Análise do desempenho do algoritmo de Viterbi
com janela deslizante no rastreamento de robôs
em estufas agrícolas
Roberson...
Estufas agrícolas oferecem um ambiente apropriado para abrigar
culturas especiais, como hortaliças, flores e certas fruta...
Avaliar o desempenho em termos de tempo e
correção dos algoritmos de Viterbi e Viterbi-JD no
rastreamento de agrobots em ...
Grades de ocupação:
• Representam o ambiente por meio de seu particionamento em
regiões quadrangulares, chamadas de célul...
O processo de inferir a célula ocupada da grade pode utilizar
informações provenientes de pontos de acesso(PAs) em redes ...
Modelos ocultos de Markov(MOMs):
• Ferramenta de modelagem probabilística;
• Modelo é representado por: ;
• Outras variáv...
•Exemplo de MOM para a grade ao lado:
• Seis estados(células) denotados por ;
• Cada si equivale a uma localização do robô...
Dadas as complexidades de tempo do algoritmo de Viterbi, ele pode se tornar
inviável para o rastreamento em tempo real de...
Para realizar os experimentos de desempenho:
1) Definição de 01 grade(ref. estufa agrícola de 315 m2):
•Grade de 21m x 15...
Em cada grade foram executados os seguintes passos:
• Para cada velocidade v e janela w
• Gerado um MOM;
• Parâmetros do ...
O que se observou foi que o algoritmo de Viterbi utilizou mais de 600
segundos para processar 10 minutos de observações, ...
Gráfico comparando as médias de tempo de processamento do
Viterbi-JD considerando todos os valores de w e v:
12
RESULTADO...
1) Definição de velocidades(v) de deslocamento: 30 cm/s, 60 cm/s e 90
cm/s; e janelas(w) de: 90, 120, 150 e 180;
2) Para g...
Em cada grade foram executados os seguintes passos:
• Para cada velocidade v e janela w
• Gerado um MOM;
• Os parâmetros ...
Quanto a correção, a menor taxa de erro apresentada para o algoritmo de Viterbi
foi de 0,85% para γ = 3 e v = 60 cm/s. A ...
γ = 5
Gráficos comparativos, das taxas de erro, do Viterbi-JD: w x Er
16
γ = 3
RESULTADOS:
CORREÇÃO
O algoritmo Viterbi-JD teve um desempenho computacional significativamente
superior ao do algoritmo de Viterbi no process...
Próximos SlideShares
Carregando em…5
×

Apressentação SBIAGRO 2015

146 visualizações

Publicada em

Apresentação para o SBIAGRO 2015.

Publicada em: Tecnologia
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Apressentação SBIAGRO 2015

  1. 1. Análise do desempenho do algoritmo de Viterbi com janela deslizante no rastreamento de robôs em estufas agrícolas Roberson Junior Fernandes Alves Curso de Ciência da Computação, Universidade do Oeste de Santa Catarina(UNOESC) 89900-000 – São Miguel do Oeste – SC – Brasil – roberson.alves@unoesc.edu.br José Carlos Ferreira da Rocha Departamento de Informática, Universidade Estadual de Ponta Grossa(UEPG) 84030-900 – Ponta Grossa – PR – Brasil – jrocha@uepg.br
  2. 2. Estufas agrícolas oferecem um ambiente apropriado para abrigar culturas especiais, como hortaliças, flores e certas frutas, entre outras; Contudo, há uma grande quantidade de trabalho manual, repetitivo e as condições climáticas podem ser prejudiciais a saúde humana; Introdução de Agrobots: • Vantagens: • Um robô pode trabalhar durante 24 horas sem parar; • Em tarefas repetitivas é possível adicionar melhorias tecnológicas de forma a qualificar o processo; e • Incremento da eficiência e produtividade. • Demandam de capacidade para perceber, planejar e atuar no ambiente, sem a intervenção humana. 2 INTRODUÇÃO
  3. 3. Avaliar o desempenho em termos de tempo e correção dos algoritmos de Viterbi e Viterbi-JD no rastreamento de agrobots em estufas agrícolas. 3 OBJETIVO
  4. 4. Grades de ocupação: • Representam o ambiente por meio de seu particionamento em regiões quadrangulares, chamadas de células; • O rastreamento do agrobot pode ser inferido a partir do histórico de células visitadas. Exemplo de uma grade: • De 3 X 3 células; • Cada célula possui uma área definida; • Células com X em vermelho estão ocupadas. 4 RASTREAMENTO DE AGROBOTS: GRADES DE OCUPAÇÃO
  5. 5. O processo de inferir a célula ocupada da grade pode utilizar informações provenientes de pontos de acesso(PAs) em redes WiFi explorando o RSSI(Received Signal Strength Indicator); A partir do RSSI pode ser gerada uma assinatura ou fingerprinting. 5 RASTREAMENTO DE AGROBOTS: ASSINATURA DE RSSI OU FINGERPRINTING Célula S1 Célula S2
  6. 6. Modelos ocultos de Markov(MOMs): • Ferramenta de modelagem probabilística; • Modelo é representado por: ; • Outras variáveis: S, N e M; • Problema da decodificação(algoritmo de Viterbi); • O algoritmo de Viterbi, para um dado MOM e um conjunto de observações , encontra a máxima ; • Complexidade de tempo: ; •No rastreamento com o algoritmo de Viterbi é reentrado todo conjunto de observações. 6 RASTREAMENTO DE AGROBOTS: MODELOS OCULTOS DE MARKOV E O ALGORITMO DE VITERBI
  7. 7. •Exemplo de MOM para a grade ao lado: • Seis estados(células) denotados por ; • Cada si equivale a uma localização do robô; • Mat. de probabilidades inicial(π) => • Mat. de transição(A) => matriz de banda 3 • Mat. de emissão(B) => dist. gaussiana ; • M => 2 e N => 6. 7 RASTREAMENTO DE AGROBOTS: EXEMPLO DE RASTREAMENTO COM MOM
  8. 8. Dadas as complexidades de tempo do algoritmo de Viterbi, ele pode se tornar inviável para o rastreamento em tempo real de agrobots; Uma alternativa para contornar as limitações de tempo do algoritmo de Viberbi é o algoritmo de Viterbi com Janela Deslizante ou Viterbi-JD; No Viterbi-JD é utilizada uma subsequência(janela) de observações O’ de tamanho w. 8 RASTREAMENTO DE AGROBOTS: ALGORITMO DE VITERBI-JD
  9. 9. Para realizar os experimentos de desempenho: 1) Definição de 01 grade(ref. estufa agrícola de 315 m2): •Grade de 21m x 15m com células de 1m2; 2) Definição de velocidades(v) de deslocamento: 30 cm/s, 60 cm/s e 90 cm/s; 3) Janelas(w) para o Viterbi-JD JD: 90, 120, 150 e 180. 9 METODOLODIA: EXPERIMENTOS DE TEMPO
  10. 10. Em cada grade foram executados os seguintes passos: • Para cada velocidade v e janela w • Gerado um MOM; • Parâmetros do MOM inicializados aleatoriamente; • Geradas 30 sequências de RSSI com 600 observações cada; • Os algoritmos Viterbi e Viterbi-JD executados sobre cada sequência; • A cada execução foi o tempo de processamento(em segundos). 10 METODOLODIA: EXPERIMENTOS DE TEMPO
  11. 11. O que se observou foi que o algoritmo de Viterbi utilizou mais de 600 segundos para processar 10 minutos de observações, no melhor caso; Em média o algoritmo de Viterbi-JD se mostrou mais rápido que o algoritmo de Viterbi, mesmo no pior caso(tempo máximo); O crescimento do tempo no Viterbi-JD mostrou-se proporcional ao tamanho da janela w. Isso é reforçado pela forte correlação linear entre μd e w de 0,99; A economia de tempo utilizando o Viterbi-JD ficou entre 50% e 83%; Na análise estatística definiram-se as variáveis μv e μd onde H0 ≡ μv – μd = 0 e H1 = μv > μd ; Para o teste t de Student, com α = 0,05, quando comparados os algoritmos de Viterbi-JD e Viterbi, aceitou-se a hipótese alternativa para todas as velocidades e janelas. 11 RESULTADOS: TEMPO
  12. 12. Gráfico comparando as médias de tempo de processamento do Viterbi-JD considerando todos os valores de w e v: 12 RESULTADOS: TEMPO
  13. 13. 1) Definição de velocidades(v) de deslocamento: 30 cm/s, 60 cm/s e 90 cm/s; e janelas(w) de: 90, 120, 150 e 180; 2) Para geração da fingerprinting foi adotado o modelo One-Slope Model(OSM) de Narzullaev e Park(2013); 3) O coeficiente de perda do sinal(path loss) configurado com os valores extremos de γ = 3 e γ = 5 (SABRI et al., 2013); 4) Simulação de caminhamentos; 13 METODOLODIA: EXPERIMENTOS DE CORREÇÃO
  14. 14. Em cada grade foram executados os seguintes passos: • Para cada velocidade v e janela w • Gerado um MOM; • Os parâmetros das distribuição de emissão foram treinados a partir dos dados de RSSI gerados (fingerprinting); • Foram simuladas 30 sequências de caminhamento de um robô, por um período de 10 min. (600 observações), em cada sequência; • Os algoritmos Viterbi e Viterbi-JD executados sobre cada sequência; • A cada execução foram armazenados os valores de erro (E) calculados de acordo com: 14 METODOLODIA: EXPERIMENTOS DE CORREÇÃO
  15. 15. Quanto a correção, a menor taxa de erro apresentada para o algoritmo de Viterbi foi de 0,85% para γ = 3 e v = 60 cm/s. A maior taxa de erro foi de 4,08% para γ = 5 e v = 90 cm/s. Já para o algoritmo de Viterbi-JD a menor taxa de erro foi de 1,46% para γ = 3, v = 60 cm/s e w = 180. A maior taxa de erro atingiu 4,65% para γ = 5, v = 90 cm/s e w = 90; Para a análise estatística definiram-se as variáveis μv e μd onde H0 ≡ μv – μd = 0 e H1 = μd > μv ; O teste t de Student, com α = 0,05, quando comparados os algoritmos de Viterbi-JD e Viterbi, aceitou-se a hipótese alternativa para todos os valores de v, w e γ. 15 RESULTADOS: CORREÇÃO SEM RUÍDO
  16. 16. γ = 5 Gráficos comparativos, das taxas de erro, do Viterbi-JD: w x Er 16 γ = 3 RESULTADOS: CORREÇÃO
  17. 17. O algoritmo Viterbi-JD teve um desempenho computacional significativamente superior ao do algoritmo de Viterbi no processamento do rastreamento; A correlação entre o desempenho computacional e o tamanho da janela permite a criação de um mecanismo para ajustar o esforço computacional dedicado à tarefa de rastreamento de agrobots; O erro do Viterbi-JD é um pouco maior do que aquele produzido pelo algoritmo de Viterbi; Contudo, em todos os casos, o emprego do algoritmo Viterbi-JD não levou a um incremento substancial do erro na determinação do rastro;  A metodologia experimental utilizada pode ser reproduzida em outros trabalhos; Futuramente pretende-se avaliar a presença de ruído no ambiente e sua influência nos dados de RSSI. 17 CONCLUSÕES

×