O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Función cuadrática

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Funcion cuadratica (ejemplos)
Funcion cuadratica (ejemplos)
Carregando em…3
×

Confira estes a seguir

1 de 22 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Anúncio

Semelhante a Función cuadrática (20)

Mais de sitayanis (20)

Anúncio

Función cuadrática

  1. 1. Función Cuadrática Entrar Profesora: Srta. Yanira Castro Lizana
  2. 2. Definición • Se llama función cuadrática a una función polinómial real de variable real, que tiene grado dos. La función cuadrática tiene la forma: 2 y f ( x) ax bx c a 0 El dominio de toda función cuadrática es el conjunto de los números reales, decir que : D: f = IR • El dominio de esta función es el conjunto de los números reales y su gráfico es siempre una parábola.
  3. 3. Función Cuadrática Como vimos en 2 Matemática y f ( x) ax bx c diferenciada, ya sabemos que con la a 0 información que nos entrega los Donde a ,b y c coeficientes de la son los coeficientes de función cuadrática, la función podemos graficar la curva. Siguiente
  4. 4. Función Cuadrática 1. Concavidad 2. Puntos de corte eje x. (discriminante) 3. Máximo y mínimo 4. Coordenadas del vértice 5. Intersección de la parábola con el eje y 6. Ejemplo 7. Ejercicios Salir
  5. 5. Función Cuadrática 1.Concavidad : 2 Para y f ( x) ax bx c - Si a 0 , la parábola se abre hacia arriba. - Si a 0 , la parábola se abre hacia abajo. Volver
  6. 6. Función Cuadrática 2 2. Análisis de discriminante x b 4ac Si x 0 , la parábola corta en dos puntos al eje x Si x 0 , la parábola corta en un único punto al eje x Si x 0 , la parábola no corta al eje x Siguiente
  7. 7. Función Cuadrática 2 2. Análisis de discriminante x b 4ac Observación importante: Si x 0 , debemos encontrar las soluciones de la ecuación de segundo grado para determinar los puntos de intersección de la parábola con el eje x Volver
  8. 8. Función Cuadrática 3. Máximo o Mínimo - Si a 0 , la parábola se abre hacia arriba.Tiene valor mínimo - Si a 0 , la parábola se abre hacia abajo.Tiene valor máximo Volver
  9. 9. Función Cuadrática 4. Coordenadas de punto Máximo o Mínimo (Vértice de la parábola) 2 Para y f ( x) ax bx c b b V ,f 2a 2a Ejemplo
  10. 10. Función Cuadrática Ejemplo: Si y f ( x) x2 6x 2 a 1; b 6; c 2 b b V ,f Reemplazando: 2a 2a ( 6) ( 6) V ,f V 3, f 3 2 1 2 1 f (3) 32 6 3 2 V 3, 7 f (3) 7 Siguiente
  11. 11. Función Cuadrática Gráficamente: Volver
  12. 12. Función Cuadrática 5. Punto de intersección de la parábola con el eje y Para y f ( x) ax2 bx c , si x 0 y f (0) c 0, c Volver Ejemplo
  13. 13. Función Cuadrática Ejemplo: Si y f ( x) x 2 5x 2 si x 0 y f (0) 2 El punto de intersección de la parábola con el eje y es: 0,2 Volver
  14. 14. Función Cuadrática Grafique y f ( x) x2 2x 3 La parábola se abre 1. Concavidad: a 1 0 hacia arriba. 2. Análisis de discriminante: x b2 4ac a 1b ; 2; c 3 x 16 0 La parábola corta en dos puntos al eje x 2 x 2x 3 0 x1 3 Puntos de intersección de ( x 3)(x 1) 0 x2 1 la parábola con el eje x Siguiente
  15. 15. Función Cuadrática 3. Máximo o mínimo: Si a 1 0 La parábola se abre hacia arriba. Tiene valor mínimo. 4. Coordenadas del vértice: V b b ,f 2a 2a a 1b; 2; c 3 Reemplazando: ( 2) ( 2) V ,f V 1, f 1 2 1 2 1 f (1) 12 21 3 4 V 1, 4 Siguiente
  16. 16. Función Cuadrática 5. Punto de intersección de la parábola con el eje y Si x 0 , en la función y f ( x) x2 2x 3 f (0) 0 2 2 0 3 f (0) 3 0, 3 Siguiente
  17. 17. Función Cuadrática Gráficamente: Volver
  18. 18. Función Cuadrática - Grafica las siguientes parábolas. 1. y f ( x) x2 2x 3 2. y f ( x) x2 2x 1 3. y f ( x) 2 x 2 3x 2 4. y f ( x) x2 2x 3 5. y f ( x) x2 2x 1 6. y f ( x) 2 x 2 3 7. y f ( x) 4x2 8 Volver
  19. 19. EJE DE SIMETRÍA • Otro elemento importante de la parábola es el eje de simetría, que como sabemos es una recta vertical que pasa por vértice. Su ecuación es: • Este eje se llama de simetría debido a que si trazamos cualquier recta • perpendicular al mismo, vemos que la distancia desde un punto de la curva • al eje de simetría, es igual a la distancia desde dicho eje al punto ubicado en • la otra rama. Así pues, la parábola es una curva con ramas simétricas.
  20. 20. Crecimiento y decrecimiento • Observando el gráfico de la función cuadrática, vemos que: • 1 ) Si a > 0 , entonces: • a ) La función decrece en el intervalo: • b ) Crece en el intervalo: • c ) Su valor mínimo es:
  21. 21. • 2 ) Si a < 0 , entonces: • a ) La función crece en el intervalo: • b ) Decrece en el intervalo: • c ) Su valor máximo es:
  22. 22. Recorrido • A partir de lo dicho en "Crecimiento y decrecimiento" , se concluye que: • 1 ) Si a > 0 , entonces el recorrido de la función cuadrática es: • 2 ) Si a < 0 , entonces el recorrido de la función cuadrática es:

×