculos do recalque em função do tempo, na Tabela 9, se apresenta uma comparação dos graus de adensamento sem considerar e considerando o efeito do amolgamento. U(%) Tempo Sem amolgamento Com amolgamento 12 meses 81% 66% 24 meses 96% 88% Tabela 9. Influência do amolgamento nos cálculos Estes efeitos têm uma influência importante na determinação do espaçamento dos drenos, a hipótese de não considerar a influência do amolgamento no desempenho do dreno, pode levar a determinar espaçamentos maiores dos drenos. 2.3 Construção em etapas, sobrecarga e drenos verticais No caso de que o a terro não for estável para a construção numa etapa, uma solução é a construção em etapas, de esta maneira o solo vai ganhar resistência no tempo antes da colocação da camada seguinte. O procedimento para o cálculo dos recalques no tempo para o aterro construído em etapas é o seguinte:  Calcular o recalque total para a primeira altura do aterro, neste caso vai se implementar uma medida de sobrecarga, por tanto a altura total do aterro considerando sobrecarga vai ser de 8 m e na primeira etapa a altura é de 4 m. Neste caso é empregado o procedimento de aterro com submersão, haterro= constante e a equação de recalque para solo sobreadensado. ∆ℎ = ℎ 𝑎𝑟𝑔 [ 𝐶𝑠 1 + 𝑒 𝑣𝑜 𝑙𝑜𝑔 ( 𝜎′ 𝑣𝑚 𝜎′ 𝑣𝑜 ) + 𝐶𝑐 1 + 𝑒 𝑣𝑜 𝑙𝑜𝑔 ( 𝜎′ 𝑣𝑜 + Δ𝜎𝑣 𝜎′ 𝑣𝑚 )] (15) Onde, Δ𝜎𝑣 = (𝛾 𝑎𝑡ℎ1) + 𝛾′ 𝑎𝑡Δℎ (16) h1= trecho não submerso do aterro h2=Dh = trecho recalcado e submerso do aterro
  • 15. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Os resultados do procedimento iterativo para o cálculo do recalque por submersão se apresentam na Tabela 10 e na Figura 8. Recalque por Submersão (m) H i (m) z(m) OCR w (%) It 1 It 2 It 3 It 4 It 5 It 6 It 7 1 0,5 15,00 197,5 0,26 0,20 0,21 0,21 0,21 0,21 0,21 1 1,5 5,00 192,5 0,23 0,18 0,19 0,19 0,19 0,19 0,19 1 2,5 3,00 187,5 0,23 0,17 0,19 0,18 0,19 0,19 0,19 1 3,5 2,14 182,5 0,23 0,17 0,19 0,18 0,19 0,19 0,19 1 4,5 1,67 177,5 0,22 0,18 0,19 0,19 0,19 0,19 0,19 1 5,5 1,50 172,5 0,21 0,17 0,18 0,17 0,18 0,17 0,17 1 6,5 1,50 167,5 0,19 0,14 0,16 0,15 0,15 0,15 0,15 1 7,5 1,50 162,5 0,17 0,13 0,14 0,13 0,13 0,13 0,13 1 8,5 1,50 157,5 0,15 0,11 0,12 0,12 0,12 0,12 0,12 1 9,5 1,50 152,5 0,14 0,10 0,11 0,11 0,11 0,11 0,11 SOMA 2,02 1,55 1,67 1,64 1,65 1,64 1,65 Tabela 10. Recalques da primeira etapa do aterro Figura 8. Variação do recalque em função das iterações  Calcular a variação do recalque em função do tempo até o tempo t1, que corresponde ao início da segunda etapa, no caso do presente trabalho, 12 meses. Na Tabela 11, se apresentam os resultados da variação do recalque em função do tempo para a primeira etapa com uma
  • 16. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo altura inicial de 4 m, durante os 12 primeiros meses do projeto. Recalques no tempo Uh(%) Th t(meses) Δh(t) 0,00 0,000 0 0,00 0,09 0,031 1 0,14 0,17 0,061 2 0,28 0,24 0,092 3 0,40 0,31 0,123 4 0,50 0,37 0,154 5 0,60 0,42 0,184 6 0,70 0,47 0,215 7 0,78 0,52 0,246 8 0,85 0,56 0,276 9 0,92 0,60 0,307 10 0,99 0,63 0,338 11 1,04 0,67 0,368 12 1,10 Tabela 11. Recalques da primeira etapa do aterro Dos resultados, se observa que para um tempo de 12 meses, uma medida combinada de sobrecarga e drenos espaçados cada 1,5 m considerando a hipótese do amolgamento que diminui a eficiência do sistema de drenos, foi atingido um grau de adensamento de U1=66%.  Calcular os recalques após o tempo t1, atualizando os valores de cada subcamada, segundo o procedimento a seguir: Calcular as novas espessuras da camada: ℎ 𝑎𝑟𝑔1 = ℎ 𝑎𝑟𝑔 − ∆ℎ1 𝑈1 (17) Onde: U1=U1(t1) t1= 12 meses para o projeto ∆ℎ1= recalque da primeira etapa no período inicial de 12 meses  Calcular as tensões efetivas no tempo t1, assumindo submersão: 𝜎𝑣1 ´ = 𝜎𝑣0 ´ + (ℎ1 − ∆ℎ1 ∗ 𝑈1)𝛾 𝑎𝑡 + ∆ℎ1 ∗ 𝑈1 ∗ 𝛾 𝑎𝑡 ´ (18)
  • 17. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Calcular os recalques após a instalação da segunda camada, tendo em consideração que a argila passa a ser normalmente adensada, atualizando os índices de vazios: ∆ℎ𝑗+1 = ℎ 𝑎𝑟𝑔 ∗ 𝐶𝑐 (1 + 𝑒 𝑣1) ∗ 𝑙𝑜𝑔 ( 𝜎𝑣1 ´ + 𝛾 𝑎𝑡ℎ2 + 𝛾 𝑎𝑡 ´ ∆ℎ𝑗 𝜎𝑣1 ´ ) (19) Onde, ev1= nova relação de vazios correspondente a tensão 𝜎𝑣1 ´ 𝑒 𝑣1 = 𝑒0 − [𝐶𝑠 ∗ (log(𝜎𝑣𝑚 ´ ) − log(𝜎𝑣0 ´ ))] − [𝐶𝑐 ∗ (log(𝜎𝑣1 ´ ) − log(𝜎𝑣𝑚 ´ ))] (20) Na tabela 12 Os resultados dos cálculos seguindo o procedimento mencionado: Recalque por Submersão (m) σ´v1(KPa) σ´vo (KPa) σ´vm (KPa) eo h1 arg (m) e1 It 1 It 2 It 3 It 4 It 5 It 6 59,3 1,75 26,3 5,14 0,86 3,77 0,16 0,17 0,17 0,17 0,17 0,17 62,8 5,25 26,3 5,01 0,87 3,79 0,15 0,16 0,16 0,16 0,16 0,16 66,3 8,75 26,3 4,88 0,88 3,72 0,14 0,15 0,16 0,16 0,16 0,16 69,8 12,25 26,3 4,75 0,88 3,62 0,14 0,15 0,15 0,15 0,15 0,15 73,3 15,75 26,3 4,62 0,88 3,51 0,13 0,14 0,14 0,14 0,14 0,14 76,8 19,25 28,9 4,49 0,88 3,47 0,12 0,14 0,14 0,14 0,14 0,14 80,3 22,75 34,1 4,36 0,90 3,49 0,12 0,13 0,13 0,13 0,13 0,13 83,8 26,25 39,4 4,23 0,91 3,48 0,11 0,12 0,13 0,13 0,13 0,13 87,3 29,75 44,6 4,10 0,92 3,44 0,11 0,12 0,12 0,12 0,12 0,12 90,8 33,25 49,9 3,97 0,93 3,40 0,10 0,11 0,12 0,12 0,12 0,12 SOMA 1,28 1,41 1,42 1,42 1,49 1,49 Tabela 12. Recalques da segunda etapa do aterro Na Figura 9, se apresenta o comportamento dos recalques em função do tempo de construção (24 meses), para um aterro com sobrecarga total de 8 m, dividida em duas etapas de 4 m cada uma e com drenos verticais espaçados cada 1,5 m.
  • 18. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 9. Evolução dos recalques com o tempo Desta maneira a espessura a retirar de aterro adicional aos 24 meses é 8,0m-2,47 m -3,0m=2,53 m. Esta solução, precisa levar em consideração o volume de terraplanagem quando se usa sobrecarga para a compensação do recalque total, portanto, é preciso avaliar outras alternativas e fazer uma comparação final de qual apresenta menores custos de execução.
  • 19. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 3. ESTABILIDADE DO ATERRO NÃO REFORÇADO E REFORÇADO 3.1 Parâmetros de projeto Resistência não drenada da argila A resistência não drenada da argila pode ser definida em termos da razão de sobreadensamento (OCR) e da tensão efetiva vertical: 𝑆 𝑢 𝜎´ 𝑣𝑜 = 0,3 ∗ 𝑂𝐶𝑅0,85 (1) Na Tabela 1, se apresenta a variação da resistência não drenada para diferentes profundidades. H i z(m) OCR s'vo (Kpa) Su (Kpa) 1 0,1 75,0 0,4 4,1 1 0,5 15,0 1,8 5,2 1 1,0 7,5 3,5 5,8 1 1,5 5,0 5,3 6,2 1 2,0 3,8 7,0 6,5 1 2,5 3,0 8,8 6,7 1 3,0 2,5 10,5 6,9 1 3,5 2,1 12,3 7,0 1 4,0 1,9 14,0 7,2 1 4,5 1,7 15,8 7,3 1 5,0 1,5 17,5 7,4 1 5,5 1,5 19,3 8,2 1 6,0 1,5 21,0 8,9 1 6,5 1,5 22,8 9,6 1 7,0 1,5 24,5 10,4 1 7,5 1,5 26,3 11,1 1 8,0 1,5 28,0 11,9 1 8,5 1,5 29,8 12,6 1 9,0 1,5 31,5 13,3 1 9,5 1,5 33,3 14,1 1 10,0 1,5 35,0 14,8 Média 9,0 Tabela 1. Variação da resistência não drenada com a profundidade
  • 20. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Figura 1, se apresenta a variação da resistência não drenada em termos da profundidade, com o valor médio que será empregado no cálculo da altura crítica assumindo Su constante na camada de argila mole e o ajuste linear que será empregado para a obtenção da altura crítica mediante o método dos ábacos desenvolvidos por Pinto (1966) e nos cálculos da estabilidade global do aterro para superfícies não circulares. Figura 1. Variação da resistência não drenada com a profundidade e ajuste linear dos dados calculados. 3.2 Ruptura da fundação: Altura crítica do aterro Entendendo a ruptura da fundação como um problema de capacidade de carga, o aterro participa como um carregamento sem considerar sua resistência. No presente trabalho se empregam três metodologias no cálculo da altura crítica das quais será escolhida a que apresente o menor valor, este resultado será o parâmetro de entrada nos cálculos da estabilidade global do sistema aterro-solo mole.
  • 21. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Equação derivada da expressão clássica de capacidade de carga ℎ 𝑐𝑟 = 𝑁𝑐 ∗ 𝑆 𝑢 𝛾 𝑎𝑡 (2) Onde, Nc – Fator de capacidade de carga, 5,14 para Su constante (Mandel e Saleçon, 1972). Na Figura 2, se apresenta a variação do fator Nc em termos da profundidade e da geometria do aterro, nesta primeira abordagem é assumida uma relação B/D <1,5 (Figura 2b). Figura2. Variação do fator Nc Substituindo os correspondentes valores na equação (2), a altura crítica do aterro é: ℎ 𝑐𝑟 = 5,14 ∗ 9,0 𝐾𝑁/𝑚² 17,5 𝐾𝑁/𝑚³ = 2,65 𝑚 A altura admissível para um fator de segurança de 1,3, admitindo uma condição temporária que implica também construção em etapas é: ℎ 𝑎𝑑𝑚 = ℎ 𝑐𝑟 𝐹. 𝑆 = 2,65 𝑚 1,5 = 2,04 𝑚
  • 22. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Ábaco de Pinto A altura crítica pelo método do ábaco de Pinto para resistência crescente com a profundidade foi obtida para um F.S =1,3 a seguir se apresenta um resumo dos resultados: Tabela 2. Altura admissível Figura3. Ábaco de Pinto  Programa de computador Nesta abordagem, foram efetuadas análises de estabilidade assumindo superfície de ruptura circular e o aterro como uma sobrecarga a fim de observar qual altura é a necessária para atingir um fator de segurança de 1,3 e assim estabelecer uma comparação dos resultados. q = Nco.co Hcrit = Nco.co/gat co 3,68 Kpa c1 1,02 Kpa/m D 10,0 m H 3,0 m m 3,0 m d 9,0 m c1*D/co 2,8 c1*d/co 2,5 Nco 12,0 Hcr 2,5 m Had 1,9 m
  • 23. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Para as análises foi empregado o software SLIDE da Rocscience, os parâmetros de entrada são os seguintes: Figura4. Parâmetros de resistência da argila mole Para uma altura de 1 m, a sobrecarga equivalente do aterro é de 17,5 KN/m. Figura5. Análise de estabilidade para um aterro sem resistência e sobrecarga equivalente a 1 m de altura, método de Bishop. 3,07
  • 24. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Para uma altura de 2 m, a sobrecarga equivalente do aterro é de 35 KN/m. Figura6. Análise de estabilidade para um aterro sem resistência e sobrecarga equivalente a 2 m de altura, método de Bishop. Figura7. Análise de estabilidade para um aterro sem resistência e sobrecarga equivalente a 3 m de altura, método de Bishop. 1,54 1,03
  • 25. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Tabela 3, se apresenta um resumo dos resultados empregando diferentes alturas e metodologias de análise de estabilidade. Altura (m) Sobrecarga equivalente (KN/m) F.S (Spencer) F.S (Bishop) 1,0 17,5 3,07 3,07 2,0 35,0 1,54 1,54 2,2 38,5 1,36 1,36 2,4 41,1 1,31 1,30 3,0 52,5 1,02 1,03 Tabela 3. Análise de estabilidade para um aterro sem resistência Para um F.S de 1,3, hcrit=2,4 m e Su=9,0 KPa, recalculando o fator Nc da equação (2), tem-se que: Nc=5,98 > 5,14 Que permite concluir que a metodologia das superfícies de ruptura circulares tem relação com uma solução de limite superior. Dos resultados das metodologias expostas, pode se observar que o método do ábaco de Pinto fornece um menor valor da altura admissível (hadm=1,9 m) em comparação com a metodologia da equação de capacidade carga e a metodologia das superfícies de ruptura circulares, nas quais foi assumida uma resistência não drenada média e constante ao longo da camada. Na Tabela 4, se apresenta um resumo dos resultados. Metodologia hadm (m) Equação de capacidade de carga 2,0 Ábaco de Pinto 1,9 Software de análise de estabilidade 2,4 Tabela 4. Altura admissível do aterro 3.3 Análise de estabilidade global do aterro sem reforço  Superfícies de ruptura não circulares Nesta análise foi desenvolvida uma planilha eletrônica que permite compreender o mecanismo de ruptura de uma superfície não circular. Este procedimento consiste em calcular o Fator de Segurança para varias superfícies calculando a resistência não drenada para
  • 26. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo diferentes profundidades na base da superfície de ruptura não circular. Na Figura 8, se mostram as forças atuantes na análise pelo método de blocos. Figura 8. Método dos blocos ou cunhas A expressão geral no cálculo do Fator de Segurança pelo método de blocos é a seguinte: 𝐹. 𝑆 = 𝐸 𝑝 + 𝑆 + 𝑇 𝐸 𝑎𝑡 + 𝐸 𝑎𝑟𝑔 (3) Onde, Ep - Empuxo passivo na argila: 𝐸 𝑝 = 1 2 𝛾𝑎𝑟𝑔 ∗ 𝑧2 ∗ 𝐾 𝑝𝑎𝑟𝑔 + 2𝑆 𝑢 ∗ 𝑧 (4) S - Força cisalhante mobilizada na argila mole: 𝑆 = 𝑆 𝑢 ∗ 𝐿 (5) T - Força correspondente ao reforço Eat – Empuxo ativo no aterro arenoso, sem considerar coesão: 𝐸 𝑎𝑡 = 1 2 𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡 2 ∗ 𝐾 𝑎𝑎𝑡 (6)
  • 27. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Earg – Empuxo ativo na camada de argila: 𝐸 𝑎𝑟𝑔 = 1 2 𝛾𝑎𝑟𝑔 ∗ 𝑧 𝑎𝑟𝑔 2 ∗ 𝐾𝑎𝑎𝑟𝑔 − 2𝑆 𝑢 ∗ 𝑧 𝑎𝑟𝑔 ∗ √ 𝐾 𝑎𝑎𝑟𝑔 + 𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡 ∗ 𝑧 𝑎𝑟𝑔 ∗ 𝐾𝑎𝑎𝑟𝑔 (7) Foi efetuada uma análise variando a profundidade cada 0,5 m e a fim de efetuar uma verificação do procedimento “manual”, foram obtidos os fatores de segurança para superfícies de ruptura com geometrias como a apresentada na Figura 8 no software de análise de estabilidade SLIDE. Na Tabela 5, se apresenta o cálculo do empuxo ativo do aterro e na Tabela 6 se apresentam os resultados das análises para cada profundidade estudada e os fatores de segurança obtidos pelo software de análise de estabilidade. γat 17,5 KN/m3 Hat 1,94 m F´at 30 Graus Ka 0,333 Eat 10,99 KN/m γarg 13,5 KN/m3 m 3 Tabela 5. Empuxo ativo do aterro z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S (Blocos) F.S (Spencer) F.S (Morgenstern) 0,5 4,19 14,48 5,88 24,39 0 1,19 1,19 1,15 1,0 4,70 31,32 16,15 27,36 0 1,03 1,07 1,05 1,5 5,21 50,51 30,82 30,33 0 0,99 1,02 0,99 2,0 5,72 72,05 49,88 33,30 0 1,00 1,02 1,00 2,5 6,23 95,95 73,34 36,27 0 1,02 1,03 1,03 3,0 6,74 122,21 101,19 39,24 0 1,05 1,05 1,03 3,5 7,25 150,82 133,43 42,21 0 1,09 - - 4,0 7,76 181,78 170,08 45,18 0 1,12 - - 4,5 8,27 215,10 211,11 48,15 0 1,15 - - 5,0 8,78 250,78 256,55 51,12 0 1,18 - - 5,5 9,29 288,81 306,37 54,09 0 1,20 - - 6,0 9,80 329,20 360,59 57,06 0 1,23 - - 6,5 10,31 371,94 419,21 60,03 0 1,25 - - 7,0 10,82 417,03 482,22 63,00 0 1,27 - - 7,5 11,33 464,48 549,63 65,97 0 1,29 - - 8,0 11,84 514,29 621,43 68,94 0 1,31 - - 8,5 12,35 566,45 697,63 71,91 0 1,33 - - 9,0 12,86 620,96 778,22 74,88 0 1,35 - - 9,5 13,37 677,83 863,21 77,85 0 1,37 - - 10,0 13,88 737,06 952,59 80,81 0 1,38 - - Tabela 6. Fatores de segurança – Superfície de ruptura não circular
  • 28. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo No caso da análise no software SLIDE, foi considerada a resistência variável da argila na profundidade, como apresentado na Figura 9. Figura 9. Parâmetros da argila mole – Superfície não circular Na Figura 10, se apresenta um resumo dos resultados das análises para superfícies não circulares com profundidades entre 0,5 m e 2,5 m. Figura 10. Análise de estabilidade pelo método de Spencer
  • 29. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Foi feita uma verificação da resistência na base das superfícies de ruptura empregada no programa de análise de estabilidade, por exemplo, para uma fatia aleatória cuja base esta a 2,5 m de profundidade (ver Tabela 6), os resultados são os seguintes: Figura 11. Verificação da análise de estabilidade Dos resultados apresentados na Tabela 6, pode-se observar que os três métodos coincidem em termos do menor Fator de Segurança que corresponde à superfície cuja profundidade da base esta a 1,5 m. A vantagem do método em planilha eletrônica é a possibilidade de compreender o processo de cálculo do Fator de Segurança e a facilidade de controlar as variáveis a fim de efetuar possíveis análises de sensibilidade com parâmetros como o ângulo de atrito do aterro, a altura do mesmo e a possibilidade de incluir facilmente uma força T que corresponde ao reforço na base do aterro no contato direto com a argila mole sem aterro de conquista.  Superfícies de ruptura circulares Foi adotada uma abordagem com Su constante na profundidade (média aritmética, Figura 1) e Su variando na profundidade para um aterro com altura igual à hcrit.
  • 30. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Figura 12, se apresenta o F.S obtido pelo método de Spencer para superfície de ruptura circular e Su constante na profundidade. Figura 12. Análise de estabilidade para superfície circular Na Figura 13, se apresenta o F.S obtido pelo método de Spencer para superfície de ruptura circular e Su variável na profundidade. Figura 13. Análise de estabilidade para superfície circular Na Tabela 7, se apresenta um resumo dos resultados obtidos no cálculo do F.S empregando as diferentes metodologias e hipóteses de cálculo. Pode-se observar que dependendo da hipótese de cálculo adotada o F.S apresenta variações, como se observa no caso de adotar um valor médio constante de Su na profundidade no caso de superfície de ruptura circular. Dos resultados das hipóteses restantes se conclui que o aterro precisa de uma medida de reforço que permita garantir a estabilidade durante a construção da 1,41 0,89
  • 31. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo primeira etapa e observar como vai ser o comportamento do mesmo no momento da construção das seguintes etapas, considerando o ganho de resistência após o carregamento da argila mole. haterro = hcrit = 1,94 m Superfície de ruptura Método F.S Hipótese Não circular Planilha- Blocos 0,99 Su variável na profundidade Spencer 1,03 Morgenstern - Price 1,02 Circular Spencer 0,89 Su variável na profundidadeMorgenstern - Price 0,89 Spencer 1,41 Su constante na profundidadeMorgenstern - Price 1,41 Tabela 7. Resumo dos métodos de análise de estabilidade 3.4 Dimensionamento do reforço  Verificação da expulsão do solo mole Na figura 14, se observam as forças atuantes que devem ser consideradas no cálculo do F.S no caso da expulsão do solo mole. Figura 14. Diagrama de forças para verificação de expulsão de solo mole Onde, Pp-Empuxo passivo na argila: 𝑃𝑝 = 1 2 𝛾𝑎𝑟𝑔 ∗ 𝑧2 ∗ 𝐾 𝑝𝑎𝑟𝑔 + 2𝑆 𝑢 ∗ 𝑧 (8) hat L m
  • 32. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Rb - Força cisalhante na base do bloco: 𝑅 𝑏 = 𝑆 𝑢 𝑏𝑎𝑠𝑒 ∗ 𝐿 (9) Rt - Força cisalhante no topo do bloco: 𝑅𝑡 = 𝑆 𝑢 𝑡𝑜𝑝𝑜 ∗ 𝐿 (10) Pa – Empuxo ativo na camada de argila mole: 𝐸 𝑎𝑟𝑔 = 1 2 𝛾𝑎𝑟𝑔 ∗ 𝑧 𝑎𝑟𝑔 2 ∗ 𝐾𝑎𝑎𝑟𝑔 − 2𝑆 𝑢 ∗ 𝑧 𝑎𝑟𝑔 ∗ √ 𝐾𝑎𝑎𝑟𝑔 + 𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡 ∗ 𝑧 𝑎𝑟𝑔 ∗ 𝐾𝑎𝑎𝑟𝑔 (11) O Fator de Segurança nesta análise é calculado como: 𝐹. 𝑆 𝑒𝑥𝑝𝑢𝑙𝑠ã𝑜 = 𝑅 𝑇 + 𝑅 𝑏 + 𝑃𝑝 𝑃𝑎 (12) zarg (m) Su f(z) (Kpa) Pa (KN/m) Pp (KN/m) Rt (KN/m) Rb (KN/m) F.S 0,0 3,7 - 21,4 - Topo da argila 0,5 4,2 14,5 5,9 21,4 24,4 3,57 1,0 4,7 31,3 16,1 21,4 27,4 2,07 1,5 5,2 50,5 30,8 21,4 30,3 1,63 2,0 5,7 72,1 49,9 21,4 33,3 1,45 2,5 6,2 96,0 73,3 21,4 36,3 1,37 3,0 6,7 122,2 101,2 21,4 39,2 1,32 3,5 7,2 150,8 133,4 21,4 42,2 1,31 4,0 7,8 181,8 170,1 21,4 45,2 1,30 4,5 8,3 215,1 211,1 21,4 48,1 1,30 5,0 8,8 250,8 256,5 21,4 51,1 1,31 5,5 9,3 288,8 306,4 21,4 54,1 1,32 6,0 9,8 329,2 360,6 21,4 57,1 1,33 6,5 10,3 371,9 419,2 21,4 60,0 1,35 7,0 10,8 417,0 482,2 21,4 63,0 1,36 7,5 11,3 464,5 549,6 21,4 66,0 1,37 8,0 11,8 514,3 621,4 21,4 68,9 1,38 8,5 12,3 566,4 697,6 21,4 71,9 1,40 9,0 12,9 621,0 778,2 21,4 74,9 1,41 9,5 13,4 677,8 863,2 21,4 77,8 1,42 10,0 13,9 737,1 952,6 21,4 80,8 1,43 Tabela 8. Análise da expulsão do solo mole
  • 33. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Tabela 8, se observa que para a altura crítica previamente calculada (hcrit = 1,94 m) e uma inclinação do talude do aterro m=3, é possível atingir um F.S mínimo de 1,3 que é aceitável para uma condição temporária como é o caso da construção da primeira etapa do aterro. Para diferentes inclinações do talude do aterro (m na Figura 14), foi efetuada uma comparação a fim de analisar a influência deste parâmetro no fator de segurança no caso da expulsão do solo, como se mostra na Figura 15. Figura 14. Influência da inclinação do talude do aterro no F.Sexpulsão  Deformação y esforço permissível no reforço Para o presente trabalho, se considera a resistência não drenada da argila crescente com a profundidade, por tanto, é empregada a metodologia de Hinchberger e Rowe (Geosynthetic reinforced embankments on soft Clay foundations: predicting reinforcement strains at failure, 2003). Na Figura 15, se apresenta a geometria típica que será empregada nesta análise.
  • 34. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 15. Geometria do aterro (Hinchberger e Rowe, 2003). Da Figura 15, Cuo corresponde a resistência não drenada do solo no contato aterro – argila mole e rc é o incremento da resistência na profundidade. Segundo a metodologia proposta, é preciso multiplicar a resistência do solo por um fator de redução equivalente ao Fator de Segurança do projeto e assim obter uns parâmetros reduzidos (Cuo* e rc*). Este fator parcial no presente trabalho será adotado como PF=(1/1,3)=0,77, por tanto, os parâmetros reduzidos serão Cuo*=PF x Cuo e rc*=PF x rc. No presente trabalho Cuo*=0,77 x 3,68 KPa =2,84 KPa;rc*= 0,77 x 1,02 KPa/m=0,79 KPa/m Definida a altura crítica do aterro (hcrit=1,94 m), e rc*= 0,79 KPa/m a deformação permissível do reforço (εa)segundo a Figura 16 é da ordem de 2,9 %. Figura 16. Ábaco para projeto (Hinchberger e Rowe, 2003).
  • 35. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Uma vez definida a altura crítica do aterro e a deformação permissível admitindo resistência variável com a profundidade como se mostra na Figura 15, é necessário definir a altura que pode atingir o aterro perfeitamente reforçado (Perfectly reinforced embankment), como de apresenta no artigo de Rowe e Myllevile (1993). Novamente são adotados parâmetros de resistência reduzidos e se assume que o reforço é suficiente para fazer com que o aterro apresente comportamento de uma fundação rígida. A altura de colapso Hu, é calculada empregando equações de capacidade de suporte para sapatas rígidas adaptadas para a análise da carga e geometria do aterro. Se a altura requerida do projeto é maior do que a altura do aterro perfeitamente reforçado, o reforço por si só não vai oferecer uma adequada estabilidade e é preciso adotar medidas de estabilização adicionais (aterros leves, drenos verticais, construção por etapas, etc). Se a altura do projeto (haterro) é maior do que a altura crítica (hcrit) e menor do que Hu, é necessário escolher o reforço que vai fornecer a força estabilizante. As variáveis definidas no cálculo da altura de um aterro perfeitamente reforçado se apresentam na Figura 17. Figura 17. Variáveis no cálculo da altura do aterro perfeitamente reforçado (Rowe e Myllevile, 1993) O procedimento de cálculo de Hu, é o seguinte: Definir os parâmetros do solo multiplicados por um fator de redução o amplificação. Cuo*=0,77 x 3,68 KPa =2,84 KParc*= 0,77 x 1,02 KPa/m=0,79 KPa/m γat*=17,5KN/m3 *1,2=21KN/m3
  • 36. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Para H=3m e da Figura 17 e n definido como a inclinação da face do aterro, nesta análise n=3. ℎ = (2 + 𝜋)𝐶 𝑢𝑜 ∗ 𝛾 𝑎𝑡 ∗ = (2 + 𝜋)2,84 𝐾𝑃𝑎 20 𝐾𝑁 𝑚3⁄ = 0,7 𝑚 𝑏 = 𝐵 + 2𝑛(𝐻 − ℎ) = 10 + 2 ∗ 3(3 − 0,7) = 23,8 𝑚 𝑛ℎ = 3 ∗ 0,7 = 2,1 𝑚 𝜌𝑐 ∗ 𝑏 𝐶 𝑢𝑜 ∗ = 0,79 ∗ 23,8 2,84 = 6,61 Da Figura 18, d/b=0,23 Figura 18. Efeito da não homogeneidade na profundidade da zona de ruptura sob uma fundação rígida (Rowe e Myllevile, 1993). Portanto, d = 0,23*23,8 = 5,7 m. X=min(d;D)=min(5,7;10)=5,7 m >nh=2,1 m5 𝑞 𝑠 = 𝑛𝛾ℎ2 2𝑋 = 3 ∗ 20 ∗ 0,72 2 ∗ 5,7 = 2,6 𝐾𝑃𝑎 𝑏 𝐷 = 23,8 10 = 2,38 5 No caso de x<nh, pode-se consultar com maior detalhe o artigo de RoweandMylleville, 1993.
  • 37. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Da Figura 19, Nc=12 Figura 19. Fator de capacidade de carga para solo não homogêneo (Rowe e Myllevile, 1993). 𝑞 𝑢 = 𝑁𝑐 𝑐 𝑢𝑜 ∗ + 𝑞 𝑠 = 12 ∗ 2,84 + 2,6 = 36,6 𝐾𝑃𝑎 𝑞 𝑎 = 𝛾[𝐵𝐻 + 𝑛(𝐻2 − ℎ2 )] 𝑏 = 20[10(3) + 3(32 − 0,72 )] 23,8 = 37,27 𝐾𝑃𝑎 𝑞 𝑢 𝑞 𝑎 = 0,98 Em vista de que a relação qu/qa é menor do que 1,0 a altura desejada para projeto não pode ser atingida empregando somente reforço, por tanto, é preciso complementar com outras medidas (aterro em etapas, colunas granulares, aterro leve, geodrenos, etc). A altura crítica que garante uma relação qu/qa=1,0 é Hu=2,5 m. Este valor representa a altura do aterro na primeira etapa. Empregando a metodologia de análise de blocos, foi calculada a força T que permita garantir um F.S de 1,3 para uma altura do aterro de 2,5 m. Na Tabela 9, se apresentam os resultados.
  • 38. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) Tr (KN/m) F.S 0,5 4,19 19,37 5,88 31,42 95 3,52 1,0 4,70 41,10 16,15 35,25 95 2,47 1,5 5,21 65,18 30,82 39,07 95 1,98 2,0 5,72 91,62 49,88 42,90 95 1,71 2,5 6,23 120,41 73,34 46,72 95 1,55 3,0 6,74 151,56 101,19 50,55 95 1,45 3,5 7,25 185,07 133,43 54,37 95 1,39 4,0 7,76 220,92 170,08 58,20 95 1,35 4,5 8,27 259,14 211,11 62,02 95 1,33 5,0 8,78 299,70 256,55 65,85 95 1,31 5,5 9,29 342,63 306,37 69,67 95 1,31 6,0 9,80 387,91 360,59 73,50 95 1,30 6,5 10,31 435,54 419,21 77,32 95 1,30 7,0 10,82 485,53 482,22 81,15 95 1,31 7,5 11,33 537,87 549,63 84,97 95 1,31 8,0 11,84 592,57 621,43 88,80 95 1,32 8,5 12,35 649,62 697,63 92,62 95 1,33 9,0 12,86 709,03 778,22 96,45 95 1,33 9,5 13,37 770,79 863,21 100,27 95 1,34 10,0 13,88 834,91 952,59 104,10 95 1,35 Tabela 9. Força T que garante a estabilidade do aterro com uma altura de 2,5 m Definida a altura do aterro na primeira etapa, é preciso calcular um fator de correção α (Tabela 10), que é função da altura que vai ser atingida na primeira etapa e a altura critica do aterro: ℎ − ℎ 𝑐𝑟𝑖𝑡 𝐻 𝑢 − ℎ 𝑐𝑟𝑖𝑡 = 2,5 − 1,9 2,5 − 1,9 = 1,0 Tabela 10. Fator de correção do reforço (Hinchberger e Rowe, 2003) Por tanto, o módulo de rigidez mínimo do reforço é: 𝐽 𝑚𝑖𝑛 = 𝛼 𝑟 𝑇𝑟 𝜀 𝑎 = 2,0 ∗ 95 0,029 = 6550 𝐾𝑁/𝑚
  • 39. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Para uma deformação admissível do reforço de 5%, tem-se que: 𝐽 𝑚𝑖𝑛 = 𝛼 𝑟 𝑇𝑟 𝜀 𝑎 = 2,0 ∗ 95 0,05 = 3800 𝐾𝑁/𝑚 Dos resultados se observa que a deformação admissível é um parâmetro muito sensível na definição do módulo de rigidez do reforço.  Comprimento do reforço Para a determinação do comprimento de ancoragem (Lanc), admitiu-se Fanc=1,5 e Ci=0,8, já que a geogrelha do projeto possui malha quadrada com abertura entre 20mm e 40mm, o valor de Lanc é: 𝐿 𝑎𝑛𝑐 = 𝐹𝑎𝑛𝑐 ∗ 𝑇 2 ∗ 𝐶𝑖 ∗ (𝑐 𝑎𝑡 + 𝛾 𝑎𝑡 ∗ 𝐻 ∗ 𝑡𝑎𝑛𝜙) = 1,5 ∗ 95 2 ∗ 0,8 ∗ (0 + 17,5 ∗ 2,5 ∗ 𝑡𝑎𝑛30) = 3,5 𝑚 Figura 20. Comprimento do reforço A partir da superficie de ruptura crítica que se apresenta na Figura 20, obtida pelo método de blocos cuja base está a 1,5 m de profundidade, o comprimento total do reforço é: 𝐿 = 3,5 + 8,6 = 12,1 𝑚
  • 40. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 3.5 Ganho de resistência ao longo do tempo O aterro será construído em etapas para aproveitar o ganho de resistência à medida que o aterro é executado. Foi efetuada uma segunda análise em termos de recalques para 3 etapas cada 8 meses, cada uma com altura de 2,5 m. Os resultados destes cálculos se apresentam na Figura 21. Figura 20. Aterro em 3 etapas
  • 41. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo O ganho de resistência será estimado segundo a equação proposta por Leroueil (1985): 𝑆 𝑢 (𝑐𝑎𝑚𝑎𝑑𝑎 𝑖)(𝑡) = 0,25 ∗ (𝜎𝑣(𝑥−1)(𝑐𝑎𝑚𝑎𝑑𝑎 𝑖 ) ´ + 𝑈𝑥(𝑡) ∗ ∆𝜎𝑣𝑥 ´ ) Onde, 𝑆 𝑢 (𝑐𝑎𝑚𝑎𝑑𝑎 𝑖)(𝑡): Resistência não drenada da camada i ao final de um tempo t, devido ao adensamento da etapa x. 𝑈𝑥(𝑡): Porcentagem de dissipação de poropressão que ocorreu em um tempo t da etapa x. 𝜎𝑣(𝑥−1)(𝑐𝑎𝑚𝑎𝑑𝑎 𝑖 ) ´ : Tensão vertical efetiva inicial da camada i antes da construção da etapa x. ∆𝜎𝑣𝑥 ´ : Acréscimo de carga da etapa x. Na Tabela 11 e na Figura 21, se apresentam os valores da resistência não drenada das etapas 2 e 3. z arg (m) Su (Kpa) Etapa 2 Su (Kpa) Etapa 3 0,5 3,88 12,63 1,0 5,56 14,31 1,5 7,25 16,00 2,0 8,94 17,69 2,5 10,63 19,38 3,0 12,31 21,06 3,5 14,00 22,75 4,0 15,69 24,44 4,5 17,38 26,13 5,0 19,06 27,81 5,5 20,75 29,50 6,0 22,44 31,19 6,5 24,13 32,88 7,0 25,81 34,56 7,5 27,50 36,25 8,0 29,19 37,94 8,5 30,88 39,63 9,0 32,56 41,31 9,5 34,25 43,00 10,0 35,94 44,69 Média 19,91 28,66 Tabela 11, Figura 21. Variação de Su na profundidade para as etapas 2 e 3
  • 42. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Assumindo os valores médios da resistência não drenada das etapas 2 e 3, os resultados para superfícies de ruptura circulares sem considerar a força fornecida pelo reforço são apresentados nas Figuras 21 e 22: Figura 22. Análise de estabilidade pelo método de Spencer para uma altura de aterro haterro=5,0 m – Etapa 2 e resistência média constante. Figura 23. Análise de estabilidade pelo método de Spencer para uma altura de aterro haterro=7,5 m – Etapa 3 e resistência média constante. 1,34 1,35
  • 43. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo A fim de estabelecer uma comparação dos resultados das análises com superfícies não circulares, empregando o procedimento dos blocos e as mesmas condições das análises anteriores, foram obtidos os resultados que se apresentam na Tabela 12 e na Tabela 13. z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 0,5 19,91 25,53 21,60 298,65 0 3,25 1,0 19,91 54,43 46,57 298,65 0 2,71 1,5 19,91 86,71 74,92 298,65 0 2,34 2,0 19,91 122,36 106,64 298,65 0 2,08 2,5 19,91 161,39 141,74 298,65 0 1,88 3,0 19,91 203,79 180,21 298,65 0 1,73 3,5 19,91 249,57 222,06 298,65 0 1,61 4,0 19,91 298,72 267,28 298,65 0 1,52 4,5 19,91 351,25 315,88 298,65 0 1,45 5,0 19,91 407,15 367,85 298,65 0 1,39 5,5 19,91 466,43 423,20 298,65 0 1,34 6,0 19,91 529,08 481,92 298,65 0 1,30 6,5 19,91 595,11 544,02 298,65 0 1,26 7,0 19,91 664,51 609,49 298,65 0 1,23 7,5 19,91 737,29 678,34 298,65 0 1,21 8,0 19,91 813,44 750,56 298,65 0 1,18 8,5 19,91 892,97 826,16 298,65 0 1,16 9,0 19,91 975,87 905,13 298,65 0 1,15 9,5 19,91 1062,15 987,48 298,65 0 1,13 10,0 19,91 1151,80 1073,20 298,65 0 1,12 Tabela 12. Análise de estabilidade pelo método dos blocos para haterro= 5,0 m – Etapa 2 z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 0,5 28,66 38,65 30,35 644,85 0 3,33 1,0 28,66 80,68 64,07 644,85 0 2,90 1,5 28,66 126,08 101,17 644,85 0 2,57 2,0 28,66 174,86 141,64 644,85 0 2,32 2,5 28,66 227,01 185,49 644,85 0 2,12 3,0 28,66 282,54 232,71 644,85 0 1,96 3,5 28,66 341,44 283,31 644,85 0 1,84 4,0 28,66 403,72 337,28 644,85 0 1,73 4,5 28,66 469,37 394,63 644,85 0 1,64 5,0 28,66 538,40 455,35 644,85 0 1,57 5,5 28,66 610,80 519,45 644,85 0 1,50 6,0 28,66 686,58 586,92 644,85 0 1,45 6,5 28,66 765,73 657,77 644,85 0 1,40 7,0 28,66 848,26 731,99 644,85 0 1,36 7,5 28,66 934,16 809,59 644,85 0 1,32
  • 44. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 8,0 28,66 1023,44 890,56 644,85 0 1,29 8,5 28,66 1116,09 974,91 644,85 0 1,27 9,0 28,66 1212,12 1062,63 644,85 0 1,24 9,5 28,66 1311,52 1153,73 644,85 0 1,22 10,0 28,66 1414,30 1248,20 644,85 0 1,20 Tabela 13. Análise de estabilidade pelo método dos blocos para haterro= 7,5 m – Etapa 3 Na Tabela 14 e na Tabela 15, se observam os resultados da metodologia dos blocos assumindo a influência da força T=95 KN/m definida no item 3,4. z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 0,5 19,91 25,53 21,60 298,65 95 4,22 1,0 19,91 54,43 46,57 298,65 95 3,46 1,5 19,91 86,71 74,92 298,65 95 2,94 2,0 19,91 122,36 106,64 298,65 95 2,56 2,5 19,91 161,39 141,74 298,65 95 2,29 3,0 19,91 203,79 180,21 298,65 95 2,07 3,5 19,91 249,57 222,06 298,65 95 1,91 4,0 19,91 298,72 267,28 298,65 95 1,78 4,5 19,91 351,25 315,88 298,65 95 1,67 5,0 19,91 407,15 367,85 298,65 95 1,59 5,5 19,91 466,43 423,20 298,65 95 1,51 6,0 19,91 529,08 481,92 298,65 95 1,45 6,5 19,91 595,11 544,02 298,65 95 1,40 7,0 19,91 664,51 609,49 298,65 95 1,36 7,5 19,91 737,29 678,34 298,65 95 1,32 8,0 19,91 813,44 750,56 298,65 95 1,29 8,5 19,91 892,97 826,16 298,65 95 1,26 9,0 19,91 975,87 905,13 298,65 95 1,24 9,5 19,91 1062,15 987,48 298,65 95 1,22 10,0 19,91 1151,80 1073,20 298,65 95 1,20 Tabela 14. Análise de estabilidade pelo método dos blocos para haterro= 5,0 m – Etapa 2 – Incluindo Treforço z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 0,5 28,66 38,65 30,35 644,85 95 3,80 1,0 28,66 80,68 64,07 644,85 95 3,28 1,5 28,66 126,08 101,17 644,85 95 2,90 2,0 28,66 174,86 141,64 644,85 95 2,60 2,5 28,66 227,01 185,49 644,85 95 2,37 3,0 28,66 282,54 232,71 644,85 95 2,18 3,5 28,66 341,44 283,31 644,85 95 2,02 4,0 28,66 403,72 337,28 644,85 95 1,90 4,5 28,66 469,37 394,63 644,85 95 1,79 5,0 28,66 538,40 455,35 644,85 95 1,70
  • 45. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 5,5 28,66 610,80 519,45 644,85 95 1,63 6,0 28,66 686,58 586,92 644,85 95 1,56 6,5 28,66 765,73 657,77 644,85 95 1,50 7,0 28,66 848,26 731,99 644,85 95 1,45 7,5 28,66 934,16 809,59 644,85 95 1,41 8,0 28,66 1023,44 890,56 644,85 95 1,37 8,5 28,66 1116,09 974,91 644,85 95 1,34 9,0 28,66 1212,12 1062,63 644,85 95 1,31 9,5 28,66 1311,52 1153,73 644,85 95 1,28 10,0 28,66 1414,30 1248,20 644,85 95 1,26 Tabela 15. Análise de estabilidade pelo método dos blocos para haterro= 7,5 m – Etapa 3 – Incluindo Treforço Os resultados das análises permitem observar que os fatores de segurança obtidos para superfícies circulares são maiores do que os de superfícies não circulares. Além disso, a força resistente do reforço necessária para garantir a estabilidade da primeira etapa, não é suficiente nas seguintes etapas, portanto, é preciso empregar um reforço de maior módulo. Na Tabela 16, se apresenta um resumo dos resultados. F.S Etapa Espessura do Aterro (m) Circular Não Circular 1 (Reforçada) 2,5 1,64 1,30 2 5,0 1,34 1,12 3 7,5 1,35 1,20 Tabela 16. Fatores de segurança para superfícies circulares e não circulares REFERÊNCIAS BIBLIOGRÁFICAS ALMEIDA, M.S.S; MARQUES, M.E.S. Aterros sobre solos moles – Projeto e desempenho. Oficina de Textos, 2010. DOMINONI, C.M, Análise de estabilidade e compressibilidade de um aterro sobre solo mole no Porto de Suape, Região Metropolitana do Recife. UFRJ, Escola Politécnica, 2011. HINCHBERGER S.D; ROWE, R.K, Geosynthetic reinforced embankments on soft clay foundations: predicting reinforcement strains at failure. Geotextiles and Geomembranes v. 21, p 151-175, 2003. ROWE, R.K; MYLLEVILLE B.L, The stability of embankments reinforced with steel. Can, Geotech J.30, pp 768-180, 1993.
  • 46. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 4. ATERRO SOBRE COLUNAS GRANULARES TRADICIONAIS O método das colunas granulares consiste em inserir no corpo do material compressível um material de melhor qualidade que permita aumentar a resistência do solo e diminuir os recalques, portanto, representam uma técnica de melhoramento da massa de solo (Figura 1). As colunas granulares representam um material com um mínimo de propriedades coesivas. As colunas granulares são construídas com material que possui uma rigidez entre 5 a 10 vezes a rigidez do solo ao redor delas. Estas colunas são de forma cilíndrica e são instaladas, analogamente ao caso de drenos verticais segundo um padrão definido por uma malha retangular ou triangular. Em termos das metodologias de construção, o procedimento consiste em criar uma cavidade para a inserção do material granular, a medida que a cavidade é preenchida, são empregados mecanismos vibratórios que permitem densificar os materiais granulares. Dependendo da técnica de instalação as o grau de alteração das propriedades é variável. Figura 1. Técnica de execução de colunas granulares 4.1 Princípios de projeto e análise Definir o diâmetro das colunas e o espaçamento, para este fim, foram empregadas recomendações da literatura (Almeida e Marques, 2010, pág. 173), definindo assim: Espaçamento, l = 2,0 m; Diâmetro, d = 0,8 m
  • 47. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Calcular o diâmetro equivalente, que depende da distribuição das colunas em malha retangular ou quadrada, para o presente trabalho foi adotada uma malha triangular 𝑑 𝑒 = 1,05 ∗ 𝑙 = 1,05 ∗ 2 = 2,10 𝑚  Área da coluna granular 𝐴 𝑐 = 𝜋 ∗ 𝑑2 4 = 𝜋 ∗ 0,82 4 = 0,5 𝑚2  Área total da célula: 𝐴 = 𝜋 ∗ 𝑑 𝑒 2 4 = 𝜋 ∗ 2,12 4 = 3,46 𝑚2  Área total de solo mole 𝐴 𝑠 = 𝐴 − 𝐴 𝑐 = 3,46 − 0,5 = 2,96 𝑚2  Razão de substituição 𝑎 𝑐 = 𝐴 𝑐 𝐴 = 0,5 3,46 = 0,15  Razão de existencia de solo mole 𝑎 𝑠 = 𝐴 𝑠 𝐴 = 2,96 3,46 = 0,85  Definição do fator de concentração de tensões Segundo a recomendação de Han (2010), é adotada no presente trabalho uma relação entre os módulos da coluna e da argila mole Ec/Es=20, portanto empregando a equação de Han (2010), tem-se que: 𝑛 = ∆𝜎𝑣𝑐 ∆𝜎𝑣𝑠 = 1 + 0,217 ( 𝐸𝑐 𝐸𝑠 − 1) = 1 + 0,217(20 − 1) ≅ 5 Na Figura 2, se observa como é esta distribuição de tensões na coluna e no solo.
  • 48. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 2. Fator de concentração de tensões  Acréscimo de tensão vertical média Fazendo equilíbrio de forças na célula unitária da Figura 2, o incremento de tensão vertical na coluna e no solo é calculado como: ∆σvs = ∆𝜎 [1 + (𝑛 − 1)𝑎 𝑐] = 17,5 ∗ 3 [1 + (5 − 1) ∗ 0,15] = 32,81 𝐾𝑃𝑎 ∆σvc = 𝑛 ∗ ∆𝜎 [1 + (𝑛 − 1)𝑎 𝑐] = 5 ∗ 17,5 ∗ 3 [1 + (5 − 1) ∗ 0,15] = 164,06 𝐾𝑃𝑎 Onde, ∆𝜎 = acréscimo de tensão vertical média igual ao peso específico do aterro vezes a altura do aterro. Desta maneira no cálculo do fator de redução de recalques, deve ser empregado o recalque calculado por submersão.  Fator de redução de recalques O fator de redução de recalques está definido como: 𝛽 = ∆ℎ ∆ℎ 𝑠 Δσvc ΔσvsΔσvs Δσ
  • 49. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Onde, ∆ℎ= recalque do solo nao melhorado ∆ℎ 𝑠= recalque do solo tratado A questão esta em calcular o fator β, a primeira abordagem é conhecida como homogeneização que descreve um sistema perfeitamente elástico onde as tensões que recebe o solo e a coluna granular estão em proporção direta com suas rigidezes (Figura 3). Figura 3. Cálculo do fator β A equação de cálculo empregando esta abordagem é: 𝛽 = 1 + (𝑛 − 1)𝑎 𝑐 = 1 + (5 − 1) ∗ 0,15 = 1,6 O método de Priebe (1995) é outra abordagem do problema que considera a coluna granular incompressível com comportamento plástico e o solo apresentando comportamento elástico. Outra hipótese de este método é que os recalques do solo e da coluna são iguais. A seguinte equação que resume as hipóteses do método de Priebe (1995) é a seguinte: 𝛽 = 1 + 𝑎 𝑐 [ (5 − 𝑎 𝑐) [4𝐾𝑎𝑐(1 − 𝑎 𝑐)] − 1] = 1 + 0,15 [ (5 − 0,15) [4 ∗ 0,22(1 − 0,15)] − 1] = 1,8 Onde, 𝐾𝑎𝑐 = 𝑡𝑎𝑛2 (45 − ∅ 𝑐 2 ) = 𝑡𝑎𝑛2 (45 − 40 2 ) = 0,22 Assumindo um ângulo de atrito de o solo granular de 40 graus, segundo as recomendações da literatura (Almeida e Marques, 2010, pág. 173). Δσ Δσ
  • 50. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Por tanto, conhecido o recalque sem colunas do capítulo 16 do presente trabalho, é possível estimar o recalque com colunas: ∆ℎ 𝑐 = ∆ℎ 1,8 = 1,19 1,8 = 0,66 4.2 Análises de estabilidade Neste caso é necessário calcular os parâmetros do solo misturado com o material granular (cm, φm, γm), que são calculados em função dos parâmetros de resistência da argila mole (cs=Su, φs=0) e da coluna granular (φc) e do parâmetro m, que é a parcela de carga suportada pela coluna. A brita utilizada nas análises do presente trabalho, possui as seguintes propriedades: Ângulo de atrito φc =40°. Peso específico γ =18,0 KN/m3 Coesão c=0,0 KPa Os valores ponderados pelo método de Priebe (1978, 1975), são calculados da seguinte maneira: 𝑡𝑎𝑛∅ 𝑚 = 𝑚𝑡𝑎𝑛∅ 𝑐 + (1 − 𝑚)𝑡𝑎𝑛∅ 𝑠 = 0,47 tan(40) + (1 − 0,47) tan(0) = 0,39 ∅ 𝑚 = 21,3° 𝑐 𝑚 = (1 − 𝑚)𝑐 𝑠 = (1 − 0,47) ∗ 9,01 = 4,78 𝐾𝑃𝑎 Cs média – Capitulo 3.1 𝛾 𝑚 = 𝛾𝑐 𝑎 𝑐 + 𝛾𝑠(1 − 𝑎 𝑐) = 18 ∗ 0,15 + 13,5(1 − 0,15) = 14,18 𝐾𝑁 𝑚3 Onde, 𝑚 = 𝑎 𝑐 𝑛 [1 + (𝑛 − 1)𝑎 𝑐] = 0,15 ∗ 5 [1 + (5 − 1)0,15] = 0,47 Para as diferentes profundidades a resistência do solo, e a análise de estabilidade empregando o valor de m, o ângulo de atrito calculado, a coesão ponderada e uma altura do aterro Haterro = 3,0 m, se apresentam na Tabela 1. 6 Calculado assumindo submersão do aterro, um cálculo empregando cota fixa implicaria que a altura do aterro é variável e, portanto o acréscimo de tensão vertical média também seria variável no tempo.
  • 51. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo z arg (m) Su f(z) (Kpa) m Cm Фm γm Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 0,5 4,19 0,47 1,97 21,30 14,18 11,74 12,82 37,71 0 1,33 1,0 4,70 0,47 2,21 21,30 14,18 24,81 35,43 42,30 0 1,52 1,5 5,21 0,47 2,45 21,30 14,18 39,21 67,82 46,89 0 1,75 2,0 5,72 0,47 2,69 21,30 14,18 54,94 110,00 51,48 0 1,99 2,5 6,23 0,47 2,93 21,30 14,18 72,00 161,97 56,07 0 2,22 3,0 6,74 0,47 3,17 21,30 14,18 90,38 223,73 60,66 0 2,44 3,5 7,25 0,47 3,41 21,30 14,18 110,09 295,27 65,25 0 2,64 4,0 7,76 0,47 3,65 21,30 14,18 131,13 376,60 69,84 0 2,84 4,5 8,27 0,47 3,89 21,30 14,18 153,50 467,72 74,43 0 3,02 5,0 8,78 0,47 4,13 21,30 14,18 177,20 568,63 79,02 0 3,18 5,5 9,29 0,47 4,37 21,30 14,18 202,22 679,32 83,61 0 3,34 6,0 9,80 0,47 4,61 21,30 14,18 228,58 799,80 88,20 0 3,48 6,5 10,31 0,47 4,85 21,30 14,18 256,26 930,06 92,79 0 3,62 7,0 10,82 0,47 5,09 21,30 14,18 285,27 1070,11 97,38 0 3,75 7,5 11,33 0,47 5,32 21,30 14,18 315,60 1219,95 101,97 0 3,87 8,0 11,84 0,47 5,56 21,30 14,18 347,27 1379,58 106,56 0 3,98 8,5 12,35 0,47 5,80 21,30 14,18 380,26 1549,00 111,15 0 4,08 9,0 12,86 0,47 6,04 21,30 14,18 414,58 1728,20 115,74 0 4,18 9,5 13,37 0,47 6,28 21,30 14,18 450,23 1917,19 120,33 0 4,28 10,0 13,88 0,47 6,52 21,30 14,18 487,21 2115,96 124,92 0 4,36 Tabela 1. Análise de estabilidade pelo método dos blocos empregando parâmetros ponderados pelo método de Priebe (1878, 1995). Na Figura 4, se apresenta a análise de estabilidade para o aterro com uma altura Haterro = 3,0 m definindo a região das colunas como um novo material com propriedades definidas pelos parâmetros ponderados Figura 4, assumindo uma coesão equivalente ao valor médio dos Cm da Tabela 1. Figura 4. Parametros do material composto. SLIDE
  • 52. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 5. Análise de estabilidade pelo método de Janbu Na análise de estabilidade da Figura 5, foi assumindo um aterro com resistência nula a fim de adotar um enfoque conservativo. Dos resultados se observa que as colunas de brita melhoraram as condições de resistência do solo de fundação. Na Tabela 2, se apresenta um resumo dos resultados das análises. Altura do aterro = 3 m Método F.S min Blocos 1.33 Janbu 1.42 4,3 Velocidade de recalques Considerando a coluna granular como um dreno e empregando a equação geral de cálculo do grau de adensamento no tempo e adotando os parâmetros de entrada apresentados a seguir, foi possível obter a curva apresentada na Figura 6 do recalque em função do tempo a fim de observar o efeito que tem as colunas granulares.
  • 53. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Parâmetros de entrada: de=2,10 m dw=0,8 m (diâmetro do dreno) ds=1,6dw (área afetada pelo amolgamento) Espaçamento=2,0 m. 𝑈ℎ = 1 − 𝑒 −[ 8𝑇ℎ 𝐹(𝑛)+𝐹𝑠 ⁄ ] = 1 − 𝑒 − [ 8𝑇ℎ (ln(𝑛)−0,75)+(( 𝑘ℎ 𝑘´ℎ −1)ln( 𝑑 𝑠 𝑑 𝑤 )) ] Onde, Kh= permeabilidade horizontal. K’h= permeabilidade horizontal da área afetada pelo amolgamento. Foram adotadas uma relação Kh/K’h=2,5 e uma relação ds/dm=1,6, segundo as recomendações apresentadas na Tabela 4,1 do livro “Aterros sobre solos moles projeto e desempenho” (2010). Figura 5. Análise comparativa dos recalques sem drenos, com colunas granulares espaçadas cada 2 m e drenos espaçados cada 1,5 m. Dos resultados apresentados na Figura 6, se observa que as colunas granulares representam uma solução que além de fornecer uma maior
  • 54. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo resistência ao solo, permite acelerar os recalques por adensamento. REFERÊNCIAS BIBLIOGRÁFICAS ALMEIDA, M.S.S; MARQUES, M.E.S. Aterros sobre solos moles – Projeto e desempenho. Oficina de Textos, 2010. PASHOALIN, J.A; VANZOLINI G; KENHITI D. Análise de estabilidade de um aterro apoiado sobre estacas de brita executadas em solo mole. BUSCHMEIER B; MASSE FREDERIC. Discusión sobre las diferencias de la metodologia de diseno entre las inclusiones granulares y las inclusiones rígidas. XXVI Reunión de Mecánica de Suelos e Ingeniería Geotécnica, 2012. 5. ATERRO ESTRUTURADO COM PLATAFORMA DE GEOSSINTÉTICO Na atualidade existe uma grande tendência para a utilização de aterros estaqueados como técnica para transferir a carga às camadas de solo mais resistente, porque esta técnica apresenta grande adaptabilidade a terrenos difíceis, obras de espaço reduzido e menores tempos de execução. Em regiões de solo mole com pouca espessura, é possível adotar soluções como a remoção e substituição por um material com melhores propriedades. Em outras condições é possível empregar bermas, drenos e reforço. Mas em situações nas quais as áreas de empréstimos estão a grandes distâncias ou existem restrições de espaço para a utilização de bermas ou o cronograma exige a construção do aterro em tempos reduzidos, uma solução viável seria a utilização de aterros estaqueados (Figura 1).
  • 55. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 1. Aterro Estruturado x Aterro sobre drenos e reforço (Almeida e Marques, 2004). Nos aterros estruturados, as estacas suportam o peso do aterro e transmitem a carga para uma camada mais resistente. As estacas são menos deformáveis do que o solo, portanto, ocorrem recalques diferenciais dentro do corpo do aterro e este movimento da origem ao arqueamento que aumenta a carga nas estacas e alivia a tensão atuante no solo mole. Os capitéis permitem aumentar a área de influência das estacas e a incorporação de reforço de geossintético permite o uso de estacas mais espaçadas e a transmissão das cargas para as estacas que não foram transmitidas pelo arqueamento (Figura 2). Figura 2. Deformações num aterro estruturado sobre solo mole (Hartmann, 2012).
  • 56. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 5.1 Dimensionamento do aterro estruturado Para o presente trabalho, foi definida a geometria do problema da seguinte maneira (Figura 3): Espaçamento, s= 2,5 m Largura de capitel, b= 1,0 m Altura de aterro, hat= 3,0 m Figura 3. Capiteis quadrados em malha quadrada (Almeida e Marques, 2010). Verificando os critérios mencionados no livro Aterro sobre solos moles, projeto e desempenho, pag.166(Almeida e Marques, 2010), tem-se que: (s-b)= (2,5-1,0) =1,5 m →(s-b)≤3,0 m b/s=1,0/2,5=0,4 → b/s≥0,15 (s-b)= (2,5-1,0) =1,5 m → (s-b)≤1,4hat (s-b)*= (1,5²+1,5²)0,5=2,12 m → (s-b)* ≤ hat Para hat≥0,66(s-b)*, Φat=30° A altura crítica do aterro, acima da qual os recalques diferenciais são nulos, foi calculada com a seguinte expressão (McGuire ET al. 2012): hc> 1,15s* + 1,44b Onde, s*=(s-b)*/2 = 2,12/2 = 1,06 m
  • 57. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Substituindo os valores: 1,15(1,06)+1,44(1)= 2,66 m ok Esta altura crítica é menor do que a altura do aterro (hat=3,0m), portanto, o aterro não apresentaria recalques diferenciais. 5.2 Tensões verticais atuantes no solo A fim de avaliar as tensões atuantes no solo mole e assim definir os esforços de tração no reforço, foram empregadas diferentes metodologias de cálculo.  Terzaghi, (1943) A equação geral, baseada no efeito do arqueamento nos solos é a seguinte: Onde, Cat = coesão do aterro (KN/m²) Φat= ângulo de atrito interno do aterro Kaat= coeficiente de empuxo ativo no aterro S-b=distância entre capitéis (m) γat= peso específico do material de aterro (KN/m³) q= sobrecarga uniforme na superfície por unidade de área (KN/m²), no presente trabalho equivale a zero. hat= altura do aterro Substituindo os valores na equação, para q=o KN/m² e c=o KN/m², tem-se que: 𝜎𝑣 = (2,5 − 1,0) ∗ 17,5 𝑡𝑎𝑛2 (45 − 30 2 ) tan(30) (1 − 𝑒 −𝑡𝑎𝑛2(45− 30 2 ) tan(30)∗ 3 2,5−1,0) = 43,57 𝐾𝑃𝑎
  • 58. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Russell e Pierpoint, (1997) Este método não considera a reação do solo mole subjacente ao geossintético, que é uma hipótese adequada no caso de argilas muito moles. A equação para o cálculo da tensão atuante na base do aterro é a seguinte: 𝜎𝑣 (𝛾 𝑎𝑡ℎ 𝑎𝑡 + 𝑞) = 𝑠2 − 𝑏2 4ℎ 𝑎𝑡 ∗ 𝑏 ∗ 𝐾𝑎𝑎𝑡 ∗ 𝑡𝑔∅ 𝑎𝑡 {1 − 𝑒 −4ℎ 𝑎𝑡∗𝑏∗𝐾 𝑎𝑎𝑡∗𝑡𝑔∅ 𝑎𝑡 𝑠2−𝑏2 } As variáveis desta equação já foram definidas anteriormente, substituindo, tem-se que: 𝜎𝑣 (17,5 ∗ 3,0 + 0) = 2,5² − 1,02 4 ∗ 3 ∗ 1 ∗ 𝑡𝑎𝑛2 (45 − 30 2 ) ∗ 𝑡𝑔(30) {1 − 𝑒 −4∗3∗1∗𝑡𝑎𝑛2(45− 30 2 )∗𝑡𝑔(30) 2,52−1,02 } = 0,81 → 𝜎𝑣 = 0,81 ∗ 17,5 ∗ 3 = 42,53 𝐾𝑃𝑎  Abusharar et al., (2009) Este método foi proposto para análise de aterros granulares sobre solos moles, suportados por uma malha retangular de estacas, considerando a inclusão de geossintético. A equação para o cálculo da tensão atuante na base do aterro é a seguinte: 𝜎𝑣 = 𝛾𝑠(𝑠 − 𝑎)(𝐾 𝑝 − 1) 2(𝐾 𝑝 − 2) + ( 𝑠 − 𝑎 𝑠 ) 𝐾 𝑝−1 [𝑞 + 𝛾𝑠 𝐻 𝑎𝑡 − 𝛾𝑠 ∗ 𝑠 2 (1 + 1 𝐾 𝑝 − 2 )] Onde, Kp = coeficiente de empuxo passivo no aterro γs = peso específico do solo mole Substituindo na equação: 𝜎𝑣 = 13,5(2,5 − 1)(𝑡𝑎𝑛2 (45 + 30 2 ) − 1) 2(𝑡𝑎𝑛2(45 + 30 2 ) − 2) + ( 2,5 − 1 2,5 ) 𝑡𝑎𝑛2(45+ 30 2 )−1 [0 + 13,5 ∗ 3 − 13,5 ∗ 2,5 2 (1 + 1 𝑡𝑎𝑛2(45 + 30 2 ) − 2 )] → 𝜎𝑣 = 32,4 𝐾𝑃𝑎
  • 59. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Low et al., (1994) Low et al., (1994) utilizaram para sua análise um arco semicilíndrico bidimensional com espessura igual à metade da dimensão do capitel. A equação para o cálculo da tensão atuante na base do aterro é a seguinte: 𝜎𝑣 𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡 = (𝐾 𝑝 − 1)(1 − 𝛿)𝑠 2ℎ 𝑎𝑡(𝐾 𝑝 − 2) + (1 − 𝛿) 𝐾 𝑝−1 [1 − 𝑠 2ℎ 𝑎𝑡 − 𝑠 2ℎ 𝑎𝑡(𝐾 𝑝 − 2) ] Onde, δ=b/s – Relação largura do capitel/espaçamento das estacas Substituindo na equação: 𝜎𝑣 17,5 ∗ 3 = (𝑡𝑎𝑛 2 (45 + 30 2 ) − 1) (1 − 1 2,5 ) 𝑠 2 ∗ 3 ∗ (𝑡𝑎𝑛2 (45 + 30 2 ) − 2) + (1 − 1 2,5 )𝑡𝑎𝑛 2 (45+ 30 2 )−1 [1 − 2,5 2 ∗ 3 − 2,5 2 ∗ 3(𝑡𝑎𝑛2 (45 + 30 2 ) − 2) ] → 𝜎𝑣 = 29,4 𝐾𝑃𝑎  Método de Kempfert et al., (2004) Este método é baseado na teoria da elasticidade, para um ângulo de atrito do material do aterro Fat=30º, foi empregado o ábaco da Figura 4 a fim de calcular a tensão atuante na base do aterro. Figura 4. Cálculo de tensões verticais sobre o reforço (Adaptado de Kempfert et al., 2004)
  • 60. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Onde, Hat/s=3/2,5=1,2 b/s=1/2,5=0,4 𝜎𝑣 𝛾 𝑎𝑡 ∗ 𝐻 𝑎𝑡 + 𝑞 ≅ 0,30 → 𝜎𝑣 ≅ 17,5 ∗ 3 ∗ 0,3 ≅ 15,75 𝐾𝑃𝑎 Na tabela 1, se apresenta um resumo dos resultados obtidos. Metodologia 𝜎𝑣 (KPa) Terzaghi, (1943) 43,57 Russell e Pierpoint, (1997) 42,53 Abusharar et al., (2009) 32,4 Low et al., (1994) 29,4 Kempfert et al., (2004) 15,75 Das tensões calculadas empregando as diferentes metodologias, foi escolhida a calculada pelo método de Terzaghi, em vista de que é a que apresenta um maior valor. 5.3 Cálculo do esforço de tração atuante no reforço Os métodos que empregados no presente trabalho, serão apresentados em função do valor de módulo de reforço J do geossintético e será apresentado um cálculo efetuado em função da deformação específica (ε), a fim de efetuar uma comparação entre metodologias.  Método da parábola – BS 8006 (BSI,1995) Neste método se calcula a tensão no reforço T, admitindo-se que a deformação do reforço no vão (s-b) tem forma parabólica. O valor de T é dado pela seguinte equação em função do módulo de reforço que para o presente trabalho é J=3000 KN/m: 96𝑇3 − 6𝐾𝑔 2 𝑇 − 𝐾𝑔 2 𝐽 = 0 96T³-314039T-157019468=0
  • 61. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Onde, 𝐾𝑔 = 𝜎𝑣(𝑠2 − 𝑏2 ) 𝑏 S =2,5 m; b =1,0 m definidos anteriormente. 𝜎𝑣=43,57 KPa (Calculado pelo método de Terzaghi) Resolvendo, tem-se que: T=127,06 KN/m  Método da membrana tensionada (Collin, 2004) Conhecendo-se o valor do módulo J, o valor de T é definido pela seguinte equação: 2√2 ∗ 𝑇 ∗ 𝐽 𝜎𝑣(𝑠 − 𝑏) 𝑠𝑒𝑛−1 [ 𝜎𝑣(𝑠 − 𝑏) 2√2 ∗ 𝑇 ] − 𝑇 − 𝐽 = 0 129,82*T*sen-1(23,11/T) –T –J =0 Onde, S =2,5 m; b =1,0 m definidos anteriormente. 𝜎𝑣=43,57 KPa (Calculado pelo método de Terzaghi) J=3000 KN/m Resolvendo, tem-se que: T=65,63 KN/m  Método de Kempfert et al., (2004) Este método apresenta um ábaco adimensional que considera a contribuição favorável da reação do solo abaixo do reforço, mas isto não é recomendável no caso de argilas muito moles. Portanto, não considerar esta contribuição, se assume que o módulo de reação da argila mole no contato aterro-solo (subgrade reaction), seja zero, ks,k=0. Sequência de cálculo 1. Com σv= σzo, calcula-se Fk, conforme abaixo:
  • 62. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Onde, d = 1,0 m - Largura do capitel Substituindo, 𝐴𝑙 = 1 2 ∗ (1,52) − 12 2 = 2,63 𝑚2 𝐹𝑘 = 2,63 ∗ 43,57 = 114,39 𝐾𝑁 2. Com Fk, Jk= 3000KN/m e a largura do capitel b = 1,0 m determina-se ε e f/lw no ábaco. 𝐹𝑘/𝑏 𝐽 𝑘 = 114,39/1,0 3000 = 0,038 ks,k=0 Figura 4. Ábaco de cálculo (Kempfert et al., 2004) 3. Com ε ≈ 5,2 % do ábaco, determina-se então a tração no reforço: T=ε*Jk=0,052*3000=156 KN/m 4. Com Lw = distância entre capitéis (s-b) e f/lw ≈ 0,15 (do ábaco), estima-se o recalque f = deformação vertical da geogrelha. 𝑓 𝑙 𝑤 = 0,15 → 𝑓 = 0,15 ∗ (2,5 − 1,0) = 0,225 𝑚
  • 63. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Tabela 2, se apresenta uma lista das deformações máximas do reforço no caso de aterros estruturados com geossintético a partir de diversas fontes. Desta lista, se observa que as deformações estão entre 3% e 6%. O valor obtido pelo método de Kempfert ε ≈ 5,2 % está dentro da recomendação da BS8006-1:2010. Tabela 2. Deformações máximas do reforço na base de aterros estruturados (Lawson C.R)  Calcular T a partir da deformação No método da BS8006, se apresentam as seguintes equações que permitem o cálculo da Tensão no geossintético em função da deformação vertical da geogrelha: 𝜀 = 8𝑤 𝑚𝑎𝑥 2 3(𝑠 − 𝑏)2 = 8 ∗ 0,225² 3 ∗ (2,5 − 1,0)² = 6% Onde, Wmax= deformação vertical da geogrelha, foi assumida a calculada pelo método de Kempfert. 𝑇 = 𝑊𝑡(𝑠 − 𝑏) 2𝑏 √1 + 1 6𝜀 = 43,57(2,5 − 1,0) 2 ∗ 1,0 √1 + 1 6 ∗ 0,06 = 67,02 𝐾𝑁/𝑚 Onde, Wt = carga distribuída por unidade de cumprimento, Wt = σv*b Da anterior equação, uma diminuição da deformação de por exemplo, 6% para 3%, faz com que a carga no reforço seja aumentada em um 30%, portanto, é importante uma avaliação adequada da deformação do reforço. Na Tabela 3, se apresenta um resumo dos resultados obtidos.
  • 64. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Metodologia T (KN/m) Método da parábola – BS 8006 127,06 Método da membrana tensionada 65,63 Método de Kempfert et al 156,00 T a partir da deformação 67,02 5.4 Análise de estabilidade do aterro Finalmente, foi efetuada uma análise de estabilidade interna do aterro, sem considerar a argila mole a fim de determinar a inclinação do talude. Os resultados e as hipóteses adotadas se apresentam a seguir, o talude adotado foi de 2,5:1. Figura 5. Análise de estabilidade do aterro sem considerar a resistência da argila (impenetrável) – Método de Bishop. Na figura 5, se observa que as superfícies com menor Fator de Segurança são aquelas que estão perto da face do talude, o mínimo F.S calculado pelo método de Bishop, foi de 1,44. 6. CONSIDERAÇÕES FINAIS No presente trabalho, foram abordadas as metodologias de cálculo da magnitude dos recalques e sua variação no tempo, num problema de solos moles, incluindo a estimativa do recalque por compressão secundária. Foram efetuados cálculos empregando técnicas de aceleração de recalques (geodrenos e sobrecarga) a fim de conhecer
  • 65. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo os efeitos destas técnicas no comportamento em termos de recalques do aterro. Efetivamente uma combinação de sobrecarga com geodrenos adequadamente dimensionados com base em recomendações provenientes da experiência e de fontes bibliográficas, faz com que possa ser atingido o recalque (primário + secundário), no entanto, é importante levar em consideração os volumes de terraplanagem. No capítulo 3, foi abordado o problema da estabilidade do aterro não reforçado e reforçado, incluindo a construção em etapas. A ruptura global foi avaliada tendo em consideração superfícies circulares e não circulares. O método dos blocos resulta ser de fácil uso em vista de que é facilmente implantado em uma planilha de cálculo e os resultados foram verificados com cálculos efetuados em um software de análise de estabilidade. Em geral, os fatores de segurança obtidos pelo método dos blocos resultaram menores do que os calculados assumindo superfícies circulares. No capítulo 4, foi a abordada a alternativa de colunas granulares tradicionais definindo a geometria e distribuição destes elementos empregando as recomendações da literatura. Dois aspectos importantes desta alternativa nos resultados dos cálculos efetuados foram: o ganho de resistência do solo quando se adotaram parâmetros de material composto e os efeitos da aceleração dos recalques no tempo que podem ser comparados ao efeito dos drenos. Finalmente, no capítulo 5, se apresentaram os cálculos de um aterro estruturado com capiteis e plataforma de geossintético, empregando diferentes metodologias de cálculo da tensão na base do aterro e diferentes metodologias no cálculo do esforço de tração atuante no reforço. Alguns autores apresentam o valor de este esforço em termos de uma deformação prescrita, mas para obter valores consistentes é melhor uma abordagem em termos do valor do módulo do reforço. REFERÊNCIAS BIBLIOGRÁFICAS ALMEIDA, M.S.S; MARQUES, M.E.S. Aterros sobre solos moles – Projeto e desempenho. Oficina de Textos, 2010. ECHEVARRÍA, S.P. Efeitos de Arqueamento em Aterros sobre solo Estaqueado. Dissertação de Mestrado. Departamento de Engenharia Civil e Ambiental. Universidade de Brasilia, 2006.
  • 66. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo FEI, K; A Simplified Method for Analysis of Geosynthetic Reinforcement Used in Pile Supported Embankments. Scientific World Journal, 2014. HARTMANN, D.A; Modelagem centrífuga de aterros estruturados com reforço de geossintético. UFRJ/COPPE, 2012. GHARPURE, A.D; KORULLA, M; JAYAKRISHNAN, P.V; SCOTTO, M; NAUGHTON, P. Design methods for pile supported basal reinforced embankments over soft clay. Proceeding of the 4th Asian Regional Conference on Geosynthetics. Shanghai-China, 2008.