O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
14INTEGRAL DEFINIDA
regla de Barrow
áreas comprendidas entre:
• el eje X y f(x) en [a, b]
• las funciones f(x) y g(x)
• el eje X y f(x)
áreas ...
1. INTEGRAL DEFINIDA
1.1. Integral definida
La interpretación geométrica de la regla de Barrow es que calcula el área comp...
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Unidad 3 calculo integral
Unidad 3 calculo integral
Carregando em…3
×

Confira estes a seguir

1 de 22 Anúncio
Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Semelhante a 2bc14 (20)

Anúncio

Mais recentes (20)

2bc14

  1. 1. 14INTEGRAL DEFINIDA
  2. 2. regla de Barrow áreas comprendidas entre: • el eje X y f(x) en [a, b] • las funciones f(x) y g(x) • el eje X y f(x) áreas de conocimiento • Física • Medio ambiente • Economía • etcétera volúmenes de: • un cuerpo por secciones • cuerpos de revolución Tema14:Integraldefinida Introducción 273 Organiza tus ideas En este tema se estudian la integral definida y sus aplicacio- nes. En geometría se estudia cómo calcular el área de una figura plana elemental aplicando un conjunto de fórmulas conocidas. Cuando la figura plana está limitada por una curva cualquiera, no se dispone de ninguna fórmula para calcular su área. Este problema se resuelve gracias al concepto de integral definida y viene dado por la regla de Barrow, profesor de Newton, que permite calcular el área de un recinto comprendido entre el eje X y una función f(x) que es continua y acotada en un intervalo [a, b] La primera aplicación que se estudia de la integral definida es el cálculo de áreas en casos concretos: • El área comprendida entre el eje X y una función f(x) en el in- tervalo [a, b] • El área comprendida entre dos funciones, f(x) y g(x) • El área comprendida entre el eje X y una función como caso particular del anterior. Posteriormente se estudian algunas aplicaciones a la Física, a la Economía y a la Ecología. El tema concluye con el estudio del cálculo de volúmenes. Se aborda, en primer lugar, el cálculo de volúmenes de cuerpos por secciones, y se sigue con el cálculo de volúmenes de cuer- pos de revolución que se obtienen al girar una función f(x) so- bre el eje X. Se aplican estos métodos para deducir el volumen de los cuerpos elementales: prisma, pirámide, cilindro, cono y esfera. Integral definida se expresa mediante la que calcula permite calculartiene aplicaciones a todas las
  3. 3. 1. INTEGRAL DEFINIDA 1.1. Integral definida La interpretación geométrica de la regla de Barrow es que calcula el área compren- dida entre el eje X y la función f(x) en el intervalo [a, b]; pero considerando que si el área está en la parte superior es positiva y si está en la parte inferior es negativa. 1.2. Procedimiento para aplicar la regla de Barrow Ejemplo Calcula la siguiente integral definida aplicando la regla de Barrow. ∫2 5 (x – 1) dx a) F(x) = ∫(x – 1) dx = – x b) F(2) = 0, F(5) = c) ∫2 5 (x – 1) dx = F(5) – F(2) = – 0 = = 7,5 u2 El resultado es positivo porque el área está encima del eje X Ejemplo Calcula la siguiente integral definida aplicando la regla de Barrow. ∫1 4 (x2 – 6x + 4) dx a) F(x) = ∫(x2 – 6x + 4) dx = – 3x2 + 4x b) F(1) = , F(4) = – c) ∫1 4 (x2 – 6x + 4) dx = F(4) – F(1) = – – = –12 u2 El resultado es negativo porque el área está debajo del eje X 4 3 32 3 32 3 4 3 x3 3 15 2 15 2 15 2 x2 2 274 TEMA 14 Piensa y calcula Halla, contando, el área de la 2ª figura del margen, la que tiene un signo + dentro. Cada cuadradito es una unidad cuadrada. La integral definida de una función f(x) continua y acotada en el intervalo [a, b] viene dada por la siguiente regla de Barrow: ∫a b f(x) dx = F(b) – F(a) siendo F(x) una primitiva de f(x) ∫a b f(x) dx se lee “la integral de f(x) entre a y b”, el número a es el límite in- ferior y b es el límite superior. a) Dada la función f(x) se halla una primitiva F(x) sin constante. b) Se calcula F(a) y F(b) c) Se halla la diferencia F(b) – F(a) El símbolo ∫ El área verde es la suma de las áreas de todos los rectángulos cuan- do el ancho dx tiende a cero y la altura es el valor de la función. El símbolo ∫ es una s alargada y simboliza la palabra suma de las áreas de los rectángulos para ha- llar el área bajo la curva. Observa que la figura es un tra- pecio que tiene de área 7,5 u2. Se puede obtener contando los cua- draditos del dibujo.
  4. 4. 1.3. Propiedades de la integral definida Las propiedades más importantes de la integral definida son: Ejemplo Calcula: ∫ 4 –4 |x| dx Aplicando las propiedades de la integral definida se tiene: ∫ 4 –4 |x| dx = ∫ 0 –4 (–x) dx + ∫0 4 x dx Sean F(x) = ∫(–x) dx G(x) = ∫x dx a) F(x) = – G(x) = b) F(–4) = –8, F(0) = 0 G(0) = 0, G(4) = 8 c) ∫ 0 –4 (–x) dx = F(0) – F(–4)= 8 u2 ∫0 4 x dx = G(4) – G(0)= 8 u2 ∫ 4 –4 |x| dx = ∫ 0 –4 (–x) dx + ∫0 4 x dx = 8 + 8 = 16 u2 1.4. Derivada de una integral Ejemplo Calcula la derivada de la función F(x) = ∫x2 x3 L t dt F'(x) = (L x3) 3x2 – (L x2) 2x = 9x2 L x – 4x L x = (9x2 – 4x) L x x2 2 x2 2 275 Aplica la teoría 1. Calcula ∫ 2 –1 (5 – x2) dx 2. Calcula ∫1 3 (–2x + 1) dx 3. Siendo |x| el valor absoluto o módulo de x, calcula la in- tegral definida ∫ 2 –1 |x| dx 4. Calcula la derivada de F(x) = ∫3x x2 cos t dt 5. Calcula ∫1 2 L x dx 6. Calcula el valor de ∫0 1 x dx ex2 Tema14:Integraldefinida 1. Si f(x) es continua y está acotada en el intervalo [a, c] y a < b < c, entonces se verifica que: ∫a c f(x) dx = ∫a b f(x) dx + ∫b c f(x) dx Este resultado se desprende de la interpretación geométrica de la integral definida. 2. Si f(x) y g(x) son funciones continuas y están acotadas en el intervalo [a, c] y además f(x) ≤ g(x), se verifica que: ∫a b f(x) dx ≤ ∫a b g(x) dx Este resultado se desprende de la interpretación geométrica de la integral definida. La derivada de una integral con límites variables F(x) = ∫g(x) h(x) f(t) dt viene dada por: F'(x) = f[h(x)] · h'(x) – f[g(x)] · g'(x) f(x) = |x| = Observa que las figuras son dos triángulos y que cada uno tiene de área 8 u2 –x si x ≤ 0 x si x > 0   
  5. 5. 2. CÁLCULO DE ÁREAS 2.1. Área comprendida entre el eje X y la función f(x) en el intervalo [a, b] Ejemplo Calcula el área del recinto limitado por el eje X y la función f(x) = x2 – 2x – 3 en el intervalo [1, 4] a) x2 – 2x – 3 = 0 ⇒ x1 = –1, x2 = 3 Sólo se toma x2 = 3 que está en el intervalo [1, 4] b) Se descompone el intervalo [1, 4] en los intervalos: [1, 3] y [3, 4] a) F(x) = ∫(x2 – 2x – 3) dx = – x2 – 3x b) F(1) = – , F(3) = –9, F(4) = – c) A1 = ∫1 3 (x2 – 2x – 3) dx = |F(3) – F(1)| = –9 + = u2 A2 = ∫3 4 (x2 – 2x – 3) dx = |F(4) – F(3)| = – + 9 = u2 d) El área es: A = A1 + A2 = + = = 7,67 u2 2.2. Área comprendida entre dos funciones 23 3 7 3 16 3 7 3 | 20 3 ||| 16 3 | 11 3 ||| 20 3 11 3 x3 3 276 TEMA 14 Piensa y calcula Halla por aproximación el área de las dos regiones, la amarilla y la verde, del primer dibujo del margen. Cada cuadradito es una unidad cuadrada. a) Se calculan las raíces de la ecuación f(x) = 0 y se toman aquellas que están en el intervalo [a, b] b) Se descompone el intervalo [a, b] en los intervalos necesarios: [a, c], [c, d], [d, b] c) Dada la función f(x), se halla la primitiva F(x) sin constante. d) Se calculan F(a), F(c), F(d) y F(b) e) Se calcula cada una de las áreas aplicando la regla de Barrow y tomando el valor absoluto. f) Se suman todas las áreas obtenidas. a) Se calculan las abscisas de los puntos de corte de las dos funciones resol- viendo la ecuación f(x) = g(x) b) Se halla la función diferencia de las dos funciones: f(x) – g(x) c) Dada la función f(x) – g(x), se halla la primitiva F(x) sin constante. d) Se calcula F(a), F(b), F(c), ... e) Se calcula cada una de las áreas aplicando la regla de Barrow y tomando el valor absoluto. f) Se suman todas las áreas obtenidas. Diferencia de funciones Es lo mismo tomar: f(x) – g(x) que g(x) – f(x) Si se toma como primera función la que está arriba,el valor de la re- gla de Barrow es positivo; si no, es negativo. Como se toma el valor absoluto, no importa el orden.
  6. 6. Ejemplo Calcula el área comprendida entre las siguientes funciones: f(x) = 4 – x2 g(x) = 2x + 1 a) Se calculan las abscisas de los puntos de corte resolviendo la ecuación: 4 – x2 = 2x + 1 ⇒ x2 + 2x – 3 = 0 ⇒ x1 = 1, x2 = –3 b) Función diferencia: f(x) – g(x) = 4 – x2 – (2x + 1) = –x2 – 2x + 3 c) F(x) = ∫(–x2 – 2x + 3) dx = – – x2 + 3x d) F(– 3) = –9, F(1) = e) Área = ∫ 1 –3 (–x2 – 2x + 3) dx = |F(1) – F(–3)| = + 9 = = 10,67 u2 2.3. Área comprendida entre el eje X y una curva f(x) Ejemplo Calcula el área comprendida entre el eje X y la siguiente función: f(x) = –x3 + x2 + 2x a) Se calculan los puntos de corte de f(x) con el eje X: x3 – x2 – 2x = 0 ⇒ x(x2 – x – 2) = 0 ⇒ x1 = –1, x2 = 0 y x3 = 2 b) F(x) = ∫(–x3 + x2 + 2x) dx = – + + x2 c) F(–1) = , F(0) = 0, F(2) = d) A1 = ∫ 0 –1 (–x3 + x2 + 2x) dx = |F(0) – F(–1)| = 0 – = u2 A2 = ∫0 2 (–x3 + x2 + 2x) dx = |F(2) – F(0)| = – 0 = u2 El área total es A = A1 + A2 = + = = 3,08 u237 12 8 3 5 12 8 3 | 8 3 ||| 5 12 | 5 12 ||| 8 3 5 12 x3 3 x4 4 32 3 | 5 3 ||| 5 3 x3 3 277 Aplica la teoría 7. Halla el área de la región plana limitada por la gráfica de f(x) = x3 – 3x2 – x + 3, el eje de abscisas y las rectas x = 0, x = 3 8. Halla el área del recinto limitado por la recta y = 3 – 2x y la parábola y = 2x – x2 9. Halla el área de la región plana limitada por la gráfica de y = x3 – 4x y el eje X 10. Calcula el área de la región limitada por la curva y = y las rectas y = 0, x = 2, x = 3 11. Resuelve las siguientes cuestiones: a) Dibuja el recinto limitado por las curvas: y = ex + 2, y = e–x, y = 0 b) Halla el área del recinto considerado en el apartado anterior. 12. Dada la función, definida en los números reales salvo en x = 0 f(x) = 3 – x – Calcula el área de la región plana limitada por la gráfica de f(x) y el semieje positivo X 2 x x2 x3 – 2 Tema14:Integraldefinida Este problema es un caso particular del área comprendida entre dos curvas. En este caso, se calculan los puntos de corte de la curva f(x) con el eje X resol- viendo la ecuación f(x) = 0, y se aplica la regla de Barrow a los intervalos que se obtienen con dos raíces consecutivas y se toma el valor absoluto.
  7. 7. 3. APLICACIONES DE LA INTEGRAL DEFINIDA 3.1. Aplicaciones a la física Ejemplo Deduce las fórmulas del m.r.u.a. (movimiento rectilíneo uniformemente ace- lerado) Un m.r.u.a. se caracteriza por que tiene aceleración constante, a v(t) = ∫a dt = at + v0 s(t) = ∫(at + v0) dt = at2 + v0t + s0 Ejemplo Un objeto se deja caer en el vacío. Suponiendo que la gravedad es de 9,8 m/s2, cuál es la velocidad, v, y el espacio, s, recorrido al cabo de 4 s v(t) = at + v0 ⇒ v(4) = 9,8 · 4 + 0 = 39,2 m/s s(t) = at2 + v0t + s0 ⇒ s(4) = 9,8 · 42 + 0 · 4 + 0 = 78,4 m 3.2. Aplicaciones al medio ambiente La cantidad de agua que pasa por un río durante un período de tiempo es igual al área encerrada por el eje X y la curva en el intervalo de tiempo correspondiente. Ejemplo La función que mide el caudal de un río en función de los meses del año vie- ne dado por: f(x) = 3 + 2 cos donde f(x) está dado en miles de hectolitros por segundo, y x, en meses. ¿Qué cantidad de agua pasa por el río en un año? a) Volumen = ∫0 12 3 + 2 cos dx b) ∫ 3 + 2 cos dx = 3x + sen c) F(12) = 36, F(0) = 0 d) Volumen = |F(12) – F(0)| = |36 – 0| = 36 miles de hectolitros. πx 6 12 π)πx 6( )πx 6( πx 6 1 2 1 2 1 2 278 TEMA 14 Piensa y calcula Escribe las fórmulas del espacio y de la velocidad de un movimiento rectilíneo uniformemente acelera- do (m.r.u.a.) a) El espacio es la integral de la velocidad. b) La velocidad es la integral de la aceleración. Se llama caudal a la velocidad que lleva el agua de un río. Por lo general, el cau- dal es función de los meses del año, en invierno llevan más agua y en verano menos. Observa que al partir del reposo v0 = 0, s0 = 0
  8. 8. 3.3. Aplicaciones a la economía Si los ingresos, los costes y los beneficios de una empresa, en función de x unida- des de producto fabricadas y vendidas, se llaman I(x), C(x) y B(x) se tiene: Si se da una función de ingresos, costes o beneficios marginales, el área que hay bajo estas funciones es el ingreso, el coste o el beneficio. Ejemplo Una fábrica produce chips para ordenadores. La función de ingreso marginal, viene dada por: i(x) = 3 + donde x es el número de chips vendidos e i(x) viene dado en euros. Si vende 10000 unidades, ¿cuáles son los ingresos obtenidos? La fórmula del ingreso es: ∫0 10 000 3 + dx a) I(x) = ∫ 3 + dx = 3x + 2 L |x + 1| b) I(0) = 0; I(10000) = 30018 c) ∫0 10 000 3 + dx = I(10000) – I(0) = 30018 E)2 x + 1( )2 x + 1( )2 x + 1( 2 x + 1 279 Aplica la teoría 13. Un móvil lleva una velocidad en m/s, en función del tiempo, según la función: v(t) = 2t + 1 donde t se mide en segundos.Calcula el espacio que re- corre el móvil entre los segundos 2 y 5 del movimiento. 14. Una fábrica produce objetos de decoración. La función de ingreso marginal viene dada por: i(x) = 5 + donde x es el número de objetos vendidos e i(x) viene dado en euros. ¿Cuál es el incremento de los ingresos obtenidos cuan- do se pasa de vender 100 a vender 200 objetos? 15. La función que mide el caudal que sale de un depósito es: f(x) = 10 – x donde f(x) está dado en litros por segundo, y x segun- dos. ¿Qué cantidad de agua sale del depósito entre el segun- do 4 y el segundo 8? 16. Una moto cuando arranca lleva un movimiento uniformemente acelerado, en el que la aceleración es de 2 m/s2 a) Calcula la velocidad al cabo de 30 segundos. b) Calcula el espacio que habrá recorrido en esos 30 segundos. 3 x + 2 Tema14:Integraldefinida Ingreso marginal: es el ingreso adicional que se consigue al vender una uni- dad más de un producto, y es la derivada de los ingresos: i(x) = I'(x) Coste marginal: es el coste adicional necesario para producir una unidad más de producto, y es la derivada de los costes: c(x) = C'(x) Beneficio marginal: es el beneficio que se consigue al producir y vender una unidad más de un producto, y es la derivada del beneficio: b(x) = B'(x)
  9. 9. 4. CÁLCULO DE VOLÚMENES 4.1. Volumen de un cuerpo por secciones Ejemplo Deduce la fórmula del volumen de una pirámide. Se dibuja una pirámide que tenga el vértice en el origen de coordenadas y la al- tura sobre el eje X. El intervalo de integración es [0, H], siendo H la altura de la pirámide. La sección A(x) es paralela a la base B, por tanto, se tiene: = ⇒ A(x) = x2 Volumen = ∫0 H x2 dx F(x) = ∫ x2 dx = x3 F(0) = 0, F(H) = BH Volumen = |F(H) – F(0)| = BH = BH 4.2. Volumen de un cuerpo de revolución Ejemplo Calcula el volumen generado por la función f(x) = cuando gira alrededor del eje X en el intervalo [3, 9] Cuando el trapecio gira alrededor del eje X genera un tronco de cono. Volumen = π∫3 9 2 dx = π∫3 9 dx F(x) = ∫ dx = F(3) = 1, F(9) = 27 |F(9) – F(3)| = |27 – 1| = 26 Volumen = 26π u3 x3 27 x2 9 x2 9)x 3( x 3 1 3 | 1 3 | 1 3 B 3H2 B H2 B H2 B H2 x2 H2 A(x) B 280 TEMA 14 Piensa y calcula Escribe las fórmulas del volumen de un prisma, de una pirámide, de un cilindro, de un cono y de una esfera. Para hallar el volumen de un cuerpo por secciones de área A(x) perpendicula- res al eje X en el intervalo [a, b], se aplica la fórmula: V = ∫a b A(x) dx Para hallar el volumen de un cuerpo de revolución que se obtiene al girar la función f(x) sobre el eje X en el intervalo [a, b], se aplica la fórmula: V = π ∫a b [f(x)]2 dx
  10. 10. 4.3. Volumen generado entre dos curvas Ejemplo Calcula el volumen generado por la superficie comprendida entre las siguien- tes funciones cuando giran alrededor del eje X: f(x) = g(x) = – + 4 Es la superficie comprendida entre una hipérbola y una recta. a) Se calculan las abscisas de los puntos de corte de f(x) con g(x): = – + 4 ⇒ x2 – 8x + 12 = 0 ⇒ x1 = 2, x2 = 6 Volumen = π ∫2 6 2 – – + 4 2 dx 2 – – + 4 2 = – + 4x – 16 F(x) = ∫ – + 4x – 16 dx = – – + 2x2 – 16x F(2) = – , F(6) = –48 |F(6) – F(2)| = –48 + = Volumen = = 16,76 u316π 3 16 3 | 128 3 | 128 3 x3 12 36 x)x2 4 36 x2( x2 4 36 x2)x 2()6 x( |])x 2()6 x([| x 2 6 x x 2 6 x 281 Aplica la teoría 17. Deduce la fórmula del volumen del prisma. 18. Calcula el volumen generado por la función: f(x) = cuando gira alrededor del eje X en el intervalo [0, 4] 19. Calcula el volumen generado por la superficie com- prendida entre las siguientes funciones cuando giran al- rededor del eje X: f(x) = g(x) = x 20. Deduce la fórmula del volumen de un cono. √x √x Tema14:Integraldefinida Para hallar el volumen del cuerpo de revolución que se obtiene al girar la su- perficie comprendida entre dos curvas sobre el eje X en el intervalo [a, b] se si- gue el procedimiento: a) Se calculan las abscisas de los puntos de corte de las dos funciones, resol- viendo la ecuación f(x) = g(x) b) En cada uno de los intervalos resultantes [a, b] se aplica la fórmula: V = π ∫a b ([f(x)]2 – [g(x)]2) dx ||
  11. 11. 282 TEMA 14 Profundización: demostraciones 1. Integral de Riemann Dada una función f(x) continua en [a, b] y positiva, se puede hacer una aproximación del área comprendida entre el eje X y la gráfica de la función en el intervalo [a, b] del siguiente modo: a) Partimos el intervalo [a, b] en n partes iguales: a = x0 < x1 < x2 < … < xn – 1 < xn = b b) La función f(x) es continua en los intervalos [xi , xi + 1] ya que lo es en [a, b]. Por el teorema de Weierstrass, se puede garantizar que la función alcanza un valor máximo, Mi, y un valor mínimo, mi, en cada intervalo [xi , xi + 1] c) Se dibuja los rectángulos inferiores de base xi + 1 – xi y de altura mi d) Se dibuja los rectángulos superiores de base xi + 1 – xi y de altura Mi e) Se suma el área de los rectángulos inferiores y se obtiene una aproximación del área por de- fecto. Área por defecto = (x1 – x0)m1 + (x2 – x1)m2 + (x3 – x2)m3 + … +(xn – xn – 1)mn Se llaman sumas inferiores a las distintas aproximaciones del área por defecto que se puede calcular del recinto según el número de intervalos que se tomen. Se representan por: sn = mi + 1(xi + 1 – xi) f) Se suma el área de los rectángulos superiores y se obtiene una aproximación del área por ex- ceso. Área por exceso = (x1 – x0)M1 + (x2 – x1)M2 + (x3 – x2)M3 + … +(xn – xn – 1)Mn Se llaman sumas superiores a las distintas aproximaciones del área por exceso que se puede calcular del recinto según el número de intervalos que se tomen. Se representan por: Sn = Mi + 1(xi + 1 – xi) Las sumas inferiores y superiores dependen de n, es decir, del número de intervalos que se tomen en [a, b] y se tiene entonces que: g) Las sumas inferiores son una sucesión s1, s2, s3 …, sn … que corresponderán a las distintas divisiones que se hagan del intervalo [a, b] h) Las sumas superiores son una sucesión S1, S2, S3 …, Sn … que corresponderán a las distin- tas divisiones que se haga del intervalo [a, b] Se puede asegurar que el área del recinto está comprendida entre estas dos aproximaciones. sn = mi + 1(xi – 1 – xi) ≤ Área del recinto ≤ sn = Mi + 1(xi – 1 – xi) n Σi = 0 n Σi = 0 n Σi = 0 n Σi = 0
  12. 12. 283 Si se hacen cada vez más intervalos en [a, b], es decir, que n tienda a infinito; entonces, los valores Mi y mi de cada intervalo se aproximarán (Sn – sn) = 0 y entonces tendremos que el área será: Área = sn = Sn Se define la integral definida en el intervalo [a, b] y se representa por: ∫a b f(x) dx = sn = Sn al límite, cuando n tiende a infinito, de las sumas inferiores o superiores: 2. Teorema del valor medio del cálculo integral Si f(x) es una función continua y acotada en el intervalo [a, b], existe un punto c ∈[a, b], tal que: ∫a b f(x) dx = (b – a) · f(c) Demostración Como f(x) es continua y está acotada en el intervalo cerrado [a, b], se puede garantizar, por el teorema de Weierstrass, que la función alcanza su valor máximo, M, y su valor mínimo, m en dicho intervalo cerrado [a, b] Por tanto, la integral: ∫a b f(x) dx estará comprendida entre las áreas de los rectángulos de base b – a y alturas m y M respectiva- mente: (b – a) · m ≤ ∫a b f(x) dx ≤ (b – a) · M Dividiendo por b – a, se tiene: m ≤ ∫a b f(x) dx ≤ M Por el teorema de los valores intermedios, existirá un c ∈(a, b), tal que: f(c) = ∫a b f(x) dx De donde se deduce que: ∫a b f(x) dx = (b – a) · f(c) 1 b – a 1 b – a lím n →∞ lím n →∞ lím n →∞ lím n →∞ lím n →∞ Tema14:Integraldefinida
  13. 13. 284 TEMA 14 Profundización: demostraciones Interpretación geométrica El área del recinto limitado por el eje X y la gráfica de f(x) en el intervalo ce- rrado [a, b] es igual al área del rectángulo de base b – a y altura f(c) 3. La función área Sea f(x) una función continua y acotada en el intervalo cerrado [a, b]. Se llama función área o función integral a la función: F(x) = ∫a x f(t) dt que está definida en el intervalo cerrado [a, b] Interpretación geométrica Esta función calcula el área del recinto limitado por la función f(x) en todo intervalo cerrado [a, x], siendo x ∈[a, b] Si en la función F(x) aparece la x en el límite de integración, no se puede po- ner en el integrando. Por esta razón, aparece otra letra que es la t y que reco- rre los valores desde a hasta x 4. Teorema fundamental del cálculo integral Si f es una función continua y acotada en el intervalo cerrado [a, b], entonces la función: F(x) = ∫a x f(t) dt para todo x ∈[a, b] es derivable y su derivada es F'(x) = f(x) Demostración F'(x) = = = Por el teorema del valor medio del cálculo integral existe un c ∈[x, x + h] tal que: ∫x x + h f(t) dt = f(c)(x + h – x) = f(c) · h Por tanto, se tiene: F'(x) = = = = f(c) Como c ∈[x, x + h] y f(t) es función continua, cuando h → 0, f(c) tiende a f(x) De donde se deduce que: F'(x) = f(x) lím h →0 f(c) · h h lím h →0 ∫x x+h f(t) dt h lím h →0 F(x + h) – F(x) h lím h →0 ∫x x+h f(t) dt h lím h →0 ∫a x+h f(t) dt – ∫a x f(t) dt h lím h →0 F(x + h) – F(x) h lím h →0
  14. 14. 285 5. Volumen de un cuerpo de revolución Demostración Un cuerpo de revolución es el que se obtiene al girar un recinto plano alrededor de una recta. Se considera una función continua y = f(x) en el intervalo [a, b]. La gráfica de esta función determina con las rectas x = a y x = b un recinto que se llama R Si se hace girar el recinto R alrededor del eje X, se obtiene un cuerpo de revolución. Cálculo del volumen Una aproximación del volumen del cuerpo de revolución que se obtiene al hacer girar sobre el eje X el recinto R engendrado por la función f(x) y las rectas x = a y x = b, se puede obtener si- guiendo el procedimiento: a) Se hace una partición del intervalo [a, b]: a = x0 < x1 < x2 < … < xi < xi + 1 < … < xn = b b) Tomamos un punto ci ∈[xi, xi + 1] y se calcula f(ci) c) Se construyen los cilindros con altura, xi + 1 – xi, y radio de la base, f(ci) y cuyo volumen es: Vi = π(xi + 1 – xi) f2(ci) d) Se suman todos los volúmenes así conseguidos y se tiene una aproximación del volumen total: Volumen aproximado = π(xi + 1 – xi) f2(ci) Si se hace que el número de intervalos tienda a infinito, se puede definir el volumen como el límite de una suma de volúmenes cuya altura tiende a cero: V = π(xi + 1 – xi) f2(ci) Se define: V = π ∫a b [f(x)]2 dx n Σi = 1 lím n →∞ n Σi = 1 Tema14:Integraldefinida
  15. 15. 286 TEMA 14 Ejercicios y problemas 1. Integral definida 21. Calcula ∫2 5 ( + 1)dx 22. Calcula ∫1 3 (x2 – 2x – 4) dx 23. Sea f : R → R la función definida por f(x) = |x2 – 1| a) Esboza la gráfica de f b) Calcula ∫0 2 f(x) dx 24. Calcula la derivada de F(x) = ∫2 x2 + 1 L t dt 25. Calcula ∫1 e x2 L x dx 26. Considera la función f(x) definida para x ≠ –2 por la relación: f(x) = Calcula ∫2 6 f(x) dx 2. Cálculo de áreas 27. Halla el área de la región plana limitada por la gráfi- ca de f(x) = x3 – 4x, el eje de abscisas y las rectas x = –1, x = 2 28. Halla el área del recinto limitado por las gráficas de las funciones y = 2 – x4 y = x2 29. Dada la función f(x) = 4 – x2, calcula el área encerra- da entre la gráfica f(x) y el eje de abscisas. 30. Calcula el área de la región limitada por la gráfica de la función f(x) = –4x3 + 5, el eje de abscisas, la recta x = –1 y la recta x = 1 31. Calcula el área de la región limitada por las curvas y = , y = 32. Dada la función f(x) = x , calcula el área en- cerrada entre la gráfica f(x) y el eje de abscisas. 3. Aplicaciones de la integral definida 33. La recta de ecuación y = –4x + 2 representa la tra- yectoria de un móvil A. Otro móvil B se desplaza se- gún la trayectoria dada por la curva de ecuación y = g(x) donde g : R → R es la función definida por: g(x) = –x2 + 2x + c a) Halla el valor de c sabiendo que ambas trayecto- rias coinciden en el punto en el que la función g(x) tiene un máximo local. b) ¿Coinciden ambas trayectorias en algún otro punto? En tal caso, dibuja la región limitada por ambas trayectorias y calcula su área. 34. La velocidad de un móvil que parte del origen viene dada en m/s por la gráfica siguiente: a) Calcula la función espacio recorrido. b) Dibuja la gráfica de la función espacio recorrido. c) Prueba que el área bajo la curva que da la veloci- dad coincide con el espacio total recorrido. 35. Dos hermanos heredan una parcela que han de re- partirse. La parcela es la región plana limitada por la curva y = y la recta y = (x – 1) Calcula el área de la parcela. 4. Cálculo de volúmenes 36. Deduce la fórmula del volumen de un cilindro. 1 2 √x – 1 √5 – x2 1 x2 + 1 x2 2 4x2 + 3x – 9 x + 2 x 2
  16. 16. 287 37. Calcula el volumen generado por la función: f(x) = cuando gira alrededor del eje X en el intervalo [0, 3] 38. Calcula el volumen generado por la función: f(x) = + 1 cuando gira alrededor del eje X en el intervalo [2, 6] 39. Deduce la fórmula del volumen de una esfera. x 2 √3x 40. Calcula ∫0 3 dx 41. Sea la función f(x) = 2x3 + bx2 + ax – 5 a) Halla los valores de a y b, de forma que f(x) tenga un máximo en x = 1 y un mínimo en x = 2 b) Halla el área de la región limitada por la gráfica f(x) y el eje X entre x = 0, x = 3 42. Sea la función f(x) = 3x – x3 Halla el área de la región limitada por el eje X y di- cha función. 43. Considera las funciones f, g : R → R definidas por: f(x) = 6 – x2, g(x) = |x|, x ∈R a) Dibuja el recinto limitado por las gráficas f y g b) Calcula el área del recinto descrito en el aparta- do anterior. 44. Sea f : R → R la función definida por: f(x) = a) Esboza la gráfica de f(x) b) Calcula el área de la región limitada por la grafica f(x), el eje de abscisas y la recta x = 3 45. Considera la función f : [0, 4] → R definida por: f(x) = a) Esboza la gráfica de f(x) b) Halla el área del recinto limitado por la gráfica de f(x) y el eje de abscisas. 46. Calcula el valor de a, positivo, para que el área ence- rrada entre la curva y = ax – x2 y el eje de abscisas sea 36. Representa la curva que se obtienen para di- cho valor de a 47. Resuelve las siguientes cuestiones: a) Dibuja la región limitada por la curva de ecuación y = x(3 – x), y la recta de ecuación y = 2x – 2 b) Halla el área de la región descrita en el apartado anterior. 48. Resuelve las siguientes cuestiones: a) Esboza la gráfica de la función f : R → R dada por: f(x) = b) Calcula el área del recinto limitado por la gráfica f(x), el eje X y las rectas de ecuaciones x + 2 = 0 y 2x – 1 = 0 49. Halla los valores de m para que el área de la región limitada por la parábola y2 = x y la recta y = mx sea 1 50. Sea la función f(x) = x cos x. Calcula la integral de f entre x = 0 y el primer cero positivo que tiene la función. Nota: se llaman ceros de una función a los valores para los que ésta se anula. 2x + 2 si x ≤ –1 x3 – 2 si x > –1    4x si 0 ≤ x ≤ 1 16 — si 1 < x < 3 (x + 1)2 4 – x si 3 ≤ x ≤ 4        5x + 10 si x ≤ –1 x2 – 2x + 2 si x > –1    1 x + 1 Para ampliar Tema14:Integraldefinida
  17. 17. 288 TEMA 14 Ejercicios y problemas 51. Se tiene la función f(x) definida para todo número real no negativo y dada por: f(x) = Halla ∫0 3 f(x) dx Interpreta geométricamente el resultado. 52. Calcula el área de la región limitada por la curva y = L x y las rectas y = 0, y = L 3, x = 0 53. Halla el valor del parámetro a sabiendo que el área limitada por la gráfica de la parábola y = x2 – ax y el eje X es 54. Dibuja la figura limitada por las curvas cuyas ecua- ciones son: y halla el área de la misma. 55. Si f es una función continua en [a, b], ¿puede ser ∫a b f(x) dx = 0? Razona la respuesta con un ejemplo. 56. Sea f(x) = ∫1 x dt, y sean a, b ∈R+. Demuestra que f(a · b) = f(a) · f(b) 57. Mediante argumentos geométricos, demuestra que si f(x) y g(x) son funciones positivas en el intervalo [a, b] y f(x) ≤ g(x) para todo x de dicho intervalo, entonces se cumple que: ∫a b f(x) dx ≤ ∫a b g(x) dx 58. Si f(x) en una función continua positiva en el inter- valo [a, b], justifica, mediante argumentos geométri- cos, si la siguiente afirmación es cierta. ∫a b f(x) dx ≥ 0 Si es falsa pon un contraejemplo. 59. Encuentra el área de la región determinada por la curva y = , el eje X y las rectas x = 1 y x = –1 x2 4 – x2 1 t y = 2 – x2 y = |x|    32 3 1 si 0 ≤ x ≤ 1 1 — si x > 1 x2      60. Se considera la función real de variable real definida por: f(x) = a) Halla la ecuación cartesiana de la recta tangente en el punto de inflexión de abscisa positiva de la gráfica f(x) b) Calcula el área del recinto plano acotado por la gráfica f(x), la recta anterior y el eje x = 0 61. Se considera la función real de variable real definida por: f(x) = Calcula el valor de a > 0 para el cual se verifica la igualdad ∫0 a f(x) dx = 1 62. Calcula el valor de a > 0, para que ∫0 a dx = 3 63. Sea la función f(x) = sen x. Calcula a > 0 tal que el área encerrada por la gráfica f(x), el eje y = 0, y la recta x = a, sea 64. Sea la función real de variable real definida por: f(x) = Determina el área encerrada por la gráfica f(x) y por las rectas y = 8, x = 0, x = 2 65. Se consideran las funciones f(x) = x2 – 2x + 3, g(x) = ax2 + b a) Calcula a y b para que las gráficas f(x) y g(x) sean tangentes en el punto de abscisa x = 2 b) Para los mismos valores de a y b, halla el área li- mitada por las graficas de las funciones y el eje verticalY 66. Sean las funciones f(x) = x2 + ax + b, g(x) = –x2 + c a) Determínense a, b y c sabiendo que las gráficas de ambas funciones se cortan en los puntos (–2, –3) y (1, 0) b) Calcula el área de la región limitada por las gráfi- cas f(x) y g(x) 67. Halla el área del recinto delimitado por la curva y = x2 + 4x + 5 y la recta y = 5 (2 – x)3 si x ≤ 1 x2 si x > 1    1 2 1 x + 1 x x2 + 1 x x2 + 3 Problemas
  18. 18. 289 68. Sea la función f(x) = Halla el área de la región plana limitada por la gráfi- ca de la función, el eje de abscisas y las rectas x = –1 y x = 3 69. Sea la función f(x) = x4 – 4x3 + x2 + 6x Calcula el área determinada por la gráfica f(x), el eje horizontal y las rectas x = –1 y x = 2 70. Calcula el valor de la integral ∫–π 2π |x| sen x dx 71. Calcula el valor de la integral ∫0 3 (x2 + 5) e–x dx 72. Se quiere dividir la región plana encerrada entre la pa- rábola y = x2 y la recta y = 1 en dos regiones de igual área mediante una recta y = a.Halla el valor de a 73. Halla el área del recinto coloreado que aparece en la figura adjunta sabiendo que la parte curva tiene como ecuación y = 74. Sabiendo que L x es el logaritmo neperiano de x, considera la función f : (–1, +∞) → R definida por f(x) = a) Determina el valor de a sabiendo que f(x) es de- rivable. b) Calcula ∫0 2 f(x) dx 75. Sea f : R → R la función definida por: f(x) = –2x3 – 9x2 – 12x Determina los extremos relativos α y β de f(x) con α < β y calcula ∫α β f(x) dx 76. Sea f : R → R la función definida por: f(x) = a) Determina m sabiendo que f(x) es derivable. b) Calcula ∫0 1 f(x) dx 77. Resuelve las siguientes cuestiones: a) Dibuja el recinto limitado por los semiejes positi- vos de coordenadas y las curvas: y = x2 + 1, y = e y = x – 1 b) Halla el área del recinto considerado en el apar- tado anterior. 78. Resuelve las siguientes cuestiones: a) Dibuja el recinto limitado por la curva y = , la recta tangente a esta curva en el punto de abs- cisa x = 1 y el eje de abscisas. b) Calcula el área del recinto considerado en el apartado anterior. 79. De la función f : R → R definida por: f(x) = ax3 + bx2 + cx + d se sabe que tienen un máximo relativo en x = 1, un punto de inflexión en (0, 0) y que: ∫0 4 f(x) dx = Calcula a, b, c y d 80. Considera la función f : R → R definida por: f(x) = xe2x Determina el valor de la integral: ∫0 1/2 (1 + f(x)) dx 81. La recta de ecuación 3x – y + 2 = 0 es tangente a la parábola de ecuación y = ax2 + c en el punto P(1, 5) a) Calcula las constantes a y c de la ecuación de la parábola describiendo el procedimiento que sigas. b) Dibuja la región plana limitada por el eje Y, la pa- rábola y la recta tangente. c) Calcula el área de la región descrita en el aparta- do anterior. 82. Calcula el área de la región coloreada en la figura y justifica el procedimiento empleado (L x es el loga- ritmo neperiano de x) 5 4 9 – x2 4 2 x 1 — si x < 0 1 – x 1 – mx – x2 si x ≥ 0      a(x – 1) si –1 < x ≤ 1 x L x si x > 1    2x + 2 1 – x –2x si x ≤ 0 x – 1 si 0 < x ≤ 2 3x – 5 si x > 2      Tema14:Integraldefinida
  19. 19. 290 TEMA 14 Ejercicios y problemas 83. Dibuja el recinto limitado por las curvas de ecuacio- nes y = sen x, y = cos x, x = 0, x = π/3 Calcula el área del recinto descrito en el apartado anterior. 84. La figura siguiente representa la gráfica de una fun- ción f : [0, 7] → R Sea F : [0, 7] → R la función definida por: F(x) = ∫0 x f(t) dt a) Calcula F(4) y F(7) b) Dibuja la gráfica F(x) explicando cómo lo haces. 85. Halla la recta tangente a la curva de ecuación y = x3 – 3x en el punto de abscisa x = –1 Dibuja el recinto limitado por dicha recta tangente y la curva dada y calcula su área. 86. Calcula el área de la región limitada por las curvas y = ex, y = e–x y la recta x = 1 87. En la figura aparece una curva que representa a una función polinómica de grado 2. Los puntos de inter- sección de la curva con el eje X son el A(1, 0) y el B(3, 0). Además, el área limitada por la curva y los dos ejes coordenados vale 4/3. Halla la expresión de dicha función 88. Dibujar, con la mayor exactitud posible las gráficas de las funciones f(x) = 3x2 – 6x y g(x) = –x2 + 6x – 8. Representa el recinto limitado por ambas funciones y obtén su área. 89. Calcula una primitiva de la función: f(x) = x L (1 + x2) Determina el área encerrada por la gráfica de la fun- ción anterior, el eje X y la recta x = 1 90. Representa gráficamente el recinto plano limitado por la curva y = x3 – x y su recta tangente en el punto de abscisa x = 1. Calcula su área. 91. Calcula ∫0 x dx 92. Calcula el área determinada por la curva y = tg x, el eje X y la recta x = 93. Sin hacer ningún cálculo, di cuál de las siguientes in- tegrales es mayor: ∫0 1 x2 sen2 x dx ∫0 1 x sen2 x dx 94. Calcula el área determinada por la curva y = L x, el eje X y la recta x = e 95. Calcula el área determinada por la curva y = , el eje X y las rectas x = – , x = 96. Encuentra el área del recinto determinado por las curvas: y = |x – 2| y = –x2 + 4x – 2 97. Demuestra que 0 ≤ ∫0 π/2 dx ≤ 1 98. Calcula el área del recinto determinado por la curva y = ,las rectas x = 2,x = –2 y el eje de abscisas. 99. Si f(x) y g(x) son dos funciones continuas positivas en el intervalo [a, b], justifica, mediante argumentos geométricos si la siguiente afirmación es cierta. ∫a b (f(x) + g(x)) dx = ∫a b f(x) dx + ∫a b g(x) dx Si es falsa, pon un contraejemplo. 100. Determina el área comprendida entre las curvas y = x2, y = y la recta que pasa por los puntos A(2, 4) y B(4, 2) 101. Demuestra que si m es un número cualquiera ma- yor que 1, y k un número natural cualquiera mayor que uno, se cumple que: ∫l m dx < m 102. Dada la función f(x) = calcula el área de la región limitada por la gráfica de la función y el eje X, desde x = 0 hasta x = b, siendo b la abscisa del mínimo de la función. x L x si x > 0 0 si x = 0    xk + 1 xk+1 + 1 √x 1 1 + x2 sen x 1 + x2 1 2 1 2 1 1 – x2 π 3 √1 + x2 √3
  20. 20. 291 103. Calcula la integral definida ∫π/4 π/2 x sen x dx 104. Resuelve las siguientes cuestiones: a) Obtén el área de la superficie S, limitada por el eje X, la curva y = x2, con 0 ≤ x ≤ 2, y la recta x = 2 b) Calcula el volumen generado por la superficie S al dar una vuelta completa alrededor del eje X 105. Al girar la elipse + = 1 alrededor del eje X, ésta genera una superficie parecida a un huevo, que se llama elipsoide. Halla el volumen de dicho elipsoide. Para profundizar 106. Calcula el valor de a > 0, para que: ∫0 3 dx = 5 107. Sea la función f(x) = sen x a) Calcula la ecuación de la tangente a la gráfica f(x) en el punto de abscisa x = b) Calcula el área de la superficie encerrada por la tangente anterior, la gráfica de la función f(x) y las rectas x = , x = 108. Sea la función f(t) = Se define: g(x) = ∫0 x f(t) dt Calcula 109. Se consideran las curvas y = x2 e y = a, donde a es un número real comprendido entre 0 y 1(0 < a < 1). Ambas curvas se cortan en el punto (x0, y0) con abscisa positiva. Halla a sabiendo que el área ence- rrada entre ambas curvas desde x = 0 hasta x = x0 es igual a la encerrada entre ellas desde x = x0 has- ta x = 1 110. Sea la función f(x) = a) Determina los valores de a y b para que f(x) sea continua en toda la recta real. b) Con los valores de a y b determinados en el apartado anterior, calcula el área del recinto li- mitado por la gráfica de f(x) y el eje de abscisas, en el intervalo [0, 2] 111. Resuelve las siguientes cuestiones: a) Dibuja el recinto limitado por y = + cos x, los ejes de coordenadas y la recta x = π b) Calcula el área del recinto descrito en el aparta- do anterior. 112. Considera la función f : R → R definida por f(x) = 2 + x – x2. Calcula a, a < 2, de forma que ∫a 2 f(x) dx = 113. Calcula la siguiente integral definida: ∫0 2 f(x) dx = ¿Qué representa geométricamente? Representa el área comprendida entre el eje X y la curva en el intervalo [0, 2] 114. Considera la función f :R → R definida en la forma f(x) = 1 + x |x| Calcula ∫ 2 –1 f(x) dx 115. De la gráfica de la función polinómica f : R → R dada por: f(x) = x3 + ax2 + bx + c se conocen los siguientes datos: que pasa por el origen de coordenadas y que en los puntos de abscisas 1 y –3 tiene tangentes paralelas a la bisec- triz del segundo y cuarto cuadrantes. a) Calcula a, b y c b) Dibuja el recinto limitado por la gráfica de la función f(x) y el eje de abscisas y calcula su área. 116. Determina una constante positiva a sabiendo que la figura plana limitada por la parábola y = 3ax2 + 2x, la recta y = 0 y la recta x = a tiene área (a2 – 1)2 117. Justifica geométricamente que si f(x) es una función positiva definida en el intervalo [a, b] y c ∈ [a, b], entonces se cumple: ∫a c f(x) dx + ∫c b f(x) dx = ∫a b f(x) dx 118. Halla el área del recinto limitado por la curva y = xex, el eje X y la recta paralela al ejeY que pa- sa por el punto donde la curva tiene un mínimo relativo. dx x2 + 4x + 3 9 2 1 2 –x – 2 si x < –1 a – 2x2 si –1 ≤ x ≤ 1 b/x si x > 1      g(x) x lím x →0 1 1 + et 3π 4 π 4 π 4 1 x + a y2 9 x2 25 Tema14:Integraldefinida
  21. 21. 292 TEMA 14 Derive Paso a paso 119. Dibuja y calcula el recinto limitado por el eje X y la función: f(x) = x2 – 2x – 3 en el intervalo [1, 4] Solución: a) Representa las rectas x = 1, x = 4 que limitan el intervalo. b) Representa la función. c) Resuelve la ecuación correspondiente para hallar las abscisas de los puntos de corte con el eje X x = 3 ∨ x = –1 d) Rellena la 1ª región: En la Entrada de Expresiones escribe: 1 < x < 3 ∧ x^2 – 2x – 3 < y < 0 Elige Introducir Expresión. Activa la ventana Gráficos-2D y haz clic en Representar Expresión. e) Rellena la 2ª región: 3 < x < 4 ∧ 0 < y < x^2 – 2x – 3 f) Calcula el área correspondiente a la 1ª región: Selecciona en la ventana Álgebra la función: x^2 – 2x – 3 g) Elige Integrales. Activa el botón de opción Definida, en Límite inferior escribe 1, en Lími- te superior escribe 3 y haz clic en el botón Sim- plificar. ∫1 3 (x2 – 2x – 3) dx = – h) Calcula el área correspondiente a la 2ª región: ∫3 4 (x2 – 2x – 3) dx = i) Suma los valores absolutos obtenidos y aproxima el resultado: |–16/3| + |7/3| Área = = 7,6666666 120. Dibuja el recinto limitado por las siguientes funciones y calcula el volumen que genera dicho re- cinto cuando gira alrededor del eje X: y = y = – + 4 Solución: a) Resuelve el sistema formado por ambas funcio- nes. [x = 2 ∧ y = 3, x = 6 ∧ y = 1] b) Representa las dos funciones. c) Rellena la región limitada por las dos funciones. 2 < x < 6 ∧ < y < – + 4 d) Calcula la siguiente integral y aproxima el resulta- do. π ∫2 6 2 – – + 4 2 dx Volumen = = 16,76 u3 121. Internet. Abre la página web: www.algaida.es y elige Matemáticas, curso y tema. 16π 3 ))x 2()6 x(( x 2 6 x x 2 6 x 23 3 7 3 16 3
  22. 22. 293 Así funciona Practica Integral definida Se elige Integrales. Se activa el botón de opción Definida, en Límite inferior y en Lími- te superior se escriben los valores correspondientes y se hace clic en el botón Simplificar. Representar funciones Si la función es y = f(x), no es necesario escribir y =; por el contrario, si es una recta vertical de la forma x = k, es obligatorio escribir el x = Hallar puntos de corte de dos funciones Se resuelve el sistema correspondiente a las dos funciones Rellenar regiones Se rellena trozo por trozo. Para cada uno de los trozos se escriben las desigualdades correspon- dientes a las abscisas y a las ordenadas, unidas por el signo de conjunción lógica y que es ∧ 122. Dibuja el recinto correspondiente y calcula la siguiente integral definida: ∫2 5 (x – 1) dx Observa y justifica el signo del valor obtenido. 123. Dibuja el recinto correspondiente y calcula la siguiente integral definida: ∫1 4 (x2 – 6x + 4) dx Observa y justifica el signo del valor obtenido. 124. Dibuja el recinto correspondiente y calcula la siguiente integral definida: ∫ 4 –4 |x| dx 125. Dibuja el recinto limitado por las siguientes funciones y calcula su área: f(x) = 4 – x2 g(x) = 2x + 1 126. Dibuja el recinto limitado por el eje X y la fun- ción: f(x) = –x3 + x2 + 2x 127. Un objeto se deja caer en el vacío. Suponiendo que la gravedad es de 9,8 m/s2, calcula la velocidad que lleva al cabo de 4 s, y el espacio recorrido. Dibu- ja las funciones correspondientes a la velocidad y a la aceleración. 128. La función que mide el caudal de un río en fun- ción de los meses del año, viene dada por: f(x) = 3 + 2 cos donde f(x) está dado en miles de hectolitros por se- gundo, y x en meses. ¿Qué cantidad de agua pasa por el río en un año? Dibuja la región correspondiente a la cantidad de agua que lleva el río. 129. Una fábrica produce chips para ordenadores. La función de ingreso marginal viene dada por: i(x) = 3 + donde x es el número de chips vendidos e i(x) viene dado en euros. Si vende 10000 unidades, ¿cuáles son los ingresos obtenidos? Dibuja la región correspondiente a los ingresos ob- tenidos. 130. Deduce la fórmula del volumen de una pirá- mide. 131. Representa la región comprendido entre el eje X y la función: f(x) = en el intervalo [3, 9] Calcula el volumen generado por dicha región cuando gira alrededor del eje X x 3 2 x + 1 πx 6 Tema14:Integraldefinida

×