SlideShare uma empresa Scribd logo
1 de 22
Baixar para ler offline
On
Under the guidance of:
Mr. Souvik Banerjee (Manager, LD#1-Operations)
Submitted by:
RISHAV GHOSH
Department of Metallurgical & Material Engineering
STUDY OF CARBON
VARIATION IN WR3 GRADE
Jadavpur University, Kolkata
A
Technical Report
1
Certificate
This is to certify that the work hereby presented by Rishav Ghosh in the project, titled “Study of
Carbon Variation in WR3 grade” for the one-month training program at Tata Steel Ltd.,
Jamshedpur, is a genuine account of work carried out during the period from 26th
May, 2015 to
22nd
June, 2015 under the guidance of Mr Souvik Banerjee, Manager LD#1 - Operations, Tata
Steel Ltd. Jamshedpur.
The matter embodied in the project report to the best of my knowledge is a complete bonafide
piece of work.
RISHAV GHOSH
Department of Metallurgical & Material Engineering
Jadavpur University, Kolkata
Date: 22nd
June, 2015
This is to certify that the above declaration is true to the best of my knowledge.
Souvik Banerjee
Manager
LD#1- Operations
Tata Steel Ltd. Jamshedpur
2
Acknowledgment
This two months project at SMLP, LD#1 has been a steep learning curve for me. Working on this
project not only helped me to understand the entire Secondary Steel-making Process, but also
appreciate its importance and gain practical knowledge in this field. Being a novice in the area the
project could not have been successful without the encouragement and backing provided to me by
various people at different stages of the project.
I am extremely grateful to Mr Souvik Banerjee, Manager, LD#1 – Operations for providing me
with this opportunity. I would also like to thank my guides at LD#1 - Mr Ram Bachchan Kumar
(Senior Manager, LD#1 Technical Services) and Ms. Khushboo Sinha(Manager, LD#1 Technical
Services) for their infallible support and constant encouragement throughout.
I am highly grateful to SNTI for providing me the opportunity to work on the given problem.
Lectures and discussion organized by SNTI were very useful in enhancing my knowledge about
the manufacturing industry. These lectures will definitely help me to become a better professional
in future.
Finally, I would like to thank all the staff of SMLP, LD#1 for their constant support, time &
valuable advice from their experience throughout my project.
Rishav Ghosh
Department of Metallurgical & Material Engineering
Jadavpur University, Kolkata
3
Table of Content
1. Company Profile 4
2. Major Units of Steelmaking Shop 6
2.1 Hot Metal Receiving and Handling (Torpedo Control) 6
2.2 Scrap Handling 6
2.3 Hot Metal Desulphurisation (HMDS) 7
2.4 Basic Oxygen Steelmaking (PSM) 8
2.5 Secondary Metallurgy Ladle Practice (SMLP) 9
2.6 Continuous Caster 10
3. Secondary Metallurgy
3.1 Why Secondary Metallurgy ? 11
3.2 Secondary Metallurgical Processes 11
4. Ladle Furnace 12
4.1 What Is A Ladle Furnace 12
4.2 Functions Of A Ladle Furnace 13
4.3 Ladle Refractory 13
5. Introduction
5.1 What is WR3 grade ? 14
5.2 Diversion of WR3 Heat 14
5.3 Diversion due to carbon variation 15
5.3.1. On-Line Purging Carbon 15
5.3.2. Treatment Time 17
5.3.3. Arcing Duration 18
5.3.4. Bypass Purging 19
5.3.5. Top lancing 20
6. Recommendations 21
4
1 . Company Profile
Tata Steel Limited (formerly Tata Iron and Steel Company Limited (TISCO)) is an Indian
multinational steelmaking company headquartered in Mumbai, Maharashtra, India, and a
subsidiary of the Tata Group. It is the 6th
largest steel producing company in the world, with an
annual crude steel capacity of 23.8 million tonnes, and the largest private-sector steel company in
India measured by domestic production.
Tata Steel has manufacturing operations in 26 countries, including Australia, China, India, the
Netherlands, Singapore, Thailand and the United Kingdom, and employs around 81,600 people.
Its largest plant is located in Jamshedpur, Jharkhand. In 2007 Tata Steel acquired the UK-based
steel maker Corus in what was the largest international acquisition by an Indian company to date.
Tata Steel is listed on the Bombay Stock Exchange, where it is a constituent of the BSE SENSEX
index, and the National Stock Exchange of India. It is ranked 401st
in the 2012 Fortune Global 500
ranking of the world's biggest corporations. It is the eighth most-valuable Indian brand according
to an annual survey conducted by Brand Finance and The Economic Times in 2010.
Tata Steel is headquartered in Mumbai, Maharashtra, India and has its marketing headquarters at
the Tata Centre in Kolkata, West Bengal. It has a presence in around 50 countries with
manufacturing operations in 26 countries including: India, Malaysia, Vietnam, Thailand, Dubai,
Daggaron, Ivory Coast, Mozambique, South Africa, Australia, United Kingdom, The Netherlands,
France and Canada.
Tata Steel primarily serves customers in the automotive, construction, consumer goods,
engineering, packaging, lifting and excavating, energy and power, aerospace, shipbuilding, rail
and defence and security sectors.
Tata Steel has set a target of achieving an annual production capacity of 100 million tons by 2015;
it is planning for capacity expansion to be balanced roughly 50:50 between Greenfield
developments and acquisitions. Overseas acquisitions have already added an additional 21.4
million tonnes of capacity, including Corus (18.2 million tonnes), NatSteel (2 million tonnes) and
Millennium Steel (1.2 million tonnes). Tata plans to add another 29 million tonnes of capacity
through acquisitions.
5
Major Greenfield & Brownfield steel plant expansion projects planned by Tata Steel include:
• A 6 million tonne per annum capacity plant in Kalinganagar, Odisha, India.
• an expansion of the capacity of its plant in Jharkhand, India from 6.8 to 10 million tonnes per
annum;
• A 5 million tonne per annum capacity plant in Chhattisgarh, India
• A 3 million tonne per annum capacity plant in Iran;
• A 2.4 million tonne per annum capacity plant in Bangladesh; A 10.5 million tonne per
annum capacity plant in Vietnam
• A 6 million tonne per annum capacity plant in Haveri, Karnataka.
6
2. Major Units of Steelmaking Shop
2.1 Hot Metal Receiving and Handling (TORPEDO CONTROL)
The hot metal, or liquid pig iron, is the primary source of iron units and energy in the oxygen
steelmaking process. Hot metal is usually produced in blast furnaces, where it is cast into
submarine shaped torpedo cars and transported either to a desulfurization station or directly to the
steelmaking shop.
The chemical composition of hot metal can vary substantially, but typically it contains about
%C %Mn %Si %S %P TEMP.(o
C)
HOT METAL 4.3 0.2-0.3 0.2 – 1.5 0.05 0.17-0.2 1330-1400
STEEL 0.03 0.1 0 0.005-0.015 0.01 1620-1720
The composition of the hot metal depends on the practice and charge in the blast furnace.
Generally, there is a decrease in the silicon content and an increase in the sulphur of the hot metal
with colder blast furnace practices. The phosphorus contents of the hot metal increases if the BOF
slag is recycled at the sinter plant.
Carbon and silicon are the chief contributors of energy. The hot metal silicon affects the amount
of scrap charged in the heat. If the hot metal silicon is high, there will be greater
Amount of heat generated due to its oxidation, hence more scrap can be charged in the heat. Hot
metal silicon also affects the slag volume, and therefore the lime consumption and resultant iron
yield.
In LD#1, hot metal is poured into transfer ladles kept in torpedo pit which is then carried by torpedo
cranes to the desulphurisation station. The weighing of the hot metal is done on a scale while it is
being poured into the transfer ladle. It is very important that the weight of the hot metal is
accurately known, as any error can cause problems in turndown chemistry, temperature and heat
size in the BOF. This weight is an important input to the static charge model.
2.2 Scrap Handling
Scrap is the second largest source of iron units in the steelmaking operation after hot metal. Scrap
is basically recycled iron or steel, having Fe content of almost 92% that is either generated within
the mill (e.g. slab crops, pit scrap, cold iron or home scrap), or purchased from an outside source.
The scrap is weighed when loaded in the scrap box by using electromagnets and is mixed based
on requirements of the upcoming heat. Then the box is transported to the BOF. It is important that
the crane operator loads correct amounts and types of scrap (WRP, POOLED IRON, CLEAN)
Otherwise the turndown performance of the heat will be adversely affected.
7
Normally, the lighter scrap is loaded in the front, and the heavier scrap in the rear end of the box.
This causes the lighter scrap to land first in the furnace as the scrap box is tilted. It is preferable
that the lighter scrap fall on the refractory lining first, before the heavier scrap, to minimize
refractory damage. Also, since heavy scrap is more difficult to melt than light scrap, it is preferable
that it sits on top so that it is closest to the area of oxygen jet impingement and hence melts faster.
Unmelted scrap can cause significant problems in process control. It may result in high
temperatures or missed chemistries at turndown.
Most steelmaking shops typically use about 20 to 35% of their total metallic charge as scrap, with
the exact amount depending on the capacity of the steelmaking process. Scrap pieces that are too
large to be charged into the furnace are cut into smaller pieces by means of shears or flame cutting.
2.3 Hot Metal Desulphurization (HMDS)
Sulphur is an undesirable element in steel and is kept to the lowest level. Sulphur in steel mainly
comes from coal/coke charged in blast furnaces.
Hot metal is desulphurised in the transfer ladle by the injection of a mixture of calcium carbide
and magnesium, through a refractory coated immersed lance. There are two
-possible injection combinations of the desulphurization reagents including
calcium carbide on its own (monoinjection) and calcium carbide and
magnesium in combination (co-injection). Prior to treatment, the weighed
hot metal transfer ladle is placed on a ladle car with tilting frame by the
overhead ladle handling crane. The ladle car is driven inside refractory
faced enclosures, which are sealed when the ladle is inside the enclosure
by sliding doors. A sample taken from the transfer ladle prior to treatment
is analyzed, and the result is used to calculate the amount of calcium
carbide and magnesium required to achieve the necessary Fig 1: Desulphurization
amount of desulphurization. The injection lance, which is a thick walled steel tube inside a
refractory coating, is positioned above the ladle, and then lowered through a port in the enclosure
cover.
Before the tip of the lance enters the hot metal surface, the powder transport gas N2 is
switched on, and then the calcium carbide powder begins to flow though the lance. Once
powder flow is established, the lance is driven down into the hot metal to a predetermined
position above the refractory bottom of the ladle. After sometime, Magnesium is injected
and the calcium carbide injection rate is reduced.
8
When injection is complete, the carry-over slag plus the slag formed on top of the ladle during
injection is removed by a slag skimming machine (Raking). This is done by rotating the ladle in
its tilting frame on the transfer car. Slag is collected in slag pots placed on one end of the transfer
car. Once a slag pot is filled up the car will transfer the same through the unit and out into the slag
bay where the filled-up slag pot will be picked up by the overhead crane and replaced by a fresh
slag pot.
DS IN DS OUT
% Sulphur 0.06 0.005
2.4 Basic Oxygen Furnace (Primary Steel Making)
The purpose of the Basic Oxygen Steelmaking (BOS) process is to refine the hot metal produced
in the blast furnace into raw liquid steel. Steel is made in discrete batches called heats. The furnace
or converter is a barrel shaped, open topped, refractory lined vessel that can rotate on a horizontal
trunion axis.
The required quantities of hot metal, scrap, oxygen, and fluxes vary according to their chemical
compositions and temperatures, and to the desired chemistry and temperature of the steel to be
tapped. Fluxes are minerals added early in the oxygen blow, to control sulphur and phosphorous
and to control erosion of the furnace refractory lining. The exothermic oxidation reactions that
occur during BOS generate a lot of heat energy - more than is necessary to attain the target steel
temperature. This extra heat is used to melt scrap and/or iron ore additions.
The energy required to raise the fluxes, scrap and hot metal
to steelmaking temperatures is provided by oxidation of
various elements in the charge materials. The principal
elements are iron, silicon, carbon, manganese and
phosphorous. The liquid pig iron or hot metal provides
almost all of the silicon, carbon, manganese and
phosphorous, with lesser amounts coming from the scrap.
Both the high temperatures of the liquid pig iron and the
intense stirring provided when the oxygen jet is introduced,
contribute to the fast oxidation (burning or combustion) of
these elements and a resultant rapid, large energy release.
Silicon, Manganese, Iron and Phosphorous form oxides,
which, combine with the flux to form Slag. The vigorous
stirring fosters a speedy reaction and enables the transfer of
energy to the slag and steel bath. Carbon, when oxidized,
leaves the process in gaseous form, principally as carbon
monoxide. During the blow, the slag, reaction gases Fig. 2: Sectional View of Vessel contact
9
and steel (as tiny droplets) make up a foamy emulsion. The large surface area of the steel droplets,
in with the slag, at high temperatures and vigorous stirring, allow quick reactions and rapid mass
transfer of elements from metal and gas phases to the slag. When the blow is finished the slag
floats on top of the steel bath.
Overall process of primary steel making in LD Vessel can be shown by following figure:
Fig. 3: Schematic of operational steps in oxygen steelmaking process (BOF)
2.5 Secondary Metallurgy and Ladle Preparation (SMLP)
The steel after refining in the BOF and OLP is further sent to three LF Stations where
• Minute additions of ferro-alloys and micro alloying takes place to fine tune the steel
compositions.
• The molten steel is heated by arcing with graphite electrodes with a cover placed over the
ladle.
• It has provision for bottom Argon gas purging for temperature and bath homogenisation
Synthetic slag is added in ladle to trigger the formation of slag in the bath.
• Further steps for effective de-oxidation, de-phosphorisation, desulphurisation are taken.
Thus, various grades of steel are obtained based on the requirements of the consumer.
10
2.6 Continuous Caster
The liquid steel ladles after secondary treatment are brought to the ladle preparation aisle, lifted
by the ladle cranes and placed on the charging arm of the ladle turret. The steel ladle is then brought
to the casting position by rotating the turret by 180º.
In the meantime refractory lined and preheated tundish, travelling on tundish car is brought to the
casting position over the mould just before placing the turret. Once the turret is positioned over
the tundish, the liquid steel is allowed to flow into the tundish from the ladle by opening the ladle
slide gate. After the desired level is reached in the tundish, the tundish nozzle is opened and the
molten metal starts pouring into the mould. When the level is reached in the mould, the dummy
bar/strand withdrawal starts. The mould and spray cooling and the mould oscillation also starts
along with the dummy bar/cast strand withdrawal. The dummy bar which makes a temporary
bottom inside the mould pulls the cast strand and gets disconnected once the cast strand reaches
the withdrawal and straightening unit. The cast strand after straightening is transported into the
soaking furnace via roller table. A pendulum shear cuts the thin slab into the desired length.
Fig.4: Continuous Casting
11
3. Secondary Metallurgy
3.1 Why Secondary Metallurgy
 To meet the ever increasing “Quality” demands of the market place, which is becoming
globally competitive.
 Difficult to carry out certain aspects of refining in an oxygen steel making furnace.
 Reduce the burden of primary steel making
 To increase the Productivity
3.2 Secondary Metallurgical Processes

 OLP, ARS
 Ladle Furnace
 CAS-OB
 VD, VAD, VADR, VOD , DH, RH, RH-OB, RH-MFB
 Stream Degasser
12
4. Ladle Furnace
4.1 What Is A Ladle Furnace
Fig. 5: Ladle Furnace
13
4.2 Functions of a Ladle Furnace
• Homogenization of Steel with respect to Temperature and Composition.
• Improvement of alloy Yield and to control final composition of steel to a narrow range.
• Flotation and removal of inclusion by metal stirring and absorption into top slags.
• Desulphurisation.
• Inclusion modification by injection of suitable reactants.
• Dephosphorization by special slags.
• The holding of ladles for sequence casting.
4.3 Ladle Refractory
Fig.6: Ladle Refractory
14
5. WR3-Introduction
5.1 What is WR3 grade?
WR3 grade is a special grade steel prepared specifically in LF#2 of LD#1 shop. These steels are
cast and shaped in the form of wire rods used specifically for MIG welding purposes. Lincoln
grade WR3 wire rods(ER70S-6) finds extensive applications in CO2 gas welding electrodes owing
to its favourable mechanical properties. The following table indicates the specifications of WR3
grade steel.
Table 1: Chemical specification of WR3 grade
Component C Mn Si S P
N2 (ppm)
Min 0.06 1.42 0.80
Max 0.08 1.50 0.90 0.015 0.018 50
5.2 Diversion of WR3 Heat
Stringent quality demands along with tighter specifications by the market has made ladle treatment
one of the prime as well as key refining operations in the entire steelmaking process chain. This is
because the final adjustments in the chemistry of the finished product can’t be done after the
molten steel is tapped from the ladle for casting. Thus ladle treatment is necessary for attainment
of near complete homogenization with respect to chemical composition and melt temperature prior
to casting. In addition, the ladle treatment also involves deoxidation, inclusion floatation,
desulphurization, degassing and other metallurgical phenomenon.
In the past financial year (Apr ’14- Mar’15), several cases of diversion from WR3 grades to TMT
grades and other grades have been reported. Deviation in carbon, manganese, suplhur, silicon,
phosphorous and nitrogen from the desired specifications due to improper additions , faulty
process design, unsteady casting and top lancing have been accounted for as the main reasons for
such diversion.
The main causes of diversion can be understood properly from the comparison chart shown below.
As observed from the plot, the primary causes for heat diversion in WR3 grades are faulty process
design, high carbon, phosphorous, silicon and manganese percentage in the final product.
15
5.3 Diversion due to carbon variation
Diversion in heat due to increase in carbon content of the heat can be attributed to the following
causes :-
5.3.1. OLP(On-line Purging) Carbon
In most of the steel plants all over the world, after completion of each heat in the LD converter,
the liquid steel is tapped in ladle along with the addition of deoxidizers and ferro-alloys during
vessel tapping into the ladle. In LD-1 at Tata Steel, Jamshedpur the ladle is then transferred to the
Online Purging / Rinsing Station(OLP) where purging of argon gas into liquid steel bath contained
in the ladle through top lance is carried out to generate enough bath turbulence to produce thermal
and chemical homogeneity in liquid steel before treating in the secondary refining units and
sending to the caster as per the caster requirements. Any improper mixing of the liquid steel bath
at OLP may lead to increase in chemistry of the same during ladle treatment which lead to
diversion/ downgrading of heats- as is the case in the grade under consideration. An undue increase
in carbon content of liquid steel higher than prescribed specification have been observed in spite
of similar addition and homogenization practices. The following box plot shows the range of OLP
carbon for which the heat is not likely to be diverted.
10.8
3.7
11.1
0.7
4.2
16.3
3.7
3
1.63
0.59
1.9
0
2
4
6
8
10
12
14
16
18
%Diversion
Causes of Diversion
16
It can be observed that the OLP-carbon level varies over a large range in diverted WR3 grades
compared to the proper heats. Hence, to meet desired specifications of WR3 grade, OLP carbon
in the range of 0.041-0.05 would indicate the possibility of a proper heat. Any deviation from this
range would result in diversion.
17
5.3.2. Treatment Time
Ladle treatment time has a profound effect on the carbon content of the heat prior to ladle
treatment. High ladle treatment would mean higher purging and duration which results in higher
amount of carbon pick-up due to electrode wash because of vigorous bath condition.
From the box plot above, we can observe a narrow treatment time range for proper heats of WR3
compared to a high treatment time range in case of diverted heats.
For proper heats, ladle treatment time, specifically, between 59-77 minutes should be ensured.
Treatment time higher than 77 minutes would lead to diversion due to prolonged period of carbon
pick-up. Higher treatment time would mean higher residence time of the heat in the ladle requiring
higher arcing duration to maintain the requisite temperature for casting resulting in more electrode
wash and hence, higher carbon pick-up.
18
5.3.3. Arcing duration
Arcing in ladle furnace is necessary to increase the temperature of the bath for melting of ferro-
alloy additions and other additions. Arcing is indispensable to increase the temperature to the
optimum limit as well as provide the adequate superheat to compensate for any heat loss.
Practically a minute of arcing raises the temperature of the bath by 3o
C. A temperature of 1600-
1620o
C is generally maintained in the bath before emptying it into the tundish. Thus arcing
duration plays a vital role in the temperature of the bath as well as the bath chemistry.
The box plot above shows that the arcing duration for good heats is lesser than the arcing duration
for diverted/bad heats.
Total arcing duration of 30-38 minutes would ensure the heat meeting its desired specifications.
Arcing time greater than 38 minutes would lead to improper steel chemistry leading to diversion.
Higher arcing duration would mean bath will have higher carbon pick-up due to increased duration
of electrode wash.
19
5.3.4. Bypass purging
Bypass purging refers to a higher rate of purging of argon gas through the ladle porous plug.
Bypass purging serves to perform two distinctive functions viz. i) to ensure proper homogensation
and mixing upon ferro-alloy addition and ii) for opening of jammed porous plug
The box chart shows that higher values of bypass purging duration leads to improper heat
compared to lower bypass purging duration in proper heats. An optimum bypass purging duration
of 3-11 minutes is necessary to obtain the desired chemistry in the heat. However, bypass purging
for more than 11 minutes would lead to deviation in the chemistry-higher carbon level
consequently leading to diversion of the WR3 grades to TMT grade. Probable explanation of such
behavior might be higher levels of carbon pickup as a result of electrode wash due to vigorous
condition of the bath.
20
5.3.5. Top lancing
Top lancing is done when the ladle porous plug is blocked and bottom purging is not possible.
However, the gas flow rate in top lancing is uncontrollable and bath splashing and bath
inhomogeneity is rampant in such cases.
The box plot shows that heats treated without top lancing are proper compared to the heats purged
with top lance. The primary reason that can be attributed to this behavior is bath splashing leading
to electrode wash. Also, the vigorous reaction rate in the bath might lead to an unstable slag with
the tendency of impurity reversion into the steel from the slag.
Thus, for casting of proper WR3 grade, top lancing should be avoided. Top lancing for any time
duration would lead to improper chemistry resulting in a diverted grade.
21
6.Recommendations
Based on the analysis of WR3 heats in the past financial year, for lesser diversion to substandard
grades , the following recommendations are to be implemented :-
 OLP treatment should be optimized to attain a carbon chemistry of 0.041-0.045 in the melt
before treatment at the ladle furnace.
 Treatment time in the ladle furnace should not exceed more than 77 minutes neither should
the treatment time be inadequate i.e. less than 59 minutes.
 The total time duration of arcing in the ladle furnace should be maintained between 30-38
minutes.
 Porous plug jamming should be analyzed and resolved to avoid bypass purging and top
lancing.

Mais conteúdo relacionado

Mais procurados

JSPL DRI#1 Training Report 2017
JSPL DRI#1 Training Report 2017JSPL DRI#1 Training Report 2017
JSPL DRI#1 Training Report 2017Abhishek Prajapati
 
NATIONAL INSTITUTE OF TECHNOLOGY
NATIONAL INSTITUTE OF TECHNOLOGYNATIONAL INSTITUTE OF TECHNOLOGY
NATIONAL INSTITUTE OF TECHNOLOGYNishant Singh
 
Billet defects
Billet defectsBillet defects
Billet defectsZiad Salem
 
bhushan-traioning-report-
bhushan-traioning-report-bhushan-traioning-report-
bhushan-traioning-report-Md Aktar
 
project report bsl
project report bslproject report bsl
project report bslAKSHAY KUMAR
 
Continuous casting of billets
Continuous casting of billetsContinuous casting of billets
Continuous casting of billetsAyaz Akhtar
 
Study of breakouts in thin slab caster
Study of breakouts in thin slab casterStudy of breakouts in thin slab caster
Study of breakouts in thin slab casterShubham Thakur
 
Bhilai Steel Plant Training Presentation
Bhilai Steel Plant Training PresentationBhilai Steel Plant Training Presentation
Bhilai Steel Plant Training PresentationMukesh Kashyap
 
Ladle Metallurgy: Basics, Objectives and Processes
Ladle Metallurgy: Basics, Objectives and ProcessesLadle Metallurgy: Basics, Objectives and Processes
Ladle Metallurgy: Basics, Objectives and ProcessesElakkiya Mani
 
BHILAI STEEL PLANT VOCATIONAL TRAINING
BHILAI STEEL PLANT VOCATIONAL TRAININGBHILAI STEEL PLANT VOCATIONAL TRAINING
BHILAI STEEL PLANT VOCATIONAL TRAININGVikash Kumar
 
Industrial training report- Visakhapatnam Steel Plant.
Industrial training report- Visakhapatnam Steel Plant. Industrial training report- Visakhapatnam Steel Plant.
Industrial training report- Visakhapatnam Steel Plant. Ishankamal Mitra
 
Summer Vacational Training Report on Bokaro Steel Plant.
Summer Vacational Training Report on Bokaro Steel Plant.Summer Vacational Training Report on Bokaro Steel Plant.
Summer Vacational Training Report on Bokaro Steel Plant.Ali Ali
 
Bhilai steel plant training report /
Bhilai steel plant  training report /Bhilai steel plant  training report /
Bhilai steel plant training report /Deepash Rajak
 
bhushan steel plant
bhushan steel plantbhushan steel plant
bhushan steel plantArpit Sahu
 
Steel Authority of India Ltd bokaro
Steel Authority of India Ltd bokaroSteel Authority of India Ltd bokaro
Steel Authority of India Ltd bokaroSuman Sourabh
 

Mais procurados (20)

JSPL DRI#1 Training Report 2017
JSPL DRI#1 Training Report 2017JSPL DRI#1 Training Report 2017
JSPL DRI#1 Training Report 2017
 
SMS PROJECT
SMS PROJECTSMS PROJECT
SMS PROJECT
 
NATIONAL INSTITUTE OF TECHNOLOGY
NATIONAL INSTITUTE OF TECHNOLOGYNATIONAL INSTITUTE OF TECHNOLOGY
NATIONAL INSTITUTE OF TECHNOLOGY
 
Billet defects
Billet defectsBillet defects
Billet defects
 
bhushan-traioning-report-
bhushan-traioning-report-bhushan-traioning-report-
bhushan-traioning-report-
 
INTERNSHIP REPORT new
INTERNSHIP REPORT newINTERNSHIP REPORT new
INTERNSHIP REPORT new
 
project report bsl
project report bslproject report bsl
project report bsl
 
Continuous casting of billets
Continuous casting of billetsContinuous casting of billets
Continuous casting of billets
 
Study of breakouts in thin slab caster
Study of breakouts in thin slab casterStudy of breakouts in thin slab caster
Study of breakouts in thin slab caster
 
Bhilai Steel Plant Training Presentation
Bhilai Steel Plant Training PresentationBhilai Steel Plant Training Presentation
Bhilai Steel Plant Training Presentation
 
Ladle Metallurgy: Basics, Objectives and Processes
Ladle Metallurgy: Basics, Objectives and ProcessesLadle Metallurgy: Basics, Objectives and Processes
Ladle Metallurgy: Basics, Objectives and Processes
 
BHILAI STEEL PLANT VOCATIONAL TRAINING
BHILAI STEEL PLANT VOCATIONAL TRAININGBHILAI STEEL PLANT VOCATIONAL TRAINING
BHILAI STEEL PLANT VOCATIONAL TRAINING
 
Industrial training report- Visakhapatnam Steel Plant.
Industrial training report- Visakhapatnam Steel Plant. Industrial training report- Visakhapatnam Steel Plant.
Industrial training report- Visakhapatnam Steel Plant.
 
final_report
final_reportfinal_report
final_report
 
Summer Vacational Training Report on Bokaro Steel Plant.
Summer Vacational Training Report on Bokaro Steel Plant.Summer Vacational Training Report on Bokaro Steel Plant.
Summer Vacational Training Report on Bokaro Steel Plant.
 
Jindal report
Jindal reportJindal report
Jindal report
 
Induction furnace
Induction furnaceInduction furnace
Induction furnace
 
Bhilai steel plant training report /
Bhilai steel plant  training report /Bhilai steel plant  training report /
Bhilai steel plant training report /
 
bhushan steel plant
bhushan steel plantbhushan steel plant
bhushan steel plant
 
Steel Authority of India Ltd bokaro
Steel Authority of India Ltd bokaroSteel Authority of India Ltd bokaro
Steel Authority of India Ltd bokaro
 

Semelhante a VT20152215-Report

Electrical furnace
Electrical furnaceElectrical furnace
Electrical furnacenishantrj
 
Electrical furnace and Substation at Tata Steel
Electrical furnace and Substation at Tata SteelElectrical furnace and Substation at Tata Steel
Electrical furnace and Substation at Tata Steelnishantrj
 
Sinter Plant,Lime & Dolo Plant industrial Training Report
Sinter Plant,Lime & Dolo Plant industrial Training ReportSinter Plant,Lime & Dolo Plant industrial Training Report
Sinter Plant,Lime & Dolo Plant industrial Training ReportShani Kumar Singh
 
Hindustan zinc report
Hindustan zinc reportHindustan zinc report
Hindustan zinc reportDilip kumar
 
dokumen.tips_hindustan-zinc-report (1).pdf
dokumen.tips_hindustan-zinc-report (1).pdfdokumen.tips_hindustan-zinc-report (1).pdf
dokumen.tips_hindustan-zinc-report (1).pdfKhushhalKhinchi1
 
200085263 project-report
200085263 project-report200085263 project-report
200085263 project-reporthomeworkping4
 
Mudgun and Mudgun column assembly major project in MARS2 in BHILAI STEEL PLANT
Mudgun and Mudgun column assembly major project in MARS2 in BHILAI STEEL PLANTMudgun and Mudgun column assembly major project in MARS2 in BHILAI STEEL PLANT
Mudgun and Mudgun column assembly major project in MARS2 in BHILAI STEEL PLANTBasant Kumar Sahu
 
ATUL K. MISRA CV
ATUL K. MISRA CV ATUL K. MISRA CV
ATUL K. MISRA CV Atul Misra
 
Vocational Training in Steel Authority of India Limited (SAIL)-Bokaro Steel P...
Vocational Training in Steel Authority of India Limited (SAIL)-Bokaro Steel P...Vocational Training in Steel Authority of India Limited (SAIL)-Bokaro Steel P...
Vocational Training in Steel Authority of India Limited (SAIL)-Bokaro Steel P...Sumit Kumar
 
Steelcast limited industrial training report
Steelcast limited industrial training reportSteelcast limited industrial training report
Steelcast limited industrial training reportaman1312
 
SUMMER TRAINING AT TATA STEEL
SUMMER TRAINING AT TATA STEELSUMMER TRAINING AT TATA STEEL
SUMMER TRAINING AT TATA STEELRohitBabu16
 
VOCATIONAL TRAINING REPORT
VOCATIONAL TRAINING REPORTVOCATIONAL TRAINING REPORT
VOCATIONAL TRAINING REPORTGunjesh Jha
 
VIZAG STEEL KCB REPORT
VIZAG STEEL KCB REPORTVIZAG STEEL KCB REPORT
VIZAG STEEL KCB REPORTNIT Rourkela
 
Marketing Mix of Tata Steels
Marketing  Mix  of  Tata SteelsMarketing  Mix  of  Tata Steels
Marketing Mix of Tata Steelsshaggy911
 
Hindustan Zink reprt
Hindustan Zink reprtHindustan Zink reprt
Hindustan Zink reprtDilip kumar
 
Sujit kumar mahato report on bsl (sail)
Sujit  kumar mahato report on bsl  (sail)Sujit  kumar mahato report on bsl  (sail)
Sujit kumar mahato report on bsl (sail)1996kuldeep
 
Steel melting shop (sms) - 2
Steel melting shop (sms) - 2Steel melting shop (sms) - 2
Steel melting shop (sms) - 2NIT - ROURKELA
 

Semelhante a VT20152215-Report (20)

Electrical furnace
Electrical furnaceElectrical furnace
Electrical furnace
 
Electrical furnace and Substation at Tata Steel
Electrical furnace and Substation at Tata SteelElectrical furnace and Substation at Tata Steel
Electrical furnace and Substation at Tata Steel
 
Sinter Plant,Lime & Dolo Plant industrial Training Report
Sinter Plant,Lime & Dolo Plant industrial Training ReportSinter Plant,Lime & Dolo Plant industrial Training Report
Sinter Plant,Lime & Dolo Plant industrial Training Report
 
Reduction in charge requirements of HIsmelt process
Reduction in charge requirements of HIsmelt processReduction in charge requirements of HIsmelt process
Reduction in charge requirements of HIsmelt process
 
Hindustan zinc report
Hindustan zinc reportHindustan zinc report
Hindustan zinc report
 
dokumen.tips_hindustan-zinc-report (1).pdf
dokumen.tips_hindustan-zinc-report (1).pdfdokumen.tips_hindustan-zinc-report (1).pdf
dokumen.tips_hindustan-zinc-report (1).pdf
 
200085263 project-report
200085263 project-report200085263 project-report
200085263 project-report
 
Mudgun and Mudgun column assembly major project in MARS2 in BHILAI STEEL PLANT
Mudgun and Mudgun column assembly major project in MARS2 in BHILAI STEEL PLANTMudgun and Mudgun column assembly major project in MARS2 in BHILAI STEEL PLANT
Mudgun and Mudgun column assembly major project in MARS2 in BHILAI STEEL PLANT
 
ATUL K. MISRA CV
ATUL K. MISRA CV ATUL K. MISRA CV
ATUL K. MISRA CV
 
Vocational Training in Steel Authority of India Limited (SAIL)-Bokaro Steel P...
Vocational Training in Steel Authority of India Limited (SAIL)-Bokaro Steel P...Vocational Training in Steel Authority of India Limited (SAIL)-Bokaro Steel P...
Vocational Training in Steel Authority of India Limited (SAIL)-Bokaro Steel P...
 
Steelcast limited industrial training report
Steelcast limited industrial training reportSteelcast limited industrial training report
Steelcast limited industrial training report
 
SUMMER TRAINING AT TATA STEEL
SUMMER TRAINING AT TATA STEELSUMMER TRAINING AT TATA STEEL
SUMMER TRAINING AT TATA STEEL
 
VOCATIONAL TRAINING REPORT
VOCATIONAL TRAINING REPORTVOCATIONAL TRAINING REPORT
VOCATIONAL TRAINING REPORT
 
VIZAG STEEL KCB REPORT
VIZAG STEEL KCB REPORTVIZAG STEEL KCB REPORT
VIZAG STEEL KCB REPORT
 
Vinay kumar
Vinay kumarVinay kumar
Vinay kumar
 
Marketing Mix of Tata Steels
Marketing  Mix  of  Tata SteelsMarketing  Mix  of  Tata Steels
Marketing Mix of Tata Steels
 
Hindustan Zink reprt
Hindustan Zink reprtHindustan Zink reprt
Hindustan Zink reprt
 
Sujit kumar mahato report on bsl (sail)
Sujit  kumar mahato report on bsl  (sail)Sujit  kumar mahato report on bsl  (sail)
Sujit kumar mahato report on bsl (sail)
 
Steel melting shop (sms) - 2
Steel melting shop (sms) - 2Steel melting shop (sms) - 2
Steel melting shop (sms) - 2
 
Report
ReportReport
Report
 

VT20152215-Report

  • 1. On Under the guidance of: Mr. Souvik Banerjee (Manager, LD#1-Operations) Submitted by: RISHAV GHOSH Department of Metallurgical & Material Engineering STUDY OF CARBON VARIATION IN WR3 GRADE Jadavpur University, Kolkata A Technical Report
  • 2. 1 Certificate This is to certify that the work hereby presented by Rishav Ghosh in the project, titled “Study of Carbon Variation in WR3 grade” for the one-month training program at Tata Steel Ltd., Jamshedpur, is a genuine account of work carried out during the period from 26th May, 2015 to 22nd June, 2015 under the guidance of Mr Souvik Banerjee, Manager LD#1 - Operations, Tata Steel Ltd. Jamshedpur. The matter embodied in the project report to the best of my knowledge is a complete bonafide piece of work. RISHAV GHOSH Department of Metallurgical & Material Engineering Jadavpur University, Kolkata Date: 22nd June, 2015 This is to certify that the above declaration is true to the best of my knowledge. Souvik Banerjee Manager LD#1- Operations Tata Steel Ltd. Jamshedpur
  • 3. 2 Acknowledgment This two months project at SMLP, LD#1 has been a steep learning curve for me. Working on this project not only helped me to understand the entire Secondary Steel-making Process, but also appreciate its importance and gain practical knowledge in this field. Being a novice in the area the project could not have been successful without the encouragement and backing provided to me by various people at different stages of the project. I am extremely grateful to Mr Souvik Banerjee, Manager, LD#1 – Operations for providing me with this opportunity. I would also like to thank my guides at LD#1 - Mr Ram Bachchan Kumar (Senior Manager, LD#1 Technical Services) and Ms. Khushboo Sinha(Manager, LD#1 Technical Services) for their infallible support and constant encouragement throughout. I am highly grateful to SNTI for providing me the opportunity to work on the given problem. Lectures and discussion organized by SNTI were very useful in enhancing my knowledge about the manufacturing industry. These lectures will definitely help me to become a better professional in future. Finally, I would like to thank all the staff of SMLP, LD#1 for their constant support, time & valuable advice from their experience throughout my project. Rishav Ghosh Department of Metallurgical & Material Engineering Jadavpur University, Kolkata
  • 4. 3 Table of Content 1. Company Profile 4 2. Major Units of Steelmaking Shop 6 2.1 Hot Metal Receiving and Handling (Torpedo Control) 6 2.2 Scrap Handling 6 2.3 Hot Metal Desulphurisation (HMDS) 7 2.4 Basic Oxygen Steelmaking (PSM) 8 2.5 Secondary Metallurgy Ladle Practice (SMLP) 9 2.6 Continuous Caster 10 3. Secondary Metallurgy 3.1 Why Secondary Metallurgy ? 11 3.2 Secondary Metallurgical Processes 11 4. Ladle Furnace 12 4.1 What Is A Ladle Furnace 12 4.2 Functions Of A Ladle Furnace 13 4.3 Ladle Refractory 13 5. Introduction 5.1 What is WR3 grade ? 14 5.2 Diversion of WR3 Heat 14 5.3 Diversion due to carbon variation 15 5.3.1. On-Line Purging Carbon 15 5.3.2. Treatment Time 17 5.3.3. Arcing Duration 18 5.3.4. Bypass Purging 19 5.3.5. Top lancing 20 6. Recommendations 21
  • 5. 4 1 . Company Profile Tata Steel Limited (formerly Tata Iron and Steel Company Limited (TISCO)) is an Indian multinational steelmaking company headquartered in Mumbai, Maharashtra, India, and a subsidiary of the Tata Group. It is the 6th largest steel producing company in the world, with an annual crude steel capacity of 23.8 million tonnes, and the largest private-sector steel company in India measured by domestic production. Tata Steel has manufacturing operations in 26 countries, including Australia, China, India, the Netherlands, Singapore, Thailand and the United Kingdom, and employs around 81,600 people. Its largest plant is located in Jamshedpur, Jharkhand. In 2007 Tata Steel acquired the UK-based steel maker Corus in what was the largest international acquisition by an Indian company to date. Tata Steel is listed on the Bombay Stock Exchange, where it is a constituent of the BSE SENSEX index, and the National Stock Exchange of India. It is ranked 401st in the 2012 Fortune Global 500 ranking of the world's biggest corporations. It is the eighth most-valuable Indian brand according to an annual survey conducted by Brand Finance and The Economic Times in 2010. Tata Steel is headquartered in Mumbai, Maharashtra, India and has its marketing headquarters at the Tata Centre in Kolkata, West Bengal. It has a presence in around 50 countries with manufacturing operations in 26 countries including: India, Malaysia, Vietnam, Thailand, Dubai, Daggaron, Ivory Coast, Mozambique, South Africa, Australia, United Kingdom, The Netherlands, France and Canada. Tata Steel primarily serves customers in the automotive, construction, consumer goods, engineering, packaging, lifting and excavating, energy and power, aerospace, shipbuilding, rail and defence and security sectors. Tata Steel has set a target of achieving an annual production capacity of 100 million tons by 2015; it is planning for capacity expansion to be balanced roughly 50:50 between Greenfield developments and acquisitions. Overseas acquisitions have already added an additional 21.4 million tonnes of capacity, including Corus (18.2 million tonnes), NatSteel (2 million tonnes) and Millennium Steel (1.2 million tonnes). Tata plans to add another 29 million tonnes of capacity through acquisitions.
  • 6. 5 Major Greenfield & Brownfield steel plant expansion projects planned by Tata Steel include: • A 6 million tonne per annum capacity plant in Kalinganagar, Odisha, India. • an expansion of the capacity of its plant in Jharkhand, India from 6.8 to 10 million tonnes per annum; • A 5 million tonne per annum capacity plant in Chhattisgarh, India • A 3 million tonne per annum capacity plant in Iran; • A 2.4 million tonne per annum capacity plant in Bangladesh; A 10.5 million tonne per annum capacity plant in Vietnam • A 6 million tonne per annum capacity plant in Haveri, Karnataka.
  • 7. 6 2. Major Units of Steelmaking Shop 2.1 Hot Metal Receiving and Handling (TORPEDO CONTROL) The hot metal, or liquid pig iron, is the primary source of iron units and energy in the oxygen steelmaking process. Hot metal is usually produced in blast furnaces, where it is cast into submarine shaped torpedo cars and transported either to a desulfurization station or directly to the steelmaking shop. The chemical composition of hot metal can vary substantially, but typically it contains about %C %Mn %Si %S %P TEMP.(o C) HOT METAL 4.3 0.2-0.3 0.2 – 1.5 0.05 0.17-0.2 1330-1400 STEEL 0.03 0.1 0 0.005-0.015 0.01 1620-1720 The composition of the hot metal depends on the practice and charge in the blast furnace. Generally, there is a decrease in the silicon content and an increase in the sulphur of the hot metal with colder blast furnace practices. The phosphorus contents of the hot metal increases if the BOF slag is recycled at the sinter plant. Carbon and silicon are the chief contributors of energy. The hot metal silicon affects the amount of scrap charged in the heat. If the hot metal silicon is high, there will be greater Amount of heat generated due to its oxidation, hence more scrap can be charged in the heat. Hot metal silicon also affects the slag volume, and therefore the lime consumption and resultant iron yield. In LD#1, hot metal is poured into transfer ladles kept in torpedo pit which is then carried by torpedo cranes to the desulphurisation station. The weighing of the hot metal is done on a scale while it is being poured into the transfer ladle. It is very important that the weight of the hot metal is accurately known, as any error can cause problems in turndown chemistry, temperature and heat size in the BOF. This weight is an important input to the static charge model. 2.2 Scrap Handling Scrap is the second largest source of iron units in the steelmaking operation after hot metal. Scrap is basically recycled iron or steel, having Fe content of almost 92% that is either generated within the mill (e.g. slab crops, pit scrap, cold iron or home scrap), or purchased from an outside source. The scrap is weighed when loaded in the scrap box by using electromagnets and is mixed based on requirements of the upcoming heat. Then the box is transported to the BOF. It is important that the crane operator loads correct amounts and types of scrap (WRP, POOLED IRON, CLEAN) Otherwise the turndown performance of the heat will be adversely affected.
  • 8. 7 Normally, the lighter scrap is loaded in the front, and the heavier scrap in the rear end of the box. This causes the lighter scrap to land first in the furnace as the scrap box is tilted. It is preferable that the lighter scrap fall on the refractory lining first, before the heavier scrap, to minimize refractory damage. Also, since heavy scrap is more difficult to melt than light scrap, it is preferable that it sits on top so that it is closest to the area of oxygen jet impingement and hence melts faster. Unmelted scrap can cause significant problems in process control. It may result in high temperatures or missed chemistries at turndown. Most steelmaking shops typically use about 20 to 35% of their total metallic charge as scrap, with the exact amount depending on the capacity of the steelmaking process. Scrap pieces that are too large to be charged into the furnace are cut into smaller pieces by means of shears or flame cutting. 2.3 Hot Metal Desulphurization (HMDS) Sulphur is an undesirable element in steel and is kept to the lowest level. Sulphur in steel mainly comes from coal/coke charged in blast furnaces. Hot metal is desulphurised in the transfer ladle by the injection of a mixture of calcium carbide and magnesium, through a refractory coated immersed lance. There are two -possible injection combinations of the desulphurization reagents including calcium carbide on its own (monoinjection) and calcium carbide and magnesium in combination (co-injection). Prior to treatment, the weighed hot metal transfer ladle is placed on a ladle car with tilting frame by the overhead ladle handling crane. The ladle car is driven inside refractory faced enclosures, which are sealed when the ladle is inside the enclosure by sliding doors. A sample taken from the transfer ladle prior to treatment is analyzed, and the result is used to calculate the amount of calcium carbide and magnesium required to achieve the necessary Fig 1: Desulphurization amount of desulphurization. The injection lance, which is a thick walled steel tube inside a refractory coating, is positioned above the ladle, and then lowered through a port in the enclosure cover. Before the tip of the lance enters the hot metal surface, the powder transport gas N2 is switched on, and then the calcium carbide powder begins to flow though the lance. Once powder flow is established, the lance is driven down into the hot metal to a predetermined position above the refractory bottom of the ladle. After sometime, Magnesium is injected and the calcium carbide injection rate is reduced.
  • 9. 8 When injection is complete, the carry-over slag plus the slag formed on top of the ladle during injection is removed by a slag skimming machine (Raking). This is done by rotating the ladle in its tilting frame on the transfer car. Slag is collected in slag pots placed on one end of the transfer car. Once a slag pot is filled up the car will transfer the same through the unit and out into the slag bay where the filled-up slag pot will be picked up by the overhead crane and replaced by a fresh slag pot. DS IN DS OUT % Sulphur 0.06 0.005 2.4 Basic Oxygen Furnace (Primary Steel Making) The purpose of the Basic Oxygen Steelmaking (BOS) process is to refine the hot metal produced in the blast furnace into raw liquid steel. Steel is made in discrete batches called heats. The furnace or converter is a barrel shaped, open topped, refractory lined vessel that can rotate on a horizontal trunion axis. The required quantities of hot metal, scrap, oxygen, and fluxes vary according to their chemical compositions and temperatures, and to the desired chemistry and temperature of the steel to be tapped. Fluxes are minerals added early in the oxygen blow, to control sulphur and phosphorous and to control erosion of the furnace refractory lining. The exothermic oxidation reactions that occur during BOS generate a lot of heat energy - more than is necessary to attain the target steel temperature. This extra heat is used to melt scrap and/or iron ore additions. The energy required to raise the fluxes, scrap and hot metal to steelmaking temperatures is provided by oxidation of various elements in the charge materials. The principal elements are iron, silicon, carbon, manganese and phosphorous. The liquid pig iron or hot metal provides almost all of the silicon, carbon, manganese and phosphorous, with lesser amounts coming from the scrap. Both the high temperatures of the liquid pig iron and the intense stirring provided when the oxygen jet is introduced, contribute to the fast oxidation (burning or combustion) of these elements and a resultant rapid, large energy release. Silicon, Manganese, Iron and Phosphorous form oxides, which, combine with the flux to form Slag. The vigorous stirring fosters a speedy reaction and enables the transfer of energy to the slag and steel bath. Carbon, when oxidized, leaves the process in gaseous form, principally as carbon monoxide. During the blow, the slag, reaction gases Fig. 2: Sectional View of Vessel contact
  • 10. 9 and steel (as tiny droplets) make up a foamy emulsion. The large surface area of the steel droplets, in with the slag, at high temperatures and vigorous stirring, allow quick reactions and rapid mass transfer of elements from metal and gas phases to the slag. When the blow is finished the slag floats on top of the steel bath. Overall process of primary steel making in LD Vessel can be shown by following figure: Fig. 3: Schematic of operational steps in oxygen steelmaking process (BOF) 2.5 Secondary Metallurgy and Ladle Preparation (SMLP) The steel after refining in the BOF and OLP is further sent to three LF Stations where • Minute additions of ferro-alloys and micro alloying takes place to fine tune the steel compositions. • The molten steel is heated by arcing with graphite electrodes with a cover placed over the ladle. • It has provision for bottom Argon gas purging for temperature and bath homogenisation Synthetic slag is added in ladle to trigger the formation of slag in the bath. • Further steps for effective de-oxidation, de-phosphorisation, desulphurisation are taken. Thus, various grades of steel are obtained based on the requirements of the consumer.
  • 11. 10 2.6 Continuous Caster The liquid steel ladles after secondary treatment are brought to the ladle preparation aisle, lifted by the ladle cranes and placed on the charging arm of the ladle turret. The steel ladle is then brought to the casting position by rotating the turret by 180º. In the meantime refractory lined and preheated tundish, travelling on tundish car is brought to the casting position over the mould just before placing the turret. Once the turret is positioned over the tundish, the liquid steel is allowed to flow into the tundish from the ladle by opening the ladle slide gate. After the desired level is reached in the tundish, the tundish nozzle is opened and the molten metal starts pouring into the mould. When the level is reached in the mould, the dummy bar/strand withdrawal starts. The mould and spray cooling and the mould oscillation also starts along with the dummy bar/cast strand withdrawal. The dummy bar which makes a temporary bottom inside the mould pulls the cast strand and gets disconnected once the cast strand reaches the withdrawal and straightening unit. The cast strand after straightening is transported into the soaking furnace via roller table. A pendulum shear cuts the thin slab into the desired length. Fig.4: Continuous Casting
  • 12. 11 3. Secondary Metallurgy 3.1 Why Secondary Metallurgy  To meet the ever increasing “Quality” demands of the market place, which is becoming globally competitive.  Difficult to carry out certain aspects of refining in an oxygen steel making furnace.  Reduce the burden of primary steel making  To increase the Productivity 3.2 Secondary Metallurgical Processes   OLP, ARS  Ladle Furnace  CAS-OB  VD, VAD, VADR, VOD , DH, RH, RH-OB, RH-MFB  Stream Degasser
  • 13. 12 4. Ladle Furnace 4.1 What Is A Ladle Furnace Fig. 5: Ladle Furnace
  • 14. 13 4.2 Functions of a Ladle Furnace • Homogenization of Steel with respect to Temperature and Composition. • Improvement of alloy Yield and to control final composition of steel to a narrow range. • Flotation and removal of inclusion by metal stirring and absorption into top slags. • Desulphurisation. • Inclusion modification by injection of suitable reactants. • Dephosphorization by special slags. • The holding of ladles for sequence casting. 4.3 Ladle Refractory Fig.6: Ladle Refractory
  • 15. 14 5. WR3-Introduction 5.1 What is WR3 grade? WR3 grade is a special grade steel prepared specifically in LF#2 of LD#1 shop. These steels are cast and shaped in the form of wire rods used specifically for MIG welding purposes. Lincoln grade WR3 wire rods(ER70S-6) finds extensive applications in CO2 gas welding electrodes owing to its favourable mechanical properties. The following table indicates the specifications of WR3 grade steel. Table 1: Chemical specification of WR3 grade Component C Mn Si S P N2 (ppm) Min 0.06 1.42 0.80 Max 0.08 1.50 0.90 0.015 0.018 50 5.2 Diversion of WR3 Heat Stringent quality demands along with tighter specifications by the market has made ladle treatment one of the prime as well as key refining operations in the entire steelmaking process chain. This is because the final adjustments in the chemistry of the finished product can’t be done after the molten steel is tapped from the ladle for casting. Thus ladle treatment is necessary for attainment of near complete homogenization with respect to chemical composition and melt temperature prior to casting. In addition, the ladle treatment also involves deoxidation, inclusion floatation, desulphurization, degassing and other metallurgical phenomenon. In the past financial year (Apr ’14- Mar’15), several cases of diversion from WR3 grades to TMT grades and other grades have been reported. Deviation in carbon, manganese, suplhur, silicon, phosphorous and nitrogen from the desired specifications due to improper additions , faulty process design, unsteady casting and top lancing have been accounted for as the main reasons for such diversion. The main causes of diversion can be understood properly from the comparison chart shown below. As observed from the plot, the primary causes for heat diversion in WR3 grades are faulty process design, high carbon, phosphorous, silicon and manganese percentage in the final product.
  • 16. 15 5.3 Diversion due to carbon variation Diversion in heat due to increase in carbon content of the heat can be attributed to the following causes :- 5.3.1. OLP(On-line Purging) Carbon In most of the steel plants all over the world, after completion of each heat in the LD converter, the liquid steel is tapped in ladle along with the addition of deoxidizers and ferro-alloys during vessel tapping into the ladle. In LD-1 at Tata Steel, Jamshedpur the ladle is then transferred to the Online Purging / Rinsing Station(OLP) where purging of argon gas into liquid steel bath contained in the ladle through top lance is carried out to generate enough bath turbulence to produce thermal and chemical homogeneity in liquid steel before treating in the secondary refining units and sending to the caster as per the caster requirements. Any improper mixing of the liquid steel bath at OLP may lead to increase in chemistry of the same during ladle treatment which lead to diversion/ downgrading of heats- as is the case in the grade under consideration. An undue increase in carbon content of liquid steel higher than prescribed specification have been observed in spite of similar addition and homogenization practices. The following box plot shows the range of OLP carbon for which the heat is not likely to be diverted. 10.8 3.7 11.1 0.7 4.2 16.3 3.7 3 1.63 0.59 1.9 0 2 4 6 8 10 12 14 16 18 %Diversion Causes of Diversion
  • 17. 16 It can be observed that the OLP-carbon level varies over a large range in diverted WR3 grades compared to the proper heats. Hence, to meet desired specifications of WR3 grade, OLP carbon in the range of 0.041-0.05 would indicate the possibility of a proper heat. Any deviation from this range would result in diversion.
  • 18. 17 5.3.2. Treatment Time Ladle treatment time has a profound effect on the carbon content of the heat prior to ladle treatment. High ladle treatment would mean higher purging and duration which results in higher amount of carbon pick-up due to electrode wash because of vigorous bath condition. From the box plot above, we can observe a narrow treatment time range for proper heats of WR3 compared to a high treatment time range in case of diverted heats. For proper heats, ladle treatment time, specifically, between 59-77 minutes should be ensured. Treatment time higher than 77 minutes would lead to diversion due to prolonged period of carbon pick-up. Higher treatment time would mean higher residence time of the heat in the ladle requiring higher arcing duration to maintain the requisite temperature for casting resulting in more electrode wash and hence, higher carbon pick-up.
  • 19. 18 5.3.3. Arcing duration Arcing in ladle furnace is necessary to increase the temperature of the bath for melting of ferro- alloy additions and other additions. Arcing is indispensable to increase the temperature to the optimum limit as well as provide the adequate superheat to compensate for any heat loss. Practically a minute of arcing raises the temperature of the bath by 3o C. A temperature of 1600- 1620o C is generally maintained in the bath before emptying it into the tundish. Thus arcing duration plays a vital role in the temperature of the bath as well as the bath chemistry. The box plot above shows that the arcing duration for good heats is lesser than the arcing duration for diverted/bad heats. Total arcing duration of 30-38 minutes would ensure the heat meeting its desired specifications. Arcing time greater than 38 minutes would lead to improper steel chemistry leading to diversion. Higher arcing duration would mean bath will have higher carbon pick-up due to increased duration of electrode wash.
  • 20. 19 5.3.4. Bypass purging Bypass purging refers to a higher rate of purging of argon gas through the ladle porous plug. Bypass purging serves to perform two distinctive functions viz. i) to ensure proper homogensation and mixing upon ferro-alloy addition and ii) for opening of jammed porous plug The box chart shows that higher values of bypass purging duration leads to improper heat compared to lower bypass purging duration in proper heats. An optimum bypass purging duration of 3-11 minutes is necessary to obtain the desired chemistry in the heat. However, bypass purging for more than 11 minutes would lead to deviation in the chemistry-higher carbon level consequently leading to diversion of the WR3 grades to TMT grade. Probable explanation of such behavior might be higher levels of carbon pickup as a result of electrode wash due to vigorous condition of the bath.
  • 21. 20 5.3.5. Top lancing Top lancing is done when the ladle porous plug is blocked and bottom purging is not possible. However, the gas flow rate in top lancing is uncontrollable and bath splashing and bath inhomogeneity is rampant in such cases. The box plot shows that heats treated without top lancing are proper compared to the heats purged with top lance. The primary reason that can be attributed to this behavior is bath splashing leading to electrode wash. Also, the vigorous reaction rate in the bath might lead to an unstable slag with the tendency of impurity reversion into the steel from the slag. Thus, for casting of proper WR3 grade, top lancing should be avoided. Top lancing for any time duration would lead to improper chemistry resulting in a diverted grade.
  • 22. 21 6.Recommendations Based on the analysis of WR3 heats in the past financial year, for lesser diversion to substandard grades , the following recommendations are to be implemented :-  OLP treatment should be optimized to attain a carbon chemistry of 0.041-0.045 in the melt before treatment at the ladle furnace.  Treatment time in the ladle furnace should not exceed more than 77 minutes neither should the treatment time be inadequate i.e. less than 59 minutes.  The total time duration of arcing in the ladle furnace should be maintained between 30-38 minutes.  Porous plug jamming should be analyzed and resolved to avoid bypass purging and top lancing.