SlideShare a Scribd company logo
1 of 27
Download to read offline
Chapter 16
16-1

Given: r = 300/2 = 150 mm, a = R = 125 mm, b = 40 mm, f = 0.28, F = 2.2 kN,  1 = 0,
 2 = 120, and  a = 90.
From which, sin a = sin90 = 1.
Eq. (16-2):
0.28 pa (0.040)(0.150) 120
0 sin  (0.150  0.125 cos  ) d
1
 2.993 10 4  pa N · m

Mf 

Eq. (16-3):

pa (0.040)(0.150)(0.125) 120 2
4
0 sin  d  9.478 10  pa N · m
1

MN 

c = 2(0.125 cos 30) = 0.2165 m
Eq. (16-4):

F 

9.478 10 4  pa  2.993 10 4  pa
0.2165

 2.995 10 3  pa

p a = F/ [2.995(103)] = 2200/ [2.995(103)]
= 734.5(103) Pa for cw rotation
Eq. (16-7):

2200 

9.478 10 4  pa  2.993 10 4  pa
0.2165

p a = 381.9(103) Pa for ccw rotation
A maximum pressure of 734.5 kPa occurs on the RH shoe for cw rotation.
(b) RH shoe:
Eq. (16-6):
0.28(734.5)103 (0.040)0.1502 (cos 0o  cos120o )
TR 
 277.6 N · m
1
LH shoe:
381.9
TL  277.6
 144.4 N · m Ans.
734.5
T total = 277.6 + 144.4 = 422 N · m Ans.

Ans.

Ans.

Chapter 16, Page 1/27
(c)

RH shoe:

F x = 2200 sin 30° = 1100 N, F y = 2200 cos 30° = 1905 N

Eqs. (16-8):

1

A   sin 2  
2

0o

Eqs. (16-9):

Rx 

120o

Ry 

 0.375,

734.5 103  0.040(0.150)
1
3
734.5 10  0.04(0.150)

R  [ 1007 

LH shoe:

2 / 3 rad

 1

B    sin 2 
2 4

0

2

 1.264

[0.375  0.28(1.264)]  1100  1007 N

[1.264  0.28(0.375)]  1905  4128 N
1
 41282 ]1/ 2  4249 N Ans.

F x = 1100 N, F y = 1905 N

Eqs. (16-10): Rx 

381.9 103  0.040(0.150)

[0.375  0.28(1.264)]  1100  570 N
1
381.9 103  0.040(0.150)
[1.264  0.28(0.375)]  1905  751 N
Ry 
1
1/ 2
R   597 2  7512   959 N Ans.

______________________________________________________________________________
16-2

Given: r = 300/2 = 150 mm, a = R = 125 mm, b = 40 mm, f = 0.28, F = 2.2 kN,  1 = 15,
 2 = 105, and  a = 90.
From which, sin a = sin90 = 1.
Eq. (16-2):
0.28 pa (0.040)(0.150) 105
4
Mf 
15 sin  (0.150  0.125 cos  ) d  2.177 10  pa
1

Chapter 16, Page 2/27
MN 

Eq. (16-3):

pa (0.040)(0.150)(0.125) 105 2
4
15 sin  d  7.765 10  pa
1

c = 2(0.125) cos 30° = 0.2165 m
F 

Eq. (16-4):

7.765 10 4  pa  2.177 10 4  pa
0.2165

 2.58110 3  pa

p a = 2200/ [2.581(10 3)] = 852.4 (103) Pa
= 852.4 kPa on RH shoe for cw rotation Ans.

RH shoe:

TR 

Eq. (16-6):
LH shoe:

2200 

0.28(852.4)103 (0.040)(0.1502 )(cos15  cos105)
 263 N · m
1
7.765 10 4  pa  2.177 10 4  pa

pa  479.110

3



0.2165
Pa  479.1 kPa on LH shoe for ccw rotation

Ans.

0.28(479.1)103(0.040)(0.150 2 )(cos15  cos105)
 148 N · m
1
 263  148  411 N · m Ans.

TL 
Ttotal

Comparing this result with that of Prob. 16-1, a 2.6% reduction in torque is obtained by
using 25% less braking material.
______________________________________________________________________________
16-3

Given:  1 = 0°,  2 = 120°,  a = 90°, sin  a = 1, a = R = 3.5 in, b = 1.25 in, f = 0.30,
F = 225 lbf, r = 11/2 = 5.5 in, counter-clockwise rotation.
LH shoe:
Eq. (16-2), with  1 = 0:

f pabr 2
f p br 
a 2 
Mf 
 sin   r  a cos   d  sin a a  r (1  cos  2 )  2 sin  2 
sin  a 1


0.30 pa (1.25)5.5 
3.5 2

o
5.5(1  cos120 )  2 sin 120
1


 14.31 pa lbf · in
Eq. (16-3), with  1 = 0:

pabra 2 2
pabra  
1

MN 
 sin  d  sin a  22  4 sin 22 
sin  a 1





pa (1.25)5.5(3.5) 120    1
 2  180   4 sin 2(120) 
1




 30.41 pa lbf · in


Chapter 16, Page 3/27
 180o   2 
o
c  2r cos 
  2(5.5) cos 30  9.526 in
2


30.41 pa  14.31 pa
 1.690 pa
F  225 
9.526
pa  225 / 1.690  133.1 psi

Eq. (16-6):

f pabr 2 (cos 1  cos  2 ) 0.30(133.1)1.25(5.52 )

[1  (0.5)]
sin  a
1
 2265 lbf · in  2.265 kip · in Ans.

TL 

RH shoe:
30.41 pa  14.31 pa
 4.694 pa
9.526
pa  225 / 4.694  47.93 psi
47.93
TR 
2265  816 lbf ·in  0.816 kip·in
133.1
F  225 

T total = 2.27 + 0.82 = 3.09 kip  in
Ans.
______________________________________________________________________________
16-4

(a) Given:  1 = 10°,  2 = 75°,  a = 75°, p a = 106 Pa, f = 0.24, b = 0.075 m (shoe width),
a = 0.150 m, r = 0.200 m, d = 0.050 m, c = 0.165 m.
Some of the terms needed are evaluated here:


2
 r 2 sin  d  a 2 sin  cos  d   r   cos  2  a  1 sin 2  
A 
1
1
2

 1




1

75

1

 200   cos  10  150  sin 2    77.5 mm
2
10
75 /180 rad
2
 1

2
B   sin  d    sin 2 
 0.528
1
2 4
10 /180 rad
75

C 

2



sin  cos  d  0.4514

1

Now converting to Pascals and meters, we have from Eq. (16-2),
0.24 106  (0.075)(0.200)
f pabr
Mf 
A
(0.0775)  289 N · m
sin  a
sin 75

Chapter 16, Page 4/27
From Eq. (16-3),
MN

pabra
106 (0.075)(0.200)(0.150)

B 
(0.528)  1230 N · m
sin  a
sin 75

Finally, using Eq. (16-4), we have
F 

MN  M f
c



1230  289
 5.70 kN
165

Ans.

(b) Use Eq. (16-6) for the primary shoe.
T 


fpabr 2 (cos 1  cos  2 )
sin  a

0.24 106  (0.075)(0.200)2 (cos 10  cos 75)
sin 75

 541 N · m

For the secondary shoe, we must first find p a . Substituting
1230
289
pa and M f  6 pa into Eq. (16 - 7),
6
10
10
(1230 / 106 ) pa  (289 / 106 ) pa
5.70 
, solving gives pa  619 103  Pa
165
MN 

Then
T 

0.24 619 103   0.075  0.2002   cos 10  cos 75 


sin 75

 335 N · m

so the braking capacity is T total = 2(541) + 2(335) = 1750 N · m

Ans.

(c) Primary shoes:
pabr
 C  f B   Fx
sin  a
106 (0.075)0.200

[0.4514  0.24(0.528)](10 3 )  5.70  0.658 kN
sin 75
pabr
( B  f C )  Fy
Ry 
sin  a
106 (0.075)0.200

[0.528  0.24(0.4514)] 10 3   0  9.88 kN
sin 75
Rx 

Chapter 16, Page 5/27
Secondary shoes:
Rx 


pabr
(C  f B)  Fx
sin  a

0.619 106  0.075(0.200)

sin 75
 0.143 kN
p br
Ry  a ( B  f C )  Fy
sin  a


0.619 106  0.075(0.200)

 4.03 kN

sin 75

[0.4514  0.24(0.528)] 10 3   5.70

[0.528  0.24(0.4514)] 10 3   0

Note from figure that +y for secondary shoe is opposite to
+y for primary shoe.
Combining horizontal and vertical components,
RH  0.658  0.143  0.801 kN
RV  9.88  4.03  5.85 kN
R  (0.801) 2  5.852
 5.90 kN Ans.
______________________________________________________________________________
16-5

Given: Face width b = 1.25 in, F = 90 lbf, f = 0.25.
Preliminaries:  1 = 45°  tan1(6/8) = 8.13°,  2 = 98.13°,  a = 90°,
a = (62 + 82)1/2 = 10 in
Eq. (16-2):


f pabr 2
0.25 pa (1.25)6
Mf 
 sin   r  a cos   d 
sin  a 1
1

98.13



sin   6  10 cos   d

8.13

 3.728 pa lbf · in

Eq. (16-3):


MN 

pabra 2 2
p (1.25)6(10)
 sin  d  a 1
sin  a 1

98.13



sin 2  d

8.13

 69.405 pa lbf · in

Eq. (16-4): Using Fc = M N  M f , we obtain
90(20)  (69.405  3.728) pa



pa  27.4 psi

Ans.

Chapter 16, Page 6/27
Eq. (16-6):

fp br 2  cos 1  cos  2  0.25(27.4)1.25  6   cos8.13  cos 98.13 
T  a

sin  a
1
 348.7 lbf · in Ans.
______________________________________________________________________________
2

16-6

ˆ
For 3 f :

ˆ
f  f  3 f  0.25  3(0.025)  0.325
From Prob. 16-5, with f = 0.25, M f = 3.728 p a . Thus, M f = (0.325/0.25) 3.728 p a =
4.846 p a . From Prob. 16-5, M N = 69.405 p a .
Eq. (16-4): Using Fc = M N  M f , we obtain
90(20)  (69.405  4.846) pa



pa  27.88 psi

Ans.

From Prob. 16-5, p a = 27.4 psi and T = 348.7 lbf⋅in. Thus,
 0.325   27.88 
T 

 348.7  461.3 lbf ·in
 0.25   27.4 

Ans.

ˆ
Similarly, for 3 f :

ˆ
f  f  3 f  0.25  3(0.025)  0.175
M f  (0.175 / 0.25) 3.728 pa  2.610 pa

90(20) = (69.405  2.610) p a
 p a = 26.95 psi
 0.175  26.95 
T 

 348.7  240.1 lbf · in Ans.
 0.25  27.4 
______________________________________________________________________________
16-7

Preliminaries:  2 = 180°  30°  tan1(3/12) = 136°,  1 = 20°  tan1(3/12) = 6°,
 a = 90, sin a = 1, a = (32 + 122)1/2 = 12.37 in, r = 10 in, f = 0.30, b = 2 in, p a = 150 psi.
Eq. (16-2):

Mf 

0.30(150)(2)(10) 136o
6 sin  (10  12.37 cos  ) d  12 800 lbf · in
sin 90

Eq. (16-3):

MN 

150(2)(10)(12.37) 136 2
6 sin  d  53 300 lbf · in
sin 90

LH shoe:
c L = 12 + 12 + 4 = 28 in

Chapter 16, Page 7/27
Now note that M f is cw and M N is ccw. Thus,
FL 

Eq. (16-6):

53 300  12 800
 1446 lbf
28

TL 

0.30(150)(2)(10) 2 (cos 6  cos136)
 15 420 lbf · in
sin 90

RH shoe:
M N  53 300

pa
 355.3 pa ,
150

M f  12 800

pa
 85.3 pa
150

On this shoe, both M N and M f are ccw. Also,
c R = (24  2 tan 14°) cos 14° = 22.8 in
Fact  FL sin14  361 lbf Ans.
FR  FL / cos14  1491 lbf
Thus,

1491 

Then,

TR 

355.3  85.3
pa  pa  77.2 psi
22.8

0.30(77.2)(2)(10) 2 (cos 6  cos136)
 7940 lbf · in
sin 90

T total = 15 420 + 7940 = 23 400 lbf · in Ans.
______________________________________________________________________________
16-8
2

M f  2 ( fdN )(a cos   r )
0

where dN  pbr d

2

 2 fpbr  (a cos   r ) d  0
0

From which
2

2

0

0

a cos  d  r  d

r 2
r (60)( / 180)
a 

 1.209r
sin  2
sin 60

Ans.

Chapter 16, Page 8/27
Eq. (16-15):
a 

4r sin 60
 1.170r
2(60)( / 180)  sin[2(60)]

Ans.

a differs with a ¢ by 100(1.170 1.209)/1.209 =  3.23 %
Ans.
______________________________________________________________________________
16-9

(a) Counter-clockwise rotation,  2 =  / 4 rad, r = 13.5/2 = 6.75 in
Eq. (16-15):
4r sin  2
4(6.75) sin( / 4)

 7.426 in
a 
2 2  sin 2 2
2 / 4  sin(2 / 4)
e  2a  2(7.426)  14.85 in

Ans.

(b)

 = tan1(3/14.85) = 11.4°

M
F
x

R

 0  3F x  6.375P

 0  F x  R x

 F x  2.125P

 R x  F x  2.125P

F y  F x tan11.4o  0.428P
 Fy   P  F y  R y
R y  P  0.428P  1.428P

Left shoe lever.
 M R  0  7.78S x  15.28F x
15.28
Sx 
(2.125P)  4.174P
7.78
S y  f S x  0.30(4.174 P)  1.252P
 Fy  0  R y  S y  F y

R y   F y  S y  0.428P  1.252 P  1.68P
 Fx  0  R x  S x  F x
R x  S x  F x  4.174P  2.125P  2.049P

Chapter 16, Page 9/27
(c) The direction of brake pulley rotation affects the sense of Sy, which has no effect on
the brake shoe lever moment and hence, no effect on Sx or the brake torque.

The brake shoe levers carry identical bending moments but the left lever carries a
tension while the right carries compression (column loading). The right lever is
designed and used as a left lever, producing interchangeable levers (identical levers).
But do not infer from these identical loadings.
______________________________________________________________________________
16-10 r = 13.5/2 = 6.75 in,

b = 6 in,

 2 = 45° =  / 4 rad.

From Table 16-3 for a rigid, molded non-asbestos lining use a conservative estimate of
p a = 100 psi, f = 0.33.
Equation (16-16) gives the horizontal brake hinge pin reaction which corresponds to Sx in
Prob. 16-9. Thus,
p br
100(6)6.75
N  S x  a  2 2  sin 2 2  
2  / 4   sin  2  45  


2
2
 5206 lbf





which, from Prob. 6-9 is 4.174 P. Therefore,
4.174 P = 5206

 P = 1250 lbf = 1.25 kip

Ans.

Applying Eq. (16-18) for two shoes, where from Prob. 16-9, a = 7.426 in
T  2a f N  2(7.426)0.33(5206)
 25 520 lbf · in  25.52 kip · in Ans.
______________________________________________________________________________

16-11 Given: D = 350 mm, b = 100 mm, p a = 620 kPa, f = 0.30,  = 270.
Chapter 16, Page 10/27
Eq. (16-22):
pabD
620(0.100)0.350

 10.85 kN
2
2

P 
1

Ans.

f   0.30(270)( / 180)  1.414

Eq. (16-19):

P 2 = P 1 exp( f  ) = 10.85 exp( 1.414) = 2.64 kN

Ans.

T  ( P  P2 )( D / 2)  (10.85  2.64)(0.350 / 2)  1.437 kN · m Ans.
1
______________________________________________________________________________
16-12 Given: D = 12 in,

Eq. (16-22):

f = 0.28, b = 3.25 in,  = 270°, P 1 = 1800 lbf.

pa 

2P
2(1800)
1

 92.3 psi
bD 3.25(12)

Ans.

f   0.28(270o )( / 180o )  1.319
P2  P exp( f  )  1800 exp(1.319)  481 lbf
1
T  ( P  P2 )( D / 2)  (1800  481)(12 / 2)
1
 7910 lbf · in  7.91 kip · in Ans.
______________________________________________________________________________
16-13

 M O = 0 = 100 P 2  325 F  P 2 = 325(300)/100 = 975 N Ans.
 100 
  cos 1 
  51.32
 160 
  270  51.32  218.7
f   0.30(218.7)  / 180   1.145
P  P2 exp( f  )  975exp(1.145)  3064 N
Ans.
1
T   P  P2  ( D / 2)  (3064  975)(200 / 2)
1
 209 103  N · mm  209 N · m

Ans.

______________________________________________________________________________

Chapter 16, Page 11/27
16-14 (a) D = 16 in, b = 3 in
n = 200 rev/min
f = 0.20, p a = 70 psi

Eq. (16-22):
P 
1

Eq. (16-14):

pabD
70(3)(16)
 1680 lbf

2
2
f   0.20(3 / 2)  0.942

P2  P exp( f  )  1680 exp(0.942)  655 lbf
1

D
16
 (1680  655)
2
2
 8200 lbf · in Ans.
Tn
8200(200)
H 

 26.0 hp
63 025
63 025
3P
3(1680)
 504 lbf Ans.
P  1 
10
10
T  ( P  P2 )
1

Ans.

(b) Force of belt on the drum:

R = (16802 + 6552)1/2 = 1803 lbf
Force of shaft on the drum: 1680 and 655 lbf
TP1  1680(8)  13 440 lbf · in
TP2  655(8)  5240 lbf · in

Net torque on drum due to brake band:
T  TP1  TP2
 13 440  5240
 8200 lbf · in

The radial load on the bearing pair is 1803 lbf. If the bearing is straddle mounted with
the drum at center span, the bearing radial load is 1803/2 = 901 lbf.

Chapter 16, Page 12/27
(c) Eq. (16-21):
2P
bD
2P
2(1680)
1


 70 psi
3(16)
3(16)

p 
p

  0

Ans.

2P2
2(655)

 27.3 psi Ans.
3(16)
3(16)
______________________________________________________________________________
p

  270



16-15 Given:  = 270°, b = 2.125 in, f = 0.20, T =150 lbf · ft, D = 8.25 in, c 2 = 2.25 in (see
figure). Notice that the pivoting rocker is not located on the vertical centerline of the
drum.
(a) To have the band tighten for ccw rotation, it is necessary to have c 1 < c 2 . When
friction is fully developed,

P / P2  exp( f  )  exp[0.2(3 / 2)]  2.566
1
If friction is not fully developed,
P 1 /P 2 ≤ exp( f  )
To help visualize what is going on let’s add a force W parallel to P 1 , at a lever arm of
c 3 . Now sum moments about the rocker pivot.

M

 0  c3W  c1P  c2 P2
1

From which

c2 P2  c1P
1
c3
The device is self locking for ccw rotation if W is no longer needed, that is, W ≤ 0.
It follows from the equation above
W 

P
c
1
 2
P2
c1

When friction is fully developed
2.566  2.25 / c1
2.25
c1 
 0.877 in
2.566

When P 1 /P 2 is less than 2.566, friction is not fully developed. Suppose P 1 /P 2 = 2.25,

Chapter 16, Page 13/27
then
c1 

2.25
 1 in
2.25

We don’t want to be at the point of slip, and we need the band to tighten.
c2
 c1  c2
P / P2
1

When the developed friction is very small, P 1 /P 2 → 1 and c 1 → c 2

Ans.

(b) Rocker has c 1 = 1 in

P
c
2.25
1
 2 
 2.25
P2
c1
1
ln( P / P2 ) ln 2.25
1
f 

 0.172

3 / 2
Friction is not fully developed, no slip.
T  ( P  P2 )
1

P
D
D
 P2  1  1
2
 P2
2

Solve for P 2
2T
2(150)(12)

 349 lbf
[( P / P2 )  1]D
(2.25  1)(8.25)
1
P  2.25P2  2.25(349)  785 lbf
1
2P
2(785)
p  1 
 89.6 psi Ans.
2.125(8.25)
bD

P2 

(c) The torque ratio is 150(12)/100 or 18-fold.
349
P2 
 19.4 lbf
18
P  2.25P2  2.25(19.4)  43.6 lbf
1
89.6
p 
 4.98 psi Ans.
18
Comment:
As the torque opposed by the locked brake increases, P 2 and P 1 increase (although
ratio is still 2.25), then p follows. The brake can self-destruct. Protection could be
provided by a shear key.
______________________________________________________________________________
16-16 Given: OD = 250 mm, ID = 175 mm, f = 0.30, F = 4 kN.

Chapter 16, Page 14/27
(a) From Eq. (16-23),
2  4000 
2F
pa 

 0.194 N/mm 2  194 kPa
Ans.
 d ( D  d )  (175)(250  175)
Eq. (16-25):
Ff
4000(0.30)
T 
(D  d ) 
(250  175)10  3  127.5 N · m Ans.
4
4
(b) From Eq. (16-26),

4F
4(4000)

 0.159 N/mm 2  159 kPa
2
2
2
2
 ( D  d )  (250  175 )

pa 
Eq. (16-27):
T 



f pa ( D3  d 3 ) 



(0.30)159 103  2503  1753 10 3 

Ans.

3

12
12
 128 N · m Ans.
______________________________________________________________________________

16-17 Given: OD = 6.5 in, ID = 4 in, f = 0.24, p a = 120 psi.
(a) Eq. (16-23):
 pa d
 (120)(4)
F 
(D  d ) 
(6.5  4)  1885 lbf Ans.
2
2
Eq. (16-24) with N sliding planes:
 fpa d 2
 (0.24)(120)(4)
T 
(D  d 2 ) N 
(6.52  42 )(6)
8
8
 7125 lbf · in Ans.
(b)

T 

 (0.24)(120d )
8

(6.52  d 2 )(6)

d, in T, lbf · in
2
5191
3
6769
4
7125
Ans.
5
5853
6
2545
(c) The torque-diameter curve exhibits a stationary point maximum in the range of
diameter d. The clutch has nearly optimal proportions.
______________________________________________________________________________
16-18 (a) Eq. (16-24) with N sliding planes:

Chapter 16, Page 15/27
 f pa d ( D 2  d 2 ) N

T 

8



 f pa N
8

D d  d 
2

3

Differentiating with respect to d and equating to zero gives
dT
 f pa N 2

 D  3d 2   0
8
dd
D
d* 
Ans.
3
 f pa N
3 f pa N
d 2T
 6
d 
d
2
8
4
dd

which is negative for all positive d. We have a stationary point maximum.
(b)

d* 

6.5
 3.75 in
3

Eq. (16-24):
T* 



Ans.



 (0.24)(120) 6.5 / 3  2
2
6.5  6.5 / 3  (6)  7173 lbf · in
8









(c) The table indicates a maximum within the range: 3 ≤ d ≤ 5 in
d
(d) Consider:
 0.80
0.45 
D
Multiply through by D,
0.45D  d  0.80D
0.45(6.5)  d  0.80(6.5)
2.925  d  5.2 in
*

1
d
 0.577
   d * /D 
3
D
which lies within the common range of clutches.
Yes. Ans.
______________________________________________________________________________

16-19 Given: d = 11 in,

l = 2.25 in, T = 1800 lbf · in,

D = 12 in,

f = 0.28.

 0.5 

  tan 1 
  12.53
 2.25 

Chapter 16, Page 16/27
Uniform wear
Eq. (16-45):

 f pa d 2
D  d2
8sin 
 (0.28) pa (11) 2
1800 
12  112   128.2 pa
8sin12.53
1800
 14.04 psi Ans.
pa 
128.2
T 

Eq. (16-44):

 pa d

F 

2

(D  d ) 

 (14.04)11
2

(12  11)  243 lbf

Ans.

Uniform pressure
Eq. (16-48):

 f pa
 D3  d 3 
12 sin 
 (0.28) pa
1800 
123  113   134.1pa
12sin12.53
1800
pa 
Ans.
 13.42 psi
134.1
T 

Eq. (16-47):

 pa

 (13.42)

122  112   242 lbf Ans.
4
4
______________________________________________________________________________
F 

(D 2  d 2 ) 

16-20 Uniform wear

Eq. (16-34):
Eq. (16-33):
Thus,

1
( 2  1) f pa ri  ro2  ri 2 
2
F = ( 2   1 ) p a r i (r o  r i )
T 

(1 / 2)( 2  1) f pa ri  ro2  ri 2 
T

f ( 2  1) pa ri (ro  ri )( D)
f FD
r  ri
D / 2  d / 2 1
d
 o

 1   O.K .
D
2D
2D
4

Ans.

Uniform pressure
Eq. (16-38):

T 

1
( 2  1) f pa  ro3  ri3 
3

Chapter 16, Page 17/27
F 

Eq. (16-37):

1
( 2  1) pa  ro2  ri 2 
2

Thus,

(1 / 3)( 2  1) f pa  ro3  ri3 
T
2  ( D / 2)3  (d / 2)3 



 

2
2
2
2
f FD (1 / 2) f ( 2  1) pa  ro  ri  D
3   ( D / 2)  (d / 2) D  


3
2( D / 2)3 1  (d / D)3 

  1  1  (d / D)  O.K . Ans.



3( D / 2)2 1  (d / D) 2  D 3 1  (d / D) 2 


______________________________________________________________________________
16-21

  2 n / 60  2 500 / 60  52.4 rad/s
T 

H





2(103 )
 38.2 N· m
52.4

Key:
T
38.2

 3.18 kN
r
12
Average shear stress in key is
3.18(103 )
 
 13.2 MPa Ans.
6(40)
Average bearing stress is
F
3.18(103 )
b  

 26.5 MPa
Ab
3(40)
Let one jaw carry the entire load.
F 

Ans.

1  26 45 


  17.75 mm
2 2
2
38.2
T
F 

 2.15 kN
rav 17.75

rav 

The bearing and shear stress estimates are

b 

2.15 103 

 22.6 MPa Ans.
10(22.5  13)
2.15(103 )
 0.869 MPa Ans.
 
10 0.25 (17.75) 2 



______________________________________________________________________________

Chapter 16, Page 18/27
16-22

1  2 n / 60  2 (1600) / 60  167.6 rad/s
2  0
From Eq. (16-51),
I1I 2
Tt1
2800(8)


 133.7 lbf · in · s 2
I1  I 2 1  2 167.6  0

Eq. (16-52):
E 

I1 I 2
133.7
2
(167.6  0) 2  1.877 106  lbf  in
1  2  
2  I1  I 2 
2

H = E / 9336 = 1.877(106) / 9336 = 201 Btu

In Btu, Eq. (16-53):
Eq. (16-54):

H
201

 41.9F Ans.
C pW
0.12(40)
______________________________________________________________________________
T 

16-23

n1  n2
260  240

 250 rev/min
2
2
C s = ( 2   1 ) /  = (n 2  n 1 ) / n = (260  240) / 250 = 0.08
n

Eq. (16-62):

Ans.

 = 2 (250) / 60 = 26.18 rad/s
From Eq. (16-64):
I 

6.75 103 
E2  E1

 123.1 N · m · s 2
2
2
Cs
0.08(26.18)

I 

m 2
 do  di2 
8



m

8I
8(123.1)

 233.9 kg
2
d  di
1.52  1.42

Table A-5, cast iron unit weight = 70.6 kN/m3
Volume:

2
o

  = 70.6(103) / 9.81 = 7197 kg / m3.

V = m /  = 233.9 / 7197 = 0.0325 m3
V   t  d o2  d i2  / 4   t 1.52  1.4 2  / 4  0.2278t

Equating the expressions for volume and solving for t,
0.0325
t 
 0.143 m  143 mm
0.2278

Ans.

Chapter 16, Page 19/27
______________________________________________________________________________
16-24 (a) The useful work performed in one revolution of the crank shaft is
U = 320 (103) 200 (103) 0.15 = 9.6 (103) J
Accounting for friction, the total work done in one revolution is
U = 9.6(103) / (1  0.20) = 12.0(103) J
Since 15% of the crank shaft stroke accounts for 7.5% of a crank shaft revolution, the
energy fluctuation is
E 2  E 1 = 9.6(103)  12.0(103)(0.075) = 8.70(103) J
(b) For the flywheel,

Since
Eq. (16-64):

Ans.

n  6(90)  540 rev/min
2 n
2 (540)

 56.5 rad/s
 
60
60

C s = 0.10
E E
8.70(103 )
I  2 21 
 27.25 N · m · s 2
2
Cs
0.10(56.5)

Assuming all the mass is concentrated at the effective diameter, d,
md 2
I  mr 
4
4I
4(27.25)
 75.7 kg Ans.
m 2 
d
1.22
______________________________________________________________________________
2

16-25 Use Ex. 16-6 and Table 16-6 data for one cylinder of a 3-cylinder engine.
Cs  0.30
n  2400 rev/min or 251 rad/s
3(3368)
Tm 
 804 lbf · in
Ans.
4
E2  E1  3(3531)  10 590 in · lbf
E E
10 590
 0.560 in · lbf · s 2 Ans.
I  2 21 
2
0.30(251 )
Cs
______________________________________________________________________________

Chapter 16, Page 20/27
16-26 (a)
(1)

(T2 )1   F21rP  

T2
T
rP  2
rG
n

Ans.

Equivalent energy

(2)

2
(1 / 2) I 22  (1 / 2)( I 2 )1 12 

I
22
( I 2 )1  2 I 2  2
1
n2
2

(3)

2

Ans.

2

I G  rG   mG   rG   rG 
           n4
I P  rP   mP   rP   rP 

From (2)

( I 2 )1 

(b) I e  I M  I P  n 2 I P 

IL
n2

IG
n4 I
 2P  n2I P
n2
n

Ans.

Ans.

______________________________________________________________________________
16-27 (a) Reflect I L , I G2 to the center shaft

Chapter 16, Page 21/27
Reflect the center shaft to the motor shaft

I e  I M  I P  n2I P 

I P m2
I
 2 I P  2L 2
2
n
n
mn

(b) For R = constant = nm, I e  I M

(c) For R = 10,

Ans.

IP
R2I P
I
 I P  n I P  2  4  L2
n
n
R
2

Ans.

I e
2(1) 4(102 )(1)
 0  0  2n(1)  3 
00
n
n5
n
n6  n2  200 = 0

From which
n*  2.430 Ans.
10
m* 
 4.115
2.430

Ans.

Notice that n*and m* are independent of I L .
______________________________________________________________________________
16-28 From Prob. 16-27,
IP
R2I
I
 4 P  L2
2
n
n
R
1 100(1) 100
 10  1  n 2 (1)  2 
 2
n
n4
10
1 100
 12  n 2  2  4
n
n

Ie  I M  I P  n2I P 

Chapter 16, Page 22/27
Optimizing the partitioning of a double reduction lowered the gear-train inertia to
20.9/112 = 0.187, or to 19% of that of a single reduction. This includes the two additional
gears.
______________________________________________________________________________
16-29 Figure 16-29 applies,
t2  10 s, t1  0.5 s
t2 - t1 10  0.5

 19
t1
0.5

The load torque, as seen by the motor shaft (Rule 1, Prob. 16-26), is
TL 

1300(12)
 1560 lbf · in
10

The rated motor torque T r is
Tr 

63 025(3)
 168.07 lbf · in
1125

For Eqs. (16-65):

2
(1125)  117.81 rad/s
60
2
(1200)  125.66 rad/s
s 
60
168.07
Tr
a 

 21.41 lbf  in  s/rad
125.66  117.81
 s  r
168.07(125.66)
Trs
b

 2690.4 lbf · in
s  r 125.66  117.81

r 

Chapter 16, Page 23/27
The linear portion of the squirrel-cage motor characteristic can now be expressed as
Eq. (16-68):

T M = 21.41 + 2690.4 lbf · in
19

 1560  168.07 
T2  168.07 

 1560  T2 

One root is 168.07 which is for infinite time. The root for 10 s is desired. Use a
successive substitution method
T2
0.00
19.30
24.40
26.00
26.50

New T 2
19.30
24.40
26.00
26.50
26.67

Continue until convergence to
T 2 = 26.771 lbf ⋅ in
Eq. (16-69):
a  t2  t1 
21.41(10  0.5)

 110.72 lbf · in · s 2
ln T2 / Tr  ln(26.771 / 168.07)
T b
 
a
T  b 26.771  2690.4
max  2

 124.41 rad/s Ans.
a
21.41
min  117.81 rad/s Ans.
124.41  117.81
 
 121.11 rad/s
2
124.41  117.81
max  min
Cs 

 0.0545 Ans.
(max  min ) / 2 (124.41  117.81) / 2
1
1
E1  I r2  (110.72)(117.81) 2  768 352 in · lbf
2
2
1 2 1
E2  I 2  (110.72)(124.41) 2  856 854 in · lbf
2
2
E  E2  E1  856 854  768 352  88 502 in · lbf
I 

Eq. (16-64):
E  Cs I  2  0.0545(110.72)(121.11) 2
 88 508 in · lbf, close enough Ans.

Chapter 16, Page 24/27
During the punch
63 025H
n
TL (60 / 2 ) 1560(121.11)(60 / 2 )
H 
 28.6 hp

63 025
63 025
T 

The gear train has to be sized for 28.6 hp under shock conditions since the flywheel is on
the motor shaft. From Table A-18,







m 2
W 2
d o  di2 
d o  di2
8
8g
8gI
8(386)(110.72)
W  2

2
d o  di
d o2  di2
I 



If a mean diameter of the flywheel rim of 30 in is acceptable, try a rim thickness of 4 in
di  30  (4 / 2)  28 in
d o  30  (4 / 2)  32 in
8(386)(110.72)
 189.1 lbf
W 
322  282
Rim volume V is given by
V 

l

d
4

2
o

 di2  

l
4

(322  282 )  188.5l

where l is the rim width as shown in Table A-18. The specific weight of cast iron is
 = 0.260 lbf / in3, therefore the volume of cast iron is
V 

W





189.1
 727.3 in 3
0.260

Equating the volumes,
188.5 l  727.3
727.3
l 
 3.86 in wide
188.5

Proportions can be varied.
______________________________________________________________________________
16-30 Prob. 16-29 solution has I for the motor shaft flywheel as

Chapter 16, Page 25/27
I = 110.72 lbf · in · s2
A flywheel located on the crank shaft needs an inertia of 102 I (Prob. 16-26, rule 2)
I = 102(110.72) = 11 072 lbf · in · s2
A 100-fold inertia increase. On the other hand, the gear train has to transmit 3 hp under
shock conditions.
Stating the problem is most of the solution. Satisfy yourself that on the crankshaft:
TL  1300(12)  15 600 lbf · in
Tr  10(168.07)  1680.7 lbf · in
r  117.81 / 10  11.781 rad/s
s  125.66 / 10  12.566 rad/s
a  21.41(100)  2141 lbf · in · s/rad
b  2690.35(10)  26903.5 lbf · in
TM  2141c  26 903.5 lbf · in
19

 15 600  1680.5 
T2  1680.6 

 15 600  T2 

The root is 10(26.67) = 266.7 lbf · in

  121.11 / 10  12.111 rad/s
Cs  0.0549 (same)
max  121.11 / 10  12.111 rad/s Ans.
min  117.81 / 10  11.781 rad/s Ans.

E 1 , E 2 , E and peak power are the same. From Table A-18
6
8gI
8(386)(11 072) 34.19 10 
W  2


d o  di2
d o2  di2
d o2  di2

Scaling will affect d o and d i , but the gear ratio changed I. Scale up the flywheel in the
Prob. 16-29 solution by a factor of 2.5. Thickness becomes 4(2.5) = 10 in.
d  30(2.5)  75 in
do  75  (10 / 2)  80 in
di  75  (10 / 2)  70 in

Chapter 16, Page 26/27
W 

34.19 106 

 3026 lbf
802  702
W
3026
V 

 11 638 in 3
0.260

V 



l (802  702 )  1178 l
4
11 638
l 
 9.88 in
1178

Proportions can be varied. The weight has increased 3026/189.1 or about 16-fold while
the moment of inertia I increased 100-fold. The gear train transmits a steady 3 hp. But the
motor armature has its inertia magnified 100-fold, and during the punch there are
deceleration stresses in the train. With no motor armature information, we cannot
comment.
______________________________________________________________________________
16-31 This can be the basis for a class discussion.

Chapter 16, Page 27/27

More Related Content

What's hot

Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatWajahat Ullah
 
solution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnstonsolution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnstonZia ur rahman
 
Chapter 12 dynamics rc hibbler
Chapter 12 dynamics rc hibblerChapter 12 dynamics rc hibbler
Chapter 12 dynamics rc hibblerMuhammad Umer
 
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions ManualMechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions ManualVictoriasses
 
Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)meritonberisha50702
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioCaleb Rangel
 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)aryaanuj1
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler samplezammok
 
Solution shigley's
Solution shigley'sSolution shigley's
Solution shigley'sAlemu Abera
 
Ch01 03 stress &amp; strain &amp; properties
Ch01 03 stress &amp; strain &amp; propertiesCh01 03 stress &amp; strain &amp; properties
Ch01 03 stress &amp; strain &amp; propertiesAngieLisethTaicaMarq
 
mechanics-for-engineers-dynamics-solutions-10th-edition
mechanics-for-engineers-dynamics-solutions-10th-editionmechanics-for-engineers-dynamics-solutions-10th-edition
mechanics-for-engineers-dynamics-solutions-10th-editionMeo Chiln
 
hibbeler dynamics chap 14
hibbeler dynamics chap 14hibbeler dynamics chap 14
hibbeler dynamics chap 14Shahid Qasim
 

What's hot (20)

Undeterminate problems
Undeterminate problemsUndeterminate problems
Undeterminate problems
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by Wajahat
 
solution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnstonsolution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnston
 
Chapter 12 dynamics rc hibbler
Chapter 12 dynamics rc hibblerChapter 12 dynamics rc hibbler
Chapter 12 dynamics rc hibbler
 
Chapter 07 in som
Chapter 07 in som Chapter 07 in som
Chapter 07 in som
 
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions ManualMechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
 
Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionario
 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)
 
R 2
R 2R 2
R 2
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
 
Solution shigley's
Solution shigley'sSolution shigley's
Solution shigley's
 
Beer mom-ism-c07
Beer mom-ism-c07Beer mom-ism-c07
Beer mom-ism-c07
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
Ch01 03 stress &amp; strain &amp; properties
Ch01 03 stress &amp; strain &amp; propertiesCh01 03 stress &amp; strain &amp; properties
Ch01 03 stress &amp; strain &amp; properties
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
mechanics-for-engineers-dynamics-solutions-10th-edition
mechanics-for-engineers-dynamics-solutions-10th-editionmechanics-for-engineers-dynamics-solutions-10th-edition
mechanics-for-engineers-dynamics-solutions-10th-edition
 
2008 - NOV.pdf
2008 - NOV.pdf2008 - NOV.pdf
2008 - NOV.pdf
 
hibbeler dynamics chap 14
hibbeler dynamics chap 14hibbeler dynamics chap 14
hibbeler dynamics chap 14
 

Similar to Chapter 16 solutions

Similar to Chapter 16 solutions (20)

Shi20396 ch16
Shi20396 ch16Shi20396 ch16
Shi20396 ch16
 
Capítulo 16 embreagens
Capítulo 16   embreagensCapítulo 16   embreagens
Capítulo 16 embreagens
 
Chapter 14 solutions
Chapter 14 solutionsChapter 14 solutions
Chapter 14 solutions
 
Chapter 15 solutions
Chapter 15 solutionsChapter 15 solutions
Chapter 15 solutions
 
Chapter 2 solutions
Chapter 2 solutionsChapter 2 solutions
Chapter 2 solutions
 
Capítulo 11 mancais de contato rolante
Capítulo 11   mancais de contato rolanteCapítulo 11   mancais de contato rolante
Capítulo 11 mancais de contato rolante
 
Capítulo 12 lubrificação e mancais de munhão
Capítulo 12   lubrificação e mancais de munhãoCapítulo 12   lubrificação e mancais de munhão
Capítulo 12 lubrificação e mancais de munhão
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricas
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Shi20396 ch14
Shi20396 ch14Shi20396 ch14
Shi20396 ch14
 
Shi20396 ch12
Shi20396 ch12Shi20396 ch12
Shi20396 ch12
 
Chapter 12 solutions
Chapter 12 solutionsChapter 12 solutions
Chapter 12 solutions
 
Capítulo 03 materiais
Capítulo 03   materiaisCapítulo 03   materiais
Capítulo 03 materiais
 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th edition
 
Shi20396 ch07
Shi20396 ch07Shi20396 ch07
Shi20396 ch07
 
Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
 
Shi20396 ch04
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
 
capitulo 16 de dinamica
capitulo 16 de dinamicacapitulo 16 de dinamica
capitulo 16 de dinamica
 
Shi20396 ch13
Shi20396 ch13Shi20396 ch13
Shi20396 ch13
 
Chapter 11 solutions
Chapter 11 solutionsChapter 11 solutions
Chapter 11 solutions
 

Recently uploaded

Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 

Recently uploaded (20)

Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 

Chapter 16 solutions

  • 1. Chapter 16 16-1 Given: r = 300/2 = 150 mm, a = R = 125 mm, b = 40 mm, f = 0.28, F = 2.2 kN,  1 = 0,  2 = 120, and  a = 90. From which, sin a = sin90 = 1. Eq. (16-2): 0.28 pa (0.040)(0.150) 120 0 sin  (0.150  0.125 cos  ) d 1  2.993 10 4  pa N · m Mf  Eq. (16-3): pa (0.040)(0.150)(0.125) 120 2 4 0 sin  d  9.478 10  pa N · m 1 MN  c = 2(0.125 cos 30) = 0.2165 m Eq. (16-4): F  9.478 10 4  pa  2.993 10 4  pa 0.2165  2.995 10 3  pa p a = F/ [2.995(103)] = 2200/ [2.995(103)] = 734.5(103) Pa for cw rotation Eq. (16-7): 2200  9.478 10 4  pa  2.993 10 4  pa 0.2165 p a = 381.9(103) Pa for ccw rotation A maximum pressure of 734.5 kPa occurs on the RH shoe for cw rotation. (b) RH shoe: Eq. (16-6): 0.28(734.5)103 (0.040)0.1502 (cos 0o  cos120o ) TR   277.6 N · m 1 LH shoe: 381.9 TL  277.6  144.4 N · m Ans. 734.5 T total = 277.6 + 144.4 = 422 N · m Ans. Ans. Ans. Chapter 16, Page 1/27
  • 2. (c) RH shoe: F x = 2200 sin 30° = 1100 N, F y = 2200 cos 30° = 1905 N Eqs. (16-8): 1  A   sin 2   2  0o Eqs. (16-9): Rx  120o Ry   0.375, 734.5 103  0.040(0.150) 1 3 734.5 10  0.04(0.150) R  [ 1007  LH shoe: 2 / 3 rad  1  B    sin 2  2 4  0 2  1.264 [0.375  0.28(1.264)]  1100  1007 N [1.264  0.28(0.375)]  1905  4128 N 1  41282 ]1/ 2  4249 N Ans. F x = 1100 N, F y = 1905 N Eqs. (16-10): Rx  381.9 103  0.040(0.150) [0.375  0.28(1.264)]  1100  570 N 1 381.9 103  0.040(0.150) [1.264  0.28(0.375)]  1905  751 N Ry  1 1/ 2 R   597 2  7512   959 N Ans. ______________________________________________________________________________ 16-2 Given: r = 300/2 = 150 mm, a = R = 125 mm, b = 40 mm, f = 0.28, F = 2.2 kN,  1 = 15,  2 = 105, and  a = 90. From which, sin a = sin90 = 1. Eq. (16-2): 0.28 pa (0.040)(0.150) 105 4 Mf  15 sin  (0.150  0.125 cos  ) d  2.177 10  pa 1 Chapter 16, Page 2/27
  • 3. MN  Eq. (16-3): pa (0.040)(0.150)(0.125) 105 2 4 15 sin  d  7.765 10  pa 1 c = 2(0.125) cos 30° = 0.2165 m F  Eq. (16-4): 7.765 10 4  pa  2.177 10 4  pa 0.2165  2.58110 3  pa p a = 2200/ [2.581(10 3)] = 852.4 (103) Pa = 852.4 kPa on RH shoe for cw rotation Ans. RH shoe: TR  Eq. (16-6): LH shoe: 2200  0.28(852.4)103 (0.040)(0.1502 )(cos15  cos105)  263 N · m 1 7.765 10 4  pa  2.177 10 4  pa pa  479.110 3  0.2165 Pa  479.1 kPa on LH shoe for ccw rotation Ans. 0.28(479.1)103(0.040)(0.150 2 )(cos15  cos105)  148 N · m 1  263  148  411 N · m Ans. TL  Ttotal Comparing this result with that of Prob. 16-1, a 2.6% reduction in torque is obtained by using 25% less braking material. ______________________________________________________________________________ 16-3 Given:  1 = 0°,  2 = 120°,  a = 90°, sin  a = 1, a = R = 3.5 in, b = 1.25 in, f = 0.30, F = 225 lbf, r = 11/2 = 5.5 in, counter-clockwise rotation. LH shoe: Eq. (16-2), with  1 = 0:  f pabr 2 f p br  a 2  Mf   sin   r  a cos   d  sin a a  r (1  cos  2 )  2 sin  2  sin  a 1   0.30 pa (1.25)5.5  3.5 2  o 5.5(1  cos120 )  2 sin 120 1    14.31 pa lbf · in Eq. (16-3), with  1 = 0:  pabra 2 2 pabra   1  MN   sin  d  sin a  22  4 sin 22  sin  a 1     pa (1.25)5.5(3.5) 120    1  2  180   4 sin 2(120)  1      30.41 pa lbf · in  Chapter 16, Page 3/27
  • 4.  180o   2  o c  2r cos    2(5.5) cos 30  9.526 in 2   30.41 pa  14.31 pa  1.690 pa F  225  9.526 pa  225 / 1.690  133.1 psi Eq. (16-6): f pabr 2 (cos 1  cos  2 ) 0.30(133.1)1.25(5.52 )  [1  (0.5)] sin  a 1  2265 lbf · in  2.265 kip · in Ans. TL  RH shoe: 30.41 pa  14.31 pa  4.694 pa 9.526 pa  225 / 4.694  47.93 psi 47.93 TR  2265  816 lbf ·in  0.816 kip·in 133.1 F  225  T total = 2.27 + 0.82 = 3.09 kip  in Ans. ______________________________________________________________________________ 16-4 (a) Given:  1 = 10°,  2 = 75°,  a = 75°, p a = 106 Pa, f = 0.24, b = 0.075 m (shoe width), a = 0.150 m, r = 0.200 m, d = 0.050 m, c = 0.165 m. Some of the terms needed are evaluated here:  2  r 2 sin  d  a 2 sin  cos  d   r   cos  2  a  1 sin 2   A  1 1 2   1     1 75 1   200   cos  10  150  sin 2    77.5 mm 2 10 75 /180 rad 2  1  2 B   sin  d    sin 2   0.528 1 2 4 10 /180 rad 75 C  2  sin  cos  d  0.4514 1 Now converting to Pascals and meters, we have from Eq. (16-2), 0.24 106  (0.075)(0.200) f pabr Mf  A (0.0775)  289 N · m sin  a sin 75 Chapter 16, Page 4/27
  • 5. From Eq. (16-3), MN pabra 106 (0.075)(0.200)(0.150)  B  (0.528)  1230 N · m sin  a sin 75 Finally, using Eq. (16-4), we have F  MN  M f c  1230  289  5.70 kN 165 Ans. (b) Use Eq. (16-6) for the primary shoe. T   fpabr 2 (cos 1  cos  2 ) sin  a 0.24 106  (0.075)(0.200)2 (cos 10  cos 75) sin 75  541 N · m For the secondary shoe, we must first find p a . Substituting 1230 289 pa and M f  6 pa into Eq. (16 - 7), 6 10 10 (1230 / 106 ) pa  (289 / 106 ) pa 5.70  , solving gives pa  619 103  Pa 165 MN  Then T  0.24 619 103   0.075  0.2002   cos 10  cos 75    sin 75  335 N · m so the braking capacity is T total = 2(541) + 2(335) = 1750 N · m Ans. (c) Primary shoes: pabr  C  f B   Fx sin  a 106 (0.075)0.200  [0.4514  0.24(0.528)](10 3 )  5.70  0.658 kN sin 75 pabr ( B  f C )  Fy Ry  sin  a 106 (0.075)0.200  [0.528  0.24(0.4514)] 10 3   0  9.88 kN sin 75 Rx  Chapter 16, Page 5/27
  • 6. Secondary shoes: Rx   pabr (C  f B)  Fx sin  a 0.619 106  0.075(0.200) sin 75  0.143 kN p br Ry  a ( B  f C )  Fy sin  a  0.619 106  0.075(0.200)  4.03 kN sin 75 [0.4514  0.24(0.528)] 10 3   5.70 [0.528  0.24(0.4514)] 10 3   0 Note from figure that +y for secondary shoe is opposite to +y for primary shoe. Combining horizontal and vertical components, RH  0.658  0.143  0.801 kN RV  9.88  4.03  5.85 kN R  (0.801) 2  5.852  5.90 kN Ans. ______________________________________________________________________________ 16-5 Given: Face width b = 1.25 in, F = 90 lbf, f = 0.25. Preliminaries:  1 = 45°  tan1(6/8) = 8.13°,  2 = 98.13°,  a = 90°, a = (62 + 82)1/2 = 10 in Eq. (16-2):  f pabr 2 0.25 pa (1.25)6 Mf   sin   r  a cos   d  sin  a 1 1 98.13  sin   6  10 cos   d 8.13  3.728 pa lbf · in Eq. (16-3):  MN  pabra 2 2 p (1.25)6(10)  sin  d  a 1 sin  a 1 98.13  sin 2  d 8.13  69.405 pa lbf · in Eq. (16-4): Using Fc = M N  M f , we obtain 90(20)  (69.405  3.728) pa  pa  27.4 psi Ans. Chapter 16, Page 6/27
  • 7. Eq. (16-6): fp br 2  cos 1  cos  2  0.25(27.4)1.25  6   cos8.13  cos 98.13  T  a  sin  a 1  348.7 lbf · in Ans. ______________________________________________________________________________ 2 16-6 ˆ For 3 f : ˆ f  f  3 f  0.25  3(0.025)  0.325 From Prob. 16-5, with f = 0.25, M f = 3.728 p a . Thus, M f = (0.325/0.25) 3.728 p a = 4.846 p a . From Prob. 16-5, M N = 69.405 p a . Eq. (16-4): Using Fc = M N  M f , we obtain 90(20)  (69.405  4.846) pa  pa  27.88 psi Ans. From Prob. 16-5, p a = 27.4 psi and T = 348.7 lbf⋅in. Thus,  0.325   27.88  T    348.7  461.3 lbf ·in  0.25   27.4  Ans. ˆ Similarly, for 3 f : ˆ f  f  3 f  0.25  3(0.025)  0.175 M f  (0.175 / 0.25) 3.728 pa  2.610 pa 90(20) = (69.405  2.610) p a  p a = 26.95 psi  0.175  26.95  T    348.7  240.1 lbf · in Ans.  0.25  27.4  ______________________________________________________________________________ 16-7 Preliminaries:  2 = 180°  30°  tan1(3/12) = 136°,  1 = 20°  tan1(3/12) = 6°,  a = 90, sin a = 1, a = (32 + 122)1/2 = 12.37 in, r = 10 in, f = 0.30, b = 2 in, p a = 150 psi. Eq. (16-2): Mf  0.30(150)(2)(10) 136o 6 sin  (10  12.37 cos  ) d  12 800 lbf · in sin 90 Eq. (16-3): MN  150(2)(10)(12.37) 136 2 6 sin  d  53 300 lbf · in sin 90 LH shoe: c L = 12 + 12 + 4 = 28 in Chapter 16, Page 7/27
  • 8. Now note that M f is cw and M N is ccw. Thus, FL  Eq. (16-6): 53 300  12 800  1446 lbf 28 TL  0.30(150)(2)(10) 2 (cos 6  cos136)  15 420 lbf · in sin 90 RH shoe: M N  53 300 pa  355.3 pa , 150 M f  12 800 pa  85.3 pa 150 On this shoe, both M N and M f are ccw. Also, c R = (24  2 tan 14°) cos 14° = 22.8 in Fact  FL sin14  361 lbf Ans. FR  FL / cos14  1491 lbf Thus, 1491  Then, TR  355.3  85.3 pa  pa  77.2 psi 22.8 0.30(77.2)(2)(10) 2 (cos 6  cos136)  7940 lbf · in sin 90 T total = 15 420 + 7940 = 23 400 lbf · in Ans. ______________________________________________________________________________ 16-8 2 M f  2 ( fdN )(a cos   r ) 0 where dN  pbr d 2  2 fpbr  (a cos   r ) d  0 0 From which 2 2 0 0 a cos  d  r  d r 2 r (60)( / 180) a    1.209r sin  2 sin 60 Ans. Chapter 16, Page 8/27
  • 9. Eq. (16-15): a  4r sin 60  1.170r 2(60)( / 180)  sin[2(60)] Ans. a differs with a ¢ by 100(1.170 1.209)/1.209 =  3.23 % Ans. ______________________________________________________________________________ 16-9 (a) Counter-clockwise rotation,  2 =  / 4 rad, r = 13.5/2 = 6.75 in Eq. (16-15): 4r sin  2 4(6.75) sin( / 4)   7.426 in a  2 2  sin 2 2 2 / 4  sin(2 / 4) e  2a  2(7.426)  14.85 in Ans. (b)  = tan1(3/14.85) = 11.4° M F x R  0  3F x  6.375P  0  F x  R x  F x  2.125P  R x  F x  2.125P F y  F x tan11.4o  0.428P  Fy   P  F y  R y R y  P  0.428P  1.428P Left shoe lever.  M R  0  7.78S x  15.28F x 15.28 Sx  (2.125P)  4.174P 7.78 S y  f S x  0.30(4.174 P)  1.252P  Fy  0  R y  S y  F y R y   F y  S y  0.428P  1.252 P  1.68P  Fx  0  R x  S x  F x R x  S x  F x  4.174P  2.125P  2.049P Chapter 16, Page 9/27
  • 10. (c) The direction of brake pulley rotation affects the sense of Sy, which has no effect on the brake shoe lever moment and hence, no effect on Sx or the brake torque. The brake shoe levers carry identical bending moments but the left lever carries a tension while the right carries compression (column loading). The right lever is designed and used as a left lever, producing interchangeable levers (identical levers). But do not infer from these identical loadings. ______________________________________________________________________________ 16-10 r = 13.5/2 = 6.75 in, b = 6 in,  2 = 45° =  / 4 rad. From Table 16-3 for a rigid, molded non-asbestos lining use a conservative estimate of p a = 100 psi, f = 0.33. Equation (16-16) gives the horizontal brake hinge pin reaction which corresponds to Sx in Prob. 16-9. Thus, p br 100(6)6.75 N  S x  a  2 2  sin 2 2   2  / 4   sin  2  45     2 2  5206 lbf   which, from Prob. 6-9 is 4.174 P. Therefore, 4.174 P = 5206  P = 1250 lbf = 1.25 kip Ans. Applying Eq. (16-18) for two shoes, where from Prob. 16-9, a = 7.426 in T  2a f N  2(7.426)0.33(5206)  25 520 lbf · in  25.52 kip · in Ans. ______________________________________________________________________________ 16-11 Given: D = 350 mm, b = 100 mm, p a = 620 kPa, f = 0.30,  = 270. Chapter 16, Page 10/27
  • 11. Eq. (16-22): pabD 620(0.100)0.350   10.85 kN 2 2 P  1 Ans. f   0.30(270)( / 180)  1.414 Eq. (16-19): P 2 = P 1 exp( f  ) = 10.85 exp( 1.414) = 2.64 kN Ans. T  ( P  P2 )( D / 2)  (10.85  2.64)(0.350 / 2)  1.437 kN · m Ans. 1 ______________________________________________________________________________ 16-12 Given: D = 12 in, Eq. (16-22): f = 0.28, b = 3.25 in,  = 270°, P 1 = 1800 lbf. pa  2P 2(1800) 1   92.3 psi bD 3.25(12) Ans. f   0.28(270o )( / 180o )  1.319 P2  P exp( f  )  1800 exp(1.319)  481 lbf 1 T  ( P  P2 )( D / 2)  (1800  481)(12 / 2) 1  7910 lbf · in  7.91 kip · in Ans. ______________________________________________________________________________ 16-13  M O = 0 = 100 P 2  325 F  P 2 = 325(300)/100 = 975 N Ans.  100    cos 1    51.32  160    270  51.32  218.7 f   0.30(218.7)  / 180   1.145 P  P2 exp( f  )  975exp(1.145)  3064 N Ans. 1 T   P  P2  ( D / 2)  (3064  975)(200 / 2) 1  209 103  N · mm  209 N · m Ans. ______________________________________________________________________________ Chapter 16, Page 11/27
  • 12. 16-14 (a) D = 16 in, b = 3 in n = 200 rev/min f = 0.20, p a = 70 psi Eq. (16-22): P  1 Eq. (16-14): pabD 70(3)(16)  1680 lbf  2 2 f   0.20(3 / 2)  0.942 P2  P exp( f  )  1680 exp(0.942)  655 lbf 1 D 16  (1680  655) 2 2  8200 lbf · in Ans. Tn 8200(200) H    26.0 hp 63 025 63 025 3P 3(1680)  504 lbf Ans. P  1  10 10 T  ( P  P2 ) 1 Ans. (b) Force of belt on the drum: R = (16802 + 6552)1/2 = 1803 lbf Force of shaft on the drum: 1680 and 655 lbf TP1  1680(8)  13 440 lbf · in TP2  655(8)  5240 lbf · in Net torque on drum due to brake band: T  TP1  TP2  13 440  5240  8200 lbf · in The radial load on the bearing pair is 1803 lbf. If the bearing is straddle mounted with the drum at center span, the bearing radial load is 1803/2 = 901 lbf. Chapter 16, Page 12/27
  • 13. (c) Eq. (16-21): 2P bD 2P 2(1680) 1    70 psi 3(16) 3(16) p  p   0 Ans. 2P2 2(655)   27.3 psi Ans. 3(16) 3(16) ______________________________________________________________________________ p   270  16-15 Given:  = 270°, b = 2.125 in, f = 0.20, T =150 lbf · ft, D = 8.25 in, c 2 = 2.25 in (see figure). Notice that the pivoting rocker is not located on the vertical centerline of the drum. (a) To have the band tighten for ccw rotation, it is necessary to have c 1 < c 2 . When friction is fully developed, P / P2  exp( f  )  exp[0.2(3 / 2)]  2.566 1 If friction is not fully developed, P 1 /P 2 ≤ exp( f  ) To help visualize what is going on let’s add a force W parallel to P 1 , at a lever arm of c 3 . Now sum moments about the rocker pivot. M  0  c3W  c1P  c2 P2 1 From which c2 P2  c1P 1 c3 The device is self locking for ccw rotation if W is no longer needed, that is, W ≤ 0. It follows from the equation above W  P c 1  2 P2 c1 When friction is fully developed 2.566  2.25 / c1 2.25 c1   0.877 in 2.566 When P 1 /P 2 is less than 2.566, friction is not fully developed. Suppose P 1 /P 2 = 2.25, Chapter 16, Page 13/27
  • 14. then c1  2.25  1 in 2.25 We don’t want to be at the point of slip, and we need the band to tighten. c2  c1  c2 P / P2 1 When the developed friction is very small, P 1 /P 2 → 1 and c 1 → c 2 Ans. (b) Rocker has c 1 = 1 in P c 2.25 1  2   2.25 P2 c1 1 ln( P / P2 ) ln 2.25 1 f    0.172  3 / 2 Friction is not fully developed, no slip. T  ( P  P2 ) 1 P D D  P2  1  1 2  P2 2 Solve for P 2 2T 2(150)(12)   349 lbf [( P / P2 )  1]D (2.25  1)(8.25) 1 P  2.25P2  2.25(349)  785 lbf 1 2P 2(785) p  1   89.6 psi Ans. 2.125(8.25) bD P2  (c) The torque ratio is 150(12)/100 or 18-fold. 349 P2   19.4 lbf 18 P  2.25P2  2.25(19.4)  43.6 lbf 1 89.6 p   4.98 psi Ans. 18 Comment: As the torque opposed by the locked brake increases, P 2 and P 1 increase (although ratio is still 2.25), then p follows. The brake can self-destruct. Protection could be provided by a shear key. ______________________________________________________________________________ 16-16 Given: OD = 250 mm, ID = 175 mm, f = 0.30, F = 4 kN. Chapter 16, Page 14/27
  • 15. (a) From Eq. (16-23), 2  4000  2F pa    0.194 N/mm 2  194 kPa Ans.  d ( D  d )  (175)(250  175) Eq. (16-25): Ff 4000(0.30) T  (D  d )  (250  175)10  3  127.5 N · m Ans. 4 4 (b) From Eq. (16-26), 4F 4(4000)   0.159 N/mm 2  159 kPa 2 2 2 2  ( D  d )  (250  175 ) pa  Eq. (16-27): T   f pa ( D3  d 3 )   (0.30)159 103  2503  1753 10 3  Ans. 3 12 12  128 N · m Ans. ______________________________________________________________________________ 16-17 Given: OD = 6.5 in, ID = 4 in, f = 0.24, p a = 120 psi. (a) Eq. (16-23):  pa d  (120)(4) F  (D  d )  (6.5  4)  1885 lbf Ans. 2 2 Eq. (16-24) with N sliding planes:  fpa d 2  (0.24)(120)(4) T  (D  d 2 ) N  (6.52  42 )(6) 8 8  7125 lbf · in Ans. (b) T   (0.24)(120d ) 8 (6.52  d 2 )(6) d, in T, lbf · in 2 5191 3 6769 4 7125 Ans. 5 5853 6 2545 (c) The torque-diameter curve exhibits a stationary point maximum in the range of diameter d. The clutch has nearly optimal proportions. ______________________________________________________________________________ 16-18 (a) Eq. (16-24) with N sliding planes: Chapter 16, Page 15/27
  • 16.  f pa d ( D 2  d 2 ) N T  8   f pa N 8 D d  d  2 3 Differentiating with respect to d and equating to zero gives dT  f pa N 2   D  3d 2   0 8 dd D d*  Ans. 3  f pa N 3 f pa N d 2T  6 d  d 2 8 4 dd which is negative for all positive d. We have a stationary point maximum. (b) d*  6.5  3.75 in 3 Eq. (16-24): T*   Ans.   (0.24)(120) 6.5 / 3  2 2 6.5  6.5 / 3  (6)  7173 lbf · in 8      (c) The table indicates a maximum within the range: 3 ≤ d ≤ 5 in d (d) Consider:  0.80 0.45  D Multiply through by D, 0.45D  d  0.80D 0.45(6.5)  d  0.80(6.5) 2.925  d  5.2 in * 1 d  0.577    d * /D  3 D which lies within the common range of clutches. Yes. Ans. ______________________________________________________________________________ 16-19 Given: d = 11 in, l = 2.25 in, T = 1800 lbf · in, D = 12 in, f = 0.28.  0.5    tan 1    12.53  2.25  Chapter 16, Page 16/27
  • 17. Uniform wear Eq. (16-45):  f pa d 2 D  d2 8sin   (0.28) pa (11) 2 1800  12  112   128.2 pa 8sin12.53 1800  14.04 psi Ans. pa  128.2 T  Eq. (16-44):  pa d F  2 (D  d )   (14.04)11 2 (12  11)  243 lbf Ans. Uniform pressure Eq. (16-48):  f pa  D3  d 3  12 sin   (0.28) pa 1800  123  113   134.1pa 12sin12.53 1800 pa  Ans.  13.42 psi 134.1 T  Eq. (16-47):  pa  (13.42) 122  112   242 lbf Ans. 4 4 ______________________________________________________________________________ F  (D 2  d 2 )  16-20 Uniform wear Eq. (16-34): Eq. (16-33): Thus, 1 ( 2  1) f pa ri  ro2  ri 2  2 F = ( 2   1 ) p a r i (r o  r i ) T  (1 / 2)( 2  1) f pa ri  ro2  ri 2  T  f ( 2  1) pa ri (ro  ri )( D) f FD r  ri D / 2  d / 2 1 d  o   1   O.K . D 2D 2D 4 Ans. Uniform pressure Eq. (16-38): T  1 ( 2  1) f pa  ro3  ri3  3 Chapter 16, Page 17/27
  • 18. F  Eq. (16-37): 1 ( 2  1) pa  ro2  ri 2  2 Thus, (1 / 3)( 2  1) f pa  ro3  ri3  T 2  ( D / 2)3  (d / 2)3        2 2 2 2 f FD (1 / 2) f ( 2  1) pa  ro  ri  D 3   ( D / 2)  (d / 2) D     3 2( D / 2)3 1  (d / D)3     1  1  (d / D)  O.K . Ans.    3( D / 2)2 1  (d / D) 2  D 3 1  (d / D) 2    ______________________________________________________________________________ 16-21   2 n / 60  2 500 / 60  52.4 rad/s T  H   2(103 )  38.2 N· m 52.4 Key: T 38.2   3.18 kN r 12 Average shear stress in key is 3.18(103 )    13.2 MPa Ans. 6(40) Average bearing stress is F 3.18(103 ) b     26.5 MPa Ab 3(40) Let one jaw carry the entire load. F  Ans. 1  26 45      17.75 mm 2 2 2 38.2 T F    2.15 kN rav 17.75 rav  The bearing and shear stress estimates are b  2.15 103   22.6 MPa Ans. 10(22.5  13) 2.15(103 )  0.869 MPa Ans.   10 0.25 (17.75) 2    ______________________________________________________________________________ Chapter 16, Page 18/27
  • 19. 16-22 1  2 n / 60  2 (1600) / 60  167.6 rad/s 2  0 From Eq. (16-51), I1I 2 Tt1 2800(8)    133.7 lbf · in · s 2 I1  I 2 1  2 167.6  0 Eq. (16-52): E  I1 I 2 133.7 2 (167.6  0) 2  1.877 106  lbf  in 1  2   2  I1  I 2  2 H = E / 9336 = 1.877(106) / 9336 = 201 Btu In Btu, Eq. (16-53): Eq. (16-54): H 201   41.9F Ans. C pW 0.12(40) ______________________________________________________________________________ T  16-23 n1  n2 260  240   250 rev/min 2 2 C s = ( 2   1 ) /  = (n 2  n 1 ) / n = (260  240) / 250 = 0.08 n Eq. (16-62): Ans.  = 2 (250) / 60 = 26.18 rad/s From Eq. (16-64): I  6.75 103  E2  E1   123.1 N · m · s 2 2 2 Cs 0.08(26.18) I  m 2  do  di2  8  m 8I 8(123.1)   233.9 kg 2 d  di 1.52  1.42 Table A-5, cast iron unit weight = 70.6 kN/m3 Volume: 2 o   = 70.6(103) / 9.81 = 7197 kg / m3. V = m /  = 233.9 / 7197 = 0.0325 m3 V   t  d o2  d i2  / 4   t 1.52  1.4 2  / 4  0.2278t Equating the expressions for volume and solving for t, 0.0325 t   0.143 m  143 mm 0.2278 Ans. Chapter 16, Page 19/27
  • 20. ______________________________________________________________________________ 16-24 (a) The useful work performed in one revolution of the crank shaft is U = 320 (103) 200 (103) 0.15 = 9.6 (103) J Accounting for friction, the total work done in one revolution is U = 9.6(103) / (1  0.20) = 12.0(103) J Since 15% of the crank shaft stroke accounts for 7.5% of a crank shaft revolution, the energy fluctuation is E 2  E 1 = 9.6(103)  12.0(103)(0.075) = 8.70(103) J (b) For the flywheel, Since Eq. (16-64): Ans. n  6(90)  540 rev/min 2 n 2 (540)   56.5 rad/s   60 60 C s = 0.10 E E 8.70(103 ) I  2 21   27.25 N · m · s 2 2 Cs 0.10(56.5) Assuming all the mass is concentrated at the effective diameter, d, md 2 I  mr  4 4I 4(27.25)  75.7 kg Ans. m 2  d 1.22 ______________________________________________________________________________ 2 16-25 Use Ex. 16-6 and Table 16-6 data for one cylinder of a 3-cylinder engine. Cs  0.30 n  2400 rev/min or 251 rad/s 3(3368) Tm   804 lbf · in Ans. 4 E2  E1  3(3531)  10 590 in · lbf E E 10 590  0.560 in · lbf · s 2 Ans. I  2 21  2 0.30(251 ) Cs ______________________________________________________________________________ Chapter 16, Page 20/27
  • 21. 16-26 (a) (1) (T2 )1   F21rP   T2 T rP  2 rG n Ans. Equivalent energy (2) 2 (1 / 2) I 22  (1 / 2)( I 2 )1 12  I 22 ( I 2 )1  2 I 2  2 1 n2 2 (3) 2 Ans. 2 I G  rG   mG   rG   rG             n4 I P  rP   mP   rP   rP  From (2) ( I 2 )1  (b) I e  I M  I P  n 2 I P  IL n2 IG n4 I  2P  n2I P n2 n Ans. Ans. ______________________________________________________________________________ 16-27 (a) Reflect I L , I G2 to the center shaft Chapter 16, Page 21/27
  • 22. Reflect the center shaft to the motor shaft I e  I M  I P  n2I P  I P m2 I  2 I P  2L 2 2 n n mn (b) For R = constant = nm, I e  I M (c) For R = 10, Ans. IP R2I P I  I P  n I P  2  4  L2 n n R 2 Ans. I e 2(1) 4(102 )(1)  0  0  2n(1)  3  00 n n5 n n6  n2  200 = 0 From which n*  2.430 Ans. 10 m*   4.115 2.430 Ans. Notice that n*and m* are independent of I L . ______________________________________________________________________________ 16-28 From Prob. 16-27, IP R2I I  4 P  L2 2 n n R 1 100(1) 100  10  1  n 2 (1)  2   2 n n4 10 1 100  12  n 2  2  4 n n Ie  I M  I P  n2I P  Chapter 16, Page 22/27
  • 23. Optimizing the partitioning of a double reduction lowered the gear-train inertia to 20.9/112 = 0.187, or to 19% of that of a single reduction. This includes the two additional gears. ______________________________________________________________________________ 16-29 Figure 16-29 applies, t2  10 s, t1  0.5 s t2 - t1 10  0.5   19 t1 0.5 The load torque, as seen by the motor shaft (Rule 1, Prob. 16-26), is TL  1300(12)  1560 lbf · in 10 The rated motor torque T r is Tr  63 025(3)  168.07 lbf · in 1125 For Eqs. (16-65): 2 (1125)  117.81 rad/s 60 2 (1200)  125.66 rad/s s  60 168.07 Tr a    21.41 lbf  in  s/rad 125.66  117.81  s  r 168.07(125.66) Trs b   2690.4 lbf · in s  r 125.66  117.81 r  Chapter 16, Page 23/27
  • 24. The linear portion of the squirrel-cage motor characteristic can now be expressed as Eq. (16-68): T M = 21.41 + 2690.4 lbf · in 19  1560  168.07  T2  168.07    1560  T2  One root is 168.07 which is for infinite time. The root for 10 s is desired. Use a successive substitution method T2 0.00 19.30 24.40 26.00 26.50 New T 2 19.30 24.40 26.00 26.50 26.67 Continue until convergence to T 2 = 26.771 lbf ⋅ in Eq. (16-69): a  t2  t1  21.41(10  0.5)   110.72 lbf · in · s 2 ln T2 / Tr  ln(26.771 / 168.07) T b   a T  b 26.771  2690.4 max  2   124.41 rad/s Ans. a 21.41 min  117.81 rad/s Ans. 124.41  117.81    121.11 rad/s 2 124.41  117.81 max  min Cs    0.0545 Ans. (max  min ) / 2 (124.41  117.81) / 2 1 1 E1  I r2  (110.72)(117.81) 2  768 352 in · lbf 2 2 1 2 1 E2  I 2  (110.72)(124.41) 2  856 854 in · lbf 2 2 E  E2  E1  856 854  768 352  88 502 in · lbf I  Eq. (16-64): E  Cs I  2  0.0545(110.72)(121.11) 2  88 508 in · lbf, close enough Ans. Chapter 16, Page 24/27
  • 25. During the punch 63 025H n TL (60 / 2 ) 1560(121.11)(60 / 2 ) H   28.6 hp  63 025 63 025 T  The gear train has to be sized for 28.6 hp under shock conditions since the flywheel is on the motor shaft. From Table A-18,    m 2 W 2 d o  di2  d o  di2 8 8g 8gI 8(386)(110.72) W  2  2 d o  di d o2  di2 I   If a mean diameter of the flywheel rim of 30 in is acceptable, try a rim thickness of 4 in di  30  (4 / 2)  28 in d o  30  (4 / 2)  32 in 8(386)(110.72)  189.1 lbf W  322  282 Rim volume V is given by V  l d 4 2 o  di2   l 4 (322  282 )  188.5l where l is the rim width as shown in Table A-18. The specific weight of cast iron is  = 0.260 lbf / in3, therefore the volume of cast iron is V  W   189.1  727.3 in 3 0.260 Equating the volumes, 188.5 l  727.3 727.3 l   3.86 in wide 188.5 Proportions can be varied. ______________________________________________________________________________ 16-30 Prob. 16-29 solution has I for the motor shaft flywheel as Chapter 16, Page 25/27
  • 26. I = 110.72 lbf · in · s2 A flywheel located on the crank shaft needs an inertia of 102 I (Prob. 16-26, rule 2) I = 102(110.72) = 11 072 lbf · in · s2 A 100-fold inertia increase. On the other hand, the gear train has to transmit 3 hp under shock conditions. Stating the problem is most of the solution. Satisfy yourself that on the crankshaft: TL  1300(12)  15 600 lbf · in Tr  10(168.07)  1680.7 lbf · in r  117.81 / 10  11.781 rad/s s  125.66 / 10  12.566 rad/s a  21.41(100)  2141 lbf · in · s/rad b  2690.35(10)  26903.5 lbf · in TM  2141c  26 903.5 lbf · in 19  15 600  1680.5  T2  1680.6    15 600  T2  The root is 10(26.67) = 266.7 lbf · in   121.11 / 10  12.111 rad/s Cs  0.0549 (same) max  121.11 / 10  12.111 rad/s Ans. min  117.81 / 10  11.781 rad/s Ans. E 1 , E 2 , E and peak power are the same. From Table A-18 6 8gI 8(386)(11 072) 34.19 10  W  2   d o  di2 d o2  di2 d o2  di2 Scaling will affect d o and d i , but the gear ratio changed I. Scale up the flywheel in the Prob. 16-29 solution by a factor of 2.5. Thickness becomes 4(2.5) = 10 in. d  30(2.5)  75 in do  75  (10 / 2)  80 in di  75  (10 / 2)  70 in Chapter 16, Page 26/27
  • 27. W  34.19 106   3026 lbf 802  702 W 3026 V    11 638 in 3 0.260  V   l (802  702 )  1178 l 4 11 638 l   9.88 in 1178 Proportions can be varied. The weight has increased 3026/189.1 or about 16-fold while the moment of inertia I increased 100-fold. The gear train transmits a steady 3 hp. But the motor armature has its inertia magnified 100-fold, and during the punch there are deceleration stresses in the train. With no motor armature information, we cannot comment. ______________________________________________________________________________ 16-31 This can be the basis for a class discussion. Chapter 16, Page 27/27