SlideShare uma empresa Scribd logo
1 de 28
Baixar para ler offline
Piezoelectricity and Elasticity
Shyue Ping Ong
Department of NanoEngineering
University of California, San Diego
Piezoelectricity
¡ Piezoelectricity refers to the linear coupling between mechanical stress and
electric polarization (the direct piezoelectric effect) or between mechanical
strain and applied electric field (the converse piezoelectric effect).
Equivalence between the direct and converse effects can be shown using
Maxwell’s relations:
¡ Principal piezoelectric coefficient, d, relates polarization P to stress σ in the
direct effect and strain ε to electric field E.
¡ Units of d: [C/N] or [m/V]
¡ Typical values for useful piezoelectric materials: ~ 1 pC/N for quartz to ~ 1000
pC/N for PZT (lead zirconate titanate).
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
2
dijk = −
∂G2
∂Ei∂σ jk
#
$
%%
&
'
((
T
=
∂Pi
∂σ jk
#
$
%%
&
'
((
E,T
=
∂εjk
∂Ei
#
$
%
&
'
(
X,T
Direct piezoelectric effect
¡ The piezoelectric moduli is a rank-3 tensor:
¡ It therefore transforms as
¡ As previously shown, the piezoelectric coefficients are
zero for all centrosymmetric crystals (inversion center).
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
3
Pi = dijkσ jk
dijk
!i = cilcjmckndlmn
Voigt notation for piezoelectric moduli
¡ The piezoelectric moduli always act in pairs.
¡ Earlier, we have shown that 3x3 symmetric tensors such as stress and strain
can be represented as a 6-element vector. Using the same concept, we can
simplify the piezoelectric moduli to a 3x6 matrix as follows.
¡ However, here we encounter a problem that we cannot apply a without a
. In order to go to a matrix notation, the piezoelectric moduli is defined as:
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
4
Pi = dijkσ jk = di11σ11 + di22σ22 + di33σ33 + di23σ23 + di32σ32 …(total of 27 elements!)
Pi = dijσ j = di1σ1 + di2σ2 + di3σ3 + di4σ4 + di5σ5 + di6σ6
σ23
σ32
dim =
dijk for j=k
dijk + dikj for j≠ k
"
#
$
%$
Factor of 2 is absorbed into
the matrix, which has 18
elements instead of 27.
Voigt notation for piezoelectric moduli ,
contd.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
5
P1
P2
P3
!
"
#
#
##
$
%
&
&
&&
=
d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36
!
"
#
#
##
$
%
&
&
&&
σ1
σ2
σ3
σ4
σ5
σ6
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
Converse piezoelectric moduli
¡ The same coefficients apply to the converse piezoelectric effect (note
order of indices!)
¡ Similarly,
¡ Again, we note that by definition,
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
6
εjk = dijkEi
ε11 = d111E1 + d211E2 + d311E3
ε22 = d122E1 + d222E2 + d322E3
ε33 = d133E1 + d233E2 + d333E3
ε23 = d123E1 + d223E2 + d323E3
ε32 = d132E1 + d232E2 + d332E3
ε23 =ε32
ε23 +ε32 = (d123 + d132 )E1 +(d223 + d232 )E2 +(d323 + d332 )E3 =γ4
Voigt notation for converse
piezoelectric effect
¡ Recall that we earlier defined the vector notation for the strain tensor
to be the engineering shear strains (2 x strain) for the off-diagonals
elements. This in fact allows us to retain the same form of the matrix
for the converse piezoelectric effect as the direct piezoelectric effect!
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
7
ε1
ε2
ε3
γ4
γ5
γ6
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
=
d11 d21 d31
d12 d22 d32
d13 d23 d33
d14 d24 d34
d15 d25 d35
d16 d26 d36
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
E1
E2
E3
!
"
#
#
##
$
%
&
&
&&
Symmetry restrictions on piezoelectric
moduli
¡ As there are many more terms, we are not going to go
through the exercise of deriving all the possible
piezoelectric moduli tensors / matrices.
¡ We will just go through a few examples to show how these
can be derived, and state the different forms.
¡ Note that while the Voigt form is useful for performing
computations, the information about how the tensor
transforms is “lost”. You will need to go back to the full
tensor form to determine the transformation.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
8
d13 in monoclinic crystals
¡ Consider monoclinic crystals with a two-fold rotation axis (2):
¡ For monoclinic crystals with a mirror m about the a-c plane:
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
9
Blackboard
Blackboard
Examples of piezoelectric moduli
matrices
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
10
Triclinic (P1)
Orthorhombic 222
Orthorhombic 2mm
Trigonal 32
Cubic 432
d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
d11 −d11 0 d14 0 0
0 0 0 0 −d14 −2d11
0 0 0 0 0 0
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
0 0 0 d14 0 0
0 0 0 0 d25 0
0 0 0 0 0 d36
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
⎛
⎝
⎜
⎜
⎞
⎠
⎟
⎟
Monoclinic
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
11
0 0 0 d14 0 d16
d21 d22 d23 0 d25 0
0 0 0 d34 0 d36
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
Point group 2
d11 d12 d13 0 d15 0
0 0 0 d24 0 d26
d31 d32 d33 0 d35 0
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
Point group m
Examples of Piezoelectric Materials
¡ Quartz
¡ Consider the converse piezoelectric effect when a field of 100 V/cm is
applied in the X1 direction
¡ This is an extremely small strain. But quartz has the advantage of
being low cost, chemically stable and mechanically stable.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
12
2.3 −2.3 0 −0.67 0 0
0 0 0 0 0.67 −4.6
0 0 0 0 0 0
"
#
$
$
$
%
&
'
'
'
×10−12
C / N
Piezoelectric moduli
X1
X2
ε11 = 2.3×10−12
×104
= 2.3×10−8
Full derivation in Handouts
Examples of Piezoelectric Materials
¡ Ammonium dihydrogen phosphate (ADP)
¡ Used in sonar trasducers
¡ Fairly large d33 (more than 10 times the largest moduli in
quartz)
¡ However, fairly soft and moisture sensitive.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
13
0 0 0 1.8 0 0
0 0 0 0 1.8 0
0 0 0 0 0 48
!
"
#
#
#
$
%
&
&
&
×10−12
C / N
Piezoelectric moduli
PZT (PbZr1−xTixO3)
¡ Used extensively in trasducer technology
¡ Underwater sonar, biomedical ultrasound, multilayer actuators for
fuel injection, piezoelectric printers, and bimorph pneumatic valves
all make use of poled PZT ceramics.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
14
3m with [111] polar axis 4mm with [001] polar axis
Piezoelectric properties enhanced by
choosing compositions close to morphotropic
boundary between rhombohedral and
tetragonal distortions.
Heating above Curie point, the crystal
structure becomes centrosymmetric, and all
electric dipoles vanish. As the material is
cooled in the presence of a sufficiently large
electric field, the dipoles tend to align with the
applied field, all together giving rise to a
nonzero net polarization.
PZT, contd
¡ Electrically poled materials belong to Curie symmetry ∞m, which has
piezoelectric tensors of the following form:
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
15
0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0
!
"
#
#
##
$
%
&
&
&&
¡ Intrinsic effects: Under a tensile stress parallel to the dipole moment, there is
an enhancement of the polarization along [001] = Z3. When a tensile stress is
applied perpendicular to the dipole, the polarization along Z3 (d33 and d31) is
reduced. When the dipole is tilted by shear stress, charges appear on the side
faces (d15).
¡ Extrinsic contributions: Doping with higher or lower-valent ions.
¡ Nb5+ for Ti4+ gives soft PZT with easily movable domain walls and a large
piezoelectric coefficient. Used in hydrophones and other sensors.
¡ Fe3+ for Ti4+ gives hard PZTs, used in high-power transducers because they
will not depole under high fields in the reverse directions.
Elasticity
¡ All materials undergo shape change under a mechanical force.
¡ Hooke’s Law (small stresses):
¡ where s are known as the elastic compliance coefficients (m2/N), and c are known as
the stiffness coefficients (N/m2).
¡ Typical values:
¡ Fairly stiff material like a metal or a ceramic, c is about 1011 N/m2
¡ Note that Hooke’s Law does not describe the elastic behavior at high stress levels that
requires higher order elastic constants. Irreversible phenomena such as plasticity and
fracture occur at still higher stress levels.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
16
εij = sijklσkl
σij = cijklεkl
Stiffness and compliance coefficients
¡ The stiffness and compliance coefficients are rank 4
tensors and transform as:
¡ There are 81 (34) coefficients in total, though the actual
number of non-zero independent coefficients is
considerably reduced by the fact that both the strain and
stress are symmetric rank 2 tensors.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
17
cijkl
! = aimajnakoalpcmnop
sijkl
! = aimajnakoalpsmnop
Voigt notation
¡ Similarly, the stiffness and compliance can be
represented as 6x6 matrices operation on the
6 element stress and strain vectors.
¡ However, the energy density is given by:
¡ Hence, the compliance and stiffness matrices
comprises of at most 21 independent values.
Symmetries above triclinic would have fewer
independent values.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
18
dW =σidεi = cijεjdεi
∂2
W
∂εj∂εi
= cij and
∂2
W
∂εi∂εj
= cji
Since the order of differentiation does not matter,
cij = cji
σ1
σ2
σ3
σ4
σ5
σ6
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
=
c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
ε1
ε2
ε3
γ4
γ5
γ6
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
ε1
ε2
ε3
γ4
γ5
γ6
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
=
s11 s12 s13 s14 s15 s16
s12 s22 s23 s24 s25 s26
s13 s23 s33 s34 s35 s36
s14 s24 s34 s44 s45 s46
s15 s25 s35 s45 s55 s56
s16 s26 s36 s46 s56 s66
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
σ1
σ2
σ3
σ4
σ5
σ6
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
Conversion between tensor and matrix
notations
¡ Stiffness
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
19
σij = cijklεkl
σ11 = c1111ε11 +c1112ε12 +c1121ε21 +c1122ε22 +…
The corresponding matrix form is
σ1 = c11ε1 +c16γ6 +c12ε2 +… (recall that γ6 =ε12 +ε21)
Hence, there is no factor of 2 in the conversion for the stiffness tensor to matrix.
Conversion between tensor and matrix
notations - Compliance
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
20
ε1
ε2
ε3
γ4
γ5
γ6
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
=
s1111 s1122 s1133 2s1123 2s1113 2s1112
s1122 s2222 s2233 2s2223 2s2213 2s2212
s1133 s2233 s3333 2s3323 2s3313 2s3312
2s1123 2s2223 2s3323 4s2323 4s2313 4s2312
2s1113 2s2213 2s3313 4s2313 4s1313 4s1312
2s1112 2s2212 2s3312 4s2312 4s1312 4s1212
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
σ1
σ2
σ3
σ4
σ5
σ6
!
"
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
Blackboard
Symmetry restrictions on compliance and
stiffness coefficients
¡ Similar to piezoelectric coefficients, we need to use the full tensor
notation to work out the effects on symmetry on the compliance and
stiffness coefficients.
¡ Let’s consider a crystal with point group 4/m. Considering the 4 // Z3,
we have X1’ = X2, X2’ = -X1, X3’ = X3. Hence, we can show that
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
21
s11 s12 s13 0 0 s16
s12 s11 s13 0 0 −s16
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
s16 −s16 0 0 0 s66
"
#
$
$
$
$
$
$
$
$
%
&
'
'
'
'
'
'
'
'
Blackboard
Stiffness matrices for the 32 point
groups
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
22
Stiffness and compliance relations
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
23
Using the matrix notation,
σ = cε = csσ
Hence, cs =1
Converting to the Einstein notation,
cijsjk =δik
In full tensor notation, we have
cijklsklmn =δimδjn
Example: For cubic crystals with only three independent coefficients,
it can be shown that:
c11 =
s11 + s12
(s11 − s12 )(s11 + 2s12 )
c12 = −
s12
(s11 − s12 )(s11 + 2s12 )
c44 =
1
s44
Compressibility
¡ Compressibility is defined as
¡ where V is volume and p is hydrostatic pressure.
¡ As noted earlier, change in volume per unit volume is:
¡ For hydrostatic pressure, we have
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
24
K = −
1
V
dV
dp
ΔV
V
=ε11 +ε22 +ε33 =εii
εii = siikl pδkl
Hence,
K = s1111 + s1122 + s1133 + s2211 + s2222 + s2233 + s3311 + s3322 + s3333
(sum of upper left 3x3 sub-matrix of compliance matrix)
s11 s12 s13 0 0 s16
s12 s11 s13 0 0 −s16
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
s16 −s16 0 0 0 s66
"
#
$
$
$
$
$
$
$
$
%
&
'
'
'
'
'
'
'
'
Typical compressibilities in rocksalt
crystals
¡Crystals with long weak bonds tend to have
higher compressibilities.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
25
Anisotropy factor
¡ Consider the stiffness in an arbitrary Z1’ direction. We
have:
¡ For cubic crystals, we only have three non-zero elements,
which gives
¡ So even in cubic crystals, the stiffness is anisotropic. The
only exception is when
¡ Hence, is defined as the anisotropy factor.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
26
c1111
! = a1ma1na1oa1pcmnop
c11
! = c11 − 2(c11 −c12 − 2c44 )(a11
2
a12
2
+ a11
2
a13
2
+ a12
2
a13
2
)
c11 = c12 + 2c44
A =
2c44
c11 −c12
Typical values of A
¡ A = 1 implies the crystal is isotropic.
¡ A < 1 implies that the crystal is stiffest along <100> cube axes
¡ A > 1 implies crystal is stiffest along <111> cube diagonals.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
27
Stiff along <111>
Stiff along <100>
Summary on Tensors
¡ In this second part of the course, you have been given an overview of tensors
and their application to represent fields (e.g., stress, strain, polarization) and
properties (e.g., conductivity, piezoelectric moduli, stiffness and compliance).
¡ It is of course impossible to cover all the different kinds of material properties,
but the concepts and tools you have learned (transformation of tensors,
symmetry restrictions on tensor values, etc.) thus far should be readily
generalizable to any properties you encounter in future.
¡ Gap in coverage: Due to limits of time, I have elected not to cover magnetic
group symmetries and axial tensor properties. Interested parties are referred
to the relevant sections in Structure of Materials and Properties of Materials
for a detailed discussion on these topics. The general concepts are similar,
but the introduction of time reversal greatly increases the complexity of
symmetry considerations (122 magnetic point groups and 1651 magnetic
space groups!)
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9
28

Mais conteúdo relacionado

Mais procurados

Solid state physics unit 1.pdf
Solid state physics unit 1.pdfSolid state physics unit 1.pdf
Solid state physics unit 1.pdfshadreckalmando
 
Lecture: Crystal Interfaces and Microstructure
Lecture: Crystal Interfaces and MicrostructureLecture: Crystal Interfaces and Microstructure
Lecture: Crystal Interfaces and MicrostructureNikolai Priezjev
 
QUANTITIVE EXPRESSION FOR DEBYE SCREENING AND QUASINEUTRAL PLASMA
QUANTITIVE EXPRESSION FOR DEBYE SCREENING AND QUASINEUTRAL PLASMAQUANTITIVE EXPRESSION FOR DEBYE SCREENING AND QUASINEUTRAL PLASMA
QUANTITIVE EXPRESSION FOR DEBYE SCREENING AND QUASINEUTRAL PLASMAAnitaMalviya
 
Molecular Beam Epitaxy
Molecular Beam EpitaxyMolecular Beam Epitaxy
Molecular Beam EpitaxyDeepak Rajput
 
Swift Heavy Ion Irradiation
Swift Heavy Ion IrradiationSwift Heavy Ion Irradiation
Swift Heavy Ion Irradiationkrishslide
 
Band structure
Band structureBand structure
Band structurenirupam12
 
Lecture: Diffusion in Metals and Alloys
Lecture: Diffusion in Metals and AlloysLecture: Diffusion in Metals and Alloys
Lecture: Diffusion in Metals and AlloysNikolai Priezjev
 
Solid state physics lec 1
Solid state physics lec 1Solid state physics lec 1
Solid state physics lec 1Dr. Abeer Kamal
 
Scanning Tunneling Microscope
Scanning Tunneling MicroscopeScanning Tunneling Microscope
Scanning Tunneling MicroscopeSumeena Karki
 
Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene Mirco Milletari'
 
Crystal Growth_Introduction
Crystal Growth_IntroductionCrystal Growth_Introduction
Crystal Growth_Introductionkrishslide
 

Mais procurados (20)

Packing Factor
Packing Factor Packing Factor
Packing Factor
 
Quantum mechanical spin
Quantum mechanical spinQuantum mechanical spin
Quantum mechanical spin
 
Solid state physics unit 1.pdf
Solid state physics unit 1.pdfSolid state physics unit 1.pdf
Solid state physics unit 1.pdf
 
Solid state physics
Solid state physicsSolid state physics
Solid state physics
 
Chapter 5 Metal and Imperfections in Solid
Chapter 5 Metal and Imperfections in SolidChapter 5 Metal and Imperfections in Solid
Chapter 5 Metal and Imperfections in Solid
 
Lecture: Crystal Interfaces and Microstructure
Lecture: Crystal Interfaces and MicrostructureLecture: Crystal Interfaces and Microstructure
Lecture: Crystal Interfaces and Microstructure
 
Physical Vapour Deposition
Physical Vapour DepositionPhysical Vapour Deposition
Physical Vapour Deposition
 
QUANTITIVE EXPRESSION FOR DEBYE SCREENING AND QUASINEUTRAL PLASMA
QUANTITIVE EXPRESSION FOR DEBYE SCREENING AND QUASINEUTRAL PLASMAQUANTITIVE EXPRESSION FOR DEBYE SCREENING AND QUASINEUTRAL PLASMA
QUANTITIVE EXPRESSION FOR DEBYE SCREENING AND QUASINEUTRAL PLASMA
 
Four probe-method
Four probe-methodFour probe-method
Four probe-method
 
Molecular Beam Epitaxy
Molecular Beam EpitaxyMolecular Beam Epitaxy
Molecular Beam Epitaxy
 
density of states
density of statesdensity of states
density of states
 
Swift Heavy Ion Irradiation
Swift Heavy Ion IrradiationSwift Heavy Ion Irradiation
Swift Heavy Ion Irradiation
 
Band structure
Band structureBand structure
Band structure
 
Lecture: Diffusion in Metals and Alloys
Lecture: Diffusion in Metals and AlloysLecture: Diffusion in Metals and Alloys
Lecture: Diffusion in Metals and Alloys
 
6 defects
6 defects6 defects
6 defects
 
Neutron diffraction
Neutron diffraction Neutron diffraction
Neutron diffraction
 
Solid state physics lec 1
Solid state physics lec 1Solid state physics lec 1
Solid state physics lec 1
 
Scanning Tunneling Microscope
Scanning Tunneling MicroscopeScanning Tunneling Microscope
Scanning Tunneling Microscope
 
Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene
 
Crystal Growth_Introduction
Crystal Growth_IntroductionCrystal Growth_Introduction
Crystal Growth_Introduction
 

Destaque

UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUniversity of California, San Diego
 
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUniversity of California, San Diego
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...University of California, San Diego
 
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...University of California, San Diego
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designUniversity of California, San Diego
 

Destaque (20)

UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
 
UCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 07 - Material properties and tensorsUCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 07 - Material properties and tensors
 
UCSD NANO106 - 10 - Bonding in Materials
UCSD NANO106 - 10 - Bonding in MaterialsUCSD NANO106 - 10 - Bonding in Materials
UCSD NANO106 - 10 - Bonding in Materials
 
UCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matterUCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matter
 
UCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffractionUCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffraction
 
UCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 06 - Plane and Space GroupsUCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 06 - Plane and Space Groups
 
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
 
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice ComputationsUCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
 
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point GroupsUCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
 
UCSD NANO106 - 04 - Symmetry in Crystallography
UCSD NANO106 - 04 - Symmetry in CrystallographyUCSD NANO106 - 04 - Symmetry in Crystallography
UCSD NANO106 - 04 - Symmetry in Crystallography
 
UCSD NANO106 - 01 - Introduction to Crystallography
UCSD NANO106 - 01 - Introduction to CrystallographyUCSD NANO106 - 01 - Introduction to Crystallography
UCSD NANO106 - 01 - Introduction to Crystallography
 
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
 
NANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - TemperatureNANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - Temperature
 
NANO266 - Lecture 9 - Tools of the Modeling Trade
NANO266 - Lecture 9 - Tools of the Modeling TradeNANO266 - Lecture 9 - Tools of the Modeling Trade
NANO266 - Lecture 9 - Tools of the Modeling Trade
 
NANO266 - Lecture 14 - Transition state modeling
NANO266 - Lecture 14 - Transition state modelingNANO266 - Lecture 14 - Transition state modeling
NANO266 - Lecture 14 - Transition state modeling
 
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic StructuresNANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
 
NANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and InterfacesNANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and Interfaces
 
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock ApproximationNANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials design
 

Semelhante a UCSD NANO106 - 09 - Piezoelectricity and Elasticity

Piezoelectricity : Think Locally, Act Globally
Piezoelectricity : Think Locally, Act GloballyPiezoelectricity : Think Locally, Act Globally
Piezoelectricity : Think Locally, Act GloballyZaahir Salam
 
Lecture2 basic dielectric tm
Lecture2 basic dielectric tmLecture2 basic dielectric tm
Lecture2 basic dielectric tmRanjeet kumar
 
The piezoelectric effect
The piezoelectric effectThe piezoelectric effect
The piezoelectric effectNicola Ergo
 
Surface Tension in Liquid Nickel
Surface Tension in Liquid NickelSurface Tension in Liquid Nickel
Surface Tension in Liquid Nickelsjenkins
 
SUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesSUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesRichu Jose Cyriac
 
Metasurface Hologram Invisibility - ppt
Metasurface Hologram Invisibility -  pptMetasurface Hologram Invisibility -  ppt
Metasurface Hologram Invisibility - pptCarlo Andrea Gonano
 
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docxNew folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docxcurwenmichaela
 
петр карпов и сергей мухин статья магнитные вихри
петр карпов и сергей мухин статья   магнитные вихрипетр карпов и сергей мухин статья   магнитные вихри
петр карпов и сергей мухин статья магнитные вихриeconadin
 
Anomalous Synchronization Stability of Power-grid Network
Anomalous Synchronization Stability of Power-grid NetworkAnomalous Synchronization Stability of Power-grid Network
Anomalous Synchronization Stability of Power-grid NetworkHeetae Kim
 
Overview Of Spintronics
Overview Of SpintronicsOverview Of Spintronics
Overview Of Spintronicschakuli259
 
Experimental strain analysis
Experimental strain analysisExperimental strain analysis
Experimental strain analysisKanok Phoocam
 
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...Bhargavkrishna Kondreddy
 
Simulation and Analysis of III V Characteristic and Bandgap Design for Hetero...
Simulation and Analysis of III V Characteristic and Bandgap Design for Hetero...Simulation and Analysis of III V Characteristic and Bandgap Design for Hetero...
Simulation and Analysis of III V Characteristic and Bandgap Design for Hetero...ijtsrd
 

Semelhante a UCSD NANO106 - 09 - Piezoelectricity and Elasticity (20)

Piezoelectricity : Think Locally, Act Globally
Piezoelectricity : Think Locally, Act GloballyPiezoelectricity : Think Locally, Act Globally
Piezoelectricity : Think Locally, Act Globally
 
Lecture2 basic dielectric tm
Lecture2 basic dielectric tmLecture2 basic dielectric tm
Lecture2 basic dielectric tm
 
W4409126130
W4409126130W4409126130
W4409126130
 
Piezoelectric Materials
Piezoelectric MaterialsPiezoelectric Materials
Piezoelectric Materials
 
The piezoelectric effect
The piezoelectric effectThe piezoelectric effect
The piezoelectric effect
 
ISING-3D
ISING-3DISING-3D
ISING-3D
 
FSI_plate.pptx
FSI_plate.pptxFSI_plate.pptx
FSI_plate.pptx
 
Surface Tension in Liquid Nickel
Surface Tension in Liquid NickelSurface Tension in Liquid Nickel
Surface Tension in Liquid Nickel
 
Dielectrics_1
Dielectrics_1Dielectrics_1
Dielectrics_1
 
n-p-p Silicon solar Cells.PDF
n-p-p Silicon solar Cells.PDFn-p-p Silicon solar Cells.PDF
n-p-p Silicon solar Cells.PDF
 
SUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesSUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide Diodes
 
Metasurface Hologram Invisibility - ppt
Metasurface Hologram Invisibility -  pptMetasurface Hologram Invisibility -  ppt
Metasurface Hologram Invisibility - ppt
 
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docxNew folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
 
петр карпов и сергей мухин статья магнитные вихри
петр карпов и сергей мухин статья   магнитные вихрипетр карпов и сергей мухин статья   магнитные вихри
петр карпов и сергей мухин статья магнитные вихри
 
Anomalous Synchronization Stability of Power-grid Network
Anomalous Synchronization Stability of Power-grid NetworkAnomalous Synchronization Stability of Power-grid Network
Anomalous Synchronization Stability of Power-grid Network
 
Overview Of Spintronics
Overview Of SpintronicsOverview Of Spintronics
Overview Of Spintronics
 
Dielectrics_2
Dielectrics_2Dielectrics_2
Dielectrics_2
 
Experimental strain analysis
Experimental strain analysisExperimental strain analysis
Experimental strain analysis
 
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
 
Simulation and Analysis of III V Characteristic and Bandgap Design for Hetero...
Simulation and Analysis of III V Characteristic and Bandgap Design for Hetero...Simulation and Analysis of III V Characteristic and Bandgap Design for Hetero...
Simulation and Analysis of III V Characteristic and Bandgap Design for Hetero...
 

Mais de University of California, San Diego

NANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceNANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceUniversity of California, San Diego
 
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...University of California, San Diego
 
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingNANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingUniversity of California, San Diego
 

Mais de University of California, San Diego (10)

A*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials ScienceA*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials Science
 
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceNANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
 
NANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmicsNANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmics
 
NANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic SolidsNANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic Solids
 
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
 
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingNANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
 
NANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation FunctionalsNANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation Functionals
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
NANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock ApproachNANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock Approach
 
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum MechanicsNANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
 

Último

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 

Último (20)

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 

UCSD NANO106 - 09 - Piezoelectricity and Elasticity

  • 1. Piezoelectricity and Elasticity Shyue Ping Ong Department of NanoEngineering University of California, San Diego
  • 2. Piezoelectricity ¡ Piezoelectricity refers to the linear coupling between mechanical stress and electric polarization (the direct piezoelectric effect) or between mechanical strain and applied electric field (the converse piezoelectric effect). Equivalence between the direct and converse effects can be shown using Maxwell’s relations: ¡ Principal piezoelectric coefficient, d, relates polarization P to stress σ in the direct effect and strain ε to electric field E. ¡ Units of d: [C/N] or [m/V] ¡ Typical values for useful piezoelectric materials: ~ 1 pC/N for quartz to ~ 1000 pC/N for PZT (lead zirconate titanate). NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 2 dijk = − ∂G2 ∂Ei∂σ jk # $ %% & ' (( T = ∂Pi ∂σ jk # $ %% & ' (( E,T = ∂εjk ∂Ei # $ % & ' ( X,T
  • 3. Direct piezoelectric effect ¡ The piezoelectric moduli is a rank-3 tensor: ¡ It therefore transforms as ¡ As previously shown, the piezoelectric coefficients are zero for all centrosymmetric crystals (inversion center). NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 3 Pi = dijkσ jk dijk !i = cilcjmckndlmn
  • 4. Voigt notation for piezoelectric moduli ¡ The piezoelectric moduli always act in pairs. ¡ Earlier, we have shown that 3x3 symmetric tensors such as stress and strain can be represented as a 6-element vector. Using the same concept, we can simplify the piezoelectric moduli to a 3x6 matrix as follows. ¡ However, here we encounter a problem that we cannot apply a without a . In order to go to a matrix notation, the piezoelectric moduli is defined as: NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 4 Pi = dijkσ jk = di11σ11 + di22σ22 + di33σ33 + di23σ23 + di32σ32 …(total of 27 elements!) Pi = dijσ j = di1σ1 + di2σ2 + di3σ3 + di4σ4 + di5σ5 + di6σ6 σ23 σ32 dim = dijk for j=k dijk + dikj for j≠ k " # $ %$ Factor of 2 is absorbed into the matrix, which has 18 elements instead of 27.
  • 5. Voigt notation for piezoelectric moduli , contd. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 5 P1 P2 P3 ! " # # ## $ % & & && = d11 d12 d13 d14 d15 d16 d21 d22 d23 d24 d25 d26 d31 d32 d33 d34 d35 d36 ! " # # ## $ % & & && σ1 σ2 σ3 σ4 σ5 σ6 ! " # # # # # # # # $ % & & & & & & & &
  • 6. Converse piezoelectric moduli ¡ The same coefficients apply to the converse piezoelectric effect (note order of indices!) ¡ Similarly, ¡ Again, we note that by definition, NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 6 εjk = dijkEi ε11 = d111E1 + d211E2 + d311E3 ε22 = d122E1 + d222E2 + d322E3 ε33 = d133E1 + d233E2 + d333E3 ε23 = d123E1 + d223E2 + d323E3 ε32 = d132E1 + d232E2 + d332E3 ε23 =ε32 ε23 +ε32 = (d123 + d132 )E1 +(d223 + d232 )E2 +(d323 + d332 )E3 =γ4
  • 7. Voigt notation for converse piezoelectric effect ¡ Recall that we earlier defined the vector notation for the strain tensor to be the engineering shear strains (2 x strain) for the off-diagonals elements. This in fact allows us to retain the same form of the matrix for the converse piezoelectric effect as the direct piezoelectric effect! NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 7 ε1 ε2 ε3 γ4 γ5 γ6 ! " # # # # # # # # $ % & & & & & & & & = d11 d21 d31 d12 d22 d32 d13 d23 d33 d14 d24 d34 d15 d25 d35 d16 d26 d36 ! " # # # # # # # # $ % & & & & & & & & E1 E2 E3 ! " # # ## $ % & & &&
  • 8. Symmetry restrictions on piezoelectric moduli ¡ As there are many more terms, we are not going to go through the exercise of deriving all the possible piezoelectric moduli tensors / matrices. ¡ We will just go through a few examples to show how these can be derived, and state the different forms. ¡ Note that while the Voigt form is useful for performing computations, the information about how the tensor transforms is “lost”. You will need to go back to the full tensor form to determine the transformation. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 8
  • 9. d13 in monoclinic crystals ¡ Consider monoclinic crystals with a two-fold rotation axis (2): ¡ For monoclinic crystals with a mirror m about the a-c plane: NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 9 Blackboard Blackboard
  • 10. Examples of piezoelectric moduli matrices NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 10 Triclinic (P1) Orthorhombic 222 Orthorhombic 2mm Trigonal 32 Cubic 432 d11 d12 d13 d14 d15 d16 d21 d22 d23 d24 d25 d26 d31 d32 d33 d34 d35 d36 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ d11 −d11 0 d14 0 0 0 0 0 0 −d14 −2d11 0 0 0 0 0 0 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ 0 0 0 d14 0 0 0 0 0 0 d25 0 0 0 0 0 0 d36 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ 0 0 0 0 d15 0 0 0 0 d24 0 0 d31 d32 d33 0 0 0 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟
  • 11. Monoclinic NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 11 0 0 0 d14 0 d16 d21 d22 d23 0 d25 0 0 0 0 d34 0 d36 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ Point group 2 d11 d12 d13 0 d15 0 0 0 0 d24 0 d26 d31 d32 d33 0 d35 0 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ Point group m
  • 12. Examples of Piezoelectric Materials ¡ Quartz ¡ Consider the converse piezoelectric effect when a field of 100 V/cm is applied in the X1 direction ¡ This is an extremely small strain. But quartz has the advantage of being low cost, chemically stable and mechanically stable. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 12 2.3 −2.3 0 −0.67 0 0 0 0 0 0 0.67 −4.6 0 0 0 0 0 0 " # $ $ $ % & ' ' ' ×10−12 C / N Piezoelectric moduli X1 X2 ε11 = 2.3×10−12 ×104 = 2.3×10−8 Full derivation in Handouts
  • 13. Examples of Piezoelectric Materials ¡ Ammonium dihydrogen phosphate (ADP) ¡ Used in sonar trasducers ¡ Fairly large d33 (more than 10 times the largest moduli in quartz) ¡ However, fairly soft and moisture sensitive. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 13 0 0 0 1.8 0 0 0 0 0 0 1.8 0 0 0 0 0 0 48 ! " # # # $ % & & & ×10−12 C / N Piezoelectric moduli
  • 14. PZT (PbZr1−xTixO3) ¡ Used extensively in trasducer technology ¡ Underwater sonar, biomedical ultrasound, multilayer actuators for fuel injection, piezoelectric printers, and bimorph pneumatic valves all make use of poled PZT ceramics. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 14 3m with [111] polar axis 4mm with [001] polar axis Piezoelectric properties enhanced by choosing compositions close to morphotropic boundary between rhombohedral and tetragonal distortions. Heating above Curie point, the crystal structure becomes centrosymmetric, and all electric dipoles vanish. As the material is cooled in the presence of a sufficiently large electric field, the dipoles tend to align with the applied field, all together giving rise to a nonzero net polarization.
  • 15. PZT, contd ¡ Electrically poled materials belong to Curie symmetry ∞m, which has piezoelectric tensors of the following form: NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 15 0 0 0 0 d15 0 0 0 0 d15 0 0 d31 d31 d33 0 0 0 ! " # # ## $ % & & && ¡ Intrinsic effects: Under a tensile stress parallel to the dipole moment, there is an enhancement of the polarization along [001] = Z3. When a tensile stress is applied perpendicular to the dipole, the polarization along Z3 (d33 and d31) is reduced. When the dipole is tilted by shear stress, charges appear on the side faces (d15). ¡ Extrinsic contributions: Doping with higher or lower-valent ions. ¡ Nb5+ for Ti4+ gives soft PZT with easily movable domain walls and a large piezoelectric coefficient. Used in hydrophones and other sensors. ¡ Fe3+ for Ti4+ gives hard PZTs, used in high-power transducers because they will not depole under high fields in the reverse directions.
  • 16. Elasticity ¡ All materials undergo shape change under a mechanical force. ¡ Hooke’s Law (small stresses): ¡ where s are known as the elastic compliance coefficients (m2/N), and c are known as the stiffness coefficients (N/m2). ¡ Typical values: ¡ Fairly stiff material like a metal or a ceramic, c is about 1011 N/m2 ¡ Note that Hooke’s Law does not describe the elastic behavior at high stress levels that requires higher order elastic constants. Irreversible phenomena such as plasticity and fracture occur at still higher stress levels. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 16 εij = sijklσkl σij = cijklεkl
  • 17. Stiffness and compliance coefficients ¡ The stiffness and compliance coefficients are rank 4 tensors and transform as: ¡ There are 81 (34) coefficients in total, though the actual number of non-zero independent coefficients is considerably reduced by the fact that both the strain and stress are symmetric rank 2 tensors. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 17 cijkl ! = aimajnakoalpcmnop sijkl ! = aimajnakoalpsmnop
  • 18. Voigt notation ¡ Similarly, the stiffness and compliance can be represented as 6x6 matrices operation on the 6 element stress and strain vectors. ¡ However, the energy density is given by: ¡ Hence, the compliance and stiffness matrices comprises of at most 21 independent values. Symmetries above triclinic would have fewer independent values. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 18 dW =σidεi = cijεjdεi ∂2 W ∂εj∂εi = cij and ∂2 W ∂εi∂εj = cji Since the order of differentiation does not matter, cij = cji σ1 σ2 σ3 σ4 σ5 σ6 ! " # # # # # # # # $ % & & & & & & & & = c11 c12 c13 c14 c15 c16 c12 c22 c23 c24 c25 c26 c13 c23 c33 c34 c35 c36 c14 c24 c34 c44 c45 c46 c15 c25 c35 c45 c55 c56 c16 c26 c36 c46 c56 c66 ! " # # # # # # # # $ % & & & & & & & & ε1 ε2 ε3 γ4 γ5 γ6 ! " # # # # # # # # $ % & & & & & & & & ε1 ε2 ε3 γ4 γ5 γ6 ! " # # # # # # # # $ % & & & & & & & & = s11 s12 s13 s14 s15 s16 s12 s22 s23 s24 s25 s26 s13 s23 s33 s34 s35 s36 s14 s24 s34 s44 s45 s46 s15 s25 s35 s45 s55 s56 s16 s26 s36 s46 s56 s66 ! " # # # # # # # # $ % & & & & & & & & σ1 σ2 σ3 σ4 σ5 σ6 ! " # # # # # # # # $ % & & & & & & & &
  • 19. Conversion between tensor and matrix notations ¡ Stiffness NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 19 σij = cijklεkl σ11 = c1111ε11 +c1112ε12 +c1121ε21 +c1122ε22 +… The corresponding matrix form is σ1 = c11ε1 +c16γ6 +c12ε2 +… (recall that γ6 =ε12 +ε21) Hence, there is no factor of 2 in the conversion for the stiffness tensor to matrix.
  • 20. Conversion between tensor and matrix notations - Compliance NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 20 ε1 ε2 ε3 γ4 γ5 γ6 ! " # # # # # # # # $ % & & & & & & & & = s1111 s1122 s1133 2s1123 2s1113 2s1112 s1122 s2222 s2233 2s2223 2s2213 2s2212 s1133 s2233 s3333 2s3323 2s3313 2s3312 2s1123 2s2223 2s3323 4s2323 4s2313 4s2312 2s1113 2s2213 2s3313 4s2313 4s1313 4s1312 2s1112 2s2212 2s3312 4s2312 4s1312 4s1212 ! " # # # # # # # # $ % & & & & & & & & σ1 σ2 σ3 σ4 σ5 σ6 ! " # # # # # # # # $ % & & & & & & & & Blackboard
  • 21. Symmetry restrictions on compliance and stiffness coefficients ¡ Similar to piezoelectric coefficients, we need to use the full tensor notation to work out the effects on symmetry on the compliance and stiffness coefficients. ¡ Let’s consider a crystal with point group 4/m. Considering the 4 // Z3, we have X1’ = X2, X2’ = -X1, X3’ = X3. Hence, we can show that NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 21 s11 s12 s13 0 0 s16 s12 s11 s13 0 0 −s16 s13 s13 s33 0 0 0 0 0 0 s44 0 0 0 0 0 0 s44 0 s16 −s16 0 0 0 s66 " # $ $ $ $ $ $ $ $ % & ' ' ' ' ' ' ' ' Blackboard
  • 22. Stiffness matrices for the 32 point groups NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 22
  • 23. Stiffness and compliance relations NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 23 Using the matrix notation, σ = cε = csσ Hence, cs =1 Converting to the Einstein notation, cijsjk =δik In full tensor notation, we have cijklsklmn =δimδjn Example: For cubic crystals with only three independent coefficients, it can be shown that: c11 = s11 + s12 (s11 − s12 )(s11 + 2s12 ) c12 = − s12 (s11 − s12 )(s11 + 2s12 ) c44 = 1 s44
  • 24. Compressibility ¡ Compressibility is defined as ¡ where V is volume and p is hydrostatic pressure. ¡ As noted earlier, change in volume per unit volume is: ¡ For hydrostatic pressure, we have NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 24 K = − 1 V dV dp ΔV V =ε11 +ε22 +ε33 =εii εii = siikl pδkl Hence, K = s1111 + s1122 + s1133 + s2211 + s2222 + s2233 + s3311 + s3322 + s3333 (sum of upper left 3x3 sub-matrix of compliance matrix) s11 s12 s13 0 0 s16 s12 s11 s13 0 0 −s16 s13 s13 s33 0 0 0 0 0 0 s44 0 0 0 0 0 0 s44 0 s16 −s16 0 0 0 s66 " # $ $ $ $ $ $ $ $ % & ' ' ' ' ' ' ' '
  • 25. Typical compressibilities in rocksalt crystals ¡Crystals with long weak bonds tend to have higher compressibilities. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 25
  • 26. Anisotropy factor ¡ Consider the stiffness in an arbitrary Z1’ direction. We have: ¡ For cubic crystals, we only have three non-zero elements, which gives ¡ So even in cubic crystals, the stiffness is anisotropic. The only exception is when ¡ Hence, is defined as the anisotropy factor. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 26 c1111 ! = a1ma1na1oa1pcmnop c11 ! = c11 − 2(c11 −c12 − 2c44 )(a11 2 a12 2 + a11 2 a13 2 + a12 2 a13 2 ) c11 = c12 + 2c44 A = 2c44 c11 −c12
  • 27. Typical values of A ¡ A = 1 implies the crystal is isotropic. ¡ A < 1 implies that the crystal is stiffest along <100> cube axes ¡ A > 1 implies crystal is stiffest along <111> cube diagonals. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 27 Stiff along <111> Stiff along <100>
  • 28. Summary on Tensors ¡ In this second part of the course, you have been given an overview of tensors and their application to represent fields (e.g., stress, strain, polarization) and properties (e.g., conductivity, piezoelectric moduli, stiffness and compliance). ¡ It is of course impossible to cover all the different kinds of material properties, but the concepts and tools you have learned (transformation of tensors, symmetry restrictions on tensor values, etc.) thus far should be readily generalizable to any properties you encounter in future. ¡ Gap in coverage: Due to limits of time, I have elected not to cover magnetic group symmetries and axial tensor properties. Interested parties are referred to the relevant sections in Structure of Materials and Properties of Materials for a detailed discussion on these topics. The general concepts are similar, but the introduction of time reversal greatly increases the complexity of symmetry considerations (122 magnetic point groups and 1651 magnetic space groups!) NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 9 28