Apostila operações i

16.529 visualizações

Publicada em

0 comentários
2 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
16.529
No SlideShare
0
A partir de incorporações
0
Número de incorporações
8
Ações
Compartilhamentos
0
Downloads
637
Comentários
0
Gostaram
2
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Apostila operações i

  1. 1. APOSTILA DE OPERAÇÕES UNITÁRIAS I
  2. 2. Apostila de Operações Unitárias I – 5º semestreINTRODUÇÃO ÀS OPERAÇÕES UNITÁRIAS MECÂNICAS• Processos e operações unitárias.• Sistemas de unidades.• Análise dimensional.• Variáveis de processo - massa e volume, vazão, pressão, temperatura e composição química.PROCESSOS UNITÁRIOS1. Transformações químicas aplicadas ao processamento industrial;2. Conjunto de operações necessárias para a condução de uma determinada reação (transformação) química em largaescala;3. Transformação da matéria-prima (entrada, alimentação ou input) em produtos (saída ou output) desejados.Exemplos: halogenação, hidrogenação, oxidação, esterificação, etc.OPERAÇÕES UNITÁRIAS1. Transformações físicas sofridas durante o processo;2. Transformações físicas (massa) ou físico-químicas (energia e massa) que ocorrem durante um processo;Exemplos: Armazenamento, mistura, filtração, fermentação, esterilização, etc.Operações em batelada ou por lote: quando os materiais a serem processados são alimentados de uma só vez aoequipamento. Normalmente estes tipos de operação são adequados quando o volume do equipamento é o fatorlimitante.Operações contínuas: quando os materiais a serem processados são alimentados continuamente ao equipamento. Emequipamentos que realizam operações em fluxo contínuo é necessário realizar o controle adequado da taxa dealimentação, para que sejam obtidas as características desejadas do produto final.2
  3. 3. Apostila de Operações Unitárias I – 5º semestreProcesso de produção do ácido acetilsalicílicoSISTEMAS DE UNIDADESAnálise dimensionalUma unidade descreve qualitativamente uma grandeza (massa em gramas; tempo em horas, distância em metros). Umagrandeza qualquer pode ser descrita em termos das dimensões primárias de massa (M), comprimento (L), tempo (T) etemperatura (θ) (sistema MLT). Por dimensão deve-se compreender qualquer propriedade que pode ser medida. Algunssistemas se unidades utilizam a força (F) ao invés da massa como dimensão primária (sistema FLT).As dimensões primárias podem ser combinadas entre si fornecendo as unidades secundárias (ou derivadas).Exemplos: área ≡ L2volume ≡ L3aceleração ≡ L/T2= LT-2Frações ou múltiplos das unidades primárias ou secundárias são chamadas de unidades múltiplo.Os principais sistemas de unidades são:Grandeza Sistema Internacional (SI)1Sistema Inglês deEngenharia1Sistema Britânico23
  4. 4. Apostila de Operações Unitárias I – 5º semestremassa/ força quilograma (kg) libra massa (lbm) libra força (lbf)comprimento metros (m) pé (ft) pé (ft)tempo segundos (s) segundos (s) segundos (s)temperatura Kelvin (K) ou Celsius (oC) Rankine (oR)Rankine (oR) ouFahrenheit (oF)1sistema MLT; 2sistema FLTAs unidades dos diferentes sistemas podem ser convertidas entre si através dos fatores (razões) de conversão.Exemplos: 1 m/ 100 cm (um metro equivale a 100 centímetros)1 kg/ 2,20 lbm (um quiligrama corresponde a 2,20 libras massa)1 atm/ 760 mmHg (uma atmosfera corresponde a 760 mmHg)Quando uma quantidade não possui unidade ela é chamada de adimensional.VARIÁVEIS DE PROCESSODEFINIÇÃO: São quantidades que devem ser monitoradas nas diferentes unidades de processo.Exemplo: Separação de uma mistura de sólidos.1. Qual a quantidade de material e qual o tamanho das partículas?2. Qual a taxa de alimentação na unidade de separação?3. Qual a temperatura de trabalho?4. Qual a composição da mistura a ser separada?• Massa específica (densidade, ρ): massa por unidade de volume de uma substância (g/cm3, kg/ m3, lbm/ft3, etc).Valores tabelados para gases, líquidos, sólidos puros ou em solução.Densidade relativa (DR): DR = ρ/ρref ρref (H2O)= 1,0 g/cm3= 1,0 kg/L = 103kg/m3• Volume específico (v ou V): volume ocupado por unidade de massa (m3/kg, ft3/lbm, etc).• Vazão (Q): taxa de transporte de um material através de uma linha de processo. Vazão mássica (m, massa/ tempo)ou vazão volumétrica (volume/ tempo).ρ = m/V (vazão mássica = ρ x vazão volumétrica)As vazões podem ser medidas por diversos instrumentos entre os quais o rotâmetro (direto) ou através aqueles que sebaseiam na equação de Bernoulli (medidor de orifício, Venturi, tubo de Pitot).4
  5. 5. Apostila de Operações Unitárias I – 5º semestreTubo de Pitot5
  6. 6. Apostila de Operações Unitárias I – 5º semestre• Pressão (P): é a força exercida por unidade de área (N/m2ou Pa, lbf/ft2ou psi).Os instrumentos de medida de pressão utilizam diferentes métodos. Alguns exemplos são os tubos de Bourdon (métodoelástico), manômetros (coluna de fluido manométrico) e os transdutores piezoelétricos (elétricos).Manômetro do tipo Bourdon• Temperatura (T): medida da energia cinética média das moléculas de um determinado material. As escalas demedição de temperatura (Celsius, Fahrenheit, Kelvin, Rankine) são baseadas na temperatura de fusão e ebulição daágua.Os instrumentos para medição da temperatura vão desde termômetros de haste de vidro, termistores, termopares e ospirômetros.• Composição química: a maioria dos materiais envolvidos nos processos químicos são misturas de várias espéciescujas propriedades físicas (densidade, volume específico, capacidade calorífica, temperatura de orvalho, etc) irádepender da composição dessa mistura.A composição de uma mistura pode ser expressa em fração molar (x), fração mássica (y), concentração em massa,concentração molar, parte por milhão (ppm), parte por bilhão (ppb).Mistura A e B:Fração molar: xA = nA/ nA + nBxB = nB/ nA + nBConcentração molar: CA = nA/ volume de soluçãoCB = nB/ volume de soluçãoFração mássica: yA = mA/ mA + mByB = mB/ mA + mBppm: xA.106ou yA.106Concentraçãomássica:CA = mA/ volume de soluçãoCB = mB/ volume de soluçãoppb: xA.109ou yA.109EXERCÍCIOS1. Qual o fator de conversão para s/min?2. Qual o fator de conversão para cm3/m3?6
  7. 7. Apostila de Operações Unitárias I – 5º semestre3. O número de Prandtl, NPr, é uma quantidade adimensional usada em cálculos de transferência de calor definido porCp.µ/k, onde Cp é o calor específico, µ é a viscosidade e k é condutividade térmica. Se Cp = 0,583 J/g.oC,µ = 1936 lbm/ft. h e k = 0,286 W/m.oC, qual o valor de NPr ? Dados: (1 g = 2,20 x 10-3lbm; 1 m = 3,28 ft; W = J/s; 1 h =3600 s)4. A vazão mássica de n-hexano (ρ = 0,659 g/cm3) em uma tubulação é 6,59 g/s. Qual a vazão volumétrica?5. Uma corrente de água fluindo de forma estacionária (vazão constante) é dirigida para uma proveta graduada porexatamente 30 s, sendo recolhido durante esse tempo um volume de 50 mL. Qual a vazão volumétrica da corrente? Quala vazão mássica? (ρ = 1 g/mL)6. Uma mistura de gases tem a seguinte composição mássica:O2 16 %CO 4,0 %CO2 17 %N2 63 %Qual a composição molar?7. Partículas de pedra calcária (carbonato de cálcio) são armazenadas em sacas de 50 L. A fração de vazios do materialparticulado é 0,30 (litros de espaço por litro de volume total) e a densidade relativa do carbonato sólido é 2,93.a) qual a massa específica global (kg de CaCO3/ litros de volume total) do conteúdo da saca?b) o conteúdo de 3 sacas é alimentado em um moinho de bolas e o calcário é reduzido a um pó fino e distribuído emsaca de 50 L. Este calcário encherá as mesmas três sacas? Justifique sua resposta.8. O número de Reynolds (Re) é um grupo adimensional definido para o escoamento de um fluido em uma tubulaçãodado pela equação:R e D . v . ρµ=onde D é o diâmetro da tubulação, v é a velocidade, ρ é a densidade e µ é a viscosidade para o fluido que escoa.Quando Re < 2100, o fluxo é dito laminar e, quando Re > 4000, o fluxo é considerado turbulento (caracterizado porvariação da velocidade média do fluido em pontos muito próximos).Determine o diâmetro da tubulação (não esquecer a unidade), considerando o escoamento de uma preparação líquida,em regime laminar, a uma velocidade de 20 m.s-1.Dados: ρ = 1204 kg.m-3e µ = 1,72 N.s.m-2.7
  8. 8. Apostila de Operações Unitárias I – 5º semestreOPERAÇÕES MECÂNICAS ENVOLVENDO SISTEMAS FLUIDOS• Mecânica dos fluidos.• Classificação dos fluidos quanto ao fluxo e deformação.• Transporte fluido através de tubulações.• Aplicações da mecânica dos fluidos.MECÂNICA DOS FLUIDOSA reologia (rheos = fluxo, logos = ciência) estuda a deformação de sistemas líquidos, semi-sólidos e sólidos e é defundamental importância para o entendimento de eficácia de medicamentos e de processos tecnológico (formasfarmacêuticas líquidas, semi-sólidas, misturas sólido-líquido).A reologia abrange diferentes propriedades associadas à deformação da matéria:a) extrusibilidade;b) ductibilidade;c) espalhabilidade;d) elasticidade;e) fluidez e viscosidade.O conhecimento e o controle dessas propriedades é importante não só como critério de qualidade técnica, mastambém como uma necessidade de preencher parâmetros de aceitabilidade por parte do cliente ou paciente. Comoexemplo, podemos citar o caso da viscosidade, cuja aplicação encontramos na formulação, preparação e marketing deemulsões, cremes, géis, soluções, etc.Além da aceitabilidade, as características reológicas de um produto estão associadas a aspectos da absorção ebiodisponibilidade de um fármaco, bem como à escolha correta de equipamentos para a sua produção.8
  9. 9. Apostila de Operações Unitárias I – 5º semestreCLASSIFICAÇÃO DOS FLUIDOS QUANTO AO FLUXO E DEFORMAÇÃOy 1P la c a f ix aP l a c a m ó v e lÁ r e a ( A )F o r ç a ( F )A força F, aplicada na placa móvel, promove uma deformação das camadas de fluido, que se movem uma em relação àsoutras. Essa movimentação das camadas de fluido, também chamada de gradiente de cisalhamento ou velocidade dedeformação (γ, s-1), corresponde à variação da velocidade de deslocamento (v) em função da altura da camadamolecular.Já a força aplicada por unidade de área, necessária para iniciar o fluxo, é chamada de força de cisalhamento, tensãode empuxo ou tensão de cisalhamento (τ, N.m-2).Essas duas grandezas, tensão de cisalhamento e velocidade de deformação, são proporcionais e, sua relação define ocoeficiente de viscosidade ou simplesmente, viscosidade dinâmica (η).τ γη=Unidades de viscosidade:SI: Pa.s (Pascal segundo) = Nm-2sInglês: P (poise) = dina.cm-2.sRelações entre unidade de viscosidade: 1,0 mPa.s = 10-3Pa.s = 1,0 cP = 0,01 PViscosidade cinemática: A viscosidade cinemática é a relação entre a viscosidade dinâmica e a densidade de um fluido.νρη=suas unidades no SI são m2s-1. No sistema cgs utiliza-se o Stoke (s, m2s-1) ou o centistoke (cs, 10-6m2s-1).Efeito da temperatura sobre a viscosidadeQuando um material no estado líquido ou sólido é aquecido, sua viscosidade diminui, enquanto a fluidez aumenta. Porfluidez (φ) de um material deve-se compreender a tendência que o mesmo apresenta de escoar sobre uma superfície(portanto o inverso da viscosidade).9
  10. 10. Apostila de Operações Unitárias I – 5º semestretensãodecisalhamentoτ(N.m-2)v e l o c i d a d e d e c i s a l h a m e n t o , γ ( s - 1)n e w t o n i a n on ã o - n e w t o n i a n on ã o - n e w t o n i a n oReograma apresentando o comportamento de alguns fluidosviscosidade,ηv e l o c i d a d e d e c i s a l h a m e n t oγ ( s - 1)BACCurvas de viscosidade para alguns fluidosCurva A:Curva B:Curva C:Fluidos newtonianos: apresentam uma relação entre a tensão de cisalhamento e a taxa de deformação.Geralmente são soluções de solutos de peso molecular reduzido (materiais não-poliméricos) ou materiais quimicamentepuros.Fluidos não-newtonianos: apresentam uma relação entre a tensão de cisalhamento e a taxa dedeformação.• Pseudoplásticos: dispersões aquosas de hidrocolóides naturais ou quimicamente modificados (goma adragante,CMC, carmelose, HMC), polímeros sintéticos (PVP e ácido poliacrílico).10
  11. 11. Apostila de Operações Unitárias I – 5º semestre• Dilatantes: dispersões (pastas, algumas suspensões e ungüentos) onde a concentração de partículas pequenasdefloculadas é elevada (≈ 50%).A dilatância pode ser um problema durante o processamento de dispersões e a granulação de massas de comprimidos,quando misturadores de alta velocidade são e moinho são utilizados. Se o material se torna dilatante durante aoperação, a solidificação resultante pode exigir uma potência muito elevada do motor, sendo necessário realizar umaavaliação reológica antes da introdução de uma dispersão no processo de fabricação.11
  12. 12. Apostila de Operações Unitárias I – 5º semestreMedindo a viscosidadeA viscosidade de um fluido pode ser medida através de três tipos de instrumentos, que utilizam princípios diferentes:a) Viscosímetro de Ostwald.O princípio deste tipo de viscosímetro deriva da lei de Hagen-Poiseuille, que relaciona otempo de escoamento do líquido através um orifício capilar:η 1η2=ρ 1 t 1ρ2t2onde:η1 = viscosidade desconhecidaη2 = viscosidade de um fluido de referênciaρ1 e ρ2 = densidadest1 e t2 = tempos de escoamento no viscosímetrob) Viscosímetro de Höppler.Este tipo de viscosímetro, também conhecido como viscosímetro de esferas oude queda de esferas, baseia-se na ação simultânea de duas forças opostas: aresistência oferecida pelo fluido a queda da esfera e a força gravitacionalexercida sobre ela.η k ( ρ e s f e r a - ρ f lu id o ) t= k 2 r 2g9 h=eonde:η = viscosidadeρ esfera e ρ fluido = densidades da esfera e do fluido respectivamentet = tempo de queda da esferar = raio da esferah = altura percorrida pela esferag = aceleração da gravidade12
  13. 13. Apostila de Operações Unitárias I – 5º semestrec) Viscosímetros rotatórios (reômetros).A medição da viscosidade neste tipo de aparelho está baseada naresistência ao fluxo observada quando um corpo giratório (geralmentecilíndrico) gira imerso no fluido (líquido ou semi-sólido). Sua utilização visaa determinação de viscosidades em fluidos não-newtonianos, mas pode serutilizados também para fluidos newtonianos.η K V TΩ=onde:η = viscosidadeKV = constante relativa ao aparelhoT = torque (N.m)Ω = velocidade angular (radianos.s-1)Viscosidades de alguns fluidos de interesse farmacêuticoFluido viscosidade dinâmica a 20oCη (cP ou mPas)clorofórmio 0,58água 1,002etanol 1,20sangue (37oC) 4 - 25trinitrato de glicerina 36,0óleo de oliva 84,0óleo de rícino 986,0glicerina 1490mel 10413
  14. 14. Apostila de Operações Unitárias I – 5º semestreTixotropia e reopexia: o comportamento reológico dependente do tempoNa descrição anterior do comportamento não-newtoniano, não foi considerada a relação entre a viscosidade de ummaterial e o tempo. Logo, determinações da viscosidade de um determinado material, iriam produzir o mesmo valor deviscosidade, desde que a tensão de cisalhamento fosse a mesma, independentemente do tempo de aplicação destatensão. Esta situação é idealizada e, uma vez que a maioria das preparações não-newtonianas é de natureza coloidal,os elementos que fluem (macromoléculas, partículas) não são capazes de se adaptar imediatamente às novas condiçõesde cisalhamento.A característica comum a esses materiais é que, se forem submetidos a uma velocidade de cisalhamento crescente e,logo após essa velocidade decresce até zero, haverá um desvio entre a curva ascendente (ida) e a curva descendente(volta). O reograma apresentará um loop de histerese.A tixotropia é uma propriedade importante em formas farmacêuticas líquidas e semi-sólidas que permite obter ummedicamento mais consistente quando em repouso, mas de elevada fluidez quando agitado (aplicação de tensão decisalhamento). Suspensões floculadas são um bom exemplo de sistemas tixotrópicos: se deixadas em repouso,aumentam sua consistência e diminuem a velocidade de sedimentação da fase sólida. Se agitadas, a sua fluidezaumenta, facilitando a retirada da dose exata e a passagem através do orifício do frasco ou seringa.tensãodecisalhamentoτ(N.m-2)v e l o c i d a d e d e c i s a l h a m e n t o , γ ( s - 1)i d av o l t aA reopexia determina um comportamento que é exatamente inverso ao descrito para sistemas tixotrópicos. A reopexiadescreve o aumento da viscosidade durante o tempo de duração da tensão de cisalhamento. Sistemas reopéticos sãoaqueles que apresentam um elevado teor de sólidos em suspensão (acima de 50%) ou sistemas defloculados. Areopexia é um fenômeno no qual um sólido forma um gel com mais facilidade de quando é suavemente agitado(cisalhado).14
  15. 15. Apostila de Operações Unitárias I – 5º semestreid av o lt atensãodecisalhamentoτ(N.m-2)v e lo c id a d e d e c i s a lh a m e n t o , γ ( s - 1)15
  16. 16. Apostila de Operações Unitárias I – 5º semestreAPLICAÇÕES DA MECÂNICA DOS FLUIDOS- Determinação de velocidades de escoamento em tubulações;- Dimensionamento de bombas necessárias para transportas fluidos;- Escolha de equipamentos adequados para formulação de preparações líquidas e semi-sólidas.- Preparação de formas farmacêuticas com características adequadas de viscosidade e fluidez.- Determinação das propriedades reológicas fornece dados a respeito da estabilidade de formas farmacêuticas.16
  17. 17. Apostila de Operações Unitárias I – 5º semestreEXERCÍCIOS1. O que é viscosidade de um fluido?2. Como podem ser classificados os diferentes fluido com relação ao seu comportamento frente a aplicação de umatensão de cisalhamento?3. A 25oC a água tem densidade de 1,0 g.cm-3e viscosidade de 0,865 cP e, seu tempo de escoamento em umviscosímetro capilar é de 15 s. Para uma solução de glicerina a 50% o tempo de escoamento (medido no mesmoaparelho) foi de 750 s. Se nesta temperatura a densidade da solução de glicerina é de 1,22 g.cm-3, qual a suaviscosidade?4. Uma esfera de vidro (r = 0,5 cm e ρ = 920 kg.m-3) leva 2,0 s para percorrer 25 cm em um fluido contido em umviscosímetro de Höppler. Sabendo que a densidade do fluido é de 1,26 kg.m-3, determine sua viscosidade. Considere g =10 ms-2.5. Mediu-se a viscosidade da água num viscosímetro de Ostwald a 20oC tendo-se obtido um tempo médio de 224 spara 5 ensaios. Com uma medição semelhante para um óleo (r = 0,748 g.cm-3) obteve-se um tempo médio deescoamento de 426 s. Qual a viscosidade do óleo sabendo-se que a densidade da água, a 20oC, é de 0,998 g.cm-3e aviscosidade 1,005 cP?6. A tabela abaixo apresenta os resultados obtidos com relação ao comportamento reológico de dispersões de CMC(carboximetilcelulose sódica) e HEC (hidroxietilcelulose) frente a esterilização.PRODUTO γ (s-1) τ (dina.s-1)I II III27,12 56,81 47,79 49,59CMC 67,80 116,32 100,99 105,50135,60 195,66 174,02 183,94271,20 326,40 290,34 301,1627,12 120,82 89,27 100,09HEC 67,80 199,27 163,65 177,63135,60 277,71 252,92 255,17271,20 385,91 363,82 355,26A dispersão I não sofreu tratamento de esterilização enquanto II e III foram tratadas com vapor sob pressão e fluente,respectivamente. Com base nos dados da tabela acima e sendo γ a taxa de deformação (s-1) e τ a tensão decisalhamento (dina.s-2), qual o tipo de solução formada (pseudoplástica, newtoniana, dilatante) pela CMC e pela HEC?Por que?Operações mecânicas envolvendo sistemas sólidos granulares• Tamisação e análise granulométrica.• Principais equipamentos utilizados para divisão de sólidos e líquidos na Indústria Farmacêutica.17
  18. 18. Apostila de Operações Unitárias I – 5º semestreANÁLISE GRANULOMÉTRICAAs dimensões dos sólidos particulados consistem em um fator importante quando o objetivo é otimizar a produção demedicamentos eficazes.Quando se trata da determinação do tamanho de partícula de um sólido relativamente grande, é pouco freqüentedeterminar mais do que três dimensões. Entretanto, se o material sólido é fragmentado e os fragmentos submetidos àmoagem, as partículas finas resultantes podem ser irregulares, com número de faces diferentes e, também, pode serdifícil ou impraticável determinar mais do que uma única dimensão. Por muitas vezes costuma-se considerar essaspartículas como sendo de forma esférica, a qual pode ser caracterizada pelo seu diâmetro médio.Diâmetros equivalentesQuando uma partícula sólida é irregular, mais de uma esfera de diâmetro equivalente a esta partícula pode ser descrita.1) Diâmetro da área projetada: baseia-se em um círculo de área equivalente ao da imagem da partícula sólidaprojetada.2) Diâmetro do perímetro: baseia-se em um círculo com o mesmo perímetro da partícula analisada.3) Diâmetro de Ferret: é determinado a partir da distância média estabelecida entre duas linhas paralelas tangenciaisao perímetro projetado da partícula.4) Diâmetro de Martin: corresponde ao comprimento médio do segmento do perímetro projetado da partícula,considerado como a fronteira que separa a partícula em duas áreas iguais.Distribuição do tamanho das partículas18
  19. 19. Apostila de Operações Unitárias I – 5º semestreUm conjunto de partículas esféricas (ou com forma equivalente de uma esfera) é tido como monodisperso e suascaracterísticas podem ser descritas através do diâmetro equivalente.É importante lembrar que pós com características monodispersas não são encontrados na prática, sendo encontradaspartículas com um número elevado de diâmetros diferentes.A distribuição de tamanhos de partícula pode ser representada graficamente na forma de um histograma.Métodos para determinação do tamanho de partículas (Análise granulométrica)Na determinação dos diâmetros equivalentes de uma partícula, com os quais caracterizamos o tamanho de umapartícula de um pó, é necessário realizar a análise do tamanho da partícula por um ou mais métodos diferentes. A partirde alguns critérios, esses métodos podem ser classificados em diferentes categorias, diferenciando a faixagranulométrica, método seco ou úmido, manual ou automático e velocidade de análise. Alguns dos principais métodossão descritos, resumidamente a seguir:A – Tamisação: consiste na determinação do tamanho da partícula (diâmetro equivalente) através da passagem de umaamostra, de massa conhecida, por um conjunto de malhas de aberturas conhecidas. As malhas podem ser bronze ouaço inoxidável e constituem em barreira física à passagem do sólido. Os tamises são distribuídos em uma coluna(geralmente 6 a 8 peneiras) com uma progressão de abertura da malha em um fator de variação de √2 ou 2√2, entrediâmetros adjacentes. O material é colocado no topo da coluna (sobre o tamis de maior malha) e o conjunto submetido àvibração mecânica.Para que os resultados de uma determinada análise granulométrica sejam reprodutíveis é necessário operar emcondições bem definidas, que são descritas nas diferentes farmacopéias.Técnicas alternativas: air-jet sieving (tamisação pneumática); tamisação a úmido automatizada.19
  20. 20. Apostila de Operações Unitárias I – 5º semestreB – Microscopia: consiste na determinação do tamanho da partícula por microscopia óptica através de imagensbidimensionais das partículas, assumindo-se uma orientação aleatória (considerando o plano de distribuição maisestável). Quando a na’lise é realizada por microscopia óptica convencional, utiliza-se uma tela de projeção com escalarelativa às dimensões das partículas sob análise.Técnicas alternativas: microscopia eletrônica de varredura (MEV) – gera uma imagem tridimensional da partícula - e a detransmissão (MET).C – Contador eletrônica de partículas (Contador Coulter): determina o número de partículas e a dimensão das mesmasem suspensão de eletrólitos, através da passagem da suspensão por um conjunto de eletrodos. O deslocamento de umdeterminado volume de suspensão é feito através de uma linha de vácuo e, a passagem das partículas é determinadapela variação na corrente elétrica (que também é função do volume da partícula).Contador CoulterD – Dispersão de luz laser: permite determinar o tamanho de partículas em suspensão em um líquido ou no ar, atravésda dispersão ou interceptação da luz pelas partículas.E – Método por sedimentação: baseia-se na determinação da velocidade de sedimentação em um meio fluido (água ouar).Pipeta de AndreasenEsta técnica tem aplicação reduzida, sendo necessária a aplicação de força centrífuga para pós muito finos.20
  21. 21. Apostila de Operações Unitárias I – 5º semestreSeleção de métodos de análiseA seleção do método de análise pode ser limitada pelo tipo de aparelhagem existente, mas, as limitações devem serdeterminadas apenas pelas propriedades das partículas do pó e pelo tipo de informação desejada (intervalo dediâmetros, por exemplo).Importância da determinação granulométricaA determinação adequada do tamanho das partículas tem uma importância muito grande. Algumas delas sãorelacionadas a seguir:1) Determinação da velocidade de dissolução;2) Homogeneidade e estabilidade de misturas de pós ou granulados;3) Qualidade de comprimidos (uniformidade da dose, dureza, friabilidade, dissolução);4) Estabilidade de suspensões líquidas ou pastosas (xaropes, poções, pomadas supositórios);5) Biodisponibilidade de princípios ativos pouco solúveis administrados na forma sólida.DIVISÃO DE SÓLIDOS E LÍQUIDOS POR AÇÃO MECÂNICAUma das principais aplicações da operação de redução de partículas é a de auxiliar no processamento eficiente departículas sólidas. A moagem de sólidos apresenta como principais vantagens:• Aumento da solubilidade de fármacos sólidos nos fluidos orgânicos;• Aumento a eficiência de extração e secagem de materiais úmidos;• Aumento da eficiência da mistura de materiais sólidos;• Disfarçar sabor desagradável;• Melhora a aparência de emulsões;• Facilitar o armazenamento através da redução do volume bruto.A moagem, fragmentação ou cominuição baseia-se na propagação das fissuras realizadas sobre um material sólido,iniciadas através da aplicação de uma força localizada. Esta operação resulta na formação de superfícies novas, isto é,um aumento da área superficial. A facilidade com que um material irá se fragmentar depende da sua friabilidade ou daplasticidade e das interrelações entre a iniciação e a propagação da quebra.Outras propriedades de materiais sólidos que devem ser consideradas em uma operação de moagem são:1) Tipo de material;2) Dureza;3) Taxa de umidade;4) Sensibilidade ao calor;5) Tamanho inicial e final das partículas;21
  22. 22. Apostila de Operações Unitárias I – 5º semestre6) Quantidade de material a ser tratada.AUMENTO DA ÁREA SUPERFICIALQuando uma partícula uniforme tem seu tamanho reduzido até que seja obtido um pó fino, há um aumento considerávelda área superficial.Muitas reações dependem da área superficial disponível para que possam ocorrer. O trigo, por exemplo, quando naforma de grãos é relativamente estável, mas, caso seja moído até que se obtenha uma farinha este material torna-seexplosivo.Considere o esquema abaixo:Vp = p.Dp3(volume da partícula)Ap = 6.q.Dp2(área da partícula)NOVAS PARTÍCULASOnde:Dp = diâmetrop, q = fatores relacionados a formaA razão Ap/ Vp é a área específica de uma partícula e é dada por:A PV P6 λd P=(equação 1)rescrevendo a equação acima:A P6 λ V Pd P=(equação 2)Para uma massa m de partículas de densidade ρp, o número de partículas pode ser escrito por:n ú m e r o d e p a r t í c u la s =ρ P V Pm(equação 3)22
  23. 23. Apostila de Operações Unitárias I – 5º semestreAssociando as equações 2 e 3 é possível determinar a área superficial total para uma amostra de massa m através daequação a seguir:A P6 m λρ P d P=ENERGIA ENVOLVIDA EM UMA OPERAÇÃO DE MOAGEM DE SÓLIDOSInicialmente o sólido quando submetido a uma força sofre uma deformação elástica (Lei de Hooke) passando emseguida por um ponto limite (ponto de ruptura), a partir do qual se deforma permanentemente. A partir daí, se a tensãoexercida sob a partícula do sólido continua o material é fragmentado sendo atingido o ponto de deformação irreversível.Logo, para haver quebra das partículas deve-se exercer uma tensão maior do que a do limite de elasticidade.Em uma operação de cominuição somente pequena parte da energia fornecida é efetivamente utilizada para reduzir otamanho de um material sólido (aproximadamente 2% da energia total fornecida). O restante da energia é dissipado devárias maneiras como, por exemplo, deformações elásticas; fricção entre as partículas e entre as partículas e a câmarade moagem; ineficiência da transmissão da energia e do motor; parda de material na câmara de moagem e perda deenergia por conversão em calor, vibração e ruído.Uma forma diferencial generaliza a relação entre energia e tamanho de partícula desejado.∆ E =- k n∆ donde d é uma função do tamanho (que pode ser caracterizada pelo tamanho médio), n é um exponente.De acordo com o valor de n, é possível obter as relações descritas abaixo.• Lei de Kick (n =1): A energia necessária para a redução de partículas é diretamente proporcional a razão de reduçãod1/d2 onde d1 e d2 são os diâmetros médios do material antes e depois da moagem e KK é a constante de Kick (comunidade de energia por massa).E K K lo gd 1d 2=Aplica-se a partículas que apresentam diâmetro equivalente maiores que 1µm.• Lei de von Rittinger (n =2): A energia necessária para a redução da partícula é diretamente proporcional ao aumentoda superfície. Onde Si é a área superficial antes da moagem, Sn é a área superficial após a moagem e KR é a constantede Rittinger (com unidade de energia por unidade de área).23
  24. 24. Apostila de Operações Unitárias I – 5º semestreE K R ( S n - S i)=Aplica-se a partículas que apresentam diâmetro equivalente menor que 1µm (pós).• Lei de Bond (n =1,5): A energia necessária para a redução da partícula é diretamente proporcional à área superficialde produto formado. Onde E1 é o índice de trabalho (expresso em energia por unidade de massa) que representa aquantidade de energia para reduzir uma partícula de tamanho infinitamente grande até o diâmetro de 100 µm. O índicede trabalho para diferentes materiais pode ser determinado através dos testes de moagem e, considerado 1,3 vezesmaior para moagens realizadas a seco em relação ao valor para moagens a úmido.E = E 11 0 0d2d 1d 21 -1 / 2Aplica-se a partículas em situações onde as leis de Kick e Rittinger não são aplicáveis.Quando se planeja um processo de moagem para uma determinada partícula, para calcular o gasto de energia é precisoestabelecer a relação energética que melhor se ajuste a ele.APRESENTAÇÃO DOS RESULTADOSOs resultados de uma análise granulométrica podem ser representados em tabelas ou também em gráficos (histograma)EQUIPAMENTOS PARA REDUÇÃO DE PARTÍCULAS SÓLIDASOs equipamentos utilizados para moagem podem ser classificados quanto ao principal mecanismo de aplicação da forçanecessária para a redução da partícula. Os mecanismos de divisão de partículas sólidas se dividem em compressão,choque (impacto), atrito (arraste), cisalhamento (corte) e métodos de atrito e impacto.É importante mencionar que mais de um mecanismo de fragmentação pode ocorrer em um mesmo equipamento.Métodos por compressãoDois rolos cilíndricos (moedores cilíndricos não canelados e canelados) que giram sobre seus eixos longitudinais, um porcontrole direto e outro por ação do atrito com o material à medida que este passa pela fenda existente entre os doisrolos.Métodos por atritoO moinho de rolos é constituído de dois a três cilindros de porcelana ou metal dispostos horizontalmente, onde material aser processado (ungüentos, pastas e suspensões) é arrastado e esmagado. A dimensão das partículas obtidas é24
  25. 25. Apostila de Operações Unitárias I – 5º semestreregulada através do afastamento dos cilindros (geralmente 20 µm). Em um moinho de rolos liso, onde cada unidadefunciona a velocidades diferentes, há simultaneamente compressão e atrito.Métodos por impactoA redução por impacto pode ser alcançada em um moinho de martelos ou em um moinho vibratório.O moinho de martelos é constituído por um conjunto de quatro ou mais martelos articulados fixados em uma hastecentral, adaptada a uma câmara de moagem metálica fixa. Durante a operação, esses martelos se chocam contra omaterial na câmara e quando atingem a granulometria adequada são eliminados através de uma malha. A velocidadeangular dos martelos (80 s-1) é suficiente para promover a quebra de maioria das partículas.Moinho de martelosOs moinhos vibratórios são constituídos por uma câmara de moagem cilíndrica ou esférica que contém em seu interiorpor bolas aço ou porcelana (até 80% do volume da câmara). Durante a moagem, o conjunto é submetido a uma vibraçãopor um conjunto de molas e, pelo impacto repetido provoca a redução de tamanho. O material de granulometriaadequada deixa a câmara de moagem através de uma malha colocada na base do moinho. A eficiência dos moinhosvibratórios é maior que a eficiência dos moinhos de bolas convencionais.25
  26. 26. Apostila de Operações Unitárias I – 5º semestreMoinho vibratórioMétodos por corteUm moinho de facas é constituído por uma série de facas (2 a 12) dispostas uniformemente sobre um rotor horizontal,girando a 200-900 rpm em uma câmara cilíndrica contendo outras lâminas estacionárias. No fundo da câmara há umamalha que controla o tamanho do material a ser eliminado da zona de moagem.As elevadas velocidades de corte dos moinhos de facas são úteis na granulação por via seca, na produção de partículasde tamanho grosseiro destinadas a fabricação de comprimidos, assim como na preparação de drogas fibrosas (cascas,raízes e frutos) destinadas à extração.Moinho de facasMétodos que combinam impacto e atritoOs moinhos de bolas são constituídos por um cilindro oco disposto horizontalmente de tal maneira que possa girar sobreseu eixo longitudinal. Tais cilindros podem ter até 3 m de diâmetro, mas no âmbito farmacêutico, são utilizados26
  27. 27. Apostila de Operações Unitárias I – 5º semestreequipamentos de menor porte. Neste caso as esferas de aço ou porcelana ocupam de 30 a 50% do volume total dacâmara de moagem e são de tamanhos variados a fim de facilitar o atrito.Moinho de bolas em funcionamentoA quantidade de material e a velocidade de rotação fatores importantes na utilização de um moinho de bolas.Algumas das principais vantagens deste equipamento são:1. A operação (por lote) se realiza em equipamento fechado;2. Pode realizar simultaneamente a moagem e a mistura de certos materiais;3. É o método de escolha para determinadas texturas de materiais.Outro método de redução de tamanho por arraste é a moagem por energia fluida em moinho de energia fluida(micronizador por ar comprimido ou moedor a jato). Este tipo de equipamento as partículas a serem pulverizadas sãolevadas por uma corrente de ar de alta velocidade e se chocam contra as paredes da câmara de moagem (20 a 200 mmde diâmetro) e entre si mesmas. A velocidade do ar causa uma turbulência que assegura a redução substancial dotamanho das partículas por impacto e, em menor grau por atrito. Um classificador (ciclone) é acoplado ao sistema,fazendo com que o material de granulometria superior a desejada permaneça na câmara de moagem; depois, aspartículas são carregadas pela corrente de ar que escapa do moinho.Além dos moinhos de bolas e de energia fluida, existem outros métodos de cominuição que atuam pelo atrito e peloimpacto das partículas. Como exemplo pode ser citado o moinho de pinos (moinho de dentes ou moinho de pontas) quepromove a moagem do material através de sua passagem entre duas placas metálicas paralelas (sendo uma fixa).Moinho de energia fluidaMoinho de pinos27
  28. 28. Apostila de Operações Unitárias I – 5º semestreSeleção do tipo de moinho de acordo com as propriedades e o tamanho das partículasConsiderando um mesmo material de partida, cada tipo de moinho levará a obtenção de produtos com característicasdiferentes. O fim a que se destina um determinado pó irá exigir o controle adequado do grau de redução desejado,entretanto, deve-se lembrar que este fator deve ser associado ao custo de sua realização.FriávelBolas,vibração,energiafluida.Bolas,vibração,energiafluida.Bolas,rolos,pinos,martelos,vibração.Bolas,rolos,pinos,martelos,vibração.Rolos,almofarizaxial,martelos.Rolos,martelos.AbrasivoBolas,vibração.Bolas,vibração,rolos.Rolos.AderenteBolas,vibração.Bolas,pinos.Rolos,almofarizaxial,martelos.28
  29. 29. Apostila de Operações Unitárias I – 5º semestreResistenteBolas,vibração.Bolas,vibração.Bolas,vibração,energiafluida.Bolas,vibração,rolos,pinos,facas(todosemnitrogêniolíquido).Bolas,rolos,pinos,martelos,vibração,facas.Bolas,vibração.Facas,almofarizaxial.Almofarizaxial,rolos,martelos.Rolos.DurezadeMohrsPófino(<50µm)1–3(mole)3–5(intermediário)5–10(duro)Pógrosseiro(50–1000µm)1–3(mole)3–5(intermediário)5–10(duro)Pómuitogrosseiro(>1000µm)1–3(mole)3–5(intermediário)5–10(duro)29
  30. 30. Apostila de Operações Unitárias I – 5º semestreEXERCÍCIOS1) Para um material sólido o índice de trabalho (Wi) determinado em um moinho de bolas foi de 12,07 kWh/ton. Qual aenergia gasta para reduzir esse material de 1190 µm a 149 µm em um moinho de bolas? (assumir que a lei de Bond éválida)2) Uma amostra de 1,0 kg de açúcar foi processada em um moinho cujo motor tem potência de 5,0 hp de modo que80% do material passa através de peneiras malha 500 e 88 µm. O mesmo equipamento poderá ser utilizado se aalimentação do moinho aumentar em 50% e se 80% do material moído passar através de peneiras malha 500 e125 µm? (assumir que a lei de Bond é válida)3) Em uma análise de um sal por tamisação, foi verificado de 38% do material total passava através de uma malha de 7mesh porém permanecia retida em uma malha de 9 mesh. Para a fração mais fina, foi observado que 5% passou atravésde uma malha de 80 mesh, mas foi retida em uma malha de 115 mesh. Estime a área superficial das duas frações seuma amostra de 5,0 kg do sal (ρp = 1050 kg.m-3) e o fator de forma (λ) é 1,75.4) Quais os métodos para a determinação do tamanho das partículas de sólidas?5) A tamisação é uma operação unitária onde uma mistura de partículas de diferentes tamanhos é separada através dapassagem por uma série de peneiras (ou tamises). O sucesso desta operação pode ser comprometido pelo tamanho dapartícula e umidade do material. Como esses fatores podem afetar uma tamisação?6) Determine o índice de mistura (M) para um misturador onde K igual a 3,5 x 10-3 s-1e o tempo de operação é de 20minutos.30
  31. 31. Apostila de Operações Unitárias I – 5º semestreDEFINIÇÃO DE MISTURAA operação de mistura é a dispersão de dois ou mais componentes entre si quando colocados em contato íntimo em umrecipiente, levando a uma distribuição ao acaso dos mesmos. Uma mistura pode ser caracterizada de acordo com acomposição, densidade ou forma do material formado. A freqüência em que um componente ocorre em uma mistura éproporcional a sua fração no conteúdo total da mistura.A operação de mistura, entre dois ou mais componentes, estará completa quando a composição em qualquer ponto dorecipiente é igual a composição da amostra total.A uniformidade de uma mistura é uma medida estatística de quanto uma composição real se desvia da média ideal e éobtido a través da determinação do desvio padrão para uma série de amostras.RESUMINDOMistura é uma operação que tem como objetivo tornar o mais homogênea possível uma associação de vários produtossólidos, pastosos, líquidos ou gasosos. Tem-se como resultado um material (mistura) onde a cada fração ou dose,coletada ao acaso, contém os mesmos componentes nas mesmas proporções que a preparação total.Esta operação unitária pode ser encontrada em diferentes etapas da produção de formas farmacêuticas, como porexemplo:1) Comprimidos, cápsulas, sachês e sistemas inaladores que contém pós secos requerem misturas de partículassólidas;2) Pastas e suspensões necessitam de dispersão de partículas sólidas;3) Emulsões e cremes requerem mistura de líquidos imiscíveis;4) Poções (linctuses) requerem mistura de líquidos miscíveis.31
  32. 32. Apostila de Operações Unitárias I – 5º semestreTipos de misturas- Sólido + sólido.- Sólido + líquido.- Líquido + líquido.Mecanismos de mistura de pósNa mistura de pós é necessário que suas partículas tenham movimentação livre uma em relação às outras. Existem trêsmecanismos principais de mistura de pós:Mistura por convecção: de acordo com o equipamento utilizado, a convecção poderá ocorrer por inversão de umacamada de material sob ação dos aparatos de mistura (lâmina, pá, etc). Logo, haverá a movimentação de grandesquantidades de material de uma parte a outra do leito de mistura (leito pulvéreo).Mistura por cisalhamento: como resultado das interações entre as partículas do material sólido, podem ser formadosplanos de deslocamento. O movimento de planos de composições diferentes, um em relação a outro (iniciado porconvecção, por exemplo), irá resultar na mistura dos componentes. O mesmo pode ocorrer em misturadores de altocisalhamento ou de volteradura, nos quais a ação do misturados leva a formação de gradientes de velocidade dentro doleito pulvéreo, fazendo com que uma camada deslize sobre a outra.Mistura por difusão (ou dispersão): quando um pó é forçado a deslizar, sofre uma dilatação, isto é, o volume ocupadoinicialmente pelo leito torna-se maior. As partículas individuais migram (difundem) através do leito dilatado de pó (onde acapacidade de fluidez e dilatação dependem da força de coesão das partículas), resultado em uma mistura aleatória.A extensão na qual cada um desses mecanismos ocorre é uma função de muitas variáveis, entre as quais os tipos deequipamento em uso e sua velocidade de operação, além das propriedades do fluxo dos pós que estão sendomisturados.Segregação dos componentes de uma misturaA segregação é a separação dos diferentes materiais que formam a mistura. É de primordial importância evitar quemisturas de pós sofram segregação durante o manuseio, ou seja, durante o enchimento de máquinas ou no transportenas máquinas de compressão, encapsulamento ou enchimento.A separação dos componentes de uma mistura de pós resulta da irregularidade das partículas dos materiais, quanto aotamanho, a forma e a densidade. A segregação pode ser aumentada se o leito de pó é submetido à vibração e aspartículas apresentam elevada fluidez.Uma maneira de minimizar esta separação em formulações sólidas é através da adição de excipientesfarmacologicamente inertes. Este material deverá apresentar afinidade seletiva pelo componente ativo da mistura.32
  33. 33. Apostila de Operações Unitárias I – 5º semestreTipos de misturas de sólidosMisturas positivas: resultam da combinação de materiais como gases e líquidos miscíveis, que se misturamespontaneamente por difusão de forma espontânea e irreversível (mistura perfeita ou ideal). Não é necessário ofornecimento de energia para obter uma mistura perfeita quando o tempo é infinito. Entretanto, o fornecimento de energiairá reduzir significativamente o tempo necessário para a realização desta operação.Misturas negativas: são misturas onde se observa uma tendência à separação dos componentes, sendo necessária amanutenção do fornecimento de energia para que os mesmos mantenham-se dispersos.Misturas neutras: são preparações de comportamento estável, onde não é verificada a tendência à mistura espontâneanem à segregação dos componentes (exemplos pós, pastas, ungüentos).Fluidez de pósFluidez é a capacidade que um pó possui em fluir. Esta propriedade não é uma quantidade unidimensional, pois estefluxo por vezes é bastante complexo e depende de várias características do pó. Por esta razão nenhum teste podequantificar a fluidez, que não pode ser expressa como um valor ou índice único. A fluidez resulta da combinação depropriedades físicas do material que afetam seu fluxo e seu comportamento em equipamentos usados para suamanipulação, estocagem ou processamento.As características e propriedades específicas de uma carga de pó que afetam o fluxo e em princípio podem serdeterminadas através de testes são chamadas propriedades de fluxo. As principais propriedades de fluxo são:- Densidade (compressibilidade);- Forças de coesão (van der Waals, eletrostáticas, tensão superficial, fricção, entrosamento);- Fricção na parede.A fluidez é um fator importante para vários processos da indústria farmacêutica, entre os quais:1) Transferência de pós através de equipamentos de grande porte (abastecedores de fluxo, bins, alimentador detambor, funil de alimentação de compressoras ou coletores de pós);2) Estocagem de pós, que pode resultar em endurecimento no interior do recipiente (tambor, bin);3) Separação de uma quantidade pequena de pó do volume total (antes da divisão em doses individuais - compressão,encapsulamento e enchimento de frascos);4) Mistura (função do tipo de misturador e do comportamento do fluxo do pó durante a operação);5) Processos de compactação;6) Fluidização seja por processos auxiliares ou por leito fluidizado, como granulação e secagem.33
  34. 34. Apostila de Operações Unitárias I – 5º semestreÍNDICE DE MISTURAPara os fabricantes de medicamentos é necessário monitorar os processos de mistura por algumas razões, entre asquais:A- Determinar o grau e/ou a extensão de mistura;B- Acompanhar o processo de mistura;C- Determinar o grau de mistura obtido quando se atingiu o nível adequado;D- Avaliar a eficiência do misturador;E- Estabelecer o tempo de mistura para um processo específico.Em termos estatísticos uma mistura perfeita é uma mistura aleatória. O número de partículas de um determinadocomponente (em amostras de mesma massa) é determinado ao acaso e, oscila em torno de um valor médio.Se os materiais A e B (considerando partículas de mesmo tamanho) são completamente misturados entre si, o desviopadrão ao fim da operação pode ser descrito como:s r2 p ( 1 - p )Ns 02N==Onde: sr2= desvio padrão da amostra completamente misturada; N = número total de partículas na amostraO índice de mistura (M) pode ser definido pela equação:( s 02- s 2)( s 02- s r2)M =onde s é o desvio padrão de amostras que se encontram em estágios intermediários.CONSIDERAÇÕES PRÁTICAS EM OPERAÇÕES DE MISTURA DE SÓLIDOSA - Em formulações destinadas à mistura que possuam baixo conteúdo de componentes ativos é possível obter umamistura homogênea através da adição seqüencial de quantidades no misturador;B - Garantir que o volume do pó no misturador seja adequado, pois o enchimento excessivo ou abaixo do especificadopode reduzir a eficiência da operação;C - O equipamento selecionado deverá apresentar mecanismo de mistura adequado para a formulação;D - O misturador deverá ser projetado de tal forma que não haja perda de material, seja de fácil limpeza e permita adescarga completa do produto;E - Determinar o tempo de mistura adequado através da retirada e análise de amostras representativas em diferentesintervalos de tempo de mistura;F - Promover o aterramento adequado dos equipamentos e realizar a operação em ambiente com umidade relativasuperior a 40%.34
  35. 35. Apostila de Operações Unitárias I – 5º semestreMISTURA ENVOLVENDO SISTEMAS LÍQUIDOSA mistura envolvendo líquidos é marcada pela viscosidade e pelo teor de sólidos envolvido no processo. Quando o sólidoé prontamente solúvel no líquido ou os líquidos apresentam baixa viscosidade, é possível conseguir uma misturahomogênea e, quando os líquidos são viscosos ou o teor de sólidos presente na mistura é elevado, são obtidos materiaispastosos e o grau de uniformidade é menor.Mecanismos de mistura de líquidosOs mecanismos mais importantes na mistura de líquidos são:Mistura por turbulência: caracterizado por uma variação aleatória da velocidade das partículas quando são forçadas afluir de forma turbulenta (Re > 4000) sendo observada a formação de vórtices (redemoinhos).Mistura por fluxo laminar: ocorre quando fluidos muito viscosos são misturados ou quando a agitação é suave. Écaracterizado pela tensão gerada na superfície dos líquidos a serem misturados.Mistura por transporte bruto (bulk): é similar ao transporte por convecção discutido para sólidos e envolve o transpor dequantidade relativamente grande do material no interior do misturador, por ação de pás, por exemplo.Mistura por difusão: é similar ao transpor por difusão discutido para sólidos e ocorre nas regiões do misturados onde háformação de redemoinhos.CONSIDERAÇÕES PRÁTICAS EM OPERAÇÕES DE MISTURA ENVOLVENDO LÍQUIDOSNa mistura envolvendo líquidos é importante considerar alguns fatores:A - Densidade, viscosidade e miscibilidade dos fluidos;B - Solubilidade (sólidos);C - Quantidade de energia fornecida pelo misturador;D - Custo do equipamento.O dimensionamento do consumo de energia em operações envolvendo líquidos é baseado em quantidadesadimensionais (número de Reynolds e de Froude) que definem uma quantidade chamada número de potência (Np).Re =D2Nρµforça de inércia/ força viscosaforça inércia/ força gravitacionalFr =DN2g35
  36. 36. Apostila de Operações Unitárias I – 5º semestreNp = KReaFrbNp =PD5N3ρSimilaridadeOperação em escala laboratorial x operação em escala industrial (scale-up).Re, FrEscala laboratorialRe, FrEscala industrial=Diâmetro (DT) e altura (H) do tanqueDiâmetro do rotor (D)Freqüência de agitação (N)Consumo de energia (P)P = nNpD5N3r36
  37. 37. Apostila de Operações Unitárias I – 5º semestrePRINCIPAIS EQUIPAMENTOS UTILIZADOS NA PREPARAÇÃO DE MISTURAS DE SÓLIDOSA- Misturadores de volteaduraB- Misturadores por agitaçãoMisturador de parafuso helicoidalC- Misturadores planetários37
  38. 38. Apostila de Operações Unitárias I – 5º semestreD- Misturadores sigmaE- Misturadores de héliceF- Misturadores de pás38
  39. 39. Apostila de Operações Unitárias I – 5º semestre+ +G- Misturadores estáticos39
  40. 40. Apostila de Operações Unitárias I – 5º semestreEXERCÍCIOS1) Um equipamento, operando em batelada, mistura amido e um princípio ativo sendo a proporção inicial de cadacomponente 40:60, respectivamente. Se a variância das composições das amostras, determinada em termos da fraçãode lactose foi de 0,0823, após 300 s de operação, por quanto tempo os dois materiais terão de ser misturados até que avariância da mistura seja de 0,02? Considere que o número de partículas em cada amostras é igual a 500.2) Os mecanismos que podem ocorrer na mistura de líquidos são:a) convecção, turbulência, fricção, difusão.b) convecção, difusão, fricção, laminar.c) cisalhamento, condução, turbulência, radiação.d) turbulência, difusão, convecção, laminar.e) turbulência, cisalhamento, radiação, laminar.3) Corrija as afirmações abaixo referentes à operação de agitação:a) A formação de redemoinhos ocorre quando fluidos muito viscosos são misturados ou quando a agitação é suave.b) As chicanas são utilizadas com a finalidade de promover redemoinhos no interior do tanque de mistura.4) Na mistura de líquidos em batelada podem ser utilizados os seguintes equipamentos:a) misturador planetário, misturador em "V", misturador de duplo cone.b) extrusora, misturador de duplo cone, misturador helicoidal.c) misturador de pás, misturador de hélice naval, misturador de turbinas.d) misturador helicoidal, misturador de fitas, misturador estático.e) chicanas, misturador de hélice naval, misturador de turbinas.40
  41. 41. Apostila de Operações Unitárias I – 5º semestre5) Uma mistura é chamada de positiva quando a mesma ocorre espontânea e irreversivelmente. O mecanismooperante neste caso é a difusão. Para este tipo de mistura é correto afirmar:a) É necessário fornecer uma quantidade de energia muito grande quando o tempo de mistura é ilimitado.b) O aumento da energia fornecida para realizar a mistura reduz significativamente o tempo de mistura.c) Líquidos miscíveis não fornecem misturas positivas.d) Misturas positivas são formadas preferencialmente por sólidos.e) Suspensões, como a loção de calamina, são exemplos de misturas positivas.6) A figura abaixo representa esquematicamente um tipo de elemento de agitação utilizado em operações demistura.a) Qual o tipo de misturador indicado na figura?b) Por que este equipamento não é recomendado para misturas sólido-líquido?c) Quais os mecanismos de mistura desenvolvidos neste tipo de equipamento?Elemento demistura7) O que é segregação de pós?8) O que é fluidez de um sólido? Qual sua importância em indústria farmacêutica?41
  42. 42. Apostila de Operações Unitárias I – 5º semestreOperações mecânicas envolvendo sistemas sólido - fluido• Teoria da filtração.• Principais equipamentos utilizados para filtração na Indústria Farmacêutica.• Centrifugação. Principais equipamentos utilizados em centrifugação na Indústria Farmacêutica.OPERAÇÕES MECÂNICAS ENVOLVENDO SEPARAÇÃO DE SISTEMAS SÓLIDO-FLUIDOA separação de sólidos e líquidos, genericamente chamada de filtração, é definida como uma operação básica na qualum componente sólido insolúvel de uma suspensão sólido-líquido é separado do líquido fazendo-se passar a suspensãopor uma membrana porosa (meio filtrante) que retém as partículas sólidas em sua superfície ou em seu interior ouambas as coisas de uma vez. A operação de filtração pode ser dividida em filtração, clarificação e centrifugação.As duas principais razões para realização desta operação em processos farmacêuticos são:- Remoção de partículas sólidas indesejadas, presentes em um líquido ou no ar;- Recuperação do sólido quando este é o produto desejado, por exemplo, após uma cristalização.FILTRAÇÃOFiltrar consiste em separar mecanicamente as partículas sólidas de uma suspensão com auxílio de um leito poroso.Quando se força a suspensão através de um leito, o sólido fica retido sobre o meio filtrante, formando um depósito que édenominado torta e cuja espessura (e resistência à passagem do fluido) vai aumentando durante a operação.Pode ser realizada por ação da gravidade (peso da suspensão), através de vácuo ou aplicação de pressão.Algumas das aplicações desta operação são dadas a seguir:- Melhoria da aparência de soluções (aspecto mais limpo);- Remoção de partículas que possam ser nocivas em preparações oftálmicas;- Recuperação de material sólido presente em suspensão;- Extração de drogas vegetais;- Esterilização de produtos líquidos ou semi-sólidos;- Remoção de microrganismos.Atualmente ainda é possível separar não só as partículas presentes em uma suspensão como também partículas emsolução (moléculas e íons) em função de suas dimensões. Dessa forma tem-se:- Filtração para partículas de até 10 µm;- Microfiltração para partículas de 10 a 0,2 µm;- Ultrafiltração para partículas de 0,2 a 0,002 µm e- Osmose reversa para partículas de 0,002 a 0,0003 µm.42
  43. 43. Apostila de Operações Unitárias I – 5º semestreMeio filtranteO meio filtrante é um material permeável constituído de metal (alumínio, aço inoxidável, metais sinterizados), fibrasvegetais (algodão, celulose) ou animais (lã) através do qual haverá a passagem do filtrado com retenção das partículassólidas.A escolha do meio filtrante irá depender de características do filtrado, do sólido a ser recolhido e de características daprópria operação em si. A seleção do meio filtrante pode ser direcionada através das seguintes questões:- Qual o tipo de suspensão a ser filtrada?- Qual o tamanho do poro necessário para reter a menor partícula?- Qual a vazão desejada?- Qual a pressão de operação?- Qual a temperatura de funcionamento?- Qual o processo desejado?- Qual o volume de filtrado obtido?- Qual a limitação de tempo (casa exista)?Uma característica do meio filtrante importante para a operação de filtração é a porosidade (ε), que é a relação entre ovolume total dos espaços vazios e o volume aparente da rede. Esta fração de vazios representa o espaço disponívelpara a passagem de filtrado.Auxiliares de filtraçãoMuitas vezes o meio filtrante é recoberto com materiais de pré-revestimento, chamados auxiliares de filtração que sedestinam a colaborar na retenção dos sólidos presentes na suspensão, facilitar a descarga da torta e aumentar a vazãode filtrado.Isto é necessário quando os sólidos em suspensão são muito finos (até 40 µm) e/ ou formam uma torta compressível(que se comporta como uma esponja).Estes materiais são partículas sólidas inertes e não compressíveis que evitam o fechamento das aberturas dos filtros.Algumas características importantes dos auxiliares de filtração são dadas abaixo:a) Possuir estrutura que forme um resíduo permeável.b) Ter tamanho adequado para reter as partículas do sólido em suspensão.c) Permanecer em suspensão no líquido.d) Ser inerte frente ao sólido e ao filtrado.Sílica-gel, terras diatomáceas e areia fina são exemplos de materiais utilizados como auxiliares de filtração. Geralmenterecomenda-se o uso de 1 a 2 kg de auxiliar por kg de sólidos em suspensão, entretanto, a quantidade ideal que deve serdeterminada para cada caso. De maneira geral pode-se dizer que em quantidades pequenas aumentam o número deciclos, e quantidade maiores aumentam a perda de carga através da torta sem remover os sólidos.43
  44. 44. Apostila de Operações Unitárias I – 5º semestreA fim de se recuperar o filtrado adequadamente, obter uma torta com pureza adequada, recomenda-se que sejarealizada a lavagem da torta (geralmente com água) ou a passagem de ar através da mesma a fim de retirarem-setraços de filtrado.Operações não estéreis e estéreisNas filtrações não estéreis é importante manter-se um grau de limpidez do filtrado que é uma medida da eficiência daoperação. Geralmente o objetivo é eliminar as partículas de até 3 a 5 µm de tamanho. As operações estéreis visamtambém a remoção de microrganismos que é conseguida através da utilização de filtros de membrana com aberturas de0,22 a 0,45 µm.Teoria da filtraçãoComo mencionado anteriormente, característica das partículas sólidas e do filtrado são importantes na operação defiltração, pois a relação entre elas irá definir o tipo de força necessária para realizar a separação.Quando a suspensão a ser separada em sólido e líquido atravessa o meio filtrante, três etapas são identificadas:1) Inicialmente, quando as primeiras partículas do sólido atingem o meio filtrante, formam uma capa que reduz asuperfície filtrante;2) Com o tempo a espessura desta capa aumenta sendo formada a torta;3) O conjunto torta + filtro forma um meio que oferece uma resistência adicional à passagem do líquido.m e i o f i l t r a n t ef i l t r a d ot o r t a}p r e s s ã o d o a rv á c u oFiltração em funil de Buchner: formação da torta e utilização de auxiliares de filtraçãoPara manter a velocidade de passagem da suspensão, o líquido deverá vencer a resistência do meio filtrante e da torta,sendo necessária a aplicação de pressão. A equação que exprime a velocidade de filtração através de um meio filtranteé:44
  45. 45. Apostila de Operações Unitárias I – 5º semestrev e lo c id a d e d e filt r a ç ã o =f o r ç a m o t r izr e s is t ê n c ia a o f lu x oOnde a força motriz para a filtração é a diferença de pressão entre as faces do filtro e a velocidade (razão de filtração) édada em volume de filtrado por unidade de tempo.A razão de filtração em dimensões [V3/t] é equacionada através da equação de Darcy dada por:K A ∆ Pµ LVt=onde: A = área disponível para a filtração (m2); ∆P = débito de pressão no meio filtrante (Pa); µ = viscosidade do fluido(Pa.s); L = espessura do meio filtrante (m); K = permeabilidade da torta e do meio filtrante (m2).K e 35 ( 1 - e ) 2S 2=Alguns fatores devem ser considerados quanto a eficiência de filtração, entre os quais:1) Aumento da pressão sobre o meio filtrante aumenta a velocidade de escoamento exceto quando o sólido emsuspensão é compressível.2) Quanto maior a área superficial menor a resistência à filtração, logo maior a velocidade de filtração.3) A velocidade de escoamento é inversamente proporcional à viscosidade do líquido e a quantidade de materialdepositado sobre o meio filtrante.4) A espessura da torta é inversamente proporcional à velocidade de filtração;5) Quanto menor o tamanho das partículas do sólido em suspensão, maior a resistência a passagem do filtrado.Equipamentos de filtraçãoUma filtração em escala industrial deve possibilitar uma velocidade de operação, visando minimizar o custo de produção,ter preço acessível e funcionamento barato, ser de fácil limpeza e manutenção, resistente a corrosão e capaz de filtrargrandes quantidades de produto.A escolha de um equipamento para realizar uma separação sólido-líquido irá depender de alguns fatores entre os quais:1. Tipo de força necessária para a separação (vácuo, gravidade, pressão);2. Tipo de suspensão a manusear;3. Regime de funcionamento (batelada ou contínuo);4. Volume a ser produzido;5. Possibilidade de lavagem da torta;6. Custos (manutenção, mão de obra, reposição de peças, depreciação).FILTROS POR GRAVIDADE45
  46. 46. Apostila de Operações Unitárias I – 5º semestreFiltrações que se realizam a pressão ambiente são de pouca utilidade em escala industrial devido a sua lentidão, egeralmente este tipo de operação é aplicada no tratamento de água. Entretanto, em escala laboratorial filtros porgravidade são baratos e muito utilizados na recuperação de volumes pequenos, onde a razão de filtração não éimportante.FILTROS DE PRESSÃO• Operam a pressões superiores a atmosférica.• A suspensão é bombeada através do meio filtrante.• A pressão pode ser constante durante a operação ou ser aumentada gradualmente a fim de se manter o fluxoadequado.Filtro prensa de placas e quadrosA - Conjunto de câmaras de filtração verticais constituídas de quadro metálico oco (por onde a suspensão éalimentada) e por uma placa recoberta em ambas as faces pelo meio filtrante. As dimensões utilizadas para as placasvariam de 15 cm a 1,5 m de lado e de 0,5 a 1,5 cm de espessura, para os quadros a espessura varia de 0,5 a 20 cm.B - Podem ser utilizadas de 10 a 100 superfícies filtrantes de uma só vez de acordo com as características domaterial a ser filtrado.C - A torta obtida pode ou não ser lavada após a filtração por um líquido de lavagem, sendo os filtros utilizados paraesta operação chamados lavadores ou não-lavadores.Filtro prensa (esquema)Vantagens DesvantagensMontagem simples Custo elevado (mão-de-obra)Facilidade para visualizar vazamentos Operação intermitenteManutenção simples Operação demorada (lavagem da torta)Ocupa pouco espaçoFiltro de discos46
  47. 47. Apostila de Operações Unitárias I – 5º semestreA - Conjunto de placas horizontais (meio filtrante) montadas verticalmente dentro de um recipiente cilíndrico e quepermitem o deslocamento livre do líquido.B - Operam por lote ou continuamente.C - Aplicam-se comumente às indústrias de processos de química fina como antibióticos, pesticidas ou pigmentos,quando a carga de impurezas insolúveis é baixa, o produto desejado é a torta.D - A lavagem neste equipamento é bastante eficiente e a umidade final obtida é baixa.E - Os filtros de placas horizontais também são bem aceitos no manuseio de materiais inflamáveis, tóxicos ecorrosivos.F - Os tamanhos do filtro podem variar, mas geralmente a área máxima é 60 m2e são projetados para operar a umapressão de 6 bar (6 atm).Filtro de discos horizontaisVantagens DesvantagensRemoção da pilha de pratos é mais simples Necessidade de um pé-direito alto na edificaçãoBom apoio para a torta formada Lacre é complexoSão usadas em aplicações com tortas espessas epesadasRequer monitoramento preciso da pressão dentro dovaso47
  48. 48. Apostila de Operações Unitárias I – 5º semestreFiltros de cartuchoA - São filtros onde meio filtrante é um tubo constituído de material polimérico (PVC, PTFE, nylon) posicionadoverticalmente em relação à saída de filtrado.B - Os filtros de cartucho podem ser utilizados em operações de clarificação e esterilização, purificação edesmineralização de água.C - Possuem grande área filtrante.D - Apresentam vantagens quanto a capacidade de filtração e a facilidade de manutenção, entretanto, variações depressão no meio filtrante de acordo com a concentração da suspensão e entupimento da membrana filtrante podemreduzir a eficiência desta operação.FILTROS DE VÁCUO• São filtros de funcionamento contínuo, indicados para operações que requerem filtros de grande capacidade.• A saída do filtrado, a lavagem, a drenagem do filtrado e a descarga da torta são realizadas simultaneamente.• Normalmente operam a vácuo, mas podem ser operados sob pressão.Filtro de tambor rotativo (Filtro Oliver)A - Tambor cilíndrico que gira a baixa velocidade (0,1 a 2 rpm) em torno de um eixo longitudinal e encontra-seconectado a uma bomba de vácuo central.B - Sua superfície é dividida em pequenos compartimentos, recoberta pelo meio filtrante.C - A medida em que o tambor é submerso na suspensão a filtração é realizada e o filtrado é conduzido para fora totanque de suspensão.D - A torta após seca é lavada e raspada da superfície do tambor.Vantagens DesvantagensFuncionam automaticamente São carosOcupam pouco espaço Mais adequados para a separação de sólidos que sedesprendem facilmente do meio filtrante.Possuem alta capacidade de filtraçãoFiltro de tambor rotativo ou Filtro Oliver48
  49. 49. Apostila de Operações Unitárias I – 5º semestreCENTRIFUGAÇÃOA força centrífuga pode ser utilizada para promover a força motriz necessária para realizar uma separação sólido-líquidoou líquido-líquido.Se uma partícula de massa m, gira em uma centrífuga de raio r, a uma velocidade v, há uma força centrífuga F atuandosobre esta partícula igual a mv2/r. Esta mesma partícula também encontra-se sob ação do campo gravitacional, sendoatraída a uma intensidade G dada por mg, onde g é a aceleração de gravidade.O efeito centrífugo (C) é dado pela razão entre estas duas forças F/G, ou seja, v2/gr.Este tipo de separação é útil quando as partículas em suspensão não precipitam facilmente (diferença de densidadesentre o sólido em suspensão é o líquido é pequena) e a operação demoraria muito tempo para ocorrer naturalmente. Aaplicação de uma força centrífuga pode acelerar a separação e irá depender da densidade do sólido, da velocidade derotação e do raio da centrífuga. Este tipo de separação é utilizado a mais de 100 anos, desde a invenção da centrífugapor De Laval com o objetivo de separar a gordura do leite.Esquema centrífugaEQUIPAMENTOS UTILIZADOS PARA CENTRIFUGAÇÃODe um modo geral, as centrífugas podem ser divididas em centrífugas de filtração e centrífugas de sedimentação. Arealização de testes preliminares de peneiramento (ou sedimentação) pode indicar rapidamente o tipo de equipamento aser utilizado em uma separação por centrifugação.Em uma operação de filtração são utilizadas centrífugas de cestos perfurados e na sedimentação são utilizadosrecipientes de paredes sólidas, onde sob a ação da força centrífuga ocorre a sedimentação das partículas em direção àsparedes.Separação líquido-líquidoCentrífuga de Discos (clarificadora / sedimentadora): A centrífuga do tipo com rotor de discos com vaso sólido opera avelocidades de 3 mil a 20 mil vezes a gravidade e proporciona um sistema de clarificação contínuo que é satisfatóriopara materiais com um conteúdo de sólidos de 1 a 2% ou menos. É projetada para separação sólido/líquido ou duasfases líquidas em base contínua. Os sólidos sedimentam na parede do vaso e são descarregados manualmente ouautomaticamente por aberturas intermitentes do vaso. A pilha de discos aumenta grandemente a área efetiva de49
  50. 50. Apostila de Operações Unitárias I – 5º semestresedimentação ou clarificação, e as fases líquida e sólida movem-se para cima ou para baixo na superfície dos discos. Olíquido descarrega através de um ou mais discosCentrífuga de discos clarificadora Centrífuga de discos com descarga por bocaisCentrífuga Tubular: este tipo de centrífuga consiste em um tubosólido fechado em ambas as extremidades, e que normalmente éalimentado com dois líquidos de densidades diferentes, por umaentrada no fundo. A fase mais pesada se concentra contra aparede do cilindro, enquanto a fase mais leve flutua sobre ela. Asduas fases são separadas por meio de um defletor que asdescarrega em dois fluxos distintos. Se a alimentação doprocesso for do tipo líquido/sólido ou líquido/líquido/sólido, faz-senecessário uma limpeza regular mas, se não há a presença desólidos suspensos, o processo pode ser contínuoCentrífuga de câmara tubular (tipo Sharpless).50
  51. 51. Apostila de Operações Unitárias I – 5º semestreESTUDO DE CASO: Principais operações unitárias envolvidas na produção de formas farmacêuticas sólidas.Formas farmacêuticas sólidas como cápsulas e comprimidos são empregadas na administração oral de fármacos.Algumas vantagens de suas utilizações incluem a facilidade de manipulação, administração e identificação. Aestabilidade desta formas farmacêuticas (quando comparadas com as preparações líquidas), conseguida graças àausência de água, permite uma conservação prolongada. Neste capítulo serão analisadas algumas das principaisoperações unitárias envolvidas na formulação de comprimidos.Os comprimidos constituem uma das formas farmacêuticas mais utilizadas. São preparações sólidas que contémprincípios ativos, preparados com o auxílio de adjuvantes (excipientes), obtidos por aglomeração de um volumeconstante de partículas. Formulações farmacêuticas na forma de comprimidos apresentam uma redução da áreasuperficial devido aos processos de granulação e compressão. Podem se apresentar na forma revestida e não-revestida,além das formulações especiais (efervescentes, liberação modificada, mastigáveis, hipodérmicos, sublinguais, etc).A granulação tem por objetivo transformar pós (na forma cristalina ou amorfa) em agregados sólidos (granulados),sendo uma das operações mais importantes na formulação de formas farmacêuticas sólidas. De acordo com a utilizaçãoos grânulos podem apresentar diâmetros que variam de 0,2 a 4,0 mm mas, na maior parte dos casos (na formulação decomprimidos e cápsulas) o diâmetro oscila entre 0,2 e 0,5 mm. Os granulados possuem algumas característicasimportantes que tornam vantajosas sua utilização:- Diminuição da segregação em uma mistura de pós: devido às irregularidades existentes entre os pós que sãomisturados (densidade, tamanho de partícula, forma) partículas finas ou mais densas tendem a se depositar no fundo doequipamento de mistura e, partículas menos densas ou maiores tendem a ocupar a parte superior do equipamento demistura. Em um grânulo, todos os componentes da mistura são distribuídos homogeneamente, isto é, não hásegregação.- Otimização das propriedades de fluxo: as propriedades de fluxo de pós são prejudicadas quando as partículasapresentam diâmetros muito pequenos, formas irregulares e propriedades de superfícies (forças de atração entre aspartículas) intensas.51
  52. 52. Apostila de Operações Unitárias I – 5º semestre- Melhorar características de compactação: a granulação torna a compactação mais fácil e produz comprimidos maisresistentes. Alguns pós são de difícil compactação mesmo quando são adicionados agentes aglutinantes.- Redução da formação de poeiras: esta vantagem é importante especialmente quando há manipulação de materiaisque apresentam toxicidade. É importante que o granulados obtidos sejam resistentes à ação mecânica e não sejamfriáveis (não se quebrem facilmente).- Menor volume ocupado: grânulos apresentam maior densidade que a mistura de pós, por isso ocupam menorvolume por unidade de peso.Logo, o granulado ideal deve possuir:1. Forma e cor mais regulares possível;2. Distribuição granulométrica estreita;3. Menos de 10% de partículas primárias livres (pós) de baixa granulometria;4. Boa fluidez;5. Umidade (não menos que 3%);6. Resistência mecânica adequada;7. Solubilidade em água ou nos fluidos orgânicos.A obtenção de granulados pode ser realizada por via seca ou por via úmida (onde há a utilização de um aglutinantelíquido). Além do princípio estão presentes no grânulo agentes desintegrantes (auxiliam na dissolução no meio líquido),diluentes (auxiliares para a manutenção do peso e da forma) e os aglutinantes (promovem a ligação entre as partículas epodem ser sólidos ou líquidos).• Granulação a seco: aplica-se a materiais que não são resistentes à umidade (misturas que contém um carbonato eum ácido orgânico sólido), são sensíveis ao calor ou quando são muito solúveis nos líquidos de molhagem. Neste tipo degranulação as partículas primárias (pós) são agregados uns aos outros por ação de uma pressão elevada. A formaçãodos grânulos é garantida pela adição dos aglutinantes pulvéreos como pro exemplo celulose microcristalina (CMC),lactose, dextrose, sacarose, sulfato de cálcio, poligol 4000 e trifosfato de cálcio.A granulação por via seca possui três etapas essenciais:1. Compactação: é a agregação das partículas primárias nos chamados compactos. A ação de forçasintermoleculares, em especial as forças de van der Waals são de fundamental importância para a formação dessesagregados. A compactação pode ser realizada em compactadores ou através da passagem do material em pó entre doisrolos.52
  53. 53. Apostila de Operações Unitárias I – 5º semestreEsquema de um compactador: a) Allexanderwerk; b) Hutt2. Trituração ou cominuição: etapa onde são efetivamente formados os grânulos. O compacto é triturado em moinhos,granuladores rotatórios, oscilantes ou granuladores tamisadores. O tipo de equipamento escolhido irá determinar ascaracterísticas do granulado obtido.3. Tamisação ou calibração: permite a seleção dos grânulos com dimensões uniformes dentro de uma faixagranulométrica desejada. Defeitos observados na distribuição do tamanho dos granulados podem causar alterações naescapa seguinte de transformação e na qualidade do produto. O material seco de tamanho inadequado pode serreaproveitado no processo.Esquema de uma granulação por via seca indicando as principais operações unitárias envolvidasf á r m a c oa d j u v a n t ec o m p r i m i d ot a m i s a ç ã o a g l o m e r a d oc a l i b r a ç ã ol u b r i f i c a n t ec o m p r e s s ã om o a g e mm i s t u r am i s t u r a53
  54. 54. Apostila de Operações Unitárias I – 5º semestre• Granulação por via úmida: compreende a formação de uma massa úmida a partir das partículas primáriasutilizando-se um líquido de granulação (geralmente água, um álcool ou uma mistura de ambos) que dissolvaligeiramente o pó. Um aglutinante (gelatina, amido, gomas, pectina, dextrina, CMC) por ser dissolvido pode serincorporado a este líquido de granulação, ou adicionado à mistura de pós, para garantir a adesão entre as partículasquando o granulado estiver seco.A granulação por via úmida apresenta como principais etapas:1. Umidificação: consiste na adição do líquido de granulação ao pó seco. Consiste em uma operação de misturasólido-líquido, onde o teor de sólidos é elevado. Logo são utilizados equipamentos que promovam uma elevada tensãode cisalhamento durante a mistura da massa úmida visando garantir a homogeneidade (misturadores em sigma,planetários, nauta)2. Granulação: o método tradicional consiste na passagem da massa úmida através de uma matriz perfurada (tamis)produzindo os grânulos úmidos. Granuladores rotatórios podem ser utilizados com esta finalidade.Esquema de um granulador oscilante ou rotatório3. Secagem: o granulado úmido é submetido à secagem por diferentes métodos (secagem em leito fluidizado,secagem em bandejas).Esquema de uma granulação por via úmida indicando as principais operações unitárias envolvidasf á r m a c oa d j u v a n t e líq u i d o sc o m p r im id ot a m is a ç ã o g r â n u lo sa g lo m e r a d os e c a g e mc a lib r a ç ã olu b r if ic a n t ec o m p r e s s ã om i s t u r am i s t u r am i s t u r am o a g e m54
  55. 55. Apostila de Operações Unitárias I – 5º semestreOutros tipos de equipamentos que realizam simultaneamente a molhagem e a granulação (misturadores/ granuladores)da massa ou ainda, a granulação e secagem do material são utilizados atualmente:Granulador Collete-GralGranulador Diosna ou Fielder (além da granulação o material pode ser seco por uma corrente de ar)55
  56. 56. Apostila de Operações Unitárias I – 5º semestreGranulador de leito fluidizadoA grande vantagem na utilização deste tipo de equipamento está na redução do número de manipulações que o materialsofre.Granulador single pot Granulador de leito fluidizado56
  57. 57. Apostila de Operações Unitárias I – 5º semestreGranulador de leito contínuo Instalação para produção de granuladosEsquema de um granulador por fluidização em spray drying (FSD)57
  58. 58. Apostila de Operações Unitárias I – 5º semestreExtrusão/ esferonizaçãoEste processo dá origem a pellets e esferas de tamanho uniforme destinados à produção de fármacos de liberaçãocontrolada. Sua grande vantagem em relação aos demais métodos é a possibilidade de incorporar grandes quantidadesde fármacos sem produzir partículas grandes. As principais etapas envolvidas são:- Mistura seca dos componentes (garantir a homogeneidade do material pulvéreo);- Umidificação da massa;- Extrusão1(obtenção de partículas extrusadas de tamanho uniforme);- Esferonização (transformação do material extrusado em partículas esféricas);- Secagem (redução do conteúdo de umidade);- Tamisação2(seleção de uma faixa de tamanho de partículas).1ver equipamento para a redução de partículas.2esta operação é opcionalEsquema de um esferonizadorA extrusão/esferonização é uma técnica versátil para a obtenção de pellets esféricos entretanto, quando comparada àsdemais técnicas de granulação por via úmida, é um processo mais laborioso e por isso tem seu uso limitado a obtençãode partículas esféricas ou quando outras técnicas de granulação não são aplicáveis.CompressãoConsiste na aproximação forçada de partículas (grânulos), formando uma entidade sólida, porosa e de geometriadeterminada. A compressão é realizada em uma matriz pela ação de punções (uma superior e outra inferior) resultandona redução do volume final do material.São conhecidos dois tipos de equipamentos para compressão: as máquinas excêntricas (ou alternativas) – possuemuma única punção – e as rotativas ou rotatórias.58
  59. 59. Apostila de Operações Unitárias I – 5º semestreOs principais componentes de uma máquina compressora são:1. Reservatório de distribuidor: garantem a alimentação do granulado e sua distribuição nas matrizes.2. Punções e matrizes: conjunto que define o tamanho e a forma do comprimido.3. Guia: orienta o movimento das punções.4. Sistema de controle: realiza o controle de parâmetros da compressora de acordo com as especificações desejadaspara o comprimido (dureza e peso por exemplo).RevestimentoO revestimento tem por objetivo aplicar sob a superfície externa de um comprimido um material (resinas, açúcares,plastificantes, ceras, corantes, etc) que lhe confira propriedades e benefícios em relação à forma não-revestida taiscomo:- Mascarar o sabor ou odor desagradável;- Proteção dos princípios ativos à ação do ar e da luz;- Prevenir incompatibilidades;- Tornar fácil a identificação através do uso de corantes;- Melhor aparência torna melhor a aceitação (venda);- Torna operação de enchimento e de acondicionamento mais fáceis.- Utilizados para a liberação controlada ou entérica (sistemas multiparticulados).Embalagem ou acondicionamentoA função do acondicionamento é dar ao medicamento é promover a conservação aumentando o tempo de vida útil dosmesmos. A embalagem deve ser econômica, dar proteção em relação a fatores ligados ao clima (calor, umidade,luminosidade) e aqueles de origem biológica, física e química. Deve identificar adequadamente o produto e contribuirtanto para a sua praticidade quanto para a sua aceitação.QUESTÕS PARA ESTUDO DIRIGIDO1) Qual o objetivo da operação de filtração?2) Como podem ser divididos os diferentes tipos de filtração quanto à força motriz?3) Analisando-se a equação de Darcy, qual o efeito da variação dos seguintes parâmetros na vazão de filtrado (paracada caso justifique sua resposta):a) Aumento da área superficial do meio filtrante.b) Diminuição do débito de pressão.c) Aumento da temperatura.4) Qual o objetivo da filtração esterilizante? Cite exemplos de sua utilização.59
  60. 60. Apostila de Operações Unitárias I – 5º semestre5) Cite três fatores que devem ser considerados na escolha de um equipamento de filtração.6) O que é porosidade de um meio filtrante?7) O que é um auxiliar de filtração? Cite exemplos.8) O que é um filtro de cartucho? Cite exemplos de sua utilização.9) Esquematize um filtro de discos e explique resumidamente seu funcionamento.10) O que é granulação? Como esta operação pode ser realizada?11) Quais as principais operações unitárias envolvidas na produção de granulados por via seca? (ver esquema)12) Quais as principais operações unitárias envolvidas na produção de granulados por via úmida? (ver esquema)13) Deseja-se preparar um granulado para utilização em comprimidos efervescentes. Sabendo-se a formação debolhas (liberação de CO2) em um comprimido efervescente deve-se a presença de um ácido orgânico fraco e umbicarbonato, em meio aquoso, este granulado poderia ser preparado por via úmida?14) Cite três vantagens da utilização de granulados ao invés de pós na preparação de formas farmacêuticas sólidas.15) A granulação em si é uma operação muito complexa pois envolve muitas etapas, algumas muito delicadas. Acompressão direta (CD) é o processo ideal para produção, em escala industrial de medicamentos. É adequada parasubstâncias que possuem fluxo livre, propriedades de coesão e que possibilitam ser compactadas diretamente.Lembrando-se que a mistura deve ser homogênea para a preparação de formas farmacêuticas sólidas, responda:a) Qual o principal inconveniente que deve ser evitado na CD quanto à mistura de sólidos?b) Quais os fatores que devem ser considerados a fim de evitar este inconveniente?60

×