SlideShare uma empresa Scribd logo
1 de 64
Baixar para ler offline
Beams and Frames
 beam theory can be used to solve simple
beams
complex beams with many cross section
changes are solvable but lengthy
many 2-d and 3-d frame structures are
better modeled by beam theory
One Dimensional Problems
px
StretchContract
u(x)
v(x)
kx + P(x=l)=0
du
dx
kx + P(x)=0
d4v
dx4
Variable can be scalar field like
temperature, or vector field like
displacement.
For dynamic loading, the variable can
be time dependent
The geometry of the problem is three dimensional, but the
variation of variable is one dimensional
Element Formulation
– assume the displacement w is a cubic polynomial in
L = Length
I = Moment of Inertia of
the cross sectional area
E = Modulus of Elsaticity
v = v(x) deflection of the
neutral axis
θ= dv/dx slope of the
elastic curve (rotation of
the section
F = F(x) = shear force
M= M(x) = Bending
moment about Z-axis
a1, a2, a3, a4 are the undetermined coefficients
2 3
1 2 3 4v(x) a a x a x a x= + + +
`
1 1
x 0
2 2
x L
dv
x 0, v(0) v ;
dx
dv
x L, v(L) v ;
dx
=
=
= = = θ
= = = θ
{ } { }
1 1
2 22 3 2
3 3
4 4
a a
a a
v(x) 1 x x x ; (x) 0 1 2x 3x
a a
a a
   
   
   
θ=   
   
      
i 1
i 2
2 3
j 3
2
j 4
v 1 0 0 0 a
0 1 0 0 a
v a1 L L L
a0 1 2L 3L
    
    θ    
=    
    
    θ    
 Applying these boundary conditions, we get
Substituting coefficients ai back into the original equation
for v(x) and rearranging terms gives
1
1 1 2 1
3 1 1 2 22
{d} [P(x)]{a}
{a} [P(x)] {d}
a v ; a
1
a ( 3v 2L 3v L )
L
−
=
=
= = θ
= − − θ + − θ
{ }
1
22 3
3
4
a
a
v(x) 1 x x x
a
a
 
 
 
=  
 
  
 The interpolation function or shape function is given by
2 3 2 3
1 12 3 2
2 3 2 3
2 22 3 2
3x 2x 2x x
v(x) (1 )v (x )
L L L L
3x 2x x x
( )v ( )
L L L L
= − + + − + θ
+ − + − + θ
[ ]
1
1
1 2 3 4
2
2
v
L
v N (x) N (x) N (x) N (x) [N]{d}
v
L
 
 θ 
= 
 
 θ 
strain for a beam in bending is defined by the curvature, so
 Hence
2 2
2 2
du d v d [N]
y {d} y[B]{d}
dx dx dx
ε= = = =
{ } { }
{ } [ ]{ }
{ } [ ]{ }
{ } [ ] { }
{ } [ ] [ ][ ]{ }
e
e
e
T
e
v
Te
v
T Te 2
v
Internal virtual energy U = dv
substitute E in above eqn.
U = E dv
= y B d
U = d B E B d y dv
δ δ ε σ
σ= ε
δ δ ε ε
δ ε δ
δ δ
∫
∫
∫
3 2 3 2 2 3 3 2
12x 6 6x 4 6 12x 6x 2
[B]
L L L L L L L h
 
= − − − −  
{ } [ ] [ ][ ] { } { } [ ] { } [ ] { } { }
{ } { }
[ ] [ ][ ]
{ } [ ] { } [ ] { } { }
e eFrom virtual work principle U W
T TT T T2 ed ( B E B y dv d d N b dv N p dv P
y y
e e sv v
eK U F
e e
where
T 2K B D B y dv Element stiffness matrix
e
ev
T T eF N b dv N p ds P Total nodal force vector
e y y
e sv
δ =δ
 
 δ =δ + +∫ ∫ ∫
 
 
 ⇒ =
 
  =∫ 
+ +=∫ ∫
{ } { } { } [ ] { }
{ } { } { } [ ] { }
{ } { } { }
e e
T T Te
b y
v v
T T Te
s y
s s
TTe e e
c
External virtual workdue to body force
w = d(x) b dv d N b dv
External virtual work due to surface force
w = d(x) p dv d N p ds
External virtual work due to nodal forces
w d P , P
δ δ =δ
δ δ =δ
δ =δ
∫ ∫
∫ ∫
{ }yi i yj= P , M ,P ,....
the stiffness matrix [k] is defined
To compute equivalent nodal force vector
for the loading shown
{ } [ ] { }
[ ]
T
e y
s
y
y
2 3 2 3 2 3 2 3
2 3 2 2 3 2
F N p ds
From similar triangles
p w w
; p x; ds = 1 dx
x L L
3x 2x 2x x 3x 2x x x
N (1 ) (x ) ( ) ( )
L L L L L L L L
=
= = ⋅
 
= − + − + − − + 
 
∫
w
x
py
L
( )
L
T 2 T
V
A 0
2 2
3
2 2
[k] [B] E[B]dV dAy E [B] [B]dx
12 6L 12 6L
6L 4L 6L 2LEI
12 6L 12 6LL
6L 2L 6L 4L
= =
− 
 −
 =
− − − 
 
− 
∫ ∫ ∫
{ } [ ] { }
{ }
T
e y
s
2 3
2 3
22 3
2
e 2 3
L
2 3
22 3
2
F N p ds
3wL3x 2x
(1 )
20L L
wL2x x
(x )
wx 30L L
F dx
7wLL3x 2x
( )
20L L
wLx x
( )
20L L
=
   
−− +   
   
   −− +       
−=    
    −−
   
   
   − +
     
∫
∫
+ve directions
vi vj
qi qj
w
Equivalent nodal force due to
Uniformly distributed load w
v1
v2
v3
θ1 θ2
θ3
v4
v3
Member end forces
1
1
2
2
1
1
2
2
For element 1
V 12 18 -12 18 0 70
M 18 36 -18 18 0 70
1555.6
V -12 -18 12 -18 0 70
18 18 -18 36 0.00249 139.6M
V
M
V
M
−      
       −      =     
      
      − −     
 
 
 
= 
 
  
12 18 -12 18 0 46.53
18 36 -18 18 0.00249 139.6
1555.6
-12 -18 12 -18 0.01744 46.53
18 18 -18 36 0.007475 0
−    
     −     =   
−     
     −    
70
70
70
139.6
46.53 46.53
139.6 0
v1 v2 v3
θ1 θ2
θ3
v1 θ1 v2 θ2
v2 θ2 v3 θ3
1
1
2 5
2
3
3
V 12 6 -12 6
M 6 4 -6 2
V -12 -6 12+12 -6+6 -12 6
8x10
M 6 2 -6+6 4+4 -6 2
-12 -6V
M
 
 
 
  
= 
 
 
 
  
1
1
2
2
3
3
1 1 2 3
2 3
5
v
v
12 -6 v
6 2 -6 4
Boundary condition
v , ,v ,v 0
Loading Condition
M 1000; M 1000
8 2
8x10
2
  
   θ
  
    
  
θ  
  
  
θ      
θ =
=− =
{ } [ ]{ }
2
3
4
2
5 4
3
1000
4 1000.0
4 -2 1000 2.679x101
-2 8 1000.028*8x10 4.464x10
Final member end forces
f k d {FEMS}
−
−
θ −    
=     θ     
 θ − −      
= =      θ        
= +
1
1 5
2
4
2
For element 1
0V 0 12 6 -12 6 1285.92
0M 0 6 4 -6 2 428.64
8X10
0V 0 -12 -6 12 -6 1285.92
0 6 2 -6 4 857.28M 2.679x10−
−      
       −       =+ =      
      
       −−      
1
4
1 5
2
4
2
0V 6000 12 6 -12 6 6856.8
M 1000 6 4 -6 2 2.679x10 856.96
8X10
V 6000 -12 -6 12 -6 0 51
1000 6 2 -6 4M 4.464x10
−
−




 
  
      
       −      =+ =     
      
      −      
43.2
0
 
 
 
 
 
  
1285.92
428.64
1285.92
857.28
6856.8 5143.2
856.96 0
Find slope at joint 2 and deflection at
joint 3. Also find member end forces
1
1
20 KN 20kN/m
10kN 10kN
10kN- m 10kN- m
60kN- m
60kN- m
60kN 60kN
v1
q1 q2 q3
v2
v3
EI EI
20 KN 20kN/m
Guided Support
2m 2m 6m
EI=2 x 104kN-m2
10kN- m
10kN
70kN
50kN- m
60kN- m
60kN
2
2
3
Global coordinates
Fixed end reactions (FERs)
Action/loads at global
coordinates
1 1
4
1 1
3
2 2
2 2
1 1 2 2
For element 1
f v12 24 -12 24
m 24 64 -24 321X10
f -12 -24 12 -24 v4
24 32 -24 64m
v v
For el
    
     θ    =   
    
    θ    
θ θ
1 1
4
1 1
3
2 2
2 2
2 2 3 3
ement 2
f v12 36 -12 36
m 36 144 -36 721X10
f -12 -36 12 -36 v6
36 72 -36 144m
v v
    
     θ    =   
    
    θ    
θ θ
7/15/2016 26
1
1
2
2
3
3
F 1875 3750 -1875 3750
M 3750 10000 -3750 5000
F -1875 -3750 1875+555.56 -3750+1666.67 -555.56 1666.67
M
F
M
 
 
 
  
= 
 
 
 
  
3750 5000 -3750+1666.67 10000+6666.67 -1666.67 3333.33
-555.56 -1666.67 555.56 -1666.67
1666.67
1
1
2
2
3
3
1 1 2 3
2 3
v
v
v
3333.332 -1666.67 6666.67
Boundary condition
v , ,v , 0
Loading Condition
M 50; F 60
16666.67 -1666.67
-1666.67 555.56
  
   θ
  
    
  
θ  
  
  
θ      
θ θ =
=− =−
 
 
 
{ } [ ]{ }
2
3
2
3
50
v 60
555.56 1666.67 50 0.0197141
v 1666.67 16666.67 60 0.167146481481.5
Final member end forces
f k d {FEMS}
θ −   
=   
−  
θ − −      
=       − −     
= +
1
4
1
3
2
2
For element 1
f 10 12 24 -12 24 0 63.93
m 10 24 64 -24 32 0 88.571X10
f 10 -12 -24 12 -24 0 83.934
10 24 32 -24 64 0.019714 207.1m
−      
       −      =+ =     
      
      − − −     
1
4
1
3
2
2
4
For element 2
f 60 12 36 -12 36 0
m 60 36 144 -36 72 0.0197141X10
f 60 -12 -36 12 -36 0.167146
60 36 72 -36 144 0m
 
 
 
 
 
  
      
      −     = +     
−     
     −    
120
207.14
0
152.85
 
  
  
=  
  
    
{ } [ ]{ }
If f ' member end forces in local coordinates then
f' k' q'=
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3
AE AE
0 0 0 0
L L
12EI 6EI 12EI 6EI
0 0
L L L L
6EI 4EI 6EI 2EI
0 0
L L L L[k]
AE AE
0 0 0 0
L L
12EI 6EI 12EI 6EI
0 0
L L L L
6EI 2EI 6EI 4EI
0 0
L L L L
 
− 
 
 −
 
 
 −
 =
 
− 
 
 
− − − 
 
 −
  
'
1 1 2
'
2 1 2
'
3 3
At node i
q q cos q sin
q q sin q cos
q q
l cos ; m sin
= θ + θ
= − θ + θ
=
= θ = θ
{ } 1 2 3 4 5 6q {q ,q ,q ,q ,q ,q }
are forces in global coordinate direction
=
{ } { }
[ ] [ ] [ ][ ]T
using conditions q' [L]{q}; and f' [L]{f}
Stiffness matrix for an arbitrarily oriented beam element is given by
k L k' L
= =
=
a
a’ q
f = GJ/l
qxi’ fi
qxj’ fj
Grid Elements
xi i
xj j
JG JG
q fL L
q fJG JG
L L
 
−     
=     
    −
  
{ } [ ]{ }
If f ' member end forces in local coordinates then
f' k' q'=
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3
GJ GJ
0 0 0 0
L L
12EI 6EI 12EI 6EI
0 0
L L L L
6EI 4EI 6EI 2EI
0 0
L L L L
GJ GJ
0 0 0 0
L L
12EI 6EI 12EI 6EI
0 0
L L L L
6EI 2EI 6EI 4EI
0 0
L L L L
 
− 
 
 −
 
 
 −
 
 
− 
 
 
− − − 
 
 −
  
[ ]
C 0 -s 0 0 0
0 1 0 0 0 0
-s 0 c 0 0 0
L
0 0 0 c 0 -s
0 0 0 0 1 0
0 0 0 --s 0 c
 



= 




[ ] [ ] [ ][ ]T
k L k' L








=

Beam element for 3D analysis
if axial load is tensile, results from beam
elements are higher than actual ⇒ results
are conservative
if axial load is compressive, results are less
than actual
– size of error is small until load is about 25% of
Euler buckling load
for 2-d, can use rotation matrices to get
stiffness matrix for beams in any
orientation
to develop 3-d beam elements, must also
add capability for torsional loads about the
axis of the element, and flexural loading in
x-z plane
to derive the 3-d beam element, set up the
beam with the x axis along its length, and y
and z axes as lateral directions
torsion behavior is added by superposition
of simple strength of materials solution
JG
L
JG
L
JG
L
JG
L
T
T
xi
xj
i
j
−
−
















=






φ
φ
J = torsional moment about x axis
G = shear modulus
L = length
φxi, φxj are nodal degrees of freedom of
angle of twist at each end
Ti, Tj are torques about the x axis at each
end
flexure in x-z plane adds another stiffness
matrix like the first one derived
superposition of all these matrices gives a
12 × 12 stiffness matrix
to orient a beam element in 3-d, use 3-d
rotation matrices
for beams long compared to their cross
section, displacement is almost all due to
flexure of beam
for short beams there is an additional lateral
displacement due to transverse shear
some FE programs take this into account,
but you then need to input a shear
deformation constant (value associated with
geometry of cross section)
limitations:
– same assumptions as in conventional beam and
torsion theories
⇒no better than beam analysis
– axial load capability allows frame analysis, but
formulation does not couple axial and lateral
loading which are coupled nonlinearly
– analysis does not account for
» stress concentration at cross section changes
» where point loads are applied
» where the beam frame components are connected
Finite Element Model
Element formulation exact for beam spans
with no intermediate loads
– need only 1 element to model any such
member that has constant cross section
for distributed load, subdivide into several
elements
need a node everywhere a point load is
applied
need nodes where frame members connect,
where they change direction, or where the
cross section properties change
for each member at a common node, all
have the same linear and rotational
displacement
boundary conditions can be restraints on
linear displacements or rotation
simple supports restrain only linear
displacements
built in supports restrain rotation also
– restrain vertical and horizontal displacements
of nodes 1 and 3
– no restraint on rotation of nodes 1 and 3
– need a restraint in x direction to prevent rigid
body motion, even if all forces are in y
direction
 cantilever beam
– has x and y linear displacements and rotation of node 1
fixed
point loads are idealized loads
– structure away from area of application
behaves as though point loads are applied
only an exact formulation when there are no
loads along the span
– for distributed loads, can get exact solution
everywhere else by replacing the distributed
load by equivalent loads and moments at the
nodes
Computer Input Assistance
preprocessor will usually have the same
capabilities as for trusses
a beam element consists of two node
numbers and associated material and
physical properties
material properties:
– modulus of elasticity
– if dynamic or thermal analysis, mass density
and thermal coefficient of expansion
physical properties:
– cross sectional area
– 2 area moments of inertia
– torsion constant
– location of stress calculation point
boundary conditions:
– specify node numbers and displacement
components that are restrained
loads:
– specify by node number and load components
– most commercial FE programs allows
application of distributed loads but they use
and equivalent load/moment set internally
Analysis Step
small models and carefully planned element
and node numbering will save you from
bandwidth or wavefront minimization
potential for ill conditioned stiffness matrix
due to axial stiffness >> flexural stiffness
(case of long slender beams)
Output Processing and Evaluation
graphical output of deformed shape usually
uses only straight lines to represent
members
you do not see the effect of rotational
constraints on the deformed shape of each
member
to check these, subdivide each member and
redo the analysis
 most FE codes do not make graphical
presentations of beam stress results
– user must calculate some of these from the stress
values returned
 for 2-d beams, you get a normal stress normal to
the cross section and a transverse shear acting on
the face of the cross section
– normal stress has 2 components
» axial stress
» bending stress due to moment
– expect the maximum normal stress to be at the
top or bottom of the cross section
– transverse shear is usually the average
transverse load/area
» does not take into account any variation across the
section
3-d beams
– normal stress is combination of axial stress,
flexural stress from local y- and z- moments
– stress due to moment is linear across a section,
the combination is usually highest at the
extreme corners of the cross section
– may also have to include the effects of torsion
» get a 2-d stress state which must be evaluated
– also need to check for column buckling

Mais conteúdo relacionado

Mais procurados

Lecture 4.pdf
Lecture 4.pdfLecture 4.pdf
Lecture 4.pdfYesuf3
 
Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Shekh Muhsen Uddin Ahmed
 
Study of Strain Energy due to Shear, Bending and Torsion
Study of Strain Energy due to Shear, Bending and TorsionStudy of Strain Energy due to Shear, Bending and Torsion
Study of Strain Energy due to Shear, Bending and TorsionJay1997Singhania
 
Relation between load shear force and bending moment of beams
Relation between load shear force and bending moment of  beamsRelation between load shear force and bending moment of  beams
Relation between load shear force and bending moment of beamssushma chinta
 
Basement wall design
Basement wall designBasement wall design
Basement wall designCETCBIM
 
Minimum potential energy
Minimum potential energyMinimum potential energy
Minimum potential energyddkundaliya
 
Structural dynamics good notes
Structural dynamics good notesStructural dynamics good notes
Structural dynamics good notessantosh161832
 
Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525KAMARAN SHEKHA
 
44558176 chapter-2-stress-and-strain-axial-loading
44558176 chapter-2-stress-and-strain-axial-loading44558176 chapter-2-stress-and-strain-axial-loading
44558176 chapter-2-stress-and-strain-axial-loadingSaleem Malik
 
Deflection in beams
Deflection in beamsDeflection in beams
Deflection in beamsYatin Singh
 
Centroid and centre of gravity
Centroid and centre of gravityCentroid and centre of gravity
Centroid and centre of gravityEkeeda
 
Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and ShellsDrASSayyad
 
9 beam deflection- Mechanics of Materials - 4th - Beer
9 beam deflection- Mechanics of Materials - 4th - Beer9 beam deflection- Mechanics of Materials - 4th - Beer
9 beam deflection- Mechanics of Materials - 4th - BeerNhan Tran
 
Analysis of statically indeterminate structures
Analysis of statically indeterminate structuresAnalysis of statically indeterminate structures
Analysis of statically indeterminate structuresAhmed zubydan
 

Mais procurados (20)

Lecture 4.pdf
Lecture 4.pdfLecture 4.pdf
Lecture 4.pdf
 
Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521
 
Flexibility ppt 1
Flexibility ppt 1Flexibility ppt 1
Flexibility ppt 1
 
Study of Strain Energy due to Shear, Bending and Torsion
Study of Strain Energy due to Shear, Bending and TorsionStudy of Strain Energy due to Shear, Bending and Torsion
Study of Strain Energy due to Shear, Bending and Torsion
 
Relation between load shear force and bending moment of beams
Relation between load shear force and bending moment of  beamsRelation between load shear force and bending moment of  beams
Relation between load shear force and bending moment of beams
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
Minimum potential energy
Minimum potential energyMinimum potential energy
Minimum potential energy
 
shear centre
shear centreshear centre
shear centre
 
Structural dynamics good notes
Structural dynamics good notesStructural dynamics good notes
Structural dynamics good notes
 
Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525
 
44558176 chapter-2-stress-and-strain-axial-loading
44558176 chapter-2-stress-and-strain-axial-loading44558176 chapter-2-stress-and-strain-axial-loading
44558176 chapter-2-stress-and-strain-axial-loading
 
4 pure bending
4 pure bending4 pure bending
4 pure bending
 
26-Sajid-Ahmed.pptx
26-Sajid-Ahmed.pptx26-Sajid-Ahmed.pptx
26-Sajid-Ahmed.pptx
 
Deflection in beams
Deflection in beamsDeflection in beams
Deflection in beams
 
Centroid and centre of gravity
Centroid and centre of gravityCentroid and centre of gravity
Centroid and centre of gravity
 
Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and Shells
 
Sap2000 basic
Sap2000 basicSap2000 basic
Sap2000 basic
 
9 beam deflection- Mechanics of Materials - 4th - Beer
9 beam deflection- Mechanics of Materials - 4th - Beer9 beam deflection- Mechanics of Materials - 4th - Beer
9 beam deflection- Mechanics of Materials - 4th - Beer
 
Analysis of statically indeterminate structures
Analysis of statically indeterminate structuresAnalysis of statically indeterminate structures
Analysis of statically indeterminate structures
 
Wind_Load
Wind_LoadWind_Load
Wind_Load
 

Semelhante a 2d beam element with combined loading bending axial and torsion

Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Framesandreslahe
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma ediciónSohar Carr
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfAntonellaMeaurio
 
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Valerio Salvucci
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theoriesSolo Hermelin
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
Capitulo 12
Capitulo 12Capitulo 12
Capitulo 12vimacive
 

Semelhante a 2d beam element with combined loading bending axial and torsion (20)

Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Stability
StabilityStability
Stability
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
 
Beam.pdf
Beam.pdfBeam.pdf
Beam.pdf
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Project_Report.pdf
Project_Report.pdfProject_Report.pdf
Project_Report.pdf
 
Lelt 240 semestre i-2021
Lelt   240 semestre i-2021Lelt   240 semestre i-2021
Lelt 240 semestre i-2021
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Capitulo 12
Capitulo 12Capitulo 12
Capitulo 12
 
Cap 12
Cap 12Cap 12
Cap 12
 
Beam buckling
Beam bucklingBeam buckling
Beam buckling
 

Último

KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier Fernández Muñoz
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical trainingGladiatorsKasper
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书rnrncn29
 
Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labsamber724300
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionSneha Padhiar
 
A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProRay Yuan Liu
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 

Último (20)

KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptx
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
 
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
 
Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labs
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based question
 
A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision Pro
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 

2d beam element with combined loading bending axial and torsion

  • 2.  beam theory can be used to solve simple beams complex beams with many cross section changes are solvable but lengthy many 2-d and 3-d frame structures are better modeled by beam theory
  • 3. One Dimensional Problems px StretchContract u(x) v(x) kx + P(x=l)=0 du dx kx + P(x)=0 d4v dx4 Variable can be scalar field like temperature, or vector field like displacement. For dynamic loading, the variable can be time dependent The geometry of the problem is three dimensional, but the variation of variable is one dimensional
  • 4. Element Formulation – assume the displacement w is a cubic polynomial in L = Length I = Moment of Inertia of the cross sectional area E = Modulus of Elsaticity v = v(x) deflection of the neutral axis θ= dv/dx slope of the elastic curve (rotation of the section F = F(x) = shear force M= M(x) = Bending moment about Z-axis a1, a2, a3, a4 are the undetermined coefficients 2 3 1 2 3 4v(x) a a x a x a x= + + +
  • 5. ` 1 1 x 0 2 2 x L dv x 0, v(0) v ; dx dv x L, v(L) v ; dx = = = = = θ = = = θ { } { } 1 1 2 22 3 2 3 3 4 4 a a a a v(x) 1 x x x ; (x) 0 1 2x 3x a a a a             θ=               i 1 i 2 2 3 j 3 2 j 4 v 1 0 0 0 a 0 1 0 0 a v a1 L L L a0 1 2L 3L          θ     =              θ    
  • 6.  Applying these boundary conditions, we get Substituting coefficients ai back into the original equation for v(x) and rearranging terms gives 1 1 1 2 1 3 1 1 2 22 {d} [P(x)]{a} {a} [P(x)] {d} a v ; a 1 a ( 3v 2L 3v L ) L − = = = = θ = − − θ + − θ { } 1 22 3 3 4 a a v(x) 1 x x x a a       =       
  • 7.  The interpolation function or shape function is given by 2 3 2 3 1 12 3 2 2 3 2 3 2 22 3 2 3x 2x 2x x v(x) (1 )v (x ) L L L L 3x 2x x x ( )v ( ) L L L L = − + + − + θ + − + − + θ [ ] 1 1 1 2 3 4 2 2 v L v N (x) N (x) N (x) N (x) [N]{d} v L    θ  =     θ 
  • 8. strain for a beam in bending is defined by the curvature, so  Hence 2 2 2 2 du d v d [N] y {d} y[B]{d} dx dx dx ε= = = = { } { } { } [ ]{ } { } [ ]{ } { } [ ] { } { } [ ] [ ][ ]{ } e e e T e v Te v T Te 2 v Internal virtual energy U = dv substitute E in above eqn. U = E dv = y B d U = d B E B d y dv δ δ ε σ σ= ε δ δ ε ε δ ε δ δ δ ∫ ∫ ∫ 3 2 3 2 2 3 3 2 12x 6 6x 4 6 12x 6x 2 [B] L L L L L L L h   = − − − −  
  • 9. { } [ ] [ ][ ] { } { } [ ] { } [ ] { } { } { } { } [ ] [ ][ ] { } [ ] { } [ ] { } { } e eFrom virtual work principle U W T TT T T2 ed ( B E B y dv d d N b dv N p dv P y y e e sv v eK U F e e where T 2K B D B y dv Element stiffness matrix e ev T T eF N b dv N p ds P Total nodal force vector e y y e sv δ =δ    δ =δ + +∫ ∫ ∫      ⇒ =     =∫  + +=∫ ∫ { } { } { } [ ] { } { } { } { } [ ] { } { } { } { } e e T T Te b y v v T T Te s y s s TTe e e c External virtual workdue to body force w = d(x) b dv d N b dv External virtual work due to surface force w = d(x) p dv d N p ds External virtual work due to nodal forces w d P , P δ δ =δ δ δ =δ δ =δ ∫ ∫ ∫ ∫ { }yi i yj= P , M ,P ,....
  • 10. the stiffness matrix [k] is defined To compute equivalent nodal force vector for the loading shown { } [ ] { } [ ] T e y s y y 2 3 2 3 2 3 2 3 2 3 2 2 3 2 F N p ds From similar triangles p w w ; p x; ds = 1 dx x L L 3x 2x 2x x 3x 2x x x N (1 ) (x ) ( ) ( ) L L L L L L L L = = = ⋅   = − + − + − − +    ∫ w x py L ( ) L T 2 T V A 0 2 2 3 2 2 [k] [B] E[B]dV dAy E [B] [B]dx 12 6L 12 6L 6L 4L 6L 2LEI 12 6L 12 6LL 6L 2L 6L 4L = = −   −  = − − −    −  ∫ ∫ ∫
  • 11. { } [ ] { } { } T e y s 2 3 2 3 22 3 2 e 2 3 L 2 3 22 3 2 F N p ds 3wL3x 2x (1 ) 20L L wL2x x (x ) wx 30L L F dx 7wLL3x 2x ( ) 20L L wLx x ( ) 20L L =     −− +           −− +        −=         −−            − +       ∫ ∫ +ve directions vi vj qi qj w Equivalent nodal force due to Uniformly distributed load w
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19. Member end forces 1 1 2 2 1 1 2 2 For element 1 V 12 18 -12 18 0 70 M 18 36 -18 18 0 70 1555.6 V -12 -18 12 -18 0 70 18 18 -18 36 0.00249 139.6M V M V M −              −      =                   − −            =       12 18 -12 18 0 46.53 18 36 -18 18 0.00249 139.6 1555.6 -12 -18 12 -18 0.01744 46.53 18 18 -18 36 0.007475 0 −          −     =    −           −     70 70 70 139.6 46.53 46.53 139.6 0
  • 20.
  • 21. v1 v2 v3 θ1 θ2 θ3 v1 θ1 v2 θ2 v2 θ2 v3 θ3
  • 22. 1 1 2 5 2 3 3 V 12 6 -12 6 M 6 4 -6 2 V -12 -6 12+12 -6+6 -12 6 8x10 M 6 2 -6+6 4+4 -6 2 -12 -6V M          =           1 1 2 2 3 3 1 1 2 3 2 3 5 v v 12 -6 v 6 2 -6 4 Boundary condition v , ,v ,v 0 Loading Condition M 1000; M 1000 8 2 8x10 2       θ            θ         θ       θ = =− = { } [ ]{ } 2 3 4 2 5 4 3 1000 4 1000.0 4 -2 1000 2.679x101 -2 8 1000.028*8x10 4.464x10 Final member end forces f k d {FEMS} − − θ −     =     θ       θ − −       = =      θ         = +
  • 23. 1 1 5 2 4 2 For element 1 0V 0 12 6 -12 6 1285.92 0M 0 6 4 -6 2 428.64 8X10 0V 0 -12 -6 12 -6 1285.92 0 6 2 -6 4 857.28M 2.679x10− −              −       =+ =                     −−       1 4 1 5 2 4 2 0V 6000 12 6 -12 6 6856.8 M 1000 6 4 -6 2 2.679x10 856.96 8X10 V 6000 -12 -6 12 -6 0 51 1000 6 2 -6 4M 4.464x10 − −                        −      =+ =                   −       43.2 0              1285.92 428.64 1285.92 857.28 6856.8 5143.2 856.96 0
  • 24. Find slope at joint 2 and deflection at joint 3. Also find member end forces 1 1 20 KN 20kN/m 10kN 10kN 10kN- m 10kN- m 60kN- m 60kN- m 60kN 60kN v1 q1 q2 q3 v2 v3 EI EI 20 KN 20kN/m Guided Support 2m 2m 6m EI=2 x 104kN-m2 10kN- m 10kN 70kN 50kN- m 60kN- m 60kN 2 2 3 Global coordinates Fixed end reactions (FERs) Action/loads at global coordinates
  • 25. 1 1 4 1 1 3 2 2 2 2 1 1 2 2 For element 1 f v12 24 -12 24 m 24 64 -24 321X10 f -12 -24 12 -24 v4 24 32 -24 64m v v For el           θ    =             θ     θ θ 1 1 4 1 1 3 2 2 2 2 2 2 3 3 ement 2 f v12 36 -12 36 m 36 144 -36 721X10 f -12 -36 12 -36 v6 36 72 -36 144m v v           θ    =             θ     θ θ
  • 26. 7/15/2016 26 1 1 2 2 3 3 F 1875 3750 -1875 3750 M 3750 10000 -3750 5000 F -1875 -3750 1875+555.56 -3750+1666.67 -555.56 1666.67 M F M          =           3750 5000 -3750+1666.67 10000+6666.67 -1666.67 3333.33 -555.56 -1666.67 555.56 -1666.67 1666.67 1 1 2 2 3 3 1 1 2 3 2 3 v v v 3333.332 -1666.67 6666.67 Boundary condition v , ,v , 0 Loading Condition M 50; F 60 16666.67 -1666.67 -1666.67 555.56       θ            θ         θ       θ θ = =− =−       { } [ ]{ } 2 3 2 3 50 v 60 555.56 1666.67 50 0.0197141 v 1666.67 16666.67 60 0.167146481481.5 Final member end forces f k d {FEMS} θ −    =    −   θ − −       =       − −      = +
  • 27. 1 4 1 3 2 2 For element 1 f 10 12 24 -12 24 0 63.93 m 10 24 64 -24 32 0 88.571X10 f 10 -12 -24 12 -24 0 83.934 10 24 32 -24 64 0.019714 207.1m −              −      =+ =                   − − −      1 4 1 3 2 2 4 For element 2 f 60 12 36 -12 36 0 m 60 36 144 -36 72 0.0197141X10 f 60 -12 -36 12 -36 0.167146 60 36 72 -36 144 0m                           −     = +      −           −     120 207.14 0 152.85         =          
  • 28.
  • 29. { } [ ]{ } If f ' member end forces in local coordinates then f' k' q'= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 AE AE 0 0 0 0 L L 12EI 6EI 12EI 6EI 0 0 L L L L 6EI 4EI 6EI 2EI 0 0 L L L L[k] AE AE 0 0 0 0 L L 12EI 6EI 12EI 6EI 0 0 L L L L 6EI 2EI 6EI 4EI 0 0 L L L L   −     −      −  =   −      − − −     −   
  • 30. ' 1 1 2 ' 2 1 2 ' 3 3 At node i q q cos q sin q q sin q cos q q l cos ; m sin = θ + θ = − θ + θ = = θ = θ { } 1 2 3 4 5 6q {q ,q ,q ,q ,q ,q } are forces in global coordinate direction =
  • 31. { } { } [ ] [ ] [ ][ ]T using conditions q' [L]{q}; and f' [L]{f} Stiffness matrix for an arbitrarily oriented beam element is given by k L k' L = = =
  • 32. a a’ q f = GJ/l qxi’ fi qxj’ fj Grid Elements xi i xj j JG JG q fL L q fJG JG L L   −      =          −   
  • 33.
  • 34. { } [ ]{ } If f ' member end forces in local coordinates then f' k' q'= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 GJ GJ 0 0 0 0 L L 12EI 6EI 12EI 6EI 0 0 L L L L 6EI 4EI 6EI 2EI 0 0 L L L L GJ GJ 0 0 0 0 L L 12EI 6EI 12EI 6EI 0 0 L L L L 6EI 2EI 6EI 4EI 0 0 L L L L   −     −      −     −      − − −     −   
  • 35. [ ] C 0 -s 0 0 0 0 1 0 0 0 0 -s 0 c 0 0 0 L 0 0 0 c 0 -s 0 0 0 0 1 0 0 0 0 --s 0 c      =      [ ] [ ] [ ][ ]T k L k' L         = 
  • 36. Beam element for 3D analysis
  • 37.
  • 38.
  • 39.
  • 40. if axial load is tensile, results from beam elements are higher than actual ⇒ results are conservative if axial load is compressive, results are less than actual – size of error is small until load is about 25% of Euler buckling load
  • 41. for 2-d, can use rotation matrices to get stiffness matrix for beams in any orientation to develop 3-d beam elements, must also add capability for torsional loads about the axis of the element, and flexural loading in x-z plane
  • 42. to derive the 3-d beam element, set up the beam with the x axis along its length, and y and z axes as lateral directions torsion behavior is added by superposition of simple strength of materials solution JG L JG L JG L JG L T T xi xj i j − −                 =       φ φ
  • 43. J = torsional moment about x axis G = shear modulus L = length φxi, φxj are nodal degrees of freedom of angle of twist at each end Ti, Tj are torques about the x axis at each end
  • 44. flexure in x-z plane adds another stiffness matrix like the first one derived superposition of all these matrices gives a 12 × 12 stiffness matrix to orient a beam element in 3-d, use 3-d rotation matrices
  • 45. for beams long compared to their cross section, displacement is almost all due to flexure of beam for short beams there is an additional lateral displacement due to transverse shear some FE programs take this into account, but you then need to input a shear deformation constant (value associated with geometry of cross section)
  • 46. limitations: – same assumptions as in conventional beam and torsion theories ⇒no better than beam analysis – axial load capability allows frame analysis, but formulation does not couple axial and lateral loading which are coupled nonlinearly
  • 47. – analysis does not account for » stress concentration at cross section changes » where point loads are applied » where the beam frame components are connected
  • 48. Finite Element Model Element formulation exact for beam spans with no intermediate loads – need only 1 element to model any such member that has constant cross section for distributed load, subdivide into several elements need a node everywhere a point load is applied
  • 49. need nodes where frame members connect, where they change direction, or where the cross section properties change for each member at a common node, all have the same linear and rotational displacement boundary conditions can be restraints on linear displacements or rotation
  • 50. simple supports restrain only linear displacements built in supports restrain rotation also
  • 51.
  • 52. – restrain vertical and horizontal displacements of nodes 1 and 3 – no restraint on rotation of nodes 1 and 3 – need a restraint in x direction to prevent rigid body motion, even if all forces are in y direction
  • 53.  cantilever beam – has x and y linear displacements and rotation of node 1 fixed
  • 54. point loads are idealized loads – structure away from area of application behaves as though point loads are applied
  • 55. only an exact formulation when there are no loads along the span – for distributed loads, can get exact solution everywhere else by replacing the distributed load by equivalent loads and moments at the nodes
  • 56.
  • 57. Computer Input Assistance preprocessor will usually have the same capabilities as for trusses a beam element consists of two node numbers and associated material and physical properties
  • 58. material properties: – modulus of elasticity – if dynamic or thermal analysis, mass density and thermal coefficient of expansion physical properties: – cross sectional area – 2 area moments of inertia – torsion constant – location of stress calculation point
  • 59. boundary conditions: – specify node numbers and displacement components that are restrained loads: – specify by node number and load components – most commercial FE programs allows application of distributed loads but they use and equivalent load/moment set internally
  • 60. Analysis Step small models and carefully planned element and node numbering will save you from bandwidth or wavefront minimization potential for ill conditioned stiffness matrix due to axial stiffness >> flexural stiffness (case of long slender beams)
  • 61. Output Processing and Evaluation graphical output of deformed shape usually uses only straight lines to represent members you do not see the effect of rotational constraints on the deformed shape of each member to check these, subdivide each member and redo the analysis
  • 62.  most FE codes do not make graphical presentations of beam stress results – user must calculate some of these from the stress values returned  for 2-d beams, you get a normal stress normal to the cross section and a transverse shear acting on the face of the cross section – normal stress has 2 components » axial stress » bending stress due to moment
  • 63. – expect the maximum normal stress to be at the top or bottom of the cross section – transverse shear is usually the average transverse load/area » does not take into account any variation across the section
  • 64. 3-d beams – normal stress is combination of axial stress, flexural stress from local y- and z- moments – stress due to moment is linear across a section, the combination is usually highest at the extreme corners of the cross section – may also have to include the effects of torsion » get a 2-d stress state which must be evaluated – also need to check for column buckling