SlideShare uma empresa Scribd logo
UNIVERSIDADE DO ALGARVE – ESCOLA SUPERIOR DE TECNOLOGIA
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
APONTAMENTOS DE
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
(IV. Espaços vectoriais)
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
Índice
4. Espaços vectoriais..........................................................................................................1
4.1 Definição e exemplos ......................................................................................................1
4.2 Subespaços......................................................................................................................4
4.3 Conjuntos geradores........................................................................................................7
4.4 Dependência e independência linear ..............................................................................11
4.5 Base e dimensão............................................................................................................18
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
1/ 26
4. Espaço vectoriais
4.1 Definição e exemplos
As operações de soma e multiplicação por um escalar são usadas em diversos contextos na
matemática, independentemente destes, essas operações obedecem, em geral, ao mesmo conjunto
de regras aritméticas. Assim, uma teoria geral de sistemas matemáticos envolvendo estas duas
operações vai ter aplicação em diversas áreas da matemática. Sistemas matemáticos deste tipo são
chamados espaços vectoriais ou espaços lineares. Neste capítulo, vamos definir espaços vectoriais e
desenvolver parte da sua teoria geral.
Definição1: Seja E um conjunto arbitrário não vazio onde estão definidas duas operações, a adição
e a multiplicação por escalares. Se os seguintes axiomas se verificam para todos os elementos u, v e
w de E e todos os escalares λ e γ , então E é um espaço vectorial e os seus elementos são
chamados vectores.
I. Adição é uma regra que associa a cada par de elementos u e v de E um único elemento +u v de
E, de maneira a que se verifiquem os seguintes axiomas:
I.1 – Comutatividade da adição: + = +u v v u;
I.2 – Associatividade da adição: ( ) ( )+ + = + +u v w u v w ;
I.3 – Elemento neutro: E∃ ∈0 , chamado vector nulo de E : E∀ ∈u , + = + =0 0u u u ;
I.4 – Elemento simétrico: E∀ ∈u , ( ) E∃ − ∈u , chamado simétrico de u: ( ) ( )+ − = − + = 0u u u u .
II. Multiplicação por escalares é uma regra que associa a cada escalar λ e cada elemento u de E
um único elemento λu de E, chamado escalar múltiplo de u, que verifica os seguinte axiomas:
II.1 – Distributividade em relação à adição em E: ( )λ λ λ+ = +u v u v ;
II.2 – Distributividade em relação à adição de escalares: ( )λ γ λ γ+ = +u u u ;
II.3 – Associatividade da multiplicação por escalares: ( ) ( )λ γ λγ=u u;
II.4 – Elemento identidade: 1 =u u , E∀ ∈u , sendo 1 o elemento unidade dos escalares.
Repare-se que:
I. Significa que, se u e v pertencem a E, então +u v pertence a E (fechado para a adição);
II. Significa que, se λ é um escalar arbitrário e u um qualquer elemento de E , então λu
pertence a E (fechado para a multiplicação por escalares).
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
2/ 26
Obs.1:
• Deve ter-se em conta que a definição de espaço vectorial não especifica quer a natureza dos
elementos (vectores) que formam o conjunto E quer as operações entre estes vectores. Qualquer
tipo de objecto pode ser um vector, e as operações de adição e multiplicação por escalares
podem não ter qualquer relação ou semelhança com as operações standard dos vectores em n
.
O que é exigido é que os axiomas do espaço vectorial sejam satisfeitos (os axiomas não se
provam, eles são simplesmente as “regras do jogo”). Alguns autores utilizam a notação ⊕ e
para adição de vectores e multiplicação por escalares para se distinguir estas operações da
adição e multiplicação de números reais; não se utilizará esta convenção.
• De um modo geral, dependendo da aplicação, os escalares podem ser tomados de qualquer
sistema numérico no qual, falando informalmente, se possa somar, subtrair, multiplicar e dividir
de acordo com as leis habituais da aritmética. Em álgebra abstracta, um sistema desses é
conhecido como um corpo.
• Portanto, existem uma infinidade de espaços vectoriais. Apenas estudaremos os espaços
vectoriais sobre os números reais, ou seja, quando os “escalares” são números reais. Assim,
omitimos a palavra real, quando nos referimos a espaços vectoriais, assumiremos que estamos a
trabalhar com o sistema dos números reais.
Exemplo1 (espaços vectoriais): Em cada caso, devemos especificar um conjunto não vazio E , bem
como as operações de adição e multiplicação por escalares, e devem verificar-se os respectivos
axiomas. Só assim E, com as operações especificadas, pode ser chamado um espaço vectorial.
i) O conjunto n
E = representa o espaço de todos os n-uplos ordenados de números reais,
{ }1 2( , ,..., ): , 1,2,...,n
n ix x x x i n= ∈ = .
Onde, representa o conjunto dos números reais e n∈ , o conjunto dos números naturais.
Para cada 1,2,...n = , o conjunto n
E = , munido das operações usuais de adição
1 1 2 2( , ,..., ) n
n nx y x y x y+ = + + + ∈x y e multiplicação escalar 1 2( , ,..., ) n
nx x xλ λ λ λ= ∈x , com
1 2 1 2( , ,..., ), ( , ,..., ) n
n nx x x y y y= = ∈x y e λ ∈ , é um espaço vectorial real com n dimensões.
De um modo geral, os elementos 1( ,..., )nx x de n
, têm duas interpretações geométricas. Podem
ser interpretados como pontos, neste caso, 1,..., nx x ∈ são as coordenadas do ponto, ou podem ser
interpretados como vectores, neste caso, 1,..., nx x ∈ são as componentes escalares do vector. Esta
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
3/ 26
distinção é pouco importante em termos matemáticos, chamaremos aos elementos de n
pontos ou
vectores dependendo da situação. Por exemplo, em 3
:
Figura1 – Coordenadas 0 0 0( , , )x y z Figura2 – Componentes 0 0 0( , , )x y z
Na bibliografia, por se tratar de uma convenção comum, os pontos aparecem representados por
letras minúsculas a “negrito” ou por letras maiúsculas, enquanto os vectores, também, por letras
minúsculas a “negrito” ou com uma seta por cima. Neste texto, para n
, representam-se os pontos
por letra maiúscula, a origem por (0,0,...,0)O = =0 , e os vectores com uma seta por cima.
ii) O conjunto E de todas matrizes reais (m n× ) é um espaço vectorial ( m n×
ou ( ) ( )m nM × ) se a
adição de vectores é definida como sendo a adição de matrizes e a multiplicação escalar de vectores
é definida como sendo a multiplicação de matrizes por escalares.
Seja
11 12 1
21 22 2
1 2 ( )
........
........
........
n
n
m m nn n n
a a a
a a a
A
a a a ×
= uma matriz (n n× ) de elementos de , as várias linhas de A
podem considerar-se vectores de n
, da forma
1
i ij j
j
a a e
=
= , sendo os vectores, je , representados
pelas linhas da matriz identidade.
• m n×
é o espaço vectorial de todas as matrizes reais (m n× ), portanto, a matriz ( )m nA × pode ser
considerada um vector de m n×
;
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
4/ 26
• 1 n×
é o espaço vectorial de todas as matrizes reais (1 n× ) (as matrizes linha), portanto, a
matriz (1 ) 11 12 1[ ... ]n nA a a a× = pode ser considerada um vector de 1 n×
;
• 1m×
é o espaço vectorial de todas as matrizes reais ( 1m× ) (as matrizes colunas) portanto,
a matriz ( 1) 11 21 1[ ... ]T
m mA a a a× = pode ser considerada um vector de 1m×
.
Exemplo2 (um conjunto que não é um espaço vectorial): Seja 2
E = , para 1 2( , )u u u= e
1 2( , )v v v= , define-se a adição e multiplicação escalar do seguinte modo: 1 1 2 2( , )u v u v u v+ = + +
(adição standard de 2
) e 1( ,0)ku ku= , k ∈ (não é a multiplicação escalar standard de 2
).
Assim, há valores de u para os quais não se verifica o axioma II4 da definição de espaço vectorial.
Por exemplo, seja 1 2( , )u u u= tal que 2 0u ≠ , então 1 2 1 11 1( , ) (1 ,0) ( ,0)u u u u u u= = × = ≠ . Assim,
E não é um espaço vectorial com as operações definidas.
4.2 Subespaços
Dado um espaço vectorial E , é muitas vezes possível formar um outro espaço vectorial usando um
subconjunto S de E e as operações de E . Como E é um espaço vectorial, as operações de soma e
multiplicação por um escalar produzem sempre um outro vector em E . Para um novo sistema,
usando um subconjunto S de E , ser um espaço vectorial, o conjunto S tem que ser fechado em
relação às operações de soma e multiplicação por um escalar. Por outras palavras, a soma de dois
elementos de S tem que ser sempre um elemento de S e a multiplicação de um elemento de S por
um escalar tem que pertencer sempre a S .
Definição2: Um subconjunto não vazio S de um espaço vectorial E, é um subespaço vectorial de E
se ele próprio formar um espaço vectorial relativamente às duas operações adição e multiplicação
escalar definidas para os elementos de E.
Desta definição resulta que, operando elementos de S com operações de E obtemos elementos de S.
Assim, um subespaço de E, é um subconjunto S que é fechado em relação às operações de E.
Donde, para verificarmos se um subconjunto de um espaço vectorial é subespaço não é necessário a
verificação dos oito axiomas, além dos dois que definem a soma e a multiplicação por escalares.
Teorema1: Seja E um espaço vectorial. Um subconjunto S ≠ ∅ , de E é um subespaço vectorial de
E se, e só se, satisfaz as seguintes condições:
(a) Se u, S∈v ( ) S+ ∈u v (fechado para a adição);
(b) Se λ ∈ é um escalar arbitrário e S∈u , então Sλ ∈u (fechado para a multiplicação escalar);
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
5/ 26
Obs.2:
• Como os axiomas do espaço vectorial são válidos para o novo sistema matemático formado pelo
subespaço vectorial, todo o subespaço de um espaço vectorial é ele mesmo um espaço vectorial.
• Se S é um subespaço de um espaço vectorial E, então S contém o vector nulo de E.
Exemplo3: Mostre que o conjunto 2 2
12 21{ : }S A a a×
= ∈ = − , forma um subespaço de 2 2×
.
Resolução: O conjunto S ≠ ∅ e 2 2
S ×
⊂ (S é um subconjunto não vazio de 2 2×
) . Sejam as
matrizes ,A B S∈ , então
a b
A
b c
=
−
e
d e
B
e f
=
−
.
i)
( )
a d b e a d b e
A B S
b e c f b e c f
+ + + +
+ = = ∈
− − + − + +
;
ii) Para α ∈ , vem
a b
A S
b c
α α
α
α α
= ∈
−
, porque 12 21a b aα= = − .
Exemplo4: Verifique se o conjunto 2
{( , ) : 0 0}W x y x y= ∈ ≥ ≥ é um subespaço de 2
.
Resolução: Os pontos de W estão no primeiro quadrante,
logo, W é um subconjunto de 2
. O conjunto W não é um
subespaço de 2
, uma vez, que não é fechado relativamente
à multiplicação escalar. Por exemplo, (1,1)u = está em W,
( 1) ( 1, 1)u− × = − − não está (pertence ao terceiro quadrante).
Figura3 - 2
W ⊂ não é subespaço de 2
Obs.3: Se E é um espaço vectorial, então E é um subespaço dele mesmo. O conjunto formado
apenas pelo vector nulo é também um subespaço de E. Assim, qualquer espaço vectorial não nulo E
tem pelo menos dois subespaços. O próprio E e o conjunto {0} constituído apenas pelo vector nulo
em E chamado o subespaço nulo (os chamados subespaços triviais).
Obs.4: O conjunto 2
não é um subespaço de 3
, pois 2
não é um subconjunto de 3
• Os subespaços de 3
são:
i) {0} (subespaço trivial);
ii) as rectas que passam na origem;
iii) os planos que passam na origem;
iv) 3
.
• Os subespaços de 2
são:
i) {0} (subespaço trivial);
ii) as rectas que passam na origem;
iii) 2
.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
6/ 26
Alguns subespaços de n n×
, são:
i) O conjunto das matrizes (n n× ) simétricas, { : }n n T
E A M A A×
= ∈ = ;
ii) O conjunto das matrizes (n n× ) anti-simétricas, { : }n n T
E A M A A×
= ∈ = − ;
iii) O conjunto das matrizes (n n× ) triangulares (superiores, inferiores e diagonais).
Uma vez que estes conjuntos são fechados relativamente à soma e à multiplicação escalar.
Teorema2: Seja E um espaço vectorial.
(i) A intersecção de dois (ou mais) subespaços de E é ainda um subespaço de E;
(ii) A reunião de dois subespaços de E só é um subespaço de E, se um deles contiver o outro.
Exemplo5: Prove que conjunto definido por 1 2 1 1 2 2{( , ,..., ) : ... 0}n
n n nS x x x a x a x a x= ∈ + + + = ,
onde 1 2( , ,..., ) n
na a a ∈ é um subespaço de n
.
Resolução: Vamos provar que S é fechado para a adição e para a multiplicação por escalares.
i) Se 1 2( , ,..., )nX x x x= e 1 2( , ,..., )nY y y y= pertencem a S, então 1 1 2 2 ... 0n na x a x a x+ + + = e
1 1 2 2 ... 0n na y a y a y+ + + = , donde 1 1 2 2( , ,..., )n nX Y x y x y x y+ = + + + também pertence a S, pois
1 1 1 2 2 2 1 1 2 2 1 1 2 2( ) ( ) ... ( ) ( ... ) ( ... ) 0 0 0.n n n n n n na x y a x y a x y a x a x a x a y a y a y+ + + + + + = + + + + + + + = + =
ii) Se 1 2( , ,..., )nX x x x S= ∈ e α ∈ , então 1 2( , ,..., )nX x x x Sα α= ∈ , pois
1 1 2 2 1 1 2 2( ) ( ) ... ( ) ( ... ) 0 0n n n na x a x a x a x a x a xα α α α α+ + = + + + = × = .
Por i) e ii) prova-se que S é um subespaço de n
.
Por outro lado, suponha que o conjunto 1 2 1 1 2 2{( , ,..., ) : ... }n
n n nS x x x a x a x a x c= ∈ + + + = , é um
subespaço de n
, onde c é um número real fixo.
Se S é um subespaço e X S∈ , então 0X O= também pertence a S, ou seja, o subespaço tem que
conter a origem. Substituindo (0,0,...,0)O = na equação que define o conjunto, obtemos
1 20 0 ... 0 0na a a c c× + × + + × = ⇔ = . Se 1 2( , ,..., ) (0,0,...,0)na a a ≠ então S é chamado um
hiperplano de n
. Para 3n = os hiperplanos são planos, e para 2n = os hiperplanos são rectas.
Definição3: Se AX B= é um sistema de equações lineares, então o vector X que satisfaz esta
equação é chamado um vector solução do sistema.
Teorema3: Seja 0AX = um sistema linear homogéneo com m equações e n incógnitas, então o
conjunto dos vectores solução de 0AX = forma um espaço vectorial, chamado o espaço solução do
sistema homogéneo, que é um subespaço de n
.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
7/ 26
Obs.5: O conjunto solução (espaço solução) de um sistema linear homogéneo com m equações e n
incógnitas pode ser visto como a intersecção de m subespaços de n
, que são hiperplanos que
passam pela origem.
Exemplo6: Considere os seguintes sistemas lineares
a)
1 2 3 0
2 4 6 0
3 6 9 0
x
y
z
−
− =
−
b)
1 2 3 0
3 7 8 0
2 4 6 0
x
y
z
−
− − =
− −
c)
1 2 3 0
3 7 8 0
4 1 2 0
x
y
z
−
− − = d)
0 0 0 0
0 0 0 0
0 0 0 0
x
y
z
=
Como cada um destes sistemas homogéneo tem três incógnitas, pelo teorema anterior os conjuntos
solução formam subespaços de 3
. Geometricamente, isto significa que cada espaço solução
deverá ser, a origem, uma recta que passa na origem, um plano que passa na origem, ou todo o 3
Resolução:
a) As soluções deste sistema são, 2 3x s t= − , y s= e z t= , donde 2 3 2 3 0x y z x y z= − ⇔ − − = .
Esta é a equação de um plano que passa na origem, tendo como vector normal (1, 2, 3)n = − − .
b) As soluções são, 5x t= − , y t= − e z t= , as equações paramétricas de uma recta que passa na
origem, paralela ao vector ( 5, 1,1)v = − − .
c) A solução é 0x y z= = = , portanto, o espaço solução é a origem, ou seja, { }O .
d) As soluções são, x r= , y s= e z t= , onde r, s e t tomam valores arbitrários, portanto o espaço
solução é todo o 3
.
4.3 Conjunto geradores
Nesta secção, vamos mostrar que um conjunto de vectores 1 2{ , ,..., }nV v v v= gera um determinado
espaço vectorial E se cada vector de E pode ser expresso como uma combinação linear dos vectores
de V. De um modo geral, pode existir mais de uma maneira de escrever um vector de E como
combinação linear dos vectores do conjunto gerador.
Definição4: Seja 1 2{ , ,..., }nV v v v= um conjunto de n vectores de um espaço vectorial E, todo o
vector u que se possa exprimir na forma 1 1 2 2 ... n nu v v vλ λ λ= + + + com iλ ∈ (não todos nulos)
diz-se uma combinação linear dos vectores 1 2, ,..., nv v v .
Obs5: Caso 1n = , a equação anterior reduz-se a 1 1u vλ= , ou seja, u é uma combinação linear de
um único vector 1v se for um escalar múltiplo de 1v .
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
8/ 26
Exemplo7: Mostre que qualquer vector de n
pode ser escrito como combinação linear dos
vectores na forma 1 2(1,...,0), (0,1,...,0)e e= = , ..., (0,...,1)ne = .
Resolução: Os vectores de n
são do tipo 1( ,..., )nu u u= , para serem combinação linear dos
vectores 1 2, ,..., ne e e devem ser escrito na forma.
1 1 2 2 3 3 1 2 1(1,...,0) (0,1,...,0) ... (0,...,1) ( ,..., )n nu u e u e u e u u u u u= + + = + + + = ,
o que 1( ,..., )nu u é uma combinação linear dos vectores 1 2, ,..., ne e e .
Definição5: Seja 1 2{ , ,..., }nV v v v= um conjunto de vectores do espaço vectorial E, então o conjunto
W de todas as combinações lineares dos vectores de V é chamado conjunto gerado por 1 2, ,..., nv v v
ou por V , diz-se que os vectores 1 2, ,..., nv v v geram W ou que V é o conjunto de geradores de W.
Para indicar que W é o conjunto gerado pelos vectores de V escrevemos ger( )W V= ou W V=< >.
Exemplo8: Verifique se os vectores 1 (1,1,2)v = , 2 (1,0,1)v = e 3 (2,1,3)v = geram 3
.
Resolução: Queremos verificar ger( )W V= , com 1 2 3{ , , }V v v v= , ou seja, devemos determinar se
um vector arbitrário 1 2 3( , , )u u u u= de 3
pode ser expresso como uma combinação linear dos
vectores 1 2,v v e 3v , isto é, 1 1 2 2 3 3u v v vλ λ λ= + + . Escrevendo esta equação em termos das suas
componentes vem
1 2 3 1 2 3 1 2 3 1 2 3 1 3 1 2 3
1 2 3 1
1 3 2
1 2 3 3
( , , ) (1,1,2) (1,0,1) (2,1,3) ( , , ) ( 2 , ,2 3 )
2
2 3
u u u u u u
u
u
u
λ λ λ λ λ λ λ λ λ λ λ
λ λ λ
λ λ
λ λ λ
= + + ⇔ = + + + + + ⇔
+ + =
⇔ + =
+ + =
Como o sistema tem três equações para três incógnitas, o problema reduz-se então a determinar se
este sistema é possível e determinado para todos os valores de 1 2,u u e 3u , isto acontece se, e só se,
o determinante da matriz A, dos coeficientes do sistema, for diferente de zero. Como | | 0A = , os
vectores 1 2,v v e 3v não geram 3
.
Exercício1: Resolva o sistema do exemplo anterior.
Se 1 2{ , ,..., }nV v v v= é um conjunto de vectores do espaço vectorial E, então alguns vectores de E
podem escrever-se como combinação linear de 1 2, ,..., nv v v e outros não. O seguinte teorema mostra
que um conjunto ger( )W V= forma um subespaço de E.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
9/ 26
Teorema4: Se 1 2, ,..., nv v v são vectores de um espaço vectorial E, e W é o conjunto de todas as
combinações lineares de 1 2, ,..., nv v v , ou seja, 1 2ger{ , ,..., }nW v v v= , então:
(a) W é um subespaço de E;
(b) W é o menor subespaço de E que contém 1 2, ,..., nv v v no sentido de qualquer outro subespaço de
E que contenha 1 2, ,..., nv v v deve conter W.
Obs.6: Este teorema diz que, como o subespaço ger( )W V= é o menor subespaço de E que contém
V, se G for um subespaço de E que contém V, então necessariamente ger( )V G⊆ .
Tendo em conta o teorema4 e a definição5, podemos dizer que sendo 1 2{ , ,..., }nV v v v= um
subconjunto não vazio de um espaço vectorial E, o conjunto ger( )W V= é um subespaço de E
chamado espaço gerado por V. Quando W E= diz-se que V é o conjunto de geradores de E (os
vectores 1 2, ,..., nv v v geram E ou constituem um sistema de geradores do espaço).
Obs.7: Se o conjunto de geradores de um espaço vectorial E tem um número finito de elementos
dizemos que o espaço vectorial é finitamente gerado. O conceito de subespaço gerado por um
conjunto pode apresentar-se para conjuntos não necessariamente finitos.
Teorema5: Se 1 2{ , ,..., }nV v v v= e 1 2{ , ,..., }kW w w w= são dois conjuntos de vectores de um espaço
vectorial E, então ger( ) ger( )V W= se, e só se, cada vector de V for uma combinação linear dos
vectores de W e se cada vector de W for uma combinação linear dos vectores de V.
Exemplo9: Considere o sistema linear homogéneo 0AX = , onde
1 1 0 2
2 2 1 5
1 1 1 3
A = − − −
−
.
Encontre um conjunto de vectores que gere o subespaço solução do sistema homogéneo.
Resolução: A matriz do sistema é equivalente
1 1 0 2 1 1 0 2
2 2 1 5 0 0 1 1
1 1 1 3 0 0 0 0
− − − ↔ −
−
, donde
1 2 3
2
3
4 3
2
0
x x x
x
AX
x
x x
= − −
∈
= ⇔
∈
=
,
ou seja, o conjunto solução de 0AX = é 1 2 3 4 2 3 2 3 3 2 3{( , , , } ( 2 , , , ) : , }S x x x x x x x x x x x= = − − ∈ .
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
10/ 26
Qualquer elemento de S pode ser escrito como uma soma de vectores, sendo um vector para cada
parâmetro e cada vector depende apenas de um parâmetro, obtendo-se
2 3 2 3 3 2 2 3 3 3 2 3( 2 , , , ) ( , ,0,0) ( 2 ,0, , ) ( 1,1,0,0) ( 2,0,1,1)x x x x x x x x x x x x− − = − + − = − + − .
Portanto, 1 ( 1,1,0,0)X = − e 2 ( 2,0,1,1)X = − geram S, isto é, 1 2ger( , )S X X= .
Exemplo10: Encontre um conjunto constituído pelos vectores 1 (1,1,0)v = , 2 (0,1,1)v = ,
3 (1,0,1)v = ou 4 (1,2,1)v = que gere 3
.
Resolução: Comecemos por verificar se 3
ger( )V= com 1 2 3 4{ , , , }V v v v v= . Para isso, devemos
mostrar que 3
é o conjunto de todas as combinações lineares de 1 2 3, ,v v v e 4v . Os elementos de
3
são do tipo ( , , )a b c , queremos verificar se estes se podem escrever como combinação linear dos
vectores de V, ou seja, temos que resolver o sistema
1 3 4
1 2 3 4 1 2 4
2 3 4
(1,1,0) (0,1,1) (1,0,1) (1,2,1) ( , , ) 2
a
a b c b
c
λ λ λ
λ λ λ λ λ λ λ
λ λ λ
+ + =
+ + + = ⇔ + + =
+ + =
.
A matriz ampliada do sistema é
2
2
2
1 0 1 1 1 0 0 1
1 1 0 2 0 1 0 1
0 1 1 1 0 0 1 0
a b c
a b c
a b c
a
b
c
+ −
− + +
− +
↔ , donde
1 4
1 3 4
2 4
1 2 4
2 3 4
3
4
2
2 2
2
a b c
a a b c
b
a b cc
λ λ
λ λ λ
λ λ
λ λ λ
λ λ λ λ
λ
+ −
= −
+ + = − + +
= −
+ + = ⇔
− ++ + = =
∈
,
portanto, 1 2 3, ,v v v e 4v geram 3
, ou seja, qualquer vector de 3
pode ser escrito como
combinação linear destes vectores. Repare-se que o sistema é possível e indeterminado (porquê?).
Vamos agora verificar se o conjunto 1 2 3{ , , }V v v v= gera 3
. Por um lado, verifica-se que o
determinante cujas colunas são 1 2,v v e 3v é diferente de zero, por outro,
1 21 3
1 1 2 2 3 3 1 2 3 1 2 2 2
2 3 3 2
( , , ) (1,1,0) (0,1,1) (1,0,1) ( , , )
a b c
a b c
a b c
a
v v v a b c a b c b
c
λλ λ
λ λ λ λ λ λ λ λ λ
λ λ λ
+ −
− + +
− +
=+ =
+ + = ⇔ + + = ⇔ + = ⇔ =
+ = =
conclui-se que V gera 3
. Por exemplo, se
1 1 2
1 2
1 1 2
2 2
1 1 2
3 2
1
( , , ) ( 1,1,2) 2
0
a b c
λ
λ
λ
− + −
+ +
− − +
= = −
= − = =
= =
,
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
11/ 26
donde
1 1 2 2 3 3 ( , , ) 1 (1,1,0) 2 (0,1,1) 0 (1,0,1) ( 1,1,2)v v v a b cλ λ λ+ + = ⇔ − × + × + × = − .
Prova-se que o conjunto 1 2{ , }V v v= não gera 3
. O mesmo acontecendo com qualquer conjunto
formado por dois destes vectores (exercício!).
Conclusão: Verificámos que dois conjuntos finitos de vectores geram o espaço vectorial 3
, ou
seja, 3
é finitamente gerado. Em particular, vimos que os conjuntos 1 2 3 4{ , , , }V v v v v= e
1 2 3{ , , }V v v v= geram 3
, mas que o conjunto 1 2{ , }V v v= não gera 3
.
Teorema6: Se os vectores 1 2, ,..., nv v v geram o espaço vectorial E e se um desses vectores pode ser
escrito como uma combinação linear dos outros 1n − vectores, então esses 1n − vectores geram E.
Exercício2: No exemplo10, vimos que 1 2 3 4{ , , , }V v v v v= e 1 2 3{ , , }V v v v= geram 3
. Verifique se
algum vector de 1 2 3 4{ , , , }V v v v v= se pode escrever como combinação linear dos restantes vectores.
De facto, dado um espaço vectorial E, é desejável encontrar um conjunto gerador de E com tão
poucos elementos quanto possível, a que chamamos conjunto gerador mínimo. Por mínimo,
queremos dizer um conjunto gerador sem elementos desnecessários, isto é, todos os elementos no
conjunto são necessários para se gerar o espaço vectorial. Para se ver como encontrar um conjunto
gerador mínimo, é preciso considerar como os vectores no conjunto “dependem” uns dos outros.
Vamos então introduzir os conceitos de dependência e independência linear. Esses conceitos
simples vão dar-nos a chave para entender a estrutura dos espaços vectoriais.
4.4 Dependência e independência linear
Na secção anterior, vimos que um conjunto de vectores 1 2{ , ,..., }nV v v v= gera um determinado
espaço vectorial E se todos os vectores de E se podem exprimir como combinação linear dos
vectores de V. De um modo geral, podem existir várias maneiras de exprimir um vector de E como
combinação dos vectores do espaço gerador. Nesta secção, olhamos mais de perto a estrutura de um
espaço vectorial, estudamos condições sob as quais cada vector de E pode ser expresso como
combinação linear dos vectores do espaço gerador de uma única maneira. Conjuntos geradores com
esta propriedade desempenham um papel fundamental no estudo dos espaços vectoriais.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
12/ 26
Definição6: Um conjunto 1 2{ , ,..., }nV v v v= não vazio de um espaço vectorial E, diz-se linearmente
independente (L.I.) se 1 2
1
0 ... 0
n
i i n
i
vλ λ λ λ
=
= ⇔ = = = = ( iλ ∈ ). Caso contrário, ou seja, se
existe pelo menos um 0iλ ≠ tal que
1
0
n
i i
i
vλ
=
= , o conjunto diz-se linearmente dependente (L.D.).
Exemplo11: Estude a dependência linear do conjunto 1 2 3{ , , }V v v v= com 1 (2, 1,0,3)v = − ,
2 (1,2,5, 1)v = − e 3 (7, 1,5,8)v = −
Resolução: Tendo em conta a definição anterior,
1 2 3
1 2 3
1 1 2 2 3 3 1 2 3
2 3
1 2 3
2 7 0
2 0
0 (2, 1,0,3) (1,2,5, 1) (7, 1,5,8) (0,0,0)
5 5 0
3 8 0
v v v
λ λ λ
λ λ λ
λ λ λ λ λ λ
λ λ
λ λ λ
+ + =
− + − =
+ + = ⇔ − + − + − = ⇔
+ =
− + =
.
Temos que resolver um sistema homogéneo, da definição resulta que conjunto V é L.I. se o sistema
homogéneo associado for possível e determinado, ou seja, tiver apenas a solução trivial,
0 0AX X= ⇔ = . Este estudo pode ser feito através da condensação da matriz A do sistema. Prova-
se que ( ) 2 3r A n= < = (exercício!) logo o sistema é possível e indeterminado. Portanto, existem
escalares 0iλ ≠ tais que 1 1 2 2 3 3 0v v vλ λ λ+ + = (combinação linear), o conjunto 1 2 3{ , , }V v v v= é
linearmente dependente.
Teorema7: Um conjunto de vectores 1 2{ , ,..., }mV v v v= de n
é linearmente independente se, e só
se, o sistema de equações lineares representado por 0AX = , onde A é a matriz (n m× ) cujas
colunas são os vectores 1 2, ,..., mv v v , tem unicamente a solução 0X = .
Obs.8: Caso a matriz A seja (n n× ) o teorema anterior diz que o conjunto 1 2{ , ,..., }nV v v v= de n
é
linearmente independente se, e só se, | | 0A ≠ .
Como vimos, para verificar se um conjunto de vectores é ou não L.I. em n
, precisamos resolver
um sistema homogéneo de n equações lineares. Assim, um conjunto de 2
com mais do que dois
vectores, um conjunto de 3
como mais do que três vectores, e um conjunto de n
com mais de n
vectores, são sempre L.D.. Pois, nestes casos, o problema de verificar se eles são ou não L.I. leva a
um sistema homogéneo com mais incógnitas do que equações, que tem sempre solução não trivial.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
13/ 26
O próximo teorema mostra que um conjunto L.I. em n
contém quanto muito n vectores.
Teorema8: Seja 1 2{ , ,..., }rV v v v= um conjunto de vectores de n
. Se r n> , então V é L.D..
Do exemplo11, verificamos que o termo linearmente dependente sugere que os vectores dependem
uns dos outros de alguma maneira. O teorema seguinte mostra que esse é de facto o caso.
Teorema9: Um conjunto 1 2{ , ,..., }nV v v v= , ( 2n ≥ ), pertencente a um espaço vectorial E, diz-se:
(i) Linearmente independente se, e só se, qualquer vector de V não se puder exprimir como
combinação linear dos restantes 1n − vectores de V. O vector 1v é L.I. se 1 0v ≠ ;
(ii) Linearmente dependente se, e só se, pelo menos um dos vectores de V puder ser expresso como
combinação linear dos restantes 1n − vectores.
Obs.9: Também se diz que no primeiro caso os vectores formam um sistema livre ou independente
e no segundo um sistema ligado ou dependente.
Exemplo12: Verifique se os vectores do conjunto 1 2 3{ , , }V v v v= com 1 (2, 1,0,3)v = − ,
2 (1,2,5, 1)v = − e 3 (7, 1,5,8)v = − se podem escrever como combinação linear uns dos outros.
Resolução: Como vimos no exemplo11, o conjunto 1 2 3{ , , }V v v v= com 1 (2, 1,0,3)v = − ,
2 (1,2,5, 1)v = − e 3 (7, 1,5,8)v = − é linearmente dependente. Assim, tendo em conta este último
teorema pelo menos um destes vectores pode exprimir-se como combinação linear dos restantes
dois. Para além disso, dados n vectores 1 2, ,..., nv v v , é possível escrever um dos vectores como
combinação linear dos outros 1n − vectores se, e só se, existirem 1 2, ,..., nλ λ λ , nem todos nulos, tais
que 1 1 2 2 ... 0n nv v vλ λ λ+ + + = (se o conjunto dos vectores 1 2, ,..., nv v v for L.D).
Condensando a matriz do sistema homogéneo indicado no exemplo11, vem
2 1 7 1 2 1
1 2 1 0 5 5
0 5 5 0 0 0
3 -1 8 0 0 0
− −
− −
↔ , donde
1 2 3
1 2 3 1 3
1 2 3
2 3 2 3
2 3
3
1 2 3
2 7 0
2 0 3
2 0
5 5 0
5 5 0
0 0
3 8 0
λ λ λ
λ λ λ λ λ
λ λ λ
λ λ λ λ
λ λ
λ
λ λ λ
+ + =
− + − = = −
− + − =
⇔ + = ⇔ = −
+ =
= ∈
− + =
.
Assim, 1 1 2 2 3 3 3 1 3 2 3 3 3 1 2 30 3 0 ( 3 ) 0v v v v v v v v vλ λ λ λ λ λ λ+ + = ⇔ − − + = ⇔ − − + = e, se 3 1λ = obtemos
1 2 33 0v v v+ − = . Aqui, cada um dos três vectores pode exprimir-se como combinação linear dos
restantes dois, pois, de 1 2 33 0v v v+ − = vem, 1 1
1 2 33 3v v v= − + , 2 1 33v v v= − + e 3 1 23v v v= + .
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
14/ 26
Obs.10:
1) A dependência linear é uma propriedade do conjunto e não de cada vector individualmente.
Contudo, por um abuso de linguagem, é usual dizer-se que os vectores são L.D. ou L.I;
2) Subconjuntos de conjuntos L.I. são L.I., e, portanto, um conjunto que contenha um
subconjunto L.D. é também L.D;
3) Um subconjunto V não vazio de um espaço vectorial é L.I. se, e só se, qualquer subconjunto
de V finito é L.I.;
4) Qualquer conjunto finito de vectores que contenha o vector nulo é L.D.;
5) Um conjunto com exactamente dois vectores é L.I. se, e só se, qualquer um dos vectores não
for um escalar múltiplo do outro.
Exemplo13: Verifique se o conjunto das matrizes 1
1 1
1 0
M = , 2
0 1
1 1
M = e 3
1 0
0 1
M = é
linearmente independente no espaço das matrizes 2 2×
.
Resolução: A equação matricial 1 1 2 2 3 3
0 0
0 0
M M Mλ λ λ+ + = é equivalente ao sistema de
equações lineares
1 3
1
1 2
2
1 2
3
2 3
0
0
0
0
0
0
0
λ λ
λ
λ λ
λ
λ λ
λ
λ λ
+ =
=
+ =
⇔ =
+ =
=
+ =
, como este sistema tem apenas solução trivial, 1 2,M M e
3M são linearmente independentes.
Os conceitos de dependência e independência linear dão-nos a chave para entender a estrutura dos
espaços vectoriais. Vejamos o seguinte exemplo.
Exemplo14: Estude a dependência linear do conjunto 1 2 3 4{ , , , }V v v v v= de 3
, com 1 (1,1,0)v = ,
2 (0,1,1)v = , 3 (1,0,1)v = e 4 (1,2,1)v = .
Resolução: Para estudar a dependência linear do conjunto 1 2 3 4{ , , , }V v v v v= de 3
, basta ter em
atenção o teorema8; seja 1 2 3 4{ , , , }V v v v v= um conjunto de vectores de 3
, como 4 3r n= > = ,
então V é L.D.. Vimos, no exemplo10, que este conjunto gera 3
.
Se resolvesse-mos a equação 1 1 2 2 3 3 4 4 (0,0,0,0)v v v vλ λ λ λ+ + + = , bastava verificar que a matriz
associada ao sistema homogéneo é (3 4)× , logo o sistema é possível e indeterminado ( ( ) 3r A = ) e
assim, o conjunto 1 2 3 4{ , , , }V v v v v= é linearmente dependente.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
15/ 26
Estudemos, agora, a dependência linear do conjunto 1 2 3{ , , }V v v v= de 3
. Aqui não podemos
utilizar o teorema8 (porquê?) ,
1 3
1 1 2 2 3 3 1 2 3 1 2
2 3
0
(0,0,0) (1,1,0) (0,1,1) (1,0,1) (0,0,0) 0
0
v v v
λ λ
λ λ λ λ λ λ λ λ
λ λ
+ =
+ + = ⇔ + + = ⇔ + =
+ =
.
A matriz do sistema é
1 0 1
1 1 0
0 1 1
A = , como | | 2 0A = ≠ , o sistema é possível e determinado,
admitindo como solução única a solução trivial, 1 2 3 0λ λ λ= = = , logo 1 2 3{ , , }V v v v= é L.I.. Como
vimos no exemplo10 este conjunto gera 3
, sendo L.I. diz-se um conjunto gerador mínimo. O
conjunto 1 2{ , }V v v= não gera 3
mas é L.I. (exercício!).
Teorema10: Sejam 1 2, ,..., mu u u vectores que geram um espaço vectorial E e 1 2{ , ,..., }nV v v v= um
conjunto L.I. Então tem-se, necessariamente, m n≥ . Por outras palavras, num espaço vectorial, um
conjunto gerador nunca pode ter menos elementos do que um conjunto L.I..
Obs.11: Pelo que foi dito, se 1 2{ , ,..., }nV v v v= é um conjunto gerador mínimo, então, V é L.I.. Em
contrapartida, se V é L.I. e gera E, então V é um conjunto gerador mínimo para E. Com veremos
na próxima secção, um conjunto gerador mínimo diz-se uma base do espaço vectorial.
Interpretação geométrica de dependência linear em 2
e 3
.
• Um conjunto formado por dois vectores { , }u v , com 1 2( , )u u u= e 1 2( , )v v v= , é L.D. em 2
se,
e só se, a equação 1 2 1 1 2 2 1 20 ( , ) ( , ) (0,0)u v u u v vλ λ λ λ+ = ⇔ + = possui solução não trivial. Se isto
acontece, então os escalares 1 2,λ λ ∈ não são ambos nulos. Se, por exemplo, 1 0λ ≠ , temos
2
1
u v
λ
λ
= − , se 2 0λ ≠ , 1
2
v u
λ
λ
= − . Ou seja, se { , }u v é L.D., então um dos vectores é escalar
múltiplo do outro. Reciprocamente, se um vector é escalar múltiplo do outro, digamos u vλ= ,
então 0u vλ− = e assim eles são L.D.. Portanto, podemos dizer que um conjunto de dois vectores é
L.D. em 2
se, e só se, um dos vectores é escalar múltiplo do outro. Logo, se os dois vectores
forem colocados na origem vão estar contidos sobre a mesma recta.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
16/ 26
Figura4 – Dois vectores L.D. em 2
Figura5 – Dois vectores L.I. em 2
Analogamente, o conjunto { , }u v , com 1 2 3( , , )u u u u= e 1 2 3( , , )v v v v= , é L.I em 3
se, e só se, os
vectores u e v não pertencem à mesma recta que contém a origem no espaço tridimensional. Como
a origem e esses dois vectores não são colineares, determinam um plano. Se outro vector w
pertence a esse plano, então pode ser escrito como combinação linear de u e v e, portanto, o
conjunto de vectores { , , }u v w é L.D.. Se w não pertence a esse plano, o conjunto é L.I..
• Por outro lado, um conjunto formado por três vectores não nulos 1 2 3{ , , }v v v é L.D. em 3
se, e só
se, a equação 1 1 2 2 3 3 0v v vλ λ λ+ + = , 1 2 3, ,λ λ λ ∈ , possui solução não trivial. Se isso acontece um
dos escalares 1 2,λ λ ou 3λ , é diferente de zero. Se 1 0λ ≠ , temos 32
1 2 3
1 1
v v v
λλ
λ λ
= − − , ou seja, o
vector 1v é combinação linear de 2v e 3v . De forma semelhante, se 2 0λ ≠ , o vector 2v é
combinação linear de 1v e 3v , e se 3 0λ ≠ o vector 3v é combinação linear de 1v e 2v . Assim, se o
conjunto 1 2 3{ , , }v v v é L.D., então um dos vectores é combinação linear dos outros dois, ou seja, um
deles é uma soma de escalares múltiplos dos outros dois. Reciprocamente, se um vector é
combinação linear dos outros dois então 1 2 3{ , , }v v v é L.D.. Portanto, podemos dizer que 1 2 3{ , , }v v v
é L.D. se, e só se, um deles se pode escrever como combinação linear dos outros dois.
Logo se os três vectores forem colocados na origem vão estar contidos no mesmo plano.
Consequentemente, em 3
se um conjunto de três vectores não nulos 1 2 3{ , , }v v v é L.D., então, ou
os três vectores são paralelos, ou dois deles são paralelos, ou os três são complanares (são paralelos
a um mesmo plano).
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
17/ 26
Resumindo:
• Em 2
ou 3
, um conjunto de dois vectores é L.I. se, e só se, os vectores não pertencem a
uma mesma recta contendo a origem (nenhum dos vectores é escalar múltiplo do outro);
• Em 3
, um conjunto de três vectores é L.I. se, e só se, os vectores não pertencerem ao mesmo
plano que contém a origem (nenhum dos vectores é combinação linear dos outros dois).
Exemplo15: Estude a dependência linear do conjunto { , }V u v= , em que (1,0,1)u = e (0,1,1)v = .
Resolução: O conjunto { , }V u v= é L.I., pois um vector não é escalar múltiplo do outro.
Exemplo16: Estude a dependência linear do conjunto constituído pelos vectores 1 (1,2,5)v = ,
2 (3,6, 3)v = − e 3 (1, 1, 1)v = − − de 3
.
Resolução: Como o conjunto V de 3
tem três vectores, pode ser L.D. ou L.I.. Desenvolvendo a
equação vectorial obtemos o sistema linear
1 2 3
1 1 2 2 3 3 1 2 3 1 2 3
1 2 3
3 0
(0,0,0) (1,2,5) (3,6, 3) (1, 1, 1) (0,0,0) 2 6 0
5 3 0
v v v
λ λ λ
λ λ λ λ λ λ λ λ λ
λ λ λ
+ + =
+ + = ⇔ + − + − − = ⇔ + − =
− − =
O conjunto V é linearmente independente se o sistema homogéneo tiver solução trivial, caso
contrário é linearmente dependente. A matriz do sistema é
1 3 1 1 3 1
2 6 1 0 18 6
5 3 1 0 0 3
A = − ↔ − −
− − −
,
assim, o sistema é possível e determinado, têm solução trivial, o conjunto dos vectores
1 2 3{ , , }V v v v= é L.I. Obviamente, | | 0A ≠ (porquê?). Significa que, nenhum dos vectores se pode
escrever como combinação linear dos outros dois.
Geometricamente, como o conjunto 1 2 3{ , , }V v v v= é L.I., um dos vectores não pertence ao mesmo
plano formado pelos outros dois, ou, os três vectores quando posicionados com os seus pontos
iniciais na origem não pertencem ao mesmo plano.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
18/ 26
4.5 Base e dimensão
Usualmente pensamos numa recta como tendo uma dimensão, num plano como sendo bi-
dimensional e no espaço, que nos envolve, como sendo tri-dimensional. Vamos, tentar nesta secção,
tornar esta noção intuitiva de “dimensão” mais precisa.
Vimos que, num espaço vectorial E, um conjunto de geradores pode ser L.I. ou L.D.. Se o conjunto
de geradores for L.D., então existe um vector no conjunto que se pode escrever como combinação
linear de outros elementos do conjunto. Assim, esse elemento não é necessário para gerar o espaço
E. Portanto, um conjunto de geradores L.D. contém vectores que não são necessários para gerar E.
Por outro lado, mostrámos que um conjunto gerador para um espaço vectorial é mínimo se for L.I..
Os elementos de um conjunto gerador mínimo formam peças básicas para a construção de todo o
espaço vectorial e, por causa disso dizemos que formam uma base para o espaço vectorial.
Vimos, no exemplo14, que o conjunto 1 2 3{ , , }V v v v= , com 1 (1,1,0)v = , 2 (0,1,1)v = e 3 (1,0,1)v = é
um conjunto gerador mínimo de 3
. Uma vez que, V gera 3
e é linearmente independente.
Definição7: Um conjunto de vectores 1 2{ , ,..., }nV v v v= de um espaço vectorial E , é uma base
1 2{ , ,..., }nv v v de E sse:
i) V gera o espaço E;
ii) V é linearmente independente.
Exemplo17: Verifique que o conjunto 11 12 21 22{ , , , }A A A A forma uma base para 2 2×
, onde
11
1 0
0 0
A = , 12
0 1
0 0
A = , 21
0 0
1 0
A = e 22
0 0
0 1
A = .
Resolução: Devemos provar que 11 12 21 22{ , , , }A A A A é L.I. e gera o espaço 2 2×
.
i) O conjunto 11 12 21 22{ , , , }A A A A de 2 2×
é linearmente independentes, pois
1 2
1 11 2 12 3 21 4 22 1 2
3 4
0 0
0 ... 0
0 0
nA A A A
λ λ
λ λ λ λ λ λ λ
λ λ
+ + + = ⇔ = ⇔ = = = = ;
ii) Se 2 2
A ×
∈ , como 11 12
21 22
a a
A
a a
= vem 11 11 12 12 21 21 22 22A a A a A a A a A= + + + , ou seja, toda a
matriz (2 2)A × pode escrever-se como combinação linear destas matrizes, logo 11 12 21 22{ , , , }A A A A ,
gera 2 2×
.
Por i) e ii), 11 12 21 22, , ,A A A A formam uma base para 2 2×
, a base canónica.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
19/ 26
Exemplo18: Verifique que os vectores 1 2(1,...,0), (0,1,...,0)e e= = , ..., (0,...,1)ne = , constituem
uma base para o espaço vectorial n
.
Resolução:
i) Qualquer vector de n
, pode ser escrito como combinação linear de 1 2, ,..., ne e e
1 1 1 1( ,..., ) (1,...,0) ... (0,...,1) ...n n n nu u u u u u e u e= = + + = + + . Portanto, 1 2, ,..., ne e e geram o espaço.
ii) O conjunto dos vectores 1 2(1,...,0), (0,1,...,0)e e= = , ..., (0,...,1)ne = é L.I..
Por i) e ii), 1 2{ , ,..., }nV e e e= constitui um base para n
, designada por base canónica de n
.
O conceito de base de um espaço vectorial é de extrema importância. Os vectores de uma base
constituem um espaço vectorial que generaliza o conceito de sistema de coordenadas em 2
e 3
.
O teorema seguinte ajuda-nos a perceber porquê.
Teorema11: Seja E um espaço vectorial, e 1 2{ , ,..., }nV v v v= uma base para E. Então qualquer
vector de E pode exprimir-se de um só modo como combinação linear dos vectores iv ’s de V.
De facto, qualquer vector de um espaço vectorial finitamente gerado pode ser representado como
uma combinação única dos elementos de uma base 1 2{ , ,..., }nV v v v= do espaço (a combinação linear
não é única sse V for L.D.). Por outras palavras, as bases são bons sistemas de coordenadas para
representar vectores de um espaço vectorial.
Componentes de um vector relativamente a uma determinada base: Seja 1 2{ , ,..., }nV v v v= uma
base de um espaço vectorial E, cada u E∈ , pode ser escrito como combinação linear de
1 2, ,..., nv v v , ou seja, 1 1 2 2 ... n nu v v vλ λ λ= + + + (exprime u em termos da base V), então os escalares
1 2, ,..., nλ λ λ ∈ chamam-se componentes ou coordenadas de v relativamente à base 1 2{ , ,..., }nv v v .
Dado um espaço vectorial E, se conhecermos uma base de E, qualquer vector de E fica conhecido
se conhecermos as suas componentes relativamente a essa base.
Exemplo19: Em 2
os vectores da base canónica são 1 (1,0)e = e 2 (0,1)e = . Note-se que,
1 2(1, 3) 3u e e= − = − , uma vez que 1 23 (1,0) 3(0,1) (1,0) (0, 3) (1, 3)u e e= − = − = + − = − . Aos
números 1u e 2u dá-se o nome de componentes do vector em relação à base canónica 1 2{ , }e e .
Generalizando, as componentes de 1( ,..., )nv v v= em relação à base canónica de n
são 1,..., nv v .
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
20/ 26
Obs.12: Note-se que as componentes de um vector, relativamente a uma base de um espaço
vectorial, dependem não só da base mas também da ordem como os vectores da base são escritos;
uma mudança na ordem dos vectores da base resulta numa mudança correspondente na ordem das
entradas das componentes do vector. Para não sobrecarregar a exposição, não estaremos sempre a
repetir isso, e falaremos de uma base simplesmente como um conjunto.
Mudança de base: Uma base de um espaço vectorial, E , é chamada canónica por ser a mais
natural para se representar vectores de E . Embora essas bases canónicas pareçam ser as mais
simples e naturais para se usar, em muitas aplicações, elas não são as bases mais apropriadas. De
facto, a chave na resolução de muitos problemas aplicados é mudar da base canónica para uma base
que é de alguma forma, mais natural para a aplicação em questão. Uma vez resolvido o problema na
nova base, é fácil voltar a representar a solução e, termos da base canónica.
Por exemplo: Pelo teorema11, qualquer vector 1 2( , )v v v= de 2
pode ser representado de
maneira única como uma combinação linear dos vectores de qualquer base de 2
. Por um lado,
1 2 1 1 2 2( , )v v v v e v e= = + , onde os escalares 1v e 2v são as componentes de v em relação à base
canónica 1 2{ , } {(1,0),(0,1)}e e = . Por outro lado, 1 1 2 2v u uλ λ= + , onde os escalares 1λ e 2λ são as
componentes de v em relação à base 1 2{ , }u u (ordenamos os elementos da base de modo que 1u
seja o primeiro vector da base e 2u seja o segundo).
Uma vez decididos a trabalhar com uma nova base temos o problema de encontrar as coordenadas
em relação a essa nova base. Suponhamos, por exemplo, que, em vez, de usarmos a base canónica
1 2{ , }e e para 2
, queríamos usar uma base diferente, por exemplo, 1 2{ , }u u com 1 (3,2)u = e
2 (1,1)u = . Isto equivale a querer obter as componentes de um vector de 2
em relação aos dois
sistemas de coordenadas, para isso, vamos considerar os dois problemas seguintes:
i) Encontrar componentes do vector 1 1 2 2u uλ λ+ em relação à base 1 2{ , }e e .
ii) Encontrar as componentes do vector 1 1 2 2v v e v e= + em relação à base 1 2{ , }u u ;
Comecemos por resolver o problema i), para mudar a base 1 2{ , }u u para a base 1 2{ , }e e , precisamos
exprimir os elementos da base antiga 1u e 2u , em termos dos elementos da nova base, 1e e 2e . De
1 1 23 2u e e= + e 2 1 2u e e= + , vem
1 1 2 2 1 1 1 2 2 1 2 2 1 2 1 1 2 23 2 (3 ) (2 )u u e e e e e eλ λ λ λ λ λ λ λ λ λ+ = + + + = + + + ,
o vector de componentes 1 1 2 2u uλ λ+ em relação a 1 2{ , }e e é
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
21/ 26
1 2 1 2 1 2(3 ,2 ) (3,2) (1,1)v λ λ λ λ λ λ= + + = + ,
que em notação matricial pode ser escrita na forma
1 2 1
1 2 2
3 3 1
2 2 1
v
λ λ λ
λ λ λ
+
= =
+
.
Definindo 1 2
3 1
( , )
2 1
U u u= = e [ ]1 2 1 2( , )λ λ λ λ λ= = temos que, para qualquer vector de
componentes λ em relação a 1 2{ , }u u , para encontrar o vector de componentes correspondentes v
em relação a 1 2{ , }e e , basta multiplicar U por λ , ou seja, v Uλ= . A matriz U é chamada matriz
mudança de base de 1 2{ , }u u para 1 2{ , }e e .
Para resolver o problema ii), precisamos encontrar a matriz mudança de base de 1 2{ , }e e para
1 2{ , }u u . A matriz U admite inversa, uma vez que as suas colunas são constituídas por vectores
L.I.. Temos então 1 1 1
v U U v U U U vλ λ λ− − −
= ⇔ = ⇔ = . Assim, dado um vector
1 2 1 1 2 2( , )v v v v e v e= = + , basta multiplicá-lo por 1
U −
para se encontrar o seu vector de componentes
relativamente a 1 2{ , }u u . A matriz 1
U −
é a matriz mudança de base de 1 2{ , }e e para 1 2{ , }u u .
Exemplo20: Considerando os vectores (1,4)u = , (2,1)v = e (7,7)w = encontre as coordenadas de
w relativamente à base { , }u v .
Resolução: Os vectores (1,4)u = e (2,1)v = formam um conjunto linearmente independente,
assim, { , }u v é uma base de 2
. Pelo que foi dito, a matriz mudança de base de 1 2{ , }e e para { , }u v
é a inversa de 1 2
1 2
( , )
4 1
U u u= = , ou seja, 1 1 2 7 11
4 1 7 37
U vλ − −
= = − =
−
, donde o vector
pedido é 3w u v= + .
Figura6 – Soma de vectores em 2
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
22/ 26
O vector (7,7)w = pode ser escrito como combinação linear 3w u v= + . Assim, o vector de
componentes de w em relação a { , }u v é (1,3). Geometricamente, esse vector diz-nos como sair da
origem e chegar a (7,7)w = movendo-nos primeiro na direcção de u e depois na direcção de v .
O vector de componentes de w em relação à base ordenada { , }v u é (3,1). Geometricamente, esse
vector diz-nos como sair da origem e chegar a (7,7)w = movendo-nos primeiro na direcção de v e
depois na direcção de u .
A definição de dimensão de um espaço vectorial está relacionada com o número de vectores de
uma base do espaço. Como um espaço vectorial pode ter mais do que uma base é preciso
estabelecer que bases diferentes de um mesmo espaço vectorial contêm o mesmo número de
vectores. O próximo teorema providencia a chave para o conceito de dimensão.
Teorema12: Seja E um espaço vectorial e 1 2{ , ,..., }nV v v v= qualquer base para E:
(i) Qualquer subconjunto de E com mais do que n vectores é linearmente dependente;
(ii) Qualquer subconjunto de E com menos do que n vectores não pode gerar E.
Resulta deste último teorema que, se 1 2{ , ,..., }nV v v v= for uma base para um espaço vectorial E,
então todos os subconjuntos de E que simultaneamente geram E e são L.I. deverão ter precisamente
n vectores. Assim, todas as bases de E deverão ter o mesmo número de vectores que a base
arbitrária V . Isto motiva o seguinte resultado, um dos mais importantes em álgebra linear.
Teorema13: Se um espaço vectorial E tem uma base com n vectores, então todas as bases para E
tem exactamente n vectores.
Obs.13. Resulta que, se 1 1{ ,..., }mV u u= e 2 1{ ,..., }nV v v= são duas bases de um espaço vectorial E,
então m n= . Todas as bases de um espaço vectorial têm o mesmo número de vectores.
Para se ver como este teorema esta relacionado com o conceito de dimensão, recorde-se que a base
canónica de n
tem n vectores. Então o teorema13 implica que as infinitas bases de n
têm n
vectores. Em particular, todas as bases de 3
têm três vectores, todas as bases de 2
têm dois
vectores, e todas as bases de têm um vector. Intuitivamente, 3
é tridimensional, 2
(um plano)
é bidimensional, e (uma linha) é unidimensional. Assim, para espaços vectoriais usuais, o
número de vectores que constituem uma base coincide com a dimensão do espaço vectorial. O que
sugere a seguinte definição.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
23/ 26
Definição8: Um espaço vectorial E é chamado de dimensão finita se tem uma base que contém um
número finito de vectores. A dimensão de E, representada por dim( )E , é o número de vectores de
uma base de E. A dimensão do espaço vectorial nulo, {0}E = , é definida como sendodim( ) 0E = .
Um espaço vectorial que não tem uma base finita é chamado de dimensão infinita.
Obs.14: Se uma base de E tiver n elementos, dizemos que E tem dimensão n, e escrevemos
dim( )E n= (quando E contém um conjunto com n vectores L.I. nos quais se possa expressar
linearmente qualquer outro vector de E).
Obs.15: Como convenção, considera-se o conjunto vazio como sendo uma base do espaço vectorial
nulo. Esta convenção é consistente com a definição anterior, uma vez que o conjunto vazio não tem
vectores e o espaço vectorial nulo tem dimensão zero.
Exemplo21:
1) Se uma base de E é constituída por infinitos vectores, diz-se que E tem dimensão infinita. Por
exemplo, dim( )∞
= ∞ .
2) dim( )n
n= (porquê?). Em particular, é um espaço vectorial de dimensão 1 e 3
dim( ) 3= .
3) No plano, os vectores OA e OB não colineares formam um conjunto L.I. e não há três vectores
nestas condições, logo OA, OB formam uma base e 2
dim( ) 2= .
4) Mais geralmente, tem-se ( )dim( ( ))m nM m n× = × .
5) A dimensão do espaço das matrizes (n n× ) triangulares superiores é
( 1)
2
n n +
(exercício!).
A dimensão de um espaço vectorial é o seu “número mágico”. Conhecer a dimensão de um espaço
vectorial E dá muita informação sobre E e pode simplificar enormemente o trabalho necessário em
certos tipos de cálculo. De um modo geral, para se provar que um conjunto de vectores
1 2{ , ,..., }nV v v v= é uma base de um espaço vectorial E, devemos mostrar que V é linearmente
independente e que gera E. Contudo, se soubemos que dim( )E n= (ou seja, 1 2{ , ,..., }nv v v contém o
número certo de vectores para uma base), então é suficiente provar que V é L.I. ou que gera o
espaço – a outra condição verificar-se-á automaticamente. Isto motiva o seguinte teorema.
Teorema14: Seja E um espaço vectorial com dimensão finita, dim( )E n= , e S um subconjunto de
E com exactamente n vectores, então S é uma base de E se S gerar E ou for linearmente
independente.
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
24/ 26
Obs.16: Pelo que foi dito, seja E um espaço vectorial com dimensão finita, dim( )E n= . Então:
(i) Qualquer subconjunto L.I. de E contém no máximo n vectores.
(ii) Todo o subconjunto L.I. de E , com exactamente n vectores, gera E, logo, é uma base para E .
(iii) Todo conjunto gerador de E contém no mínimo n vectores (nenhum conjunto com menos de n
vectores pode gerar E);
(iv) Qualquer conjunto gerador de E , com exactamente n vectores, é L.I., logo, é uma base para E .
Exemplo22: Mostre que:
(a) os vectores 1 ( 3,7)v = − e 2 (5,5)v = forma uma base de 2
;
(b) os vectores 1 2(2,0, 1), (4,0,7)v v= − = e 3 ( 1,1,4)v = − forma uma base de 3
.
Resolução:
(a) Pelo teorema14, uma base de um espaço vectorial de dimensão n é qualquer subconjunto de n
vectores L.I. desse espaço. Como, qualquer um dos vectores não é escalar múltiplo do outro, os dois
vectores formam um subconjunto L.I. do espaço bidimensional 2
, ou seja, uma base para 2
;
(b) Os vectores 1v e 2v formam um conjunto L.I. no plano XOZ (porquê?). O vector 3v não
pertence ao plano XOZ , portanto, o conjunto 1 2 3{ , , }v v v é L.I.. Uma vez que 3
dim( ) 3= , o
teorema14 garante que o conjunto 1 2 3{ , , }v v v forma um base de 3
.
O teorema seguinte mostra que para um espaço vectorial E de dimensão finita, qualquer conjunto
que gera E contém uma base de E , e que qualquer conjunto linearmente independente de E faz
parte de alguma base de E .
Teorema15: Seja V um subconjunto finito de vectores de um espaço vectorial E de dimensão finita.
i) Se V gera E mas não for uma base (por conter mais de n vectores) de E, então V pode ser reduzido
a uma base de E removendo-se apropriadamente vectores de V;
iii) Se V for um conjunto linearmente independente que não seja uma base de E, então V pode ser
transformado numa base de E incluindo apropriadamente vectores em V.
Exemplo23: Para explorarmos a informação do teorema anterior, vamos considerar o exemplo14
onde se considerou os vectores 1 (1,1,0)v = , 2 (0,1,1)v = , 3 (1,0,1)v = e 4 (1,2,1)v = . Vimos que:
i) O conjunto 1 2 3 4{ , , , }V v v v v= de 3
, apesar de gerar 3
não é L.I. (não é uma base para 3
);
ii) O conjunto 1 2 3{ , , }V v v v= gera 3
e é L.I. (é uma base para 3
);
iii) O conjunto 1 2{ , }V v v= apesar de L.I. não gera 3
(não é uma base para 3
).
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
25/ 26
Tendo em conta os pontos i) ii) e iii), concluímos que: Por exemplo, de 1 2 3 4{ , , , }V v v v v= retira-se
o vector 4v , obtendo-se 1 2 3{ , , }V v v v= uma base para 3
(de todo o conjunto de geradores de 3
pode ser extraída uma base de 3
); Por exemplo, de 1 2{ , }V v v= inserindo o vector 3v , obtém-se
1 2 3{ , , }V v v v= uma base para 3
.
De facto, sendo E um espaço vectorial de dimensão finita, dim( )E n= , o teorema15, garante que:
i) Podemos retirar vectores apropriados de qualquer conjunto gerador contendo mais de n vectores
(que não seja uma base para E ) de modo a se obter uma base para E (qualquer conjunto gerador de
E pode ser reduzido a uma base para E ).
ii) Qualquer subconjunto V de E L.I. com menos de n elementos (que não seja uma base para E )
pode ser estendido para formar uma base para E , inserindo vectores apropriados em V.
Prova-se que qualquer subespaço de um espaço vectorial de dimensão finita tem dimensão finita.
Conclui-se esta secção com um teorema que mostra que a dimensão de um subespaço de um espaço
vectorial de dimensão finita E não pode exceder a dimensão de E e que a única maneira desse
subespaço ter a mesma dimensão de E é no caso em que o subespaço coincide com E. A figura7
ilustra esta ideia em 3
.
Figura7 –Dimensão dos subespaços de 3
A figura anterior, ilustra que quanto “maior” for o subespaço, maior é a sua dimensão, ou seja:
• A origem é 0-dimensional;
• A recta que passa pela origem, r, é unidimensional;
• O plano que passa pela origem, π , é bidimensional;
• 3
é tridimensional.
Teorema16: Seja W um subespaço de um espaço vectorial de dimensão finita E , então
dim( ) dim( )W E≤ (W tem dimensão finita); para além disso se dim( ) dim( )W E= , então W E= .
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Espaços vectoriais
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
26/ 26
Exemplo24: Determine a dimensão do subespaço S de 3
gerado pelos vectores 1 (1, 1,2)v = − ,
2 ( 2,3,1)v = − e 3 ( 1,3,8)v = − .
Resolução: Os subespaços de 3
são; a origem, uma recta que passa pela origem, um plano que
passa pela origem e 3
.
Como 1 1 2 2 3 3 ( , , )v v v a b cλ λ λ+ + = é um sistema impossível (porquê?), concluímos que os vectores
1 2,v v e 3v não geram 3
, dim( ) 3S ≠ .
Vamos agora estudar dependência linear do conjunto { }1 2 3, ,V v v v= . Como a matriz A do sistema
1 1 2 2 3 3 (0,0,0)v v vλ λ λ+ + = é (3 3)× , basta estudar o valor de | |A . Sendo | | 0A = , o sistema é
possível e indeterminado, donde o conjunto V é linearmente dependente. Por este motivo, existem
vectores de V que se podem escrever como combinação linear dos restantes,
1 2 3 1 3
1 1 2 2 3 3 1 2 3 2 3
1 2 3 3
2 0 3
(0,0,0) 3 3 0 2
2 8 0
v v v
λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ
− − = = −
+ + = ⇔ − + + = ⇔ = −
+ + = ∈
.
Assim,
1 1 2 2 3 3 3 1 3 2 3 3 3 1 2 3(0,0,0) 3 2 ( 3 2 ) (0,0,0)v v v v v v v v vλ λ λ λ λ λ λ+ + = ⇔ − − + = − − + = ,
fazendo, 3 1λ = , vem 3 1 23 2v v v= + . Ou seja, 3v pertence ao espaço gerado por 1v e 2v , donde, o
subespaço S de 3
gerado por 1 2,v v e 3v pode ser representado pelos vectores 1v e 2v . Como,
qualquer combinação linear de 1 2,v v e 3v pode ser reduzida a uma combinação linear de 1v e 2v ,
1 1 2 2 3 3 1 1 2 2 3 1 2 1 3 1 2 3 2(3 2 ) ( 3 ) ( 2 )v v v v v v v v vλ λ λ λ λ λ λ λ λ λ+ + = + + + = + + + , o espaço gerado por
1 2 3{ , , }V v v v= é { }1 2( ) ,S ger V v v= = .
Por outro lado, como 3 1 2 1 2 33 2 3 2 0v v v v v v= + ⇔ + − = , e sendo os três coeficientes diferentes de
zero, podemos exprimir cada um dos vectores em função dos outros dois 2 1
1 2 33 3v v v= − + e
3 1
2 1 32 2v v v= − + . Temos então que, { } { }1 2 1 3ger , , ger ,S v v S v v= = ou { }2 3ger ,S v v= , ou seja, o
subespaço S pode ser gerado por quaisquer dois dos vectores dados.
Prova-se que os conjuntos { }1 2,v v , { }2 3,v v e { }1 3,v v são L.I., ou seja, formam uma base para S.
Concluí-se que, 3
dim( ) 2 dim( )S = < .
Os vectores destes conjuntos definem planos que passam pela origem.

Mais conteúdo relacionado

Mais procurados

Compendio.algebra.linear
Compendio.algebra.linearCompendio.algebra.linear
Compendio.algebra.linear
Ole Peter Smith
 
Equações diferenciais ordinárias
Equações diferenciais ordináriasEquações diferenciais ordinárias
Equações diferenciais ordinárias
Herlan Ribeiro de Souza
 
1939 d (2)
1939 d (2)1939 d (2)
1939 d (2)
Tuane Paixão
 
Edo
EdoEdo
Edo
wvnf
 
CN 07
CN 07CN 07
Apostila de ã lgebra linear
Apostila de ã lgebra linearApostila de ã lgebra linear
Apostila de ã lgebra linear
Elisangela Mazza
 
Algebra linear operações com matrizes
Algebra linear   operações com matrizesAlgebra linear   operações com matrizes
Algebra linear operações com matrizes
Felipe Schimith Batista
 
Algebra Linear cap 04
Algebra Linear cap 04Algebra Linear cap 04
Algebra Linear cap 04
Andrei Bastos
 
Decomposições de matrizes utilizando conceitos de Auto Vetores e Auto Valores
Decomposições de matrizes utilizando conceitos de Auto Vetores e Auto ValoresDecomposições de matrizes utilizando conceitos de Auto Vetores e Auto Valores
Decomposições de matrizes utilizando conceitos de Auto Vetores e Auto Valores
Felipe Schimith Batista
 
Introdução aos espaços de dimensão infinita
Introdução aos espaços de dimensão infinitaIntrodução aos espaços de dimensão infinita
Introdução aos espaços de dimensão infinita
Felipe Rocha Felix
 
Algebra linear operações com matrizes
Algebra linear operações com matrizesAlgebra linear operações com matrizes
Algebra linear operações com matrizes
Felipe Schimith Batista
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
Jean Silveira
 
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Agnaldo Coelho
 
Álgebra Li
Álgebra LiÁlgebra Li
Resumo teorico matematica afa
Resumo teorico matematica afaResumo teorico matematica afa
Resumo teorico matematica afa
Acir Robson
 
Capitulo1
Capitulo1Capitulo1
Capitulo1
Julio F Ferreira
 
Fórmulas matemáticas
Fórmulas matemáticasFórmulas matemáticas
Fórmulas matemáticas
Fernando Viana
 
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Agnaldo Coelho
 
FORMA ANALÍTICA E MÉTODOS DAS DIFERENÇAS FINITAS APLICADO AO POTENCIAL DENTRO...
FORMA ANALÍTICA E MÉTODOS DAS DIFERENÇAS FINITAS APLICADO AO POTENCIAL DENTRO...FORMA ANALÍTICA E MÉTODOS DAS DIFERENÇAS FINITAS APLICADO AO POTENCIAL DENTRO...
FORMA ANALÍTICA E MÉTODOS DAS DIFERENÇAS FINITAS APLICADO AO POTENCIAL DENTRO...
JÚLIO PEIXOTO
 

Mais procurados (19)

Compendio.algebra.linear
Compendio.algebra.linearCompendio.algebra.linear
Compendio.algebra.linear
 
Equações diferenciais ordinárias
Equações diferenciais ordináriasEquações diferenciais ordinárias
Equações diferenciais ordinárias
 
1939 d (2)
1939 d (2)1939 d (2)
1939 d (2)
 
Edo
EdoEdo
Edo
 
CN 07
CN 07CN 07
CN 07
 
Apostila de ã lgebra linear
Apostila de ã lgebra linearApostila de ã lgebra linear
Apostila de ã lgebra linear
 
Algebra linear operações com matrizes
Algebra linear   operações com matrizesAlgebra linear   operações com matrizes
Algebra linear operações com matrizes
 
Algebra Linear cap 04
Algebra Linear cap 04Algebra Linear cap 04
Algebra Linear cap 04
 
Decomposições de matrizes utilizando conceitos de Auto Vetores e Auto Valores
Decomposições de matrizes utilizando conceitos de Auto Vetores e Auto ValoresDecomposições de matrizes utilizando conceitos de Auto Vetores e Auto Valores
Decomposições de matrizes utilizando conceitos de Auto Vetores e Auto Valores
 
Introdução aos espaços de dimensão infinita
Introdução aos espaços de dimensão infinitaIntrodução aos espaços de dimensão infinita
Introdução aos espaços de dimensão infinita
 
Algebra linear operações com matrizes
Algebra linear operações com matrizesAlgebra linear operações com matrizes
Algebra linear operações com matrizes
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
 
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
 
Álgebra Li
Álgebra LiÁlgebra Li
Álgebra Li
 
Resumo teorico matematica afa
Resumo teorico matematica afaResumo teorico matematica afa
Resumo teorico matematica afa
 
Capitulo1
Capitulo1Capitulo1
Capitulo1
 
Fórmulas matemáticas
Fórmulas matemáticasFórmulas matemáticas
Fórmulas matemáticas
 
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
 
FORMA ANALÍTICA E MÉTODOS DAS DIFERENÇAS FINITAS APLICADO AO POTENCIAL DENTRO...
FORMA ANALÍTICA E MÉTODOS DAS DIFERENÇAS FINITAS APLICADO AO POTENCIAL DENTRO...FORMA ANALÍTICA E MÉTODOS DAS DIFERENÇAS FINITAS APLICADO AO POTENCIAL DENTRO...
FORMA ANALÍTICA E MÉTODOS DAS DIFERENÇAS FINITAS APLICADO AO POTENCIAL DENTRO...
 

Semelhante a 4. espacos vectoriais

Paginas.fe.up.pt ~ldinis capitulo1
Paginas.fe.up.pt ~ldinis capitulo1Paginas.fe.up.pt ~ldinis capitulo1
Paginas.fe.up.pt ~ldinis capitulo1
Bowman Guimaraes
 
Apostila de geometria analítica espacial (1)
Apostila de geometria analítica espacial (1)Apostila de geometria analítica espacial (1)
Apostila de geometria analítica espacial (1)
day ....
 
Texto complementar nº 1 - Gráficos
Texto complementar nº 1 - GráficosTexto complementar nº 1 - Gráficos
Texto complementar nº 1 - Gráficos
Brenno Machado
 
Apostila funcoes
Apostila funcoesApostila funcoes
Apostila funcoes
Alessandra Nascimento
 
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Carlos Andrade
 
Apostila geometria analítica plana 2º ed.
Apostila geometria analítica plana   2º ed.Apostila geometria analítica plana   2º ed.
Apostila geometria analítica plana 2º ed.
day ....
 
Matematica quantica
Matematica quanticaMatematica quantica
Matematica quantica
Leandro Gonzales
 
Algebra Linear cap 03
Algebra Linear cap 03Algebra Linear cap 03
Algebra Linear cap 03
Andrei Bastos
 
1928 d
1928 d1928 d
Matemática Discreta - Parte IV teoria dos-conjuntos
Matemática Discreta - Parte IV teoria dos-conjuntosMatemática Discreta - Parte IV teoria dos-conjuntos
Matemática Discreta - Parte IV teoria dos-conjuntos
Ulrich Schiel
 
Cursocalc1ead
Cursocalc1eadCursocalc1ead
Cursocalc1ead
Carlos Genesis
 
2 - Geometria Analítica Vetores Completo.pdf
2 - Geometria Analítica Vetores Completo.pdf2 - Geometria Analítica Vetores Completo.pdf
2 - Geometria Analítica Vetores Completo.pdf
IndiaAndreiaCostaSiq
 
Espaço Vetorial: Teoria e Exercícios resolvidos
Espaço Vetorial: Teoria e Exercícios resolvidosEspaço Vetorial: Teoria e Exercícios resolvidos
Espaço Vetorial: Teoria e Exercícios resolvidos
numerosnamente
 
Trabalho de matematica_as_funções_trigonométricas_verdadeira[1]
Trabalho de matematica_as_funções_trigonométricas_verdadeira[1]Trabalho de matematica_as_funções_trigonométricas_verdadeira[1]
Trabalho de matematica_as_funções_trigonométricas_verdadeira[1]
Lucas Albano Anibal Khanbanca
 
Vetores
VetoresVetores
Vetores
Jupira Silva
 
Revisao 2 2019.pdf
Revisao 2 2019.pdfRevisao 2 2019.pdf
Revisao 2 2019.pdf
PequenoSenSei
 
áLgebra linear
áLgebra linearáLgebra linear
áLgebra linear
Izabelly Karine
 
Matemática pga1
Matemática pga1Matemática pga1
Matemática pga1
takahico
 
Booklet reais
Booklet reaisBooklet reais
Booklet reais
pm3d
 
GEOMETRIA ANALÍTICA cap 04
GEOMETRIA ANALÍTICA cap  04GEOMETRIA ANALÍTICA cap  04
GEOMETRIA ANALÍTICA cap 04
Andrei Bastos
 

Semelhante a 4. espacos vectoriais (20)

Paginas.fe.up.pt ~ldinis capitulo1
Paginas.fe.up.pt ~ldinis capitulo1Paginas.fe.up.pt ~ldinis capitulo1
Paginas.fe.up.pt ~ldinis capitulo1
 
Apostila de geometria analítica espacial (1)
Apostila de geometria analítica espacial (1)Apostila de geometria analítica espacial (1)
Apostila de geometria analítica espacial (1)
 
Texto complementar nº 1 - Gráficos
Texto complementar nº 1 - GráficosTexto complementar nº 1 - Gráficos
Texto complementar nº 1 - Gráficos
 
Apostila funcoes
Apostila funcoesApostila funcoes
Apostila funcoes
 
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
 
Apostila geometria analítica plana 2º ed.
Apostila geometria analítica plana   2º ed.Apostila geometria analítica plana   2º ed.
Apostila geometria analítica plana 2º ed.
 
Matematica quantica
Matematica quanticaMatematica quantica
Matematica quantica
 
Algebra Linear cap 03
Algebra Linear cap 03Algebra Linear cap 03
Algebra Linear cap 03
 
1928 d
1928 d1928 d
1928 d
 
Matemática Discreta - Parte IV teoria dos-conjuntos
Matemática Discreta - Parte IV teoria dos-conjuntosMatemática Discreta - Parte IV teoria dos-conjuntos
Matemática Discreta - Parte IV teoria dos-conjuntos
 
Cursocalc1ead
Cursocalc1eadCursocalc1ead
Cursocalc1ead
 
2 - Geometria Analítica Vetores Completo.pdf
2 - Geometria Analítica Vetores Completo.pdf2 - Geometria Analítica Vetores Completo.pdf
2 - Geometria Analítica Vetores Completo.pdf
 
Espaço Vetorial: Teoria e Exercícios resolvidos
Espaço Vetorial: Teoria e Exercícios resolvidosEspaço Vetorial: Teoria e Exercícios resolvidos
Espaço Vetorial: Teoria e Exercícios resolvidos
 
Trabalho de matematica_as_funções_trigonométricas_verdadeira[1]
Trabalho de matematica_as_funções_trigonométricas_verdadeira[1]Trabalho de matematica_as_funções_trigonométricas_verdadeira[1]
Trabalho de matematica_as_funções_trigonométricas_verdadeira[1]
 
Vetores
VetoresVetores
Vetores
 
Revisao 2 2019.pdf
Revisao 2 2019.pdfRevisao 2 2019.pdf
Revisao 2 2019.pdf
 
áLgebra linear
áLgebra linearáLgebra linear
áLgebra linear
 
Matemática pga1
Matemática pga1Matemática pga1
Matemática pga1
 
Booklet reais
Booklet reaisBooklet reais
Booklet reais
 
GEOMETRIA ANALÍTICA cap 04
GEOMETRIA ANALÍTICA cap  04GEOMETRIA ANALÍTICA cap  04
GEOMETRIA ANALÍTICA cap 04
 

4. espacos vectoriais

  • 1. UNIVERSIDADE DO ALGARVE – ESCOLA SUPERIOR DE TECNOLOGIA ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (IV. Espaços vectoriais)
  • 2. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Índice 4. Espaços vectoriais..........................................................................................................1 4.1 Definição e exemplos ......................................................................................................1 4.2 Subespaços......................................................................................................................4 4.3 Conjuntos geradores........................................................................................................7 4.4 Dependência e independência linear ..............................................................................11 4.5 Base e dimensão............................................................................................................18
  • 3. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1/ 26 4. Espaço vectoriais 4.1 Definição e exemplos As operações de soma e multiplicação por um escalar são usadas em diversos contextos na matemática, independentemente destes, essas operações obedecem, em geral, ao mesmo conjunto de regras aritméticas. Assim, uma teoria geral de sistemas matemáticos envolvendo estas duas operações vai ter aplicação em diversas áreas da matemática. Sistemas matemáticos deste tipo são chamados espaços vectoriais ou espaços lineares. Neste capítulo, vamos definir espaços vectoriais e desenvolver parte da sua teoria geral. Definição1: Seja E um conjunto arbitrário não vazio onde estão definidas duas operações, a adição e a multiplicação por escalares. Se os seguintes axiomas se verificam para todos os elementos u, v e w de E e todos os escalares λ e γ , então E é um espaço vectorial e os seus elementos são chamados vectores. I. Adição é uma regra que associa a cada par de elementos u e v de E um único elemento +u v de E, de maneira a que se verifiquem os seguintes axiomas: I.1 – Comutatividade da adição: + = +u v v u; I.2 – Associatividade da adição: ( ) ( )+ + = + +u v w u v w ; I.3 – Elemento neutro: E∃ ∈0 , chamado vector nulo de E : E∀ ∈u , + = + =0 0u u u ; I.4 – Elemento simétrico: E∀ ∈u , ( ) E∃ − ∈u , chamado simétrico de u: ( ) ( )+ − = − + = 0u u u u . II. Multiplicação por escalares é uma regra que associa a cada escalar λ e cada elemento u de E um único elemento λu de E, chamado escalar múltiplo de u, que verifica os seguinte axiomas: II.1 – Distributividade em relação à adição em E: ( )λ λ λ+ = +u v u v ; II.2 – Distributividade em relação à adição de escalares: ( )λ γ λ γ+ = +u u u ; II.3 – Associatividade da multiplicação por escalares: ( ) ( )λ γ λγ=u u; II.4 – Elemento identidade: 1 =u u , E∀ ∈u , sendo 1 o elemento unidade dos escalares. Repare-se que: I. Significa que, se u e v pertencem a E, então +u v pertence a E (fechado para a adição); II. Significa que, se λ é um escalar arbitrário e u um qualquer elemento de E , então λu pertence a E (fechado para a multiplicação por escalares).
  • 4. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2/ 26 Obs.1: • Deve ter-se em conta que a definição de espaço vectorial não especifica quer a natureza dos elementos (vectores) que formam o conjunto E quer as operações entre estes vectores. Qualquer tipo de objecto pode ser um vector, e as operações de adição e multiplicação por escalares podem não ter qualquer relação ou semelhança com as operações standard dos vectores em n . O que é exigido é que os axiomas do espaço vectorial sejam satisfeitos (os axiomas não se provam, eles são simplesmente as “regras do jogo”). Alguns autores utilizam a notação ⊕ e para adição de vectores e multiplicação por escalares para se distinguir estas operações da adição e multiplicação de números reais; não se utilizará esta convenção. • De um modo geral, dependendo da aplicação, os escalares podem ser tomados de qualquer sistema numérico no qual, falando informalmente, se possa somar, subtrair, multiplicar e dividir de acordo com as leis habituais da aritmética. Em álgebra abstracta, um sistema desses é conhecido como um corpo. • Portanto, existem uma infinidade de espaços vectoriais. Apenas estudaremos os espaços vectoriais sobre os números reais, ou seja, quando os “escalares” são números reais. Assim, omitimos a palavra real, quando nos referimos a espaços vectoriais, assumiremos que estamos a trabalhar com o sistema dos números reais. Exemplo1 (espaços vectoriais): Em cada caso, devemos especificar um conjunto não vazio E , bem como as operações de adição e multiplicação por escalares, e devem verificar-se os respectivos axiomas. Só assim E, com as operações especificadas, pode ser chamado um espaço vectorial. i) O conjunto n E = representa o espaço de todos os n-uplos ordenados de números reais, { }1 2( , ,..., ): , 1,2,...,n n ix x x x i n= ∈ = . Onde, representa o conjunto dos números reais e n∈ , o conjunto dos números naturais. Para cada 1,2,...n = , o conjunto n E = , munido das operações usuais de adição 1 1 2 2( , ,..., ) n n nx y x y x y+ = + + + ∈x y e multiplicação escalar 1 2( , ,..., ) n nx x xλ λ λ λ= ∈x , com 1 2 1 2( , ,..., ), ( , ,..., ) n n nx x x y y y= = ∈x y e λ ∈ , é um espaço vectorial real com n dimensões. De um modo geral, os elementos 1( ,..., )nx x de n , têm duas interpretações geométricas. Podem ser interpretados como pontos, neste caso, 1,..., nx x ∈ são as coordenadas do ponto, ou podem ser interpretados como vectores, neste caso, 1,..., nx x ∈ são as componentes escalares do vector. Esta
  • 5. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 3/ 26 distinção é pouco importante em termos matemáticos, chamaremos aos elementos de n pontos ou vectores dependendo da situação. Por exemplo, em 3 : Figura1 – Coordenadas 0 0 0( , , )x y z Figura2 – Componentes 0 0 0( , , )x y z Na bibliografia, por se tratar de uma convenção comum, os pontos aparecem representados por letras minúsculas a “negrito” ou por letras maiúsculas, enquanto os vectores, também, por letras minúsculas a “negrito” ou com uma seta por cima. Neste texto, para n , representam-se os pontos por letra maiúscula, a origem por (0,0,...,0)O = =0 , e os vectores com uma seta por cima. ii) O conjunto E de todas matrizes reais (m n× ) é um espaço vectorial ( m n× ou ( ) ( )m nM × ) se a adição de vectores é definida como sendo a adição de matrizes e a multiplicação escalar de vectores é definida como sendo a multiplicação de matrizes por escalares. Seja 11 12 1 21 22 2 1 2 ( ) ........ ........ ........ n n m m nn n n a a a a a a A a a a × = uma matriz (n n× ) de elementos de , as várias linhas de A podem considerar-se vectores de n , da forma 1 i ij j j a a e = = , sendo os vectores, je , representados pelas linhas da matriz identidade. • m n× é o espaço vectorial de todas as matrizes reais (m n× ), portanto, a matriz ( )m nA × pode ser considerada um vector de m n× ;
  • 6. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 4/ 26 • 1 n× é o espaço vectorial de todas as matrizes reais (1 n× ) (as matrizes linha), portanto, a matriz (1 ) 11 12 1[ ... ]n nA a a a× = pode ser considerada um vector de 1 n× ; • 1m× é o espaço vectorial de todas as matrizes reais ( 1m× ) (as matrizes colunas) portanto, a matriz ( 1) 11 21 1[ ... ]T m mA a a a× = pode ser considerada um vector de 1m× . Exemplo2 (um conjunto que não é um espaço vectorial): Seja 2 E = , para 1 2( , )u u u= e 1 2( , )v v v= , define-se a adição e multiplicação escalar do seguinte modo: 1 1 2 2( , )u v u v u v+ = + + (adição standard de 2 ) e 1( ,0)ku ku= , k ∈ (não é a multiplicação escalar standard de 2 ). Assim, há valores de u para os quais não se verifica o axioma II4 da definição de espaço vectorial. Por exemplo, seja 1 2( , )u u u= tal que 2 0u ≠ , então 1 2 1 11 1( , ) (1 ,0) ( ,0)u u u u u u= = × = ≠ . Assim, E não é um espaço vectorial com as operações definidas. 4.2 Subespaços Dado um espaço vectorial E , é muitas vezes possível formar um outro espaço vectorial usando um subconjunto S de E e as operações de E . Como E é um espaço vectorial, as operações de soma e multiplicação por um escalar produzem sempre um outro vector em E . Para um novo sistema, usando um subconjunto S de E , ser um espaço vectorial, o conjunto S tem que ser fechado em relação às operações de soma e multiplicação por um escalar. Por outras palavras, a soma de dois elementos de S tem que ser sempre um elemento de S e a multiplicação de um elemento de S por um escalar tem que pertencer sempre a S . Definição2: Um subconjunto não vazio S de um espaço vectorial E, é um subespaço vectorial de E se ele próprio formar um espaço vectorial relativamente às duas operações adição e multiplicação escalar definidas para os elementos de E. Desta definição resulta que, operando elementos de S com operações de E obtemos elementos de S. Assim, um subespaço de E, é um subconjunto S que é fechado em relação às operações de E. Donde, para verificarmos se um subconjunto de um espaço vectorial é subespaço não é necessário a verificação dos oito axiomas, além dos dois que definem a soma e a multiplicação por escalares. Teorema1: Seja E um espaço vectorial. Um subconjunto S ≠ ∅ , de E é um subespaço vectorial de E se, e só se, satisfaz as seguintes condições: (a) Se u, S∈v ( ) S+ ∈u v (fechado para a adição); (b) Se λ ∈ é um escalar arbitrário e S∈u , então Sλ ∈u (fechado para a multiplicação escalar);
  • 7. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 5/ 26 Obs.2: • Como os axiomas do espaço vectorial são válidos para o novo sistema matemático formado pelo subespaço vectorial, todo o subespaço de um espaço vectorial é ele mesmo um espaço vectorial. • Se S é um subespaço de um espaço vectorial E, então S contém o vector nulo de E. Exemplo3: Mostre que o conjunto 2 2 12 21{ : }S A a a× = ∈ = − , forma um subespaço de 2 2× . Resolução: O conjunto S ≠ ∅ e 2 2 S × ⊂ (S é um subconjunto não vazio de 2 2× ) . Sejam as matrizes ,A B S∈ , então a b A b c = − e d e B e f = − . i) ( ) a d b e a d b e A B S b e c f b e c f + + + + + = = ∈ − − + − + + ; ii) Para α ∈ , vem a b A S b c α α α α α = ∈ − , porque 12 21a b aα= = − . Exemplo4: Verifique se o conjunto 2 {( , ) : 0 0}W x y x y= ∈ ≥ ≥ é um subespaço de 2 . Resolução: Os pontos de W estão no primeiro quadrante, logo, W é um subconjunto de 2 . O conjunto W não é um subespaço de 2 , uma vez, que não é fechado relativamente à multiplicação escalar. Por exemplo, (1,1)u = está em W, ( 1) ( 1, 1)u− × = − − não está (pertence ao terceiro quadrante). Figura3 - 2 W ⊂ não é subespaço de 2 Obs.3: Se E é um espaço vectorial, então E é um subespaço dele mesmo. O conjunto formado apenas pelo vector nulo é também um subespaço de E. Assim, qualquer espaço vectorial não nulo E tem pelo menos dois subespaços. O próprio E e o conjunto {0} constituído apenas pelo vector nulo em E chamado o subespaço nulo (os chamados subespaços triviais). Obs.4: O conjunto 2 não é um subespaço de 3 , pois 2 não é um subconjunto de 3 • Os subespaços de 3 são: i) {0} (subespaço trivial); ii) as rectas que passam na origem; iii) os planos que passam na origem; iv) 3 . • Os subespaços de 2 são: i) {0} (subespaço trivial); ii) as rectas que passam na origem; iii) 2 .
  • 8. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 6/ 26 Alguns subespaços de n n× , são: i) O conjunto das matrizes (n n× ) simétricas, { : }n n T E A M A A× = ∈ = ; ii) O conjunto das matrizes (n n× ) anti-simétricas, { : }n n T E A M A A× = ∈ = − ; iii) O conjunto das matrizes (n n× ) triangulares (superiores, inferiores e diagonais). Uma vez que estes conjuntos são fechados relativamente à soma e à multiplicação escalar. Teorema2: Seja E um espaço vectorial. (i) A intersecção de dois (ou mais) subespaços de E é ainda um subespaço de E; (ii) A reunião de dois subespaços de E só é um subespaço de E, se um deles contiver o outro. Exemplo5: Prove que conjunto definido por 1 2 1 1 2 2{( , ,..., ) : ... 0}n n n nS x x x a x a x a x= ∈ + + + = , onde 1 2( , ,..., ) n na a a ∈ é um subespaço de n . Resolução: Vamos provar que S é fechado para a adição e para a multiplicação por escalares. i) Se 1 2( , ,..., )nX x x x= e 1 2( , ,..., )nY y y y= pertencem a S, então 1 1 2 2 ... 0n na x a x a x+ + + = e 1 1 2 2 ... 0n na y a y a y+ + + = , donde 1 1 2 2( , ,..., )n nX Y x y x y x y+ = + + + também pertence a S, pois 1 1 1 2 2 2 1 1 2 2 1 1 2 2( ) ( ) ... ( ) ( ... ) ( ... ) 0 0 0.n n n n n n na x y a x y a x y a x a x a x a y a y a y+ + + + + + = + + + + + + + = + = ii) Se 1 2( , ,..., )nX x x x S= ∈ e α ∈ , então 1 2( , ,..., )nX x x x Sα α= ∈ , pois 1 1 2 2 1 1 2 2( ) ( ) ... ( ) ( ... ) 0 0n n n na x a x a x a x a x a xα α α α α+ + = + + + = × = . Por i) e ii) prova-se que S é um subespaço de n . Por outro lado, suponha que o conjunto 1 2 1 1 2 2{( , ,..., ) : ... }n n n nS x x x a x a x a x c= ∈ + + + = , é um subespaço de n , onde c é um número real fixo. Se S é um subespaço e X S∈ , então 0X O= também pertence a S, ou seja, o subespaço tem que conter a origem. Substituindo (0,0,...,0)O = na equação que define o conjunto, obtemos 1 20 0 ... 0 0na a a c c× + × + + × = ⇔ = . Se 1 2( , ,..., ) (0,0,...,0)na a a ≠ então S é chamado um hiperplano de n . Para 3n = os hiperplanos são planos, e para 2n = os hiperplanos são rectas. Definição3: Se AX B= é um sistema de equações lineares, então o vector X que satisfaz esta equação é chamado um vector solução do sistema. Teorema3: Seja 0AX = um sistema linear homogéneo com m equações e n incógnitas, então o conjunto dos vectores solução de 0AX = forma um espaço vectorial, chamado o espaço solução do sistema homogéneo, que é um subespaço de n .
  • 9. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 7/ 26 Obs.5: O conjunto solução (espaço solução) de um sistema linear homogéneo com m equações e n incógnitas pode ser visto como a intersecção de m subespaços de n , que são hiperplanos que passam pela origem. Exemplo6: Considere os seguintes sistemas lineares a) 1 2 3 0 2 4 6 0 3 6 9 0 x y z − − = − b) 1 2 3 0 3 7 8 0 2 4 6 0 x y z − − − = − − c) 1 2 3 0 3 7 8 0 4 1 2 0 x y z − − − = d) 0 0 0 0 0 0 0 0 0 0 0 0 x y z = Como cada um destes sistemas homogéneo tem três incógnitas, pelo teorema anterior os conjuntos solução formam subespaços de 3 . Geometricamente, isto significa que cada espaço solução deverá ser, a origem, uma recta que passa na origem, um plano que passa na origem, ou todo o 3 Resolução: a) As soluções deste sistema são, 2 3x s t= − , y s= e z t= , donde 2 3 2 3 0x y z x y z= − ⇔ − − = . Esta é a equação de um plano que passa na origem, tendo como vector normal (1, 2, 3)n = − − . b) As soluções são, 5x t= − , y t= − e z t= , as equações paramétricas de uma recta que passa na origem, paralela ao vector ( 5, 1,1)v = − − . c) A solução é 0x y z= = = , portanto, o espaço solução é a origem, ou seja, { }O . d) As soluções são, x r= , y s= e z t= , onde r, s e t tomam valores arbitrários, portanto o espaço solução é todo o 3 . 4.3 Conjunto geradores Nesta secção, vamos mostrar que um conjunto de vectores 1 2{ , ,..., }nV v v v= gera um determinado espaço vectorial E se cada vector de E pode ser expresso como uma combinação linear dos vectores de V. De um modo geral, pode existir mais de uma maneira de escrever um vector de E como combinação linear dos vectores do conjunto gerador. Definição4: Seja 1 2{ , ,..., }nV v v v= um conjunto de n vectores de um espaço vectorial E, todo o vector u que se possa exprimir na forma 1 1 2 2 ... n nu v v vλ λ λ= + + + com iλ ∈ (não todos nulos) diz-se uma combinação linear dos vectores 1 2, ,..., nv v v . Obs5: Caso 1n = , a equação anterior reduz-se a 1 1u vλ= , ou seja, u é uma combinação linear de um único vector 1v se for um escalar múltiplo de 1v .
  • 10. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 8/ 26 Exemplo7: Mostre que qualquer vector de n pode ser escrito como combinação linear dos vectores na forma 1 2(1,...,0), (0,1,...,0)e e= = , ..., (0,...,1)ne = . Resolução: Os vectores de n são do tipo 1( ,..., )nu u u= , para serem combinação linear dos vectores 1 2, ,..., ne e e devem ser escrito na forma. 1 1 2 2 3 3 1 2 1(1,...,0) (0,1,...,0) ... (0,...,1) ( ,..., )n nu u e u e u e u u u u u= + + = + + + = , o que 1( ,..., )nu u é uma combinação linear dos vectores 1 2, ,..., ne e e . Definição5: Seja 1 2{ , ,..., }nV v v v= um conjunto de vectores do espaço vectorial E, então o conjunto W de todas as combinações lineares dos vectores de V é chamado conjunto gerado por 1 2, ,..., nv v v ou por V , diz-se que os vectores 1 2, ,..., nv v v geram W ou que V é o conjunto de geradores de W. Para indicar que W é o conjunto gerado pelos vectores de V escrevemos ger( )W V= ou W V=< >. Exemplo8: Verifique se os vectores 1 (1,1,2)v = , 2 (1,0,1)v = e 3 (2,1,3)v = geram 3 . Resolução: Queremos verificar ger( )W V= , com 1 2 3{ , , }V v v v= , ou seja, devemos determinar se um vector arbitrário 1 2 3( , , )u u u u= de 3 pode ser expresso como uma combinação linear dos vectores 1 2,v v e 3v , isto é, 1 1 2 2 3 3u v v vλ λ λ= + + . Escrevendo esta equação em termos das suas componentes vem 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1 2 3 1 2 3 1 1 3 2 1 2 3 3 ( , , ) (1,1,2) (1,0,1) (2,1,3) ( , , ) ( 2 , ,2 3 ) 2 2 3 u u u u u u u u u λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ = + + ⇔ = + + + + + ⇔ + + = ⇔ + = + + = Como o sistema tem três equações para três incógnitas, o problema reduz-se então a determinar se este sistema é possível e determinado para todos os valores de 1 2,u u e 3u , isto acontece se, e só se, o determinante da matriz A, dos coeficientes do sistema, for diferente de zero. Como | | 0A = , os vectores 1 2,v v e 3v não geram 3 . Exercício1: Resolva o sistema do exemplo anterior. Se 1 2{ , ,..., }nV v v v= é um conjunto de vectores do espaço vectorial E, então alguns vectores de E podem escrever-se como combinação linear de 1 2, ,..., nv v v e outros não. O seguinte teorema mostra que um conjunto ger( )W V= forma um subespaço de E.
  • 11. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 9/ 26 Teorema4: Se 1 2, ,..., nv v v são vectores de um espaço vectorial E, e W é o conjunto de todas as combinações lineares de 1 2, ,..., nv v v , ou seja, 1 2ger{ , ,..., }nW v v v= , então: (a) W é um subespaço de E; (b) W é o menor subespaço de E que contém 1 2, ,..., nv v v no sentido de qualquer outro subespaço de E que contenha 1 2, ,..., nv v v deve conter W. Obs.6: Este teorema diz que, como o subespaço ger( )W V= é o menor subespaço de E que contém V, se G for um subespaço de E que contém V, então necessariamente ger( )V G⊆ . Tendo em conta o teorema4 e a definição5, podemos dizer que sendo 1 2{ , ,..., }nV v v v= um subconjunto não vazio de um espaço vectorial E, o conjunto ger( )W V= é um subespaço de E chamado espaço gerado por V. Quando W E= diz-se que V é o conjunto de geradores de E (os vectores 1 2, ,..., nv v v geram E ou constituem um sistema de geradores do espaço). Obs.7: Se o conjunto de geradores de um espaço vectorial E tem um número finito de elementos dizemos que o espaço vectorial é finitamente gerado. O conceito de subespaço gerado por um conjunto pode apresentar-se para conjuntos não necessariamente finitos. Teorema5: Se 1 2{ , ,..., }nV v v v= e 1 2{ , ,..., }kW w w w= são dois conjuntos de vectores de um espaço vectorial E, então ger( ) ger( )V W= se, e só se, cada vector de V for uma combinação linear dos vectores de W e se cada vector de W for uma combinação linear dos vectores de V. Exemplo9: Considere o sistema linear homogéneo 0AX = , onde 1 1 0 2 2 2 1 5 1 1 1 3 A = − − − − . Encontre um conjunto de vectores que gere o subespaço solução do sistema homogéneo. Resolução: A matriz do sistema é equivalente 1 1 0 2 1 1 0 2 2 2 1 5 0 0 1 1 1 1 1 3 0 0 0 0 − − − ↔ − − , donde 1 2 3 2 3 4 3 2 0 x x x x AX x x x = − − ∈ = ⇔ ∈ = , ou seja, o conjunto solução de 0AX = é 1 2 3 4 2 3 2 3 3 2 3{( , , , } ( 2 , , , ) : , }S x x x x x x x x x x x= = − − ∈ .
  • 12. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 10/ 26 Qualquer elemento de S pode ser escrito como uma soma de vectores, sendo um vector para cada parâmetro e cada vector depende apenas de um parâmetro, obtendo-se 2 3 2 3 3 2 2 3 3 3 2 3( 2 , , , ) ( , ,0,0) ( 2 ,0, , ) ( 1,1,0,0) ( 2,0,1,1)x x x x x x x x x x x x− − = − + − = − + − . Portanto, 1 ( 1,1,0,0)X = − e 2 ( 2,0,1,1)X = − geram S, isto é, 1 2ger( , )S X X= . Exemplo10: Encontre um conjunto constituído pelos vectores 1 (1,1,0)v = , 2 (0,1,1)v = , 3 (1,0,1)v = ou 4 (1,2,1)v = que gere 3 . Resolução: Comecemos por verificar se 3 ger( )V= com 1 2 3 4{ , , , }V v v v v= . Para isso, devemos mostrar que 3 é o conjunto de todas as combinações lineares de 1 2 3, ,v v v e 4v . Os elementos de 3 são do tipo ( , , )a b c , queremos verificar se estes se podem escrever como combinação linear dos vectores de V, ou seja, temos que resolver o sistema 1 3 4 1 2 3 4 1 2 4 2 3 4 (1,1,0) (0,1,1) (1,0,1) (1,2,1) ( , , ) 2 a a b c b c λ λ λ λ λ λ λ λ λ λ λ λ λ + + = + + + = ⇔ + + = + + = . A matriz ampliada do sistema é 2 2 2 1 0 1 1 1 0 0 1 1 1 0 2 0 1 0 1 0 1 1 1 0 0 1 0 a b c a b c a b c a b c + − − + + − + ↔ , donde 1 4 1 3 4 2 4 1 2 4 2 3 4 3 4 2 2 2 2 a b c a a b c b a b cc λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ + − = − + + = − + + = − + + = ⇔ − ++ + = = ∈ , portanto, 1 2 3, ,v v v e 4v geram 3 , ou seja, qualquer vector de 3 pode ser escrito como combinação linear destes vectores. Repare-se que o sistema é possível e indeterminado (porquê?). Vamos agora verificar se o conjunto 1 2 3{ , , }V v v v= gera 3 . Por um lado, verifica-se que o determinante cujas colunas são 1 2,v v e 3v é diferente de zero, por outro, 1 21 3 1 1 2 2 3 3 1 2 3 1 2 2 2 2 3 3 2 ( , , ) (1,1,0) (0,1,1) (1,0,1) ( , , ) a b c a b c a b c a v v v a b c a b c b c λλ λ λ λ λ λ λ λ λ λ λ λ λ λ + − − + + − + =+ = + + = ⇔ + + = ⇔ + = ⇔ = + = = conclui-se que V gera 3 . Por exemplo, se 1 1 2 1 2 1 1 2 2 2 1 1 2 3 2 1 ( , , ) ( 1,1,2) 2 0 a b c λ λ λ − + − + + − − + = = − = − = = = = ,
  • 13. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 11/ 26 donde 1 1 2 2 3 3 ( , , ) 1 (1,1,0) 2 (0,1,1) 0 (1,0,1) ( 1,1,2)v v v a b cλ λ λ+ + = ⇔ − × + × + × = − . Prova-se que o conjunto 1 2{ , }V v v= não gera 3 . O mesmo acontecendo com qualquer conjunto formado por dois destes vectores (exercício!). Conclusão: Verificámos que dois conjuntos finitos de vectores geram o espaço vectorial 3 , ou seja, 3 é finitamente gerado. Em particular, vimos que os conjuntos 1 2 3 4{ , , , }V v v v v= e 1 2 3{ , , }V v v v= geram 3 , mas que o conjunto 1 2{ , }V v v= não gera 3 . Teorema6: Se os vectores 1 2, ,..., nv v v geram o espaço vectorial E e se um desses vectores pode ser escrito como uma combinação linear dos outros 1n − vectores, então esses 1n − vectores geram E. Exercício2: No exemplo10, vimos que 1 2 3 4{ , , , }V v v v v= e 1 2 3{ , , }V v v v= geram 3 . Verifique se algum vector de 1 2 3 4{ , , , }V v v v v= se pode escrever como combinação linear dos restantes vectores. De facto, dado um espaço vectorial E, é desejável encontrar um conjunto gerador de E com tão poucos elementos quanto possível, a que chamamos conjunto gerador mínimo. Por mínimo, queremos dizer um conjunto gerador sem elementos desnecessários, isto é, todos os elementos no conjunto são necessários para se gerar o espaço vectorial. Para se ver como encontrar um conjunto gerador mínimo, é preciso considerar como os vectores no conjunto “dependem” uns dos outros. Vamos então introduzir os conceitos de dependência e independência linear. Esses conceitos simples vão dar-nos a chave para entender a estrutura dos espaços vectoriais. 4.4 Dependência e independência linear Na secção anterior, vimos que um conjunto de vectores 1 2{ , ,..., }nV v v v= gera um determinado espaço vectorial E se todos os vectores de E se podem exprimir como combinação linear dos vectores de V. De um modo geral, podem existir várias maneiras de exprimir um vector de E como combinação dos vectores do espaço gerador. Nesta secção, olhamos mais de perto a estrutura de um espaço vectorial, estudamos condições sob as quais cada vector de E pode ser expresso como combinação linear dos vectores do espaço gerador de uma única maneira. Conjuntos geradores com esta propriedade desempenham um papel fundamental no estudo dos espaços vectoriais.
  • 14. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 12/ 26 Definição6: Um conjunto 1 2{ , ,..., }nV v v v= não vazio de um espaço vectorial E, diz-se linearmente independente (L.I.) se 1 2 1 0 ... 0 n i i n i vλ λ λ λ = = ⇔ = = = = ( iλ ∈ ). Caso contrário, ou seja, se existe pelo menos um 0iλ ≠ tal que 1 0 n i i i vλ = = , o conjunto diz-se linearmente dependente (L.D.). Exemplo11: Estude a dependência linear do conjunto 1 2 3{ , , }V v v v= com 1 (2, 1,0,3)v = − , 2 (1,2,5, 1)v = − e 3 (7, 1,5,8)v = − Resolução: Tendo em conta a definição anterior, 1 2 3 1 2 3 1 1 2 2 3 3 1 2 3 2 3 1 2 3 2 7 0 2 0 0 (2, 1,0,3) (1,2,5, 1) (7, 1,5,8) (0,0,0) 5 5 0 3 8 0 v v v λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ + + = − + − = + + = ⇔ − + − + − = ⇔ + = − + = . Temos que resolver um sistema homogéneo, da definição resulta que conjunto V é L.I. se o sistema homogéneo associado for possível e determinado, ou seja, tiver apenas a solução trivial, 0 0AX X= ⇔ = . Este estudo pode ser feito através da condensação da matriz A do sistema. Prova- se que ( ) 2 3r A n= < = (exercício!) logo o sistema é possível e indeterminado. Portanto, existem escalares 0iλ ≠ tais que 1 1 2 2 3 3 0v v vλ λ λ+ + = (combinação linear), o conjunto 1 2 3{ , , }V v v v= é linearmente dependente. Teorema7: Um conjunto de vectores 1 2{ , ,..., }mV v v v= de n é linearmente independente se, e só se, o sistema de equações lineares representado por 0AX = , onde A é a matriz (n m× ) cujas colunas são os vectores 1 2, ,..., mv v v , tem unicamente a solução 0X = . Obs.8: Caso a matriz A seja (n n× ) o teorema anterior diz que o conjunto 1 2{ , ,..., }nV v v v= de n é linearmente independente se, e só se, | | 0A ≠ . Como vimos, para verificar se um conjunto de vectores é ou não L.I. em n , precisamos resolver um sistema homogéneo de n equações lineares. Assim, um conjunto de 2 com mais do que dois vectores, um conjunto de 3 como mais do que três vectores, e um conjunto de n com mais de n vectores, são sempre L.D.. Pois, nestes casos, o problema de verificar se eles são ou não L.I. leva a um sistema homogéneo com mais incógnitas do que equações, que tem sempre solução não trivial.
  • 15. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 13/ 26 O próximo teorema mostra que um conjunto L.I. em n contém quanto muito n vectores. Teorema8: Seja 1 2{ , ,..., }rV v v v= um conjunto de vectores de n . Se r n> , então V é L.D.. Do exemplo11, verificamos que o termo linearmente dependente sugere que os vectores dependem uns dos outros de alguma maneira. O teorema seguinte mostra que esse é de facto o caso. Teorema9: Um conjunto 1 2{ , ,..., }nV v v v= , ( 2n ≥ ), pertencente a um espaço vectorial E, diz-se: (i) Linearmente independente se, e só se, qualquer vector de V não se puder exprimir como combinação linear dos restantes 1n − vectores de V. O vector 1v é L.I. se 1 0v ≠ ; (ii) Linearmente dependente se, e só se, pelo menos um dos vectores de V puder ser expresso como combinação linear dos restantes 1n − vectores. Obs.9: Também se diz que no primeiro caso os vectores formam um sistema livre ou independente e no segundo um sistema ligado ou dependente. Exemplo12: Verifique se os vectores do conjunto 1 2 3{ , , }V v v v= com 1 (2, 1,0,3)v = − , 2 (1,2,5, 1)v = − e 3 (7, 1,5,8)v = − se podem escrever como combinação linear uns dos outros. Resolução: Como vimos no exemplo11, o conjunto 1 2 3{ , , }V v v v= com 1 (2, 1,0,3)v = − , 2 (1,2,5, 1)v = − e 3 (7, 1,5,8)v = − é linearmente dependente. Assim, tendo em conta este último teorema pelo menos um destes vectores pode exprimir-se como combinação linear dos restantes dois. Para além disso, dados n vectores 1 2, ,..., nv v v , é possível escrever um dos vectores como combinação linear dos outros 1n − vectores se, e só se, existirem 1 2, ,..., nλ λ λ , nem todos nulos, tais que 1 1 2 2 ... 0n nv v vλ λ λ+ + + = (se o conjunto dos vectores 1 2, ,..., nv v v for L.D). Condensando a matriz do sistema homogéneo indicado no exemplo11, vem 2 1 7 1 2 1 1 2 1 0 5 5 0 5 5 0 0 0 3 -1 8 0 0 0 − − − − ↔ , donde 1 2 3 1 2 3 1 3 1 2 3 2 3 2 3 2 3 3 1 2 3 2 7 0 2 0 3 2 0 5 5 0 5 5 0 0 0 3 8 0 λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ + + = − + − = = − − + − = ⇔ + = ⇔ = − + = = ∈ − + = . Assim, 1 1 2 2 3 3 3 1 3 2 3 3 3 1 2 30 3 0 ( 3 ) 0v v v v v v v v vλ λ λ λ λ λ λ+ + = ⇔ − − + = ⇔ − − + = e, se 3 1λ = obtemos 1 2 33 0v v v+ − = . Aqui, cada um dos três vectores pode exprimir-se como combinação linear dos restantes dois, pois, de 1 2 33 0v v v+ − = vem, 1 1 1 2 33 3v v v= − + , 2 1 33v v v= − + e 3 1 23v v v= + .
  • 16. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 14/ 26 Obs.10: 1) A dependência linear é uma propriedade do conjunto e não de cada vector individualmente. Contudo, por um abuso de linguagem, é usual dizer-se que os vectores são L.D. ou L.I; 2) Subconjuntos de conjuntos L.I. são L.I., e, portanto, um conjunto que contenha um subconjunto L.D. é também L.D; 3) Um subconjunto V não vazio de um espaço vectorial é L.I. se, e só se, qualquer subconjunto de V finito é L.I.; 4) Qualquer conjunto finito de vectores que contenha o vector nulo é L.D.; 5) Um conjunto com exactamente dois vectores é L.I. se, e só se, qualquer um dos vectores não for um escalar múltiplo do outro. Exemplo13: Verifique se o conjunto das matrizes 1 1 1 1 0 M = , 2 0 1 1 1 M = e 3 1 0 0 1 M = é linearmente independente no espaço das matrizes 2 2× . Resolução: A equação matricial 1 1 2 2 3 3 0 0 0 0 M M Mλ λ λ+ + = é equivalente ao sistema de equações lineares 1 3 1 1 2 2 1 2 3 2 3 0 0 0 0 0 0 0 λ λ λ λ λ λ λ λ λ λ λ + = = + = ⇔ = + = = + = , como este sistema tem apenas solução trivial, 1 2,M M e 3M são linearmente independentes. Os conceitos de dependência e independência linear dão-nos a chave para entender a estrutura dos espaços vectoriais. Vejamos o seguinte exemplo. Exemplo14: Estude a dependência linear do conjunto 1 2 3 4{ , , , }V v v v v= de 3 , com 1 (1,1,0)v = , 2 (0,1,1)v = , 3 (1,0,1)v = e 4 (1,2,1)v = . Resolução: Para estudar a dependência linear do conjunto 1 2 3 4{ , , , }V v v v v= de 3 , basta ter em atenção o teorema8; seja 1 2 3 4{ , , , }V v v v v= um conjunto de vectores de 3 , como 4 3r n= > = , então V é L.D.. Vimos, no exemplo10, que este conjunto gera 3 . Se resolvesse-mos a equação 1 1 2 2 3 3 4 4 (0,0,0,0)v v v vλ λ λ λ+ + + = , bastava verificar que a matriz associada ao sistema homogéneo é (3 4)× , logo o sistema é possível e indeterminado ( ( ) 3r A = ) e assim, o conjunto 1 2 3 4{ , , , }V v v v v= é linearmente dependente.
  • 17. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 15/ 26 Estudemos, agora, a dependência linear do conjunto 1 2 3{ , , }V v v v= de 3 . Aqui não podemos utilizar o teorema8 (porquê?) , 1 3 1 1 2 2 3 3 1 2 3 1 2 2 3 0 (0,0,0) (1,1,0) (0,1,1) (1,0,1) (0,0,0) 0 0 v v v λ λ λ λ λ λ λ λ λ λ λ λ + = + + = ⇔ + + = ⇔ + = + = . A matriz do sistema é 1 0 1 1 1 0 0 1 1 A = , como | | 2 0A = ≠ , o sistema é possível e determinado, admitindo como solução única a solução trivial, 1 2 3 0λ λ λ= = = , logo 1 2 3{ , , }V v v v= é L.I.. Como vimos no exemplo10 este conjunto gera 3 , sendo L.I. diz-se um conjunto gerador mínimo. O conjunto 1 2{ , }V v v= não gera 3 mas é L.I. (exercício!). Teorema10: Sejam 1 2, ,..., mu u u vectores que geram um espaço vectorial E e 1 2{ , ,..., }nV v v v= um conjunto L.I. Então tem-se, necessariamente, m n≥ . Por outras palavras, num espaço vectorial, um conjunto gerador nunca pode ter menos elementos do que um conjunto L.I.. Obs.11: Pelo que foi dito, se 1 2{ , ,..., }nV v v v= é um conjunto gerador mínimo, então, V é L.I.. Em contrapartida, se V é L.I. e gera E, então V é um conjunto gerador mínimo para E. Com veremos na próxima secção, um conjunto gerador mínimo diz-se uma base do espaço vectorial. Interpretação geométrica de dependência linear em 2 e 3 . • Um conjunto formado por dois vectores { , }u v , com 1 2( , )u u u= e 1 2( , )v v v= , é L.D. em 2 se, e só se, a equação 1 2 1 1 2 2 1 20 ( , ) ( , ) (0,0)u v u u v vλ λ λ λ+ = ⇔ + = possui solução não trivial. Se isto acontece, então os escalares 1 2,λ λ ∈ não são ambos nulos. Se, por exemplo, 1 0λ ≠ , temos 2 1 u v λ λ = − , se 2 0λ ≠ , 1 2 v u λ λ = − . Ou seja, se { , }u v é L.D., então um dos vectores é escalar múltiplo do outro. Reciprocamente, se um vector é escalar múltiplo do outro, digamos u vλ= , então 0u vλ− = e assim eles são L.D.. Portanto, podemos dizer que um conjunto de dois vectores é L.D. em 2 se, e só se, um dos vectores é escalar múltiplo do outro. Logo, se os dois vectores forem colocados na origem vão estar contidos sobre a mesma recta.
  • 18. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 16/ 26 Figura4 – Dois vectores L.D. em 2 Figura5 – Dois vectores L.I. em 2 Analogamente, o conjunto { , }u v , com 1 2 3( , , )u u u u= e 1 2 3( , , )v v v v= , é L.I em 3 se, e só se, os vectores u e v não pertencem à mesma recta que contém a origem no espaço tridimensional. Como a origem e esses dois vectores não são colineares, determinam um plano. Se outro vector w pertence a esse plano, então pode ser escrito como combinação linear de u e v e, portanto, o conjunto de vectores { , , }u v w é L.D.. Se w não pertence a esse plano, o conjunto é L.I.. • Por outro lado, um conjunto formado por três vectores não nulos 1 2 3{ , , }v v v é L.D. em 3 se, e só se, a equação 1 1 2 2 3 3 0v v vλ λ λ+ + = , 1 2 3, ,λ λ λ ∈ , possui solução não trivial. Se isso acontece um dos escalares 1 2,λ λ ou 3λ , é diferente de zero. Se 1 0λ ≠ , temos 32 1 2 3 1 1 v v v λλ λ λ = − − , ou seja, o vector 1v é combinação linear de 2v e 3v . De forma semelhante, se 2 0λ ≠ , o vector 2v é combinação linear de 1v e 3v , e se 3 0λ ≠ o vector 3v é combinação linear de 1v e 2v . Assim, se o conjunto 1 2 3{ , , }v v v é L.D., então um dos vectores é combinação linear dos outros dois, ou seja, um deles é uma soma de escalares múltiplos dos outros dois. Reciprocamente, se um vector é combinação linear dos outros dois então 1 2 3{ , , }v v v é L.D.. Portanto, podemos dizer que 1 2 3{ , , }v v v é L.D. se, e só se, um deles se pode escrever como combinação linear dos outros dois. Logo se os três vectores forem colocados na origem vão estar contidos no mesmo plano. Consequentemente, em 3 se um conjunto de três vectores não nulos 1 2 3{ , , }v v v é L.D., então, ou os três vectores são paralelos, ou dois deles são paralelos, ou os três são complanares (são paralelos a um mesmo plano).
  • 19. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 17/ 26 Resumindo: • Em 2 ou 3 , um conjunto de dois vectores é L.I. se, e só se, os vectores não pertencem a uma mesma recta contendo a origem (nenhum dos vectores é escalar múltiplo do outro); • Em 3 , um conjunto de três vectores é L.I. se, e só se, os vectores não pertencerem ao mesmo plano que contém a origem (nenhum dos vectores é combinação linear dos outros dois). Exemplo15: Estude a dependência linear do conjunto { , }V u v= , em que (1,0,1)u = e (0,1,1)v = . Resolução: O conjunto { , }V u v= é L.I., pois um vector não é escalar múltiplo do outro. Exemplo16: Estude a dependência linear do conjunto constituído pelos vectores 1 (1,2,5)v = , 2 (3,6, 3)v = − e 3 (1, 1, 1)v = − − de 3 . Resolução: Como o conjunto V de 3 tem três vectores, pode ser L.D. ou L.I.. Desenvolvendo a equação vectorial obtemos o sistema linear 1 2 3 1 1 2 2 3 3 1 2 3 1 2 3 1 2 3 3 0 (0,0,0) (1,2,5) (3,6, 3) (1, 1, 1) (0,0,0) 2 6 0 5 3 0 v v v λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ + + = + + = ⇔ + − + − − = ⇔ + − = − − = O conjunto V é linearmente independente se o sistema homogéneo tiver solução trivial, caso contrário é linearmente dependente. A matriz do sistema é 1 3 1 1 3 1 2 6 1 0 18 6 5 3 1 0 0 3 A = − ↔ − − − − − , assim, o sistema é possível e determinado, têm solução trivial, o conjunto dos vectores 1 2 3{ , , }V v v v= é L.I. Obviamente, | | 0A ≠ (porquê?). Significa que, nenhum dos vectores se pode escrever como combinação linear dos outros dois. Geometricamente, como o conjunto 1 2 3{ , , }V v v v= é L.I., um dos vectores não pertence ao mesmo plano formado pelos outros dois, ou, os três vectores quando posicionados com os seus pontos iniciais na origem não pertencem ao mesmo plano.
  • 20. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 18/ 26 4.5 Base e dimensão Usualmente pensamos numa recta como tendo uma dimensão, num plano como sendo bi- dimensional e no espaço, que nos envolve, como sendo tri-dimensional. Vamos, tentar nesta secção, tornar esta noção intuitiva de “dimensão” mais precisa. Vimos que, num espaço vectorial E, um conjunto de geradores pode ser L.I. ou L.D.. Se o conjunto de geradores for L.D., então existe um vector no conjunto que se pode escrever como combinação linear de outros elementos do conjunto. Assim, esse elemento não é necessário para gerar o espaço E. Portanto, um conjunto de geradores L.D. contém vectores que não são necessários para gerar E. Por outro lado, mostrámos que um conjunto gerador para um espaço vectorial é mínimo se for L.I.. Os elementos de um conjunto gerador mínimo formam peças básicas para a construção de todo o espaço vectorial e, por causa disso dizemos que formam uma base para o espaço vectorial. Vimos, no exemplo14, que o conjunto 1 2 3{ , , }V v v v= , com 1 (1,1,0)v = , 2 (0,1,1)v = e 3 (1,0,1)v = é um conjunto gerador mínimo de 3 . Uma vez que, V gera 3 e é linearmente independente. Definição7: Um conjunto de vectores 1 2{ , ,..., }nV v v v= de um espaço vectorial E , é uma base 1 2{ , ,..., }nv v v de E sse: i) V gera o espaço E; ii) V é linearmente independente. Exemplo17: Verifique que o conjunto 11 12 21 22{ , , , }A A A A forma uma base para 2 2× , onde 11 1 0 0 0 A = , 12 0 1 0 0 A = , 21 0 0 1 0 A = e 22 0 0 0 1 A = . Resolução: Devemos provar que 11 12 21 22{ , , , }A A A A é L.I. e gera o espaço 2 2× . i) O conjunto 11 12 21 22{ , , , }A A A A de 2 2× é linearmente independentes, pois 1 2 1 11 2 12 3 21 4 22 1 2 3 4 0 0 0 ... 0 0 0 nA A A A λ λ λ λ λ λ λ λ λ λ λ + + + = ⇔ = ⇔ = = = = ; ii) Se 2 2 A × ∈ , como 11 12 21 22 a a A a a = vem 11 11 12 12 21 21 22 22A a A a A a A a A= + + + , ou seja, toda a matriz (2 2)A × pode escrever-se como combinação linear destas matrizes, logo 11 12 21 22{ , , , }A A A A , gera 2 2× . Por i) e ii), 11 12 21 22, , ,A A A A formam uma base para 2 2× , a base canónica.
  • 21. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 19/ 26 Exemplo18: Verifique que os vectores 1 2(1,...,0), (0,1,...,0)e e= = , ..., (0,...,1)ne = , constituem uma base para o espaço vectorial n . Resolução: i) Qualquer vector de n , pode ser escrito como combinação linear de 1 2, ,..., ne e e 1 1 1 1( ,..., ) (1,...,0) ... (0,...,1) ...n n n nu u u u u u e u e= = + + = + + . Portanto, 1 2, ,..., ne e e geram o espaço. ii) O conjunto dos vectores 1 2(1,...,0), (0,1,...,0)e e= = , ..., (0,...,1)ne = é L.I.. Por i) e ii), 1 2{ , ,..., }nV e e e= constitui um base para n , designada por base canónica de n . O conceito de base de um espaço vectorial é de extrema importância. Os vectores de uma base constituem um espaço vectorial que generaliza o conceito de sistema de coordenadas em 2 e 3 . O teorema seguinte ajuda-nos a perceber porquê. Teorema11: Seja E um espaço vectorial, e 1 2{ , ,..., }nV v v v= uma base para E. Então qualquer vector de E pode exprimir-se de um só modo como combinação linear dos vectores iv ’s de V. De facto, qualquer vector de um espaço vectorial finitamente gerado pode ser representado como uma combinação única dos elementos de uma base 1 2{ , ,..., }nV v v v= do espaço (a combinação linear não é única sse V for L.D.). Por outras palavras, as bases são bons sistemas de coordenadas para representar vectores de um espaço vectorial. Componentes de um vector relativamente a uma determinada base: Seja 1 2{ , ,..., }nV v v v= uma base de um espaço vectorial E, cada u E∈ , pode ser escrito como combinação linear de 1 2, ,..., nv v v , ou seja, 1 1 2 2 ... n nu v v vλ λ λ= + + + (exprime u em termos da base V), então os escalares 1 2, ,..., nλ λ λ ∈ chamam-se componentes ou coordenadas de v relativamente à base 1 2{ , ,..., }nv v v . Dado um espaço vectorial E, se conhecermos uma base de E, qualquer vector de E fica conhecido se conhecermos as suas componentes relativamente a essa base. Exemplo19: Em 2 os vectores da base canónica são 1 (1,0)e = e 2 (0,1)e = . Note-se que, 1 2(1, 3) 3u e e= − = − , uma vez que 1 23 (1,0) 3(0,1) (1,0) (0, 3) (1, 3)u e e= − = − = + − = − . Aos números 1u e 2u dá-se o nome de componentes do vector em relação à base canónica 1 2{ , }e e . Generalizando, as componentes de 1( ,..., )nv v v= em relação à base canónica de n são 1,..., nv v .
  • 22. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 20/ 26 Obs.12: Note-se que as componentes de um vector, relativamente a uma base de um espaço vectorial, dependem não só da base mas também da ordem como os vectores da base são escritos; uma mudança na ordem dos vectores da base resulta numa mudança correspondente na ordem das entradas das componentes do vector. Para não sobrecarregar a exposição, não estaremos sempre a repetir isso, e falaremos de uma base simplesmente como um conjunto. Mudança de base: Uma base de um espaço vectorial, E , é chamada canónica por ser a mais natural para se representar vectores de E . Embora essas bases canónicas pareçam ser as mais simples e naturais para se usar, em muitas aplicações, elas não são as bases mais apropriadas. De facto, a chave na resolução de muitos problemas aplicados é mudar da base canónica para uma base que é de alguma forma, mais natural para a aplicação em questão. Uma vez resolvido o problema na nova base, é fácil voltar a representar a solução e, termos da base canónica. Por exemplo: Pelo teorema11, qualquer vector 1 2( , )v v v= de 2 pode ser representado de maneira única como uma combinação linear dos vectores de qualquer base de 2 . Por um lado, 1 2 1 1 2 2( , )v v v v e v e= = + , onde os escalares 1v e 2v são as componentes de v em relação à base canónica 1 2{ , } {(1,0),(0,1)}e e = . Por outro lado, 1 1 2 2v u uλ λ= + , onde os escalares 1λ e 2λ são as componentes de v em relação à base 1 2{ , }u u (ordenamos os elementos da base de modo que 1u seja o primeiro vector da base e 2u seja o segundo). Uma vez decididos a trabalhar com uma nova base temos o problema de encontrar as coordenadas em relação a essa nova base. Suponhamos, por exemplo, que, em vez, de usarmos a base canónica 1 2{ , }e e para 2 , queríamos usar uma base diferente, por exemplo, 1 2{ , }u u com 1 (3,2)u = e 2 (1,1)u = . Isto equivale a querer obter as componentes de um vector de 2 em relação aos dois sistemas de coordenadas, para isso, vamos considerar os dois problemas seguintes: i) Encontrar componentes do vector 1 1 2 2u uλ λ+ em relação à base 1 2{ , }e e . ii) Encontrar as componentes do vector 1 1 2 2v v e v e= + em relação à base 1 2{ , }u u ; Comecemos por resolver o problema i), para mudar a base 1 2{ , }u u para a base 1 2{ , }e e , precisamos exprimir os elementos da base antiga 1u e 2u , em termos dos elementos da nova base, 1e e 2e . De 1 1 23 2u e e= + e 2 1 2u e e= + , vem 1 1 2 2 1 1 1 2 2 1 2 2 1 2 1 1 2 23 2 (3 ) (2 )u u e e e e e eλ λ λ λ λ λ λ λ λ λ+ = + + + = + + + , o vector de componentes 1 1 2 2u uλ λ+ em relação a 1 2{ , }e e é
  • 23. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 21/ 26 1 2 1 2 1 2(3 ,2 ) (3,2) (1,1)v λ λ λ λ λ λ= + + = + , que em notação matricial pode ser escrita na forma 1 2 1 1 2 2 3 3 1 2 2 1 v λ λ λ λ λ λ + = = + . Definindo 1 2 3 1 ( , ) 2 1 U u u= = e [ ]1 2 1 2( , )λ λ λ λ λ= = temos que, para qualquer vector de componentes λ em relação a 1 2{ , }u u , para encontrar o vector de componentes correspondentes v em relação a 1 2{ , }e e , basta multiplicar U por λ , ou seja, v Uλ= . A matriz U é chamada matriz mudança de base de 1 2{ , }u u para 1 2{ , }e e . Para resolver o problema ii), precisamos encontrar a matriz mudança de base de 1 2{ , }e e para 1 2{ , }u u . A matriz U admite inversa, uma vez que as suas colunas são constituídas por vectores L.I.. Temos então 1 1 1 v U U v U U U vλ λ λ− − − = ⇔ = ⇔ = . Assim, dado um vector 1 2 1 1 2 2( , )v v v v e v e= = + , basta multiplicá-lo por 1 U − para se encontrar o seu vector de componentes relativamente a 1 2{ , }u u . A matriz 1 U − é a matriz mudança de base de 1 2{ , }e e para 1 2{ , }u u . Exemplo20: Considerando os vectores (1,4)u = , (2,1)v = e (7,7)w = encontre as coordenadas de w relativamente à base { , }u v . Resolução: Os vectores (1,4)u = e (2,1)v = formam um conjunto linearmente independente, assim, { , }u v é uma base de 2 . Pelo que foi dito, a matriz mudança de base de 1 2{ , }e e para { , }u v é a inversa de 1 2 1 2 ( , ) 4 1 U u u= = , ou seja, 1 1 2 7 11 4 1 7 37 U vλ − − = = − = − , donde o vector pedido é 3w u v= + . Figura6 – Soma de vectores em 2
  • 24. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 22/ 26 O vector (7,7)w = pode ser escrito como combinação linear 3w u v= + . Assim, o vector de componentes de w em relação a { , }u v é (1,3). Geometricamente, esse vector diz-nos como sair da origem e chegar a (7,7)w = movendo-nos primeiro na direcção de u e depois na direcção de v . O vector de componentes de w em relação à base ordenada { , }v u é (3,1). Geometricamente, esse vector diz-nos como sair da origem e chegar a (7,7)w = movendo-nos primeiro na direcção de v e depois na direcção de u . A definição de dimensão de um espaço vectorial está relacionada com o número de vectores de uma base do espaço. Como um espaço vectorial pode ter mais do que uma base é preciso estabelecer que bases diferentes de um mesmo espaço vectorial contêm o mesmo número de vectores. O próximo teorema providencia a chave para o conceito de dimensão. Teorema12: Seja E um espaço vectorial e 1 2{ , ,..., }nV v v v= qualquer base para E: (i) Qualquer subconjunto de E com mais do que n vectores é linearmente dependente; (ii) Qualquer subconjunto de E com menos do que n vectores não pode gerar E. Resulta deste último teorema que, se 1 2{ , ,..., }nV v v v= for uma base para um espaço vectorial E, então todos os subconjuntos de E que simultaneamente geram E e são L.I. deverão ter precisamente n vectores. Assim, todas as bases de E deverão ter o mesmo número de vectores que a base arbitrária V . Isto motiva o seguinte resultado, um dos mais importantes em álgebra linear. Teorema13: Se um espaço vectorial E tem uma base com n vectores, então todas as bases para E tem exactamente n vectores. Obs.13. Resulta que, se 1 1{ ,..., }mV u u= e 2 1{ ,..., }nV v v= são duas bases de um espaço vectorial E, então m n= . Todas as bases de um espaço vectorial têm o mesmo número de vectores. Para se ver como este teorema esta relacionado com o conceito de dimensão, recorde-se que a base canónica de n tem n vectores. Então o teorema13 implica que as infinitas bases de n têm n vectores. Em particular, todas as bases de 3 têm três vectores, todas as bases de 2 têm dois vectores, e todas as bases de têm um vector. Intuitivamente, 3 é tridimensional, 2 (um plano) é bidimensional, e (uma linha) é unidimensional. Assim, para espaços vectoriais usuais, o número de vectores que constituem uma base coincide com a dimensão do espaço vectorial. O que sugere a seguinte definição.
  • 25. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 23/ 26 Definição8: Um espaço vectorial E é chamado de dimensão finita se tem uma base que contém um número finito de vectores. A dimensão de E, representada por dim( )E , é o número de vectores de uma base de E. A dimensão do espaço vectorial nulo, {0}E = , é definida como sendodim( ) 0E = . Um espaço vectorial que não tem uma base finita é chamado de dimensão infinita. Obs.14: Se uma base de E tiver n elementos, dizemos que E tem dimensão n, e escrevemos dim( )E n= (quando E contém um conjunto com n vectores L.I. nos quais se possa expressar linearmente qualquer outro vector de E). Obs.15: Como convenção, considera-se o conjunto vazio como sendo uma base do espaço vectorial nulo. Esta convenção é consistente com a definição anterior, uma vez que o conjunto vazio não tem vectores e o espaço vectorial nulo tem dimensão zero. Exemplo21: 1) Se uma base de E é constituída por infinitos vectores, diz-se que E tem dimensão infinita. Por exemplo, dim( )∞ = ∞ . 2) dim( )n n= (porquê?). Em particular, é um espaço vectorial de dimensão 1 e 3 dim( ) 3= . 3) No plano, os vectores OA e OB não colineares formam um conjunto L.I. e não há três vectores nestas condições, logo OA, OB formam uma base e 2 dim( ) 2= . 4) Mais geralmente, tem-se ( )dim( ( ))m nM m n× = × . 5) A dimensão do espaço das matrizes (n n× ) triangulares superiores é ( 1) 2 n n + (exercício!). A dimensão de um espaço vectorial é o seu “número mágico”. Conhecer a dimensão de um espaço vectorial E dá muita informação sobre E e pode simplificar enormemente o trabalho necessário em certos tipos de cálculo. De um modo geral, para se provar que um conjunto de vectores 1 2{ , ,..., }nV v v v= é uma base de um espaço vectorial E, devemos mostrar que V é linearmente independente e que gera E. Contudo, se soubemos que dim( )E n= (ou seja, 1 2{ , ,..., }nv v v contém o número certo de vectores para uma base), então é suficiente provar que V é L.I. ou que gera o espaço – a outra condição verificar-se-á automaticamente. Isto motiva o seguinte teorema. Teorema14: Seja E um espaço vectorial com dimensão finita, dim( )E n= , e S um subconjunto de E com exactamente n vectores, então S é uma base de E se S gerar E ou for linearmente independente.
  • 26. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 24/ 26 Obs.16: Pelo que foi dito, seja E um espaço vectorial com dimensão finita, dim( )E n= . Então: (i) Qualquer subconjunto L.I. de E contém no máximo n vectores. (ii) Todo o subconjunto L.I. de E , com exactamente n vectores, gera E, logo, é uma base para E . (iii) Todo conjunto gerador de E contém no mínimo n vectores (nenhum conjunto com menos de n vectores pode gerar E); (iv) Qualquer conjunto gerador de E , com exactamente n vectores, é L.I., logo, é uma base para E . Exemplo22: Mostre que: (a) os vectores 1 ( 3,7)v = − e 2 (5,5)v = forma uma base de 2 ; (b) os vectores 1 2(2,0, 1), (4,0,7)v v= − = e 3 ( 1,1,4)v = − forma uma base de 3 . Resolução: (a) Pelo teorema14, uma base de um espaço vectorial de dimensão n é qualquer subconjunto de n vectores L.I. desse espaço. Como, qualquer um dos vectores não é escalar múltiplo do outro, os dois vectores formam um subconjunto L.I. do espaço bidimensional 2 , ou seja, uma base para 2 ; (b) Os vectores 1v e 2v formam um conjunto L.I. no plano XOZ (porquê?). O vector 3v não pertence ao plano XOZ , portanto, o conjunto 1 2 3{ , , }v v v é L.I.. Uma vez que 3 dim( ) 3= , o teorema14 garante que o conjunto 1 2 3{ , , }v v v forma um base de 3 . O teorema seguinte mostra que para um espaço vectorial E de dimensão finita, qualquer conjunto que gera E contém uma base de E , e que qualquer conjunto linearmente independente de E faz parte de alguma base de E . Teorema15: Seja V um subconjunto finito de vectores de um espaço vectorial E de dimensão finita. i) Se V gera E mas não for uma base (por conter mais de n vectores) de E, então V pode ser reduzido a uma base de E removendo-se apropriadamente vectores de V; iii) Se V for um conjunto linearmente independente que não seja uma base de E, então V pode ser transformado numa base de E incluindo apropriadamente vectores em V. Exemplo23: Para explorarmos a informação do teorema anterior, vamos considerar o exemplo14 onde se considerou os vectores 1 (1,1,0)v = , 2 (0,1,1)v = , 3 (1,0,1)v = e 4 (1,2,1)v = . Vimos que: i) O conjunto 1 2 3 4{ , , , }V v v v v= de 3 , apesar de gerar 3 não é L.I. (não é uma base para 3 ); ii) O conjunto 1 2 3{ , , }V v v v= gera 3 e é L.I. (é uma base para 3 ); iii) O conjunto 1 2{ , }V v v= apesar de L.I. não gera 3 (não é uma base para 3 ).
  • 27. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 25/ 26 Tendo em conta os pontos i) ii) e iii), concluímos que: Por exemplo, de 1 2 3 4{ , , , }V v v v v= retira-se o vector 4v , obtendo-se 1 2 3{ , , }V v v v= uma base para 3 (de todo o conjunto de geradores de 3 pode ser extraída uma base de 3 ); Por exemplo, de 1 2{ , }V v v= inserindo o vector 3v , obtém-se 1 2 3{ , , }V v v v= uma base para 3 . De facto, sendo E um espaço vectorial de dimensão finita, dim( )E n= , o teorema15, garante que: i) Podemos retirar vectores apropriados de qualquer conjunto gerador contendo mais de n vectores (que não seja uma base para E ) de modo a se obter uma base para E (qualquer conjunto gerador de E pode ser reduzido a uma base para E ). ii) Qualquer subconjunto V de E L.I. com menos de n elementos (que não seja uma base para E ) pode ser estendido para formar uma base para E , inserindo vectores apropriados em V. Prova-se que qualquer subespaço de um espaço vectorial de dimensão finita tem dimensão finita. Conclui-se esta secção com um teorema que mostra que a dimensão de um subespaço de um espaço vectorial de dimensão finita E não pode exceder a dimensão de E e que a única maneira desse subespaço ter a mesma dimensão de E é no caso em que o subespaço coincide com E. A figura7 ilustra esta ideia em 3 . Figura7 –Dimensão dos subespaços de 3 A figura anterior, ilustra que quanto “maior” for o subespaço, maior é a sua dimensão, ou seja: • A origem é 0-dimensional; • A recta que passa pela origem, r, é unidimensional; • O plano que passa pela origem, π , é bidimensional; • 3 é tridimensional. Teorema16: Seja W um subespaço de um espaço vectorial de dimensão finita E , então dim( ) dim( )W E≤ (W tem dimensão finita); para além disso se dim( ) dim( )W E= , então W E= .
  • 28. ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Espaços vectoriais APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 26/ 26 Exemplo24: Determine a dimensão do subespaço S de 3 gerado pelos vectores 1 (1, 1,2)v = − , 2 ( 2,3,1)v = − e 3 ( 1,3,8)v = − . Resolução: Os subespaços de 3 são; a origem, uma recta que passa pela origem, um plano que passa pela origem e 3 . Como 1 1 2 2 3 3 ( , , )v v v a b cλ λ λ+ + = é um sistema impossível (porquê?), concluímos que os vectores 1 2,v v e 3v não geram 3 , dim( ) 3S ≠ . Vamos agora estudar dependência linear do conjunto { }1 2 3, ,V v v v= . Como a matriz A do sistema 1 1 2 2 3 3 (0,0,0)v v vλ λ λ+ + = é (3 3)× , basta estudar o valor de | |A . Sendo | | 0A = , o sistema é possível e indeterminado, donde o conjunto V é linearmente dependente. Por este motivo, existem vectores de V que se podem escrever como combinação linear dos restantes, 1 2 3 1 3 1 1 2 2 3 3 1 2 3 2 3 1 2 3 3 2 0 3 (0,0,0) 3 3 0 2 2 8 0 v v v λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ − − = = − + + = ⇔ − + + = ⇔ = − + + = ∈ . Assim, 1 1 2 2 3 3 3 1 3 2 3 3 3 1 2 3(0,0,0) 3 2 ( 3 2 ) (0,0,0)v v v v v v v v vλ λ λ λ λ λ λ+ + = ⇔ − − + = − − + = , fazendo, 3 1λ = , vem 3 1 23 2v v v= + . Ou seja, 3v pertence ao espaço gerado por 1v e 2v , donde, o subespaço S de 3 gerado por 1 2,v v e 3v pode ser representado pelos vectores 1v e 2v . Como, qualquer combinação linear de 1 2,v v e 3v pode ser reduzida a uma combinação linear de 1v e 2v , 1 1 2 2 3 3 1 1 2 2 3 1 2 1 3 1 2 3 2(3 2 ) ( 3 ) ( 2 )v v v v v v v v vλ λ λ λ λ λ λ λ λ λ+ + = + + + = + + + , o espaço gerado por 1 2 3{ , , }V v v v= é { }1 2( ) ,S ger V v v= = . Por outro lado, como 3 1 2 1 2 33 2 3 2 0v v v v v v= + ⇔ + − = , e sendo os três coeficientes diferentes de zero, podemos exprimir cada um dos vectores em função dos outros dois 2 1 1 2 33 3v v v= − + e 3 1 2 1 32 2v v v= − + . Temos então que, { } { }1 2 1 3ger , , ger ,S v v S v v= = ou { }2 3ger ,S v v= , ou seja, o subespaço S pode ser gerado por quaisquer dois dos vectores dados. Prova-se que os conjuntos { }1 2,v v , { }2 3,v v e { }1 3,v v são L.I., ou seja, formam uma base para S. Concluí-se que, 3 dim( ) 2 dim( )S = < . Os vectores destes conjuntos definem planos que passam pela origem.